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Abstract: This paper investigates the spatial behavior of the solutions of thermoelastic equations of
type III in a semi-infinite cylinder by using the partial differential inequalities. By setting an arbitrary
positive constant in the energy expression, the fast decay rate of the solutions is obtained. Based on the
results of decay, the continuous dependence and the convergence results on the boundary coefficient
are established by using the differential inequality technique and the energy analysis method. The
main work of this paper is to extend the study of continuous dependence to a semi-infinite cylinder,
which can be used as a reference for the study of other types of partial differential equations.

Keywords: spatial decay estimates; thermoelastic equations of type III; structural stability

1. Introduction

Since Hirsch and Smale [1] put forward the concept of structural stability in 1974,
this type of structural stability research has attracted a lot of attention. Liu and Zheng [2]
considered the exponential stability of the thermoelastic plate model

uy — hAuy + Nu+aAd =0, x € Q, t >0, (1)
0t — uA8 400 —aAu; =0, x € O, t >0, 2)
Jou
= — = To, t
u=s 0, x €Ty t>0, 3)
u=Au+(1—p)Bju+ab, x€T'q,t >0, (4)
u=uy(xt),uxt) =uy(x,t),0(x,0) =0(xt), x€Q,t>0, 5)

where () is a bounded region in R” with smooth boundary I'and I' =Ty UTI'1,To UT1 # @.
h,a,0, i, yq are positive constants, and ug(x, t), u1(x,t),60(x, t) are given functions. # and 6
are unknown functions that represent the vertical deflection and the temperature of the
plate, respectively.

In another paper [3], Avalos and Lesiecka proved that the solution of the Equations (1)—(5)
decayed exponentially as t — oo under the boundary conditions

Jdu
=(1-kE = Tt
u=( )an 0,xel,t>0, (6)
a0
— + A6 = I,t 7
8n+ 0, xeTl,t>0, 7)
k(u+(1—u)Bju+ab) =0, x €T, >0. (8)

Here, k is either 0 or 1. Meyvaci [4] obtained the continuous dependence on coefficients
h and B, in the case of o = 0 in Equations (1) and (2) under the boundary conditions

ou

u=—=0=0,x€I,t>0,
on
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or

u:a—uzo,xel",t>0,
on

3—9—1-,89— F(x,t), x€T,t >0,
where F(x,t) is a known function. This type of boundary condition can be thought of as
expressing Newton’s law of cooling with inhomogeneous outside temperature. § is the
cooling coefficient. For more papers of the type, one can refer to [5-18].

However, these results above only considered the case of the bounded region. In recent
years, structural stability on the solutions of partial differential equations in semi-infinite
cylinders has also attracted some attention (see [19-24]). In this paper, we continue their
work. We define a semi-infinite cylindrical pipe named R. The cylindrical pipe’s generator
parallels to the x3-axis e.g.,

R = {(x1/x2/x3)‘(x1/x2) € D/ X3 > 0}/

where D is a bounded simply-connected region in (x1, x3)-plane with piecewise smooth
boundary dD. We consider the following thermoelastic equations of type III

uy — pAu+ (u+ A)V(divu) +aV0 =0, x € R, t > 0, 9)
Oy — kAO — SAO; + adivuyy = 0, x € R, £ > 0, (10)
u,Vu,0,V0 — 0,as x3 — oo, (11)

with the initial-boundary conditions

u(x,0) =u(x,0) =0,x € R,t >0, (12)
0(x,0) = 0,(x,0) = 0,x € R,t >0, (13)
u(x1,x2,0,t) = g(x1x2,1),0(x1,x2,0,¢) = h(x1x,t), (x1,%2) € D, t >0, (14)

= 0,% +BO=F(x,t),x€dD x {x3 >0}, t>0, (15

where y, A, 6, x, «, and B are positive constants. By the end of the 20th century, Green
and Naghdi [25-27] introduced three types of thermoelastic theories. They were respec-
tively called thermoelasticity type I, type II, and type III based on different constitutive
assumptions. Since then, thermoelastic equations of type III have attracted a lot of attention.
Quintanilla [28] obtained the existence in thermoelasticity without energy dissipation.
Ding and Zhou [29] proved the global existence and finite time blow-up for the solutions
of the thermoelastic system with p-Laplacian. Zhang and Zuazua [30] have studied the
long-time behavior of the solutions of the system. Quintanilla [31] proved that solutions of
thermoelasticity of type III converged to solutions of the classical thermoelasticity and to
the solution of thermoelasticity without energy dissipation. Quintanilla [32] obtained the
structural stability results on the coupling coefficients and the external data in thermoe-
lasticity of type IIl in a bounded domain. Yan et al. [33] further extended the convergence
result of thermoelasticity of type III to a semi-infinite pipe, but in the lateral of the pipe,
they assumed that the solutions satisfied

u=0,0=0x€9dD x {x3>0},t>0.

This paper studies the structural stability on the coefficient B of system (9)—(15). Dif-
ferent from the continuous dependence on the initial data, the so-called structural stability
studies the continuous dependence and convergence of the solutions of the equations
on the coefficients in the equations, the parameters in the boundary conditions, and the
equations themselves. In the process of model building, simplification, and numerical cal-
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culation, some errors will inevitably appear. Different from mistakes, the errors will not be
completely avoided with the progress of measurement methods. Therefore, it is important
for us to study the influence of these errors on the solution of the equations (see [34]). In
this paper, we first derive the spatial decay bounds of the solutions by using the partial
differential inequalities, and then, we study the effect of the coefficient B by using the total
energy bounds obtained in the derivation of spatial decay. By setting an arbitrary positive
constant, we also obtain the fast decay rate of the solutions. Obviously, our research is a
generalization of [32,33]. Our innovation is to extend the study of continuous dependence
to a semi-infinite cylinder. This type of study can be used as a reference for the study
of other types of partial differential equations and has not received sufficient attention.
Therefore, the research of this paper is very meaningful.

2. Preliminary

In this section, we give some preliminary work, which will be used frequently.

Lemma 1. Assume that p > 0,% + % =1, feLP(Q)g € LI(Q), then

/Qfgdxs (/Q|f|"’dx)’]’(/0|g’1dx)‘17.

This inequality is usually named as the Holder inequality.

Lemma 2. Assume that a,b > 0, % + % =1, then

1.1
arbi

IN

la + -b.
P4
This inequality is usually named as the Young inequality.

Lemma 3. Assume that n is a positive integer and x; > 0 (i = 1,2,...,n), then

n 1 n
1= Lo
i=1 i=1
This inequality is usually named as the arithmetic—geometric mean inequality.

Lemma 4. Assume that u is a vector function in a bounded region Q) then

/divudx:/ u-ndA,
Q E19)

where 0Q) is the boundary surface of () and n is the outward facing unit normal vector on 0C).
This inequality is usually named as the divergence theorem.

3. The Decay Results
We first give the notations

R, = {(xl,xz,xg,)‘(xl,xz) €D, x3>z> 0},

D, = {(xl,XQ,Xg)‘(xl,Xz) €D, x3=z> 0},

where z is a moving point on the coordinate axis x3 and 0 < z < oo.
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To get the decay result of the solutions to (9)—(15), using (9), we begin with the

following identities

/ /Z ul iy — WOy + (B + A)uj iy + af m}u,wdxdiy =0,

/0 /R K [0 — k00 — 580, + iy | 0 vy =0,

(16)

(17)

where w is a positive constant. In (16) and in the following, we use commas for derivation,
repeated English subscripts for summation from 1 to 3, and repeated Greek subscripts for

tion from 1 to 2, ;) ? = O ’
summation from 1to 2, e.g., u; ju;; = Z,] 1 {3y Uy, gy p = Z“ﬁ 1) -
Using the divergence theorem and Equations (9)-(15) in (16) and (17), we have

. 2
7€ ! /Rz {ui,ttui,tt + pti i je + (o A) (ui’it) }dx

2
+ w/ / uz Wiy Py Uiy + (n+2) (W,iry) ]dxdﬂ

+y/ / M 3t gy d Adiy + (g +A) / / huj iz dAdn

—a/o / e~ "6 yu3,,d Ady —tx/o / e~ "0 yu; ipydxdy = 0.

and
%e*wf /R Z [0 + 0,0, | dx + /O t /R e [%wa,’; n %wxeﬂ-eﬂ- 60,0y | dxdy
+x /0 t | /D 9030, dAdy + 6 /O t /D 38, Ady
+%e*wt /Z‘” /BDg 6%dsd¢ + 5’{7“]/; /Zoo /aDée“”792dsd§d17
—x /0 t /Z ~ /a o, & nFdsEdn + 3 /O t /Z ” /a Dge*wvegdsdgdn
- (5/Ot /Zoo /aDé e~ "0, Fydsdldn + a /Ot /Rz e~ "0 yu; ipydxdy = 0.

If we define
1 —wt 2 2
E(zt) = ¢ /R [ui,ttui,tt + pjuj 4+ (p+A) (Mi,it) +05+ K9,i9,z} dx

1 1 2
+/ / “’”HM”IW* S WHL i jy + 5 ~w(p+A) (ui,m)

+ fwez + %uxe 0+ 66 iqein} dxdy

ﬁxw o [ / [ ~reasdgay + 508 [ [ o, ¢ s,

(18)

(19)

(20)
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then from (18) and (19), we have

t oo 00
E(z,t) = —1(5,8/ / /aD e~ 6, dsdZdn — &e’“’t / / 0%dsd¢
— y/ / M gy gy d Adyy — (p+ A) / / T i uz gy d Ady

- ~wng s dAdy — // ~w1g .0 dAd ﬂs/‘ / ~wng. 0. dAdy (21
"‘/0 /Dze U35 n—x 0 DZE 3V, n 0 Dze 3100 n (21)
t [e] t o]

n /// ~w1g, Fdsded +5/// ~wig, F dsdid

by oD, pFdsdedi +96 | | o0, yFydsdtdy

9
iZAZ

i=1

From (20), we also have

d 1 _ 2
_EE(Z’ t) = 5¢ wt /Dz {ui,ttui,tt + pu j i + (p +)‘)<ui,it) + 63 +K9,i9,l} dA

1 1 2
//Dz wuzwulw—F w,uulmulm+ a)(;H—/\)(ulm) (22)

1
+ Eweﬁy + SwK0,0;+ 00, 9,,-,,} dAdy

ﬁKw/t/ —wn g2 1 /t/ —wi n2
+ > /s aDze 9dsd17+25 ; aDze 0, dsdn.

Using the Holder inequality and the Young inequality, we have

1
Az < / /D u13,7u13,]dAd17/ / u,,mu,WdAdiy}2

wy// u13,7u13,7dAd11+ w// MquuqudAdﬂ , (23)

1
As < (n+A) // ) dAdn// “ng, dAdy|®

_"_
” W+ A) / / iy PdAdy + 0 / / e, dAdy|, (24)

t t 1
<u / / e w12 JAd / / e N2 dAdn|?
- [0 D, T 0 Jp, 311 ’7]

14

1 't —wn 2 1 f — 2
Z U — wi
w/o /Dz e 105, dAdy + 2w/0 '/Dz e u3,,7,]dAd77}, (25)

t t
<x / / 1034 Ady / / e“””G,Z,]dAdﬂ
/ / e~ g2 dAdry—l— “w / / “162 dAdy|, 26)

t
e 163, dAd / / ~wng2 A
// T 0 Dze & ﬂ
1 t
—wn 2 - —win n2
(o /0 /D N dAdy + 5w /0 /D K 02 dAdy), 27)

| /\

IN
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t oo 't poo 1
Ag < K‘B[/O /Z /BD(-; e“"”@%dsd@’diy/o / /{9D§ e“"”F%sdé‘dﬂz

1 t 00
<1 55// / ~wn@2dsdidn + <P // / e ONF2dsdidn (28

1 t Je'e] B 5’B t gee} g B
Agféé// / W12 4sdEd 7// / WIP2gsdedn, (29
9= 3P *Jo J: .aDge ,]s§17+52 0 Jz .apge ydsaGdy 29)

where 1, 6, are positive constants. Inserting (23)-(29) into (21), choosing d; = d, = 1 and
combining (22), we have

E(zt) < mli/a[ ;ZE(z,t)} +Qi(zt), (30)

1 VE VS B VE VA B
whzereml—ma {7—1-74-%74- o +ﬁ} Qu(zt) = fof fan
%FZ + OBF2 | dsdzdy.
From (30), we have

+

g

%{E(Z,t)eml‘/‘jz} < mivwQi (z, t)e™MVWE, (31)
Integrating (31) from 0 to z, we have
E(z,t) < E(O, )"V 4o /0 T 01 (& em Vi) ge. (32)
Combining (20) and (32), we can obtain the following theorem.

Theorem 1. Let (u,6) be the solutions of Equations (9)-(15) with F, F; € C(dD x [0,0)). Then,
the following inequality

1 _ 2
2 /R (et + oo + =+ A) (i) + 0% + 6,0, | dx
! —wn 1 1 1 2
+ /O /Z e [Ewui,wuim + ECUMMI',MMZ‘,M + E(U(}l —+ /\) (ui,iﬁ>

1 1
+ 5w + Sw 6, + 06 e,i,y} dxdy

ﬁKw/t/w/ —wn 2 1 L —wn 2
+ 22 Iodsdzdy + 0B [ [ [ e reddsdc
2 Jo J: aD,;e sdedy 2ﬁ0z aDge ydsdcdy
4
E(O, e ™V 4 mva [ Qu(g HemveE-ag
0
holds.
Remark 1. Since E(0,t)e ™V@? 4 [~ Q1(E, t)e™Vw€-2)dz — 0as z — oo, we can conclude
that the solutions of Equations (9)—(15) decay exponentially. Since w is an arbitrary positive

constant, the decay rate can be large enough.

Remark 2. Obviously, the decay bound in Theorem 1 depends on the total energy E(0,t). To
make the decay bound explicit, we have to derive the bound for E(0O, t). We write the result in the
following theorem.
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Theorem 2. Let (u,0) be solutions of Equations (9)—(15) in R, then, for fixed t,

2
E(0,t) = Efu:t/R [ui,ttui,tt + g jut e+ (1 +A) (ui/it> +9§ + KG/iG/i} dx
! —w1y 1 1 1 2
+ ‘/0 AE {Ewuiﬂmuiﬂm + ECU‘MMI‘,]'WMI',M + ECU(]J + )\) (ui,iﬂ)
1 1
+ 5wt + wKb,0; + 59,i,79,i,7} dxdy
,Bka)/f/m/ —wonad 1 b poo Comn
+—=— e “10°dsdcd —1—7(5/// e~ W92 dsdEd
< ZQz(O, t),

where Q2 (0, t) is a positive function, which will be defined in (53).
Proof. We choose z = 0 in (20) and (21) to have
1 —wt 2 2
E(0t) = /R [”1 tli e+ P e e+ (p+ A) (W,it) +05 + K9,i9,i] dx
1 1 2
—i—/ / wu,/,mu,,m7 + 2 M jy iy + w(y —i—)\)(ul ”7) (33)

+ w@z + wxe 0+ 00 i,lei,?}dxdiy

ﬁm I / [, ¢ <ebasaza + s [T e o, ¢ g

and
1= 3o [ i< [ o
¢
i / [ e iy dAdy = e+ 2) / [ ezt Ay (34)
_a/o /De*“”79,r7u3,;7,7dAd17—K/0 /De*‘*’”()ﬁ(),”dAdiy—(S/o '/D =0 ,5,6,,d Ady
+xB ./Ot '/0°° '/aDé e~ 10, Fdsdldn + op ./Ot ./O"" '/aDg =16, F,dsddy.
[

Now, we define two new auxiliary functions
Gi(x1,x2,x3,1) = gi(x1, %2, t)e” %3, H(x1, X2, x3,t) = h(x1, X2, t)e” 73, (35)

where 07, 03 are positive constants. Obviously, G; and H have the same boundary conditions
with u; and 0, respectively.



Mathematics 2022, 10, 366

8 of 18

Using Equation (9) and the divergence theorem, we have

—H ./Ot ./D e MuigyuiyydAdy — (u+A) (/Ot ./D e “Muj iy uz pd Ady
=—u /t / e M3, G yydAdyy — (4 +A) /t / e~ “"Mu; i G ypd Ady
_V/ / T (1t jy i) jeleddiy + (p+A) / / (1) jy Gipgy) idxny (36)
—y// u,],7 Gijyydxdn + (n+A) // ]jnGi,inqudU
+y// Wity + 00 1y Gy ey
:F‘/ /eiwquiquijqqud?]—F p+A) /t/e""”ujj”Gii”qudn

et / ulttG,ttderw/ / Ty 1,7,7,7dxd17+zx/ / “10 iy Gi gy dxdn

5
=) B,
i=1
Using the Holder inequality and the Young inequality in (36), we have
yel/ / ulmulmdxdiy—i— y/ / TG jyy Gi jyyddn, (37)
2
By < 2(n+A) 82/ e u]m dxdq+— A / [ e Gy lxdy,  (39)
1
Bs < Sese t/ Ui i pdx + 273 / GiuGipndx, (39)
1
By < 584(42/ / M, i, ,mdxdn—l— w/ / Z,7,7,7(31‘,,7,],701xci17, (40)
1 _ _
Bs < esa /O [0ty + Ea / J €7 1G Gy, (41)

where ¢;(i = 1,2,...,5) are positive constants. Using Equation (10) and the divergence
theorem, we have

t t r t
_ ~wn9.,0 dAd 75// ~w1g . 0 dAdy — // w1 s dAd
K/o /De el U 0 De 3% /s 0 De U3, n

t t t
= —K/ / e “"03H ,dAdn —5/ / e “83,H, dAdiy—tx/ / e~ "6 yuz pyd Ady
0 JD
—x// 1(0,H,) dxd17+5// ) dxdy
- 6+ F|H,dxd
<o LB Bty
=) / / /a e[~ Bo, + F,|H,dxdy — / / 1,113,y d Ady
D
—e*‘”t/RG,tH,tdx—i-w/O /Re*“”76,,7H,,7,7dxd77 / / Ty H iy dxdy
t roo t oo
- *wWGHddd—/// ~@IPH, dsded
Kﬁ/O[)/@De 7]SgUKOO aDe ”5677
t [e} t [}
+5/// *“”79Hddd—5/// ~wIF, H,dsdd
’800 aDe 1’]1’]5677 0 JO aDe ”Usgrl
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t -t
+ /0 /Re_“’”(%jH,mdxdn +6 /O /R e“””GIiWH,indxdiy

9
=) C. (42)
i=1
Using the Holder inequality and the Young inequality in (42), we have
C < %sée wt / 92dx+ et / Hidx (43)
G < %ww/ /e“*’”@z dxdn + —w/ /e“*’”H2 dxdy, (44)
1 -
Cs < sesa / [ty 4+ 5 288 / [ ey Hy i, (45)

1
—wn g2 —win 172
Cy < 21(/359/ / /E)D 6%dsddn + 5 K,B/ / /BD H;dsdgdy, (46)
1
- —wi g2 —wn 132
Ce < 281055/0 /0 /aDe 9,7dsd€d17+ 5 10[3 / / / H; dsdgdsy, (47)

1t .

Cs < 5en / / 0,0, dxdy + 5 / / I, H gy dxdy, (48)
1 B B

Co < et [ [ e 00 udxdy+ 10 [ [ ey iy, (49)

where ¢; (i = 6,7,...,12) are positive constants. For the last two terms on the right of
(34), we can refer to the results that have been derived in (28) and (29), and we have the
following inequalities

t poo p
~wig Fdsded

o [ s

1 t roo

<755/// ~wn@2dsdidn + P /// e O1F2dsdidn, (50

t poo
5/// ~wip F dsded
ﬁo 0 aDge yFydsdtdn

1 t proo _ 5ﬁ t o0 B
<7(55// / W92 gsdid +—// / W F2sdEdn. 51
—4[320 0 aDﬁ;e ydsdd % Jo Jo aDge ydsdtdn G

Inserting (37)—(41) and (43)—(49) into (36) and (42) respectively, combining (33), (34),
(50) and (51) and choosing

51—52—53—56—57—510—51—52—512—% 54259:%/52:%158 %,811 KW,
We have
E(0,) < 3E(0.1) +Qa(0,8), (52)
where

1 rt _
Q(0,t) = E‘M/O /Re wnGi,jw 1]1117515’“177Jr ﬂJr/\ / / Giigy dxdﬂ
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_ 1 t _
e Wt/ Gi,ttGl‘,ttdx+7(U/ /6’ quif’MWGirWWdedﬂ

+Ea/ / e “1Gj G, ,7,7dxd17+—e_‘*’t/ Hidx

+2—S7w/ /e_“’”H,2 dxdiy—i—ﬂoc/ /e_“’”H,i,]H,mdxdn
—wn 132 —wn 172
289 xp / / /a e sdgdy + 5 10/5 / / / Hdsdgdy — (53)
__ —WHLT. , - —wnN Ly, .
+2€11/0 /Re H’l”H’lﬂdde+28125/() /Re H/Z,YH,mdxdiy
t poo t poo
+K/ / /aDe"*’”\FHﬂdsdéd;y—i-é/ / / e~ |, H, |dsdzdy

e~ F2dsded 5 / / e~ F2dsdidy.

Based on (33) and (52), we can obtain Theorem 2.
Combining Theorems 1 and 2, we can get the following theorem.

Theorem 3. Let (u,0) be the solutions of Equations (9)=(15) with F,F;; € C(dD x [0,0)). Then,
the following inequality

'BKiw e —wi g2 1 L —wip2 < —mwz
> /0 /Z /aDée 0-dsdcdn + 2(5ﬁ/0 /Z ./aDge Gﬂdsdfjd;y < Q3(z, t)e ,
where
Qs(z,1) = 2Qx(0,t) + my v /O Q1 (& eVt e

4. Continuous Dependence on the Boundary Coefficient

We will use the results obtained in Section 2 to investigate the effect of the small change
on the coefficient § in Equations (9)—(15). To do this, we let #* and * be the solutions of
(9)-(15) with the boundary coefficient B replaced by the constant f* and allow u# and u* to
satisfy same conditions on the entrance D. It is worth noting that if # and u* satisfy different
boundary conditions at the entrance, our results are still valid because our problem is linear,
and we can decompose and deal with the two effects, respectively. If we let v; and I1 be the
differences between u;, p and u}, p*, respectively, i.e.,

v=u—u", [I=60-0°, B=p—p", (54)

then v and IT satisfy the following equations

v — pAv + (u+ A)V(divo) +aVII =0, x € R, t > 0, (55)
T — kAT — 0ATT; + adivoy = 0, x € R,t > 0, (56)
v,Vo,II,VII — 0,as x3 — oo, (57)

with the initial boundary conditions

v(x,0) =0v:(x,0) =0,x € R, t >0, (58)

I1(x,0) =11;(x,0) =0,x € R, t >0, (59)

Zl(xl,X2,0, t) = 0,9(3(1,)(2,0, i’) =0, (xl,xz) eD,t>0, (60)
oIl ~

vzo,ﬁ—f—ﬁ()—l—ﬁ*ﬂzo,xean{x320},t>0. (61)

We have the following theorem.
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Theorem 4. Let (u,0) be the solutions of Equations (9)—(15) and (u*,0*) be the solutions of
Equations (9)~(15) with p = B*. The functions v and I1 are defined in (54). If F, F;, € C(0D x [0,0))
and [, f3dA =0, then

1

5¢ —wt / |:'Uz #Oip + W00+ (1 + A) (05 i)+ H?-t + KH,iH,z} dx
1 1 1 )
! / /Rz wv”””vl p+ 5@V Oy + @A) (0g) + ST,

+2wKH i1 +§HIWH,,7}dxd17+ —ewip* K/ / 112dsdé

- —wr] * o T2 *T72
+2/0/Z /aof [wp*xIT + 66112 dsdGay
SszEZQz(O,t)Eib]ﬁz-ﬁ-blbz /w"gZefb]\/az /z QB(g’t)e(h]—ml)\/aédC’
0

where by, by are positive constants. This demonstrates continuous dependence of (u,0) on the
parameter B.

Proof. We began from the following identities

/ / vl iy — WAV, + (n+ /\)v]-,ji77 + ucH,i,J 0j yydxdn =0, (62)
/ / {11, — KATT = 6ATL, + a0y | 11 dxdy = 0. (63)
O
Applying the divergence theorem and using (57)-(61), we have from (62) and (63)
1 _
¢ Wt/ {Uz 105+ W00+ (1 + A) (Vi) }dx
+5 w/ / Uz Qi+ Wiy Vijy + (n+A) (Ui,iiy)z} dxdy (64)
t
= _‘u/O /Dz eiwnvi,?ﬂyvi,mydAdW - (ﬂ +/\)/O /Dz einU]',MU?,,,MdAdU
t t
—u ./0 / e~ “Iyv3 yyd Adn + « ./0 /R e~ Ty v; iy dxdy,
and

1 —wt 2 IT. 1 —wt px* /oo/ 2
Se /R [H,t+KH/ZH,Z]dx+Ze B[ ], T
t 00 1
+/// ~w [ 200 kT2 + 6B°TT2 | dsdicd
0 Jz aDge [Zwﬁ . P '7} sdgdy
S B |
v /O /R K [5@TT + ST T, + 81, 1, | dxdy (65)
t t
— ¢TI 5T1,d Ad —5/ / eI 5, T1,d Ad
/O/DZ A U 0 JD, S0 U
_ prt poo
— e Y \xI1,0 + 611,60, |dsdéd
ﬁ/o /Z /apg [ 11 1 n} Gdy

t
—04/0/ e~ Ly v; iy dxdy.
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Now, if we define
1 _
[(z,t) = ¢ wt/R [Uz #0i 4+ W0+ (1 A) (0 it)? +H,2t+KH,iH,i}dx
1 1 1,
//Rz wvlrwvl,”—i- wyvl,],?01,],7+ w(y+)\)(v”,7) +§wH,,7,7 (66)
+ S@RTLTL; 4 0T 1, | dacy + e 'p" K/ / [1dsdg
+f// / e*‘*’” a) “) 12 + §B*T12 | dsd&dn,
i L o, B B2 |dsdgdy
then we have
0

1 _
—gl"(z, t) = ¢ wt /D [Wi,ttvi,tt + po; o+ (1 + A) (i) + 115 + KH,iH,z} dA

1 1 1
// wvlmyvliyq"_ ‘U?wlmvz]q"' w(y+/\)(vllﬂ) +§"‘)H,217 (67)
t 2
+2w1<H 1T +5H1,7Hl,7}dAd17+ —e VBT K/E)DZH ds
- —wn * 2 *172
+2/0 /aDze [wpxI T + 6571 dsdy.

Combining (64) and (65), we have
2
['(z,t) —7(5[5 / / /an T, dsdgdy — ;4/ / “T; 30 gy d Ady
- (ﬂ‘*‘)\)/o /Dz e “Mvj jyv3 yd Ady _"‘/0 /Dz e “Mlyvs yyd Ady (68)
t t
- @I 411, d Ad —5// W1 4, 11, dAd
K/o /Dze AT d 0 Dze A1 d
_ [t poo
_ —wy
B /0 / /a X (11,0 + 6T1,6, | dsdedy
= lsp /t /Oo/ N Rdsdedy + Y

By using the Holder inequality and the arithmetic-geometric mean inequality, we have

1
L <upu / / 013,7013,751140117/ / Wy, Vi, WdAdq}z

t
Ewy/o /Dz g*wﬂyiﬁﬂviwdAd;y—i— Ew/o /Dz e*“’%ilwyimdAdn}, (69)
t t 1
L<(p+A) / / e“"”v%lwdAdn/ / e_“’”(v]-,jﬂ)szdiy} ’
/ / e 108, dAdy + 2w+ A) / / "(0)y)?dAdy],  (70)

— — 7
<a /0 /Dze ‘””H%dAdn/O /Dze ‘“”v%{mldAdﬂ
bt

]' ! —w ]' g —
Rl Bl n172 - wn 2
w/o /Dze I, dAdy + Zw/o /Dze 03/,7,7dAd17}, (71)
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I <« / / e N13d Ady / / —wmszqu
g% - / / ¢TI dAdn+ ~wi / / eI dAdy, (72)
I <6 / / I, dAdy /0 /, Zewm?,?dAd;yf
< \ﬂ / I Z eI, dAdy + 5w A t /. T dAdy], (73)

and

. t poo t roo 1
I < /// *wmzddd/// ~wn12gsdzdn |
6_Kﬁ[0z aD(;e ”Sgﬂo,z aD,;e Sgﬂ

~ t oo t poo 1

5 // / ~WITR dsded // / ~w102gsdzdy | > 74
+'B{Oz aDge ”SgUOZ BD;E ,75577] )

t o0
§%5,6*// /a e*“’”H%dsdé‘diy
D¢
2[52 Py o ded
0

5[5* // /aDg // /aDg sdgd.

Inserting (69)-(74) into (68), we have

e < b [ rten] eman( 2 2 [BOE [T  cnatasigay
+ % /(: /:o /a.Dg e’wVG%dstdn], (75)

=\/7+\/W+\/?+\/?+\/S.
by w w w w

Using the Theorem 3 in (75), we obtain

where

I(z,t) < [— %I’(z,t)] + szZQ3(Z, t)e_ml‘/az, (76)

1
N

where by = max{ ég* 5 }- From (76) it follows that

8% [F(Z, t)ebl\/az} < bibywB?Qs(z, t)eltr—mIvVwz, (77)

Integrating (77) from 0 to z, we have

T(z,t) < T(0,t)e 1V 4 bbyy/awpRe t1Vez /O : Qs(&, t)eltr—mIVwl gz, (78)
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To obtain Theorem 4, we have to derive bound for I'(0, t). To do this, we choose z = 0
in (66) and (68) and use the boundary conditions (59)-(61) in (68) to have

1 _
L(0,1) = e “’t/R [Ui,ttvi,tt+}40i,jtvi,jt+ (,u+/\)(Ui,it)2+n,2t+KH,iH,i} dx
t _ 1 1 1 1

+‘/0 /Re “n [vai,ﬂﬂvi,lj + Ew,uvi,qui,jq + Ew(.u + )‘)(vi,iﬂ)z + Ewn,zmy (79)
1 1 _ t px *© 2
+ JRTLIL + O1L Ly |dxdy + se g [~ | p, PdsE
+1/t /w/ e [wp KT + 66" T12 | dsdgdy
2 Jo Jo Jap, 1 ’
and
r(0,f) = — 268" /t /w/ eI dsdgdy
’ 2" Jo Jo Jap, 7
- [t poo
— e~ | xIT1,0 + 611,06, |dsdédn. 80
ﬁ/o/o /BD‘; [ i Yy Gdn (80)
Choosing z = 0 in (74) and using the Theorem 2, we have
_ rt poo
_ —wn
B /O /O /a o (11,0 + 671,60, | dsdzdy
1 t poo
<75*// / IR dsdgd 81
—Zﬁ.o.o(aoge ydsdgdn (81)
KZBZ t oo (552 t poo
+ /// w62 dsdgdy + /// w12 dsdzd
5B* Jo Jo aD,;e sdcdi B* Jo Jo aDge ydsdedn

1 't poo p -
<25 / / / I dsdEdn + 2b,82Q5 (0, t).
>~ 2 ﬁ 0 Jo .aD,:e 7 S C 77+ 25 QZ( )

Inserting (81) into (80), we have
T(0,t) < 262°Qa(0,1). (82)
Combining (66), (78) and (82), we can obtain the Theorem 4.

5. Convergence on the Boundary Coefficient

In this section, we derive the convergence result on the boundary coefficient which
is different from the continuous dependence result. We let #* and 6* be the solutions of
(9)-(15) with the boundary coefficient § = 0 and v and I1 are also defined as (54). So, v and
IT also satisfy (55)—(60), but the condition (61) can be replaced by

oIl
v=0,5+p0=0x€dDx {x320},t>0. (83)

To get our main result, we will use the following lemma.

Lemma 5 (see [35]). Let D be a bounded star region in R?. If w € C1(D), then

. 1
wlds < 2 / wldA + ﬁ[ / wldA / w,w,dA]’, (84)
oD Po /D Po LJ/D D

where py = minyp (x - n),d = maxg |x|.
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We define

1
F(z,t) = € Wt/R [Uz #0100+ (i A) (01)° + 115 + KH,iH,z} dx
1 1 1,
/ /R “’Uz,rmvw + > WHYLjy Vi jy + w(‘u—i-)t)(vl 1,7) + E(UH,,M (85)
n z“’KH 1 + 011 mH,,dediy,

from which it follows that

d 1 _
EF(Zr t) = ¢ wt /D [Uz 1O it + WO 0 jr + (B + A)(viie)? + 115 + KH,iH,i} dA

1 1 1
//DZ “”’wvvwﬁ 2 Hiiyiy + 5@+ 1) (@iy)” + FwIT - (86)

+ 2wKH T +(5Hl,7Hl,7}dAd;7

Taking calculations similar to those in Section 3, we can get

F(z,t) —;4/ / ;3 0; pyd Ady
t
- (y+A)/ / e~ “vj i, v3 pyd Ady —oc/ / e~ 1,3 ,,d Ady (87)
0 /D, 0 /D,
t t
—x [ [ et dady o [ [ e inisI,dAd
/0 /DZ A AE 0 JD, At e
t oo
- e~ N kI1,0 + o116, |dsdidy.
p /o /Z /aog [ n " 17} Gdn
By using the Holder inequality, the arithmetic-geometric mean inequality, we have
7/3// /aD {110 + 671,60, | dsdedy
<B| /'t /oo/ IR dsded /t /’oo / 102 dsdid F
— "l )z Japg 1 ")y ) aD; 1
t roo t poo
— w2 —win 2
+0p / / /a p, ¢ Tdsdcdy / / /a T 02dsdzdy|
= T dsdgd
<3y L s

2 2 222 rt poo
L / / / e dsdedy + P / / / e~ 62dsddy,
€1 0 Jz aDg €1 0 Jz BD;

where €1 is a positive constant.
By the arithmetic—geometric mean inequality and Lemma 5, we have

Nl

(88)

2 2 5
TBds < — HZdA + ﬁ{ I2dA / T, [15,d A
Dz Po Po t/Dg De
2
< id A+ L [ T1,10,dA (89)
Po JDg Po /D¢
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Inserting (89) into (88), we have

t poo
- *“”i 11,0 + 611,,0, |dsdid
'B/o/z/zme K,7—|— ;7,7}5517

< 2+d, t _ d t -
< 2Po // e ‘””H%dxdn+—e1/ / e I ;, T1 ;, dxdy (90)

2ﬁ2 52‘32
/ / / e 1Qdsdzdy + - / / / e~ 02 dsddy.

Inserting (69)—(73) and (90) into (87), choosing €; < min{ 2{;0“’ Z 05} and using the

Theorem 3, we have

Fzt) < %F (z.£) + bllﬁ - E,%r(z,w] +b3BQs(z, t)e "MV,
or
2 9 —myv/wz
F(Z/ t) S bl\/a |: - &F(Z, t):| +2b3‘3Q3(Z’ t)e , (91)

where b3 = max{ 2%, 2} Integrating (91) from 0 to z, we have

wer’ €1

F(z,t) < F(0,t)e ¥ "% 4 biby/ape 3" /Q3 & HelF—mveige (o)

To bound F(0,t), choosing z = 0 in (85) and (87) and in view of (59), (60) and (83),
we have

1 _
F(0,t) = ¢ Wt/R [Uz’,ttvi,tt + pvi i + (4 "‘)‘)(Ui,zt) +H + 11,11 }d

S| 1 1 , 1,
+/0 /Re wqbwvimvi,ﬂ+iwyvi,mvi,m+§w(y+)\)(vi,m) +§wH/,M (93)

1
+ EWKH,iH,i + CSH,WH,Z‘U} dxdy,

and
t roo
FO,t:—/// e~ [(T1,0 + 811,60, | dsdcdy. 94
(0,t) 'Booapg [17 1717} Gdn (94)
In view of (90) and (93), and the Theorem 2, we have

F(0,t) < 5F(0,t) 4+2b3Q2(0,t)B,

N

or

F(0,1) < 4b3Q2(0, £)B. (95)

Inserting (95) into (92) and in view of (86), we can have the following theorem.

Theorem 5. Let (u,0) be the solutions of Equations (9)—(15) and (u*,60*) be the solutions of
Equations (9)~(15) with B = 0. The functions v and T1 are defined in (54). If F, F, € C(dD x [0,00))
and [, f3dA =0, then

(u,0) = (u*,0%),as p — 0.
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Specifically,

1 _
5¢ wt /R [Ui,ttvi,tt + poj i + (4 + A) (vi3)* + H,Zt + KH,Z'H,Z} dx
ot 1 1 1 1
- /0 / o {vai,rmvi,n + WD g0y + @ (i A) (vy) + ST,
1
+ E(UKH,iH,i + 5H,i,]H/i,7} dxdy
b vw by Vw Z b
< 4b30,(0,)Be™ % 7 4 b1b3\/5/se*1TZ/ Qs(¢&, el F MVl ge,
0

where by, by are positive constants. This demonstrates convergence of (u,0) on the parameter p.

Theorem 5 shows that when z — 0, it will not have a significant impact on the solution
of the system of equations. It shows the stability of the equations.

6. Conclusions

In this paper, Equations (9)—(15) are reconsidered in a new semi-infinite cylinder. The
structural stability of the solution is obtained by using the differential inequality technique
and energy analysis method. In a two-dimensional pipe, Payne and Schaefer [36] obtained
Phragmén-Lindelof alternative results of biharmonic equation. As far as we know, there
are a few results in this type of three-dimensional cylinder region. Therefore, it is very
interesting to replace the pipe R by

{(x11x2/x3)|(x11x2) S DX3/ X3 > O}r
where D,, can be defined as

x2 X2
{(xl,xz,x3)|a—%+b—§ = xg,xg >m>0,0<9< 1}.

On the other hand, if the boundary conditions (13)—(15) are replaced by (3), (4) and
(6)—(8), how to obtain the continuous dependence of Equations (9)—(15) is also a interest-
ing topic.
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