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Abstract: In practical application, facial image recognition is vulnerable to be attacked by photos,
videos, etc., while some currently used artificial feature extractors in machine learning, such as
activity detection, texture descriptors, and distortion detection, are insufficient due to their weak
detection ability in feature extraction from unknown attack. In order to deal with the aforementioned
deficiency and improve the network security, this paper proposes directional difference convolution
for the deep learning in gradient image information extraction, which analyzes pixel correlation
within the convolution domain and calculates pixel gradients through difference calculation. Its
combination with traditional convolution can be optimized by a parameter θ. Its stronger ability in
gradient extraction improves the learning and predicting ability of the network, whose performance
testing on CASIA-MFSD, Replay-Attack, and MSU-MFSD for face anti-spoofing task shows that our
method outperforms the current related methods.

Keywords: directional difference convolution; deep learning; face anti-spoofing

1. Introduction

The human face is one of the easily available biometric features to be commonly used in
access control, mobile phone unlocking, mobile payment, and many other scenarios. Taking
a community access control system as an example, a security camera scans a visitors’facial
information and identifies through the face recognition algorithm to decide whether to
give access permission or not. Although the face recognition could achieve high accuracy,
it is still insufficient for distinguishing the authenticity. The common attack types mainly
include video attack, photo attack, and mask attack, in which the video attack mainly
uses mobile phones, pads, and other devices to play recorded video to the camera of the
face recognition system to achieve the attack purpose. This attack type includes dynamic
information such as facial micro-motions and life information. The photo attack includes
photos displayed on mobile phones, pads, monitors, etc., photos printed on A4 paper or
photographic paper, in which only a static image of the face without motion information
is included. The mask-based attack mainly refers to the use of a complete or cropped 3D
mask placed in front of the camera to attack the face recognition system [1]. Attackers
use these methods to attack a face recognition system, which causes the face recognition
system to make wrong judgments and give the attacker access rights, which makes the face
recognition system have potential security risks in practical applications. Face anti-spoofing
refers to the process of distinguishing whether the currently obtained face image is from
a real face or a fake face, wherein a live face refers to a real face, while a fake face refers
to a fake face disguised as a real person [2]. As the preliminary of face recognition, face
anti-spoofing detection can greatly improve the system security by detecting whether it is a
living face attack before recognition [3].

Recently, the research community has paid more and more attention to access safety.
Many researchers have reported face anti-spoofing detection and presented many positive
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results [3–6], which can be divided into methods based on artificial features design [5,7–10]
and methods based on deep learning [11–15]. The former case mainly analyzes the differ-
ences between living and non-living bodies to design the features to be extracted, such as
local binary patterns (LBP) [7,8] and the histogram of oriented gradients (HOG) [9] et al.,
and then to use a classifier for classification. The performance of the proposed method
is greatly affected by the designed features. For example, the method of extracting the
texture information of an image by LBP has a small amount of calculation, but it is easily
affected by the environment such as illumination, and thus, the robustness is not strong.
Moreover, it is difficult to deal with an attack that has not been encountered before. Since
deep neural networks have powerful feature extraction capabilities, methods based on
deep learning can effectively improve feature extraction capabilities and obtain more image
feature representations. The traditional convolution method focuses more on extracting the
image intensity information but less on gradient information, such as fine-grained features
such as noise artifacts and moiré pattern in the image. Therefore, it is necessary to modify
the convolution kernel in the convolutional neural network to improve its ability to extract
image gradient information. Meanwhile, other research focuses on the design of image
features and network structure, which has a good performance in given tasks but poor in
other tasks.

In computer vision, gradient measurement methods based on directional derivative
calculation are used for image edge detection [16] to extract image features, such as Sobel
operator, Robert operator, Laplacian operator, etc. [17–19]. In order to improve the ability
of convolutional layer in gradient information extraction and further the accuracy of face
detection in face anti-spoofing, this paper proposes directional difference convolution
(DDC) according to the correlation across image pixels. Moreover, to balance the weights of
traditional convolution in intensity information extraction and DDC in gradient information
extraction, a parameter is introduced to optimize the effectiveness of face detection in face
anti-spoofing. The contributions of this paper are as follows:

• DDC is proposed to extract the main gradient information from image through the
difference operation on pixels.

• To balance the propertion of traditional convolution and DDC and further improve
the overall performance, the two convolutions are weighted and optimized by a
parameter. Experiments show that DDC could make up for the deficiency of traditional
convolution and improve the feature extraction capability of convolution layer.

The following contents of this paper are as follows: Section 2 presents related work,
including face anti-spoofing and convolution operations; Section 3 introduces the tradi-
tional convolutions, DDC, and the network structure used in face anti-spoofing detection;
Section 4 introduces the datasets used in experiment, the test metrics, the parameter setting
in the training process, and the experiment process; The experimental results are discussed
in Section 5; Section 6 concludes the paper and imagines future work.

2. Related Work
2.1. Face Anti-Spoofing

In 2011, Mäattä et al. [7] used LBP to encode image texture into enhanced feature
histogram and support vector machine (SVM) [20] for classification. In 2013, Bharad-
waj et al. [10] used motion amplification technology to amplify facial micromovements
and LBP for feature extractions and classified through SVM. In 2016, Boulkenafet et al. [5]
proposed a method based on the color texture analysis to detect whether the input im-
age is a living face. In 2014, Yang et al. [11] firstly applied convolutional neural network
(CNN) [12] to face anti-spoofing detection. In 2016, Li et al. [13] predicted the information
of remote photoplethysmography (rPPG) by detecting pulses in images. Since there was
no pulse information in photos and 3D masks, this method has significant effects on these
two types of attacks but performs poorly on replay video attacks. In 2018, Liu et al. [14]
designed DepthNet, which includes a CNN part and a recurrent convolutional neural
network (RNN) [21] part. In the CNN part, the depth map representing facial depth infor-
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mation with 2D images is used as supervision information. After training, the network can
predict the corresponding depth map of the image through the input RGB image. The RNN
part can predict the information of rPPG through the depth map obtained from the CNN
part. In 2020, Yu et al. [15] proposed central difference convolution (CDC), which achieved
good results in the central difference convolution network (CDCN) based on DepthNet [14]
optimized by neural architecture search (NAS) [22,23]. However, its results show that it
still falls short on some attack types.

2.2. Convolution Operations

Convolutions are widely used in deep neural networks to extract features from images.
In recent years, traditional convolution in networks has also been extended and modified.
Yu et al. [24] proposed a new convolutional network module dedicated to dense prediction
based on dilated convolution. Dai et al. [25] introduced deformable convolution into the
network by adding additional offsets in order to increase the spatial sampling positions in
the module. The local binary convolution proposed by Felix et al. [26] reduces the number
of parameters compared to traditional convolution. Moreover, pixel-level differential
convolution [27] has also been proposed for edge detection. The main focus of these
convolution methods is not on the fine-grained representation of images and may not be
suitable for face detection tasks. Based on the problems and shortcomings of the above
methods, we further explore and propose directional difference convolution.

3. DDC and Combined Convolution

The traditional convolution is first analyzed and discussed. Then, a new convolution
is introduced to make up for its deficiency. According to the advantages of the traditional
convolution and the new convolution, they are combined together and balanced through
a parameter. Moreover, the face anti-spoofing detection network based on combined
convolution is given.

3.1. Traditional Convolution

In deep learning, the convolutional operation is commonly used to extract features
to reduce the dimension of images. In traditional convolution, the domain value of given
kernel size is dot multiplication and then accumulation between the weight matrix of the
convolution kernel and the pixel value matrix in the same size, which is:

ytra(p0) = ∑
pn∈<

w(pn) · x(p0 + pn). (1)

where p0 represents the current image domain, < represents the collection of elements
in the current image domain, pn represents each ordered position in the image domain,
x(p0 + pn) represents the value of pn in the domain of the current position p0, and w(pn)
is the weight value of the convolution kernel corresponding to the position pn, which is
shown in Figure 1, pn are (−1, 1), (0, 1), (1, 1), (−1, 0), (0, 0), (1, 0), (−1,−1), (0,−1), and
(1,−1). Since the traditional convolution mainly multiplies and accumulates the weight
value of the convolution kernel and the pixel value in the image matrix of the corresponding
area and then uses this summation to replace the value of the entire area, it is essentially
extracting the intensity information of the image [24,26,27]. However, the traditional image
filtering operator is equivalent to performing a difference operation on the pixel values in
the image domain when performing operations with the image domain due to the fixed
value in the operator. Therefore, traditional image filtering operators such as Sobel [17,19]
can extract gradient features well, such as image edges in traditional machine vision.
Therefore, due to the limitations of traditional convolution operator, there is a shortage of
gradient information extraction.
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Figure 1. Example of position inside <.

3.2. Directional Difference Convolution

The pixel gradients mean image texture and may exist in any direction, which con-
tributes much to image recognition. In order to extract more valuable information from
the image, the gradient information contained in the image can be further extracted and
mined. Traditional convolution updates the weight of the convolution kernel according
to the gradient descent of the loss function during the operation, which may obtain part
of gradient information from the image whose proportion is too little to be submerged
with image noise. This paper proposes a new convolution method, which is defined as
directional difference convolution. In the convolution operation, pixels in the image domain
covered by the convolution kernel are replaced by pixel difference, as shown in (2) and
Figure 2.

yddc(p0) = ∑
pn∈<

w(pn) · (x(p0 + pn+1)− x(p0 + pn)). (2)

where (p0 + pn+1) is the next position of (p0 + pn). For example, in a domain of 3× 3, all
positions are shown in Figure 1, where (−1, 1) is the first position in <, and (1,−1) is the
last position in <, and the position behind (1,−1) is (−1, 1). The difference mode of DDC is
shown in Figure 2. DDC can enhance gradient information through differential calculation
in image domain. Figure 3 shows two typical examples of DDC. In Example a, a.1 is a field
with size 3× 3, whose pixel values in the first column are all 1 and the other positions are all
0, representing a vertical line on the image. Through the directional differential operation, it
can be seen in a.2 that the value of the first column in a.1 is transformed to the third column,
while the value of first column becomes −1, indicating that the directional differential
operation converts the original thin line into a thick line with a greater difference, which
makes the original pixel gradient range more obvious and enables the network to learn
more gradient features. Similarly, the oblique line in b.1 also becomes a wider line with
greater pixel difference and more obvious gradient information as shown in b.2 after the
directional differential operation. Summarily, the DDC would not only retain the image
intensity information but also obtain more obvious gradient information. These gradient
details could improve the learning ability of the whole network.

Figure 2. Illustration of directional difference operation. (a) Schematic of the original image field.
(b) Schematic of directional difference operation.
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Figure 3. Examples of directional differential operation. (Example a): (a.1) Image with a vertical line.
(a.2) Image of (a.1) after directional difference operation. (Example b): (b.1) Image with an oblique
line. (b.2) Image of (b.1) after directional difference operation.

In Figure 4, the upper row images show its original size, while the lower row show
their local magnification, respectively, which, from left to right, are the original image a of
the input neural network, the feature map b after the traditional convolutional operation,
the feature map c after the DDC operation, and the feature map d after the combined
convolution operations. Take the eyelid part as an example: its gradient information
is totally lost in the traditional convolution, while the corresponding DDC extracts this
information well, which can be seen in image f and image g clearly.

Figure 4. Feature graphs generated by two convolutions and their combination, where, (a–d) are
images of original size, while (e–h) are their amplifications, respectively, from left to right, and are
images after traditional convolution, images after DDC and images after combined convolution, re-
spectively.

3.3. Combined Convolution

The advantage of DDC in gradient information extraction can make up for the de-
ficiency of traditional convolution in this aspect. Thus, DDC combined with traditional
convolution would figure out more image details. This combination is named combined
convolution, and a parameter θ is used to balance weights of traditional convolution and
DDC, which is given as

ycom(p0) = θ · ytra(p0) + (1− θ) · yddc(p0). (3)

Simplify (3) to a more consistent formation to program design, which is

ycom(p0) = (2 · θ − 1) · ( ∑
pn∈<

w(pn) · x(p0 + pn)) + (1− θ) · ( ∑
pn∈<

w(pn) · x(p0 + pn+1)). (4)
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where pn is the last position in < and pn+1 is the first position in <. According to (3),
the combined convolution only uses DDC at θ = 0, and the combined convolution only
uses the traditional convolution at θ = 1. With the variation of θ, the proportion of two
convolutions in the combined convolution would also change accordingly, which changes
the feature map generated by the combined convolution and therefore affects the output
result of the network. In the examples shown in Figure 4, the combined convolution would
not only retain the information extracted by traditional convolution but also include more
gradient information extracted by DDC. The influence of θ on combined convolution is
analyzed in the experiment.

3.4. The Network Structure

Liu et al. [14] reported the depth maps which represent 3D features of faces as labels
to train the network and proposed the DepthNet. Then, Yu et al. [15] designed a central
difference convolutional network (CDCN) based on the DepthNet, where the network
consists of three block structures: Block1, Block2, and Block3, which contain three con-
volution layers and one maximum pooling layer, respectively. When the image of size
3× 256× 256 is input into the network, Block1 structure would output the feature map of
size 128× 128× 128, Block2 structure would output the feature map of size 128× 64× 64,
and Block3 structure would output the feature map of size 128× 32× 32. The three feature
maps are dimensionally reduced into feature maps of size 128× 32 through corresponding
sampling layers and spliced through splicing layers. Three convolution layers are used for
dimensionality reduction layer by layer to extract high-dimensional features, and the depth
map corresponding to the input image is estimated. The network structure of the original
convolution kernel is replaced by the combined convolution as shown in Figure 5.

Figure 5. CDCN structure diagram with combined convolution.

On the basis of CDCN, CDCN++ was designed by using neural network structure
search technology in [15]. This structure also contains three blocks, and Block2 has four
convolutional layers. When an image is input into the network, three blocks generate
a feature map, respectively. Then the feature map is input into the attention layer and
sampling layer and spliced through the splicing layer. Finally, two convolution layers are
used to extract features and estimate the depth map corresponding to the input image.
The structure of the original convolution kernel is replaced with combined convolution as
shown in Figure 6, where the attention layer still uses traditional convolution.
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Figure 6. CDCN++ structure diagram with combined convolution.

4. Experiment
4.1. The Datasets

Due to the development of face anti-spoofing detection, researchers have reported
various face anti-spoofing detection datasets. Four datasets, CASIA-MFSD [28], Replay-
Attack [29], MSU-MFSD [30], and OULU-NPU [5], are used in the experiment. As shown in
Table 1, the CASIA-MFSD dataset contains 600 video clips of 50 objects, where each object
has 12 video clips in four categories: Real living human face (Normal), Wrapped photo
attack, Cut photo attack, and Video attack. The Replay-Attack dataset contains 1200 video
clips of 50 objects, where each object can be classified into four categories: Real human face
(Normal), Printed photo attack, Digital photo attack, and Playback video attack. The MSU-
MFSD dataset contains 440 video clips of 35 obkects, where each object can be classified
into four categories: Real living human face (Normal), Printed photo attack, HR video
(high-definition playback video attack), and Mobile video (low-definition playback video
attack). The OULU-NPU dataset contains 4950 video clips of 55 objects, which includes
four evaluation rules Protocol 1, Protocol 2, Protocol 3, and Protocol 4., and Protocol 1 is
mainly used to evaluate the generalization degree of face anti-spoofing detection method
under unknown environmental conditions (such as illumination).

Table 1. Details of each dataset used in the experiment.

Dataset Object Attack Type
Video

Real Fake Total

CASIA-MFSD 50
Wrapped photo

Cut photo
Video

150 450 600

Replay-Attack 50
Printed photo
Digital photo

Video
200 1000 1200

MSU-MFSD 35
Printed photo

HR video
Mobile photo

110 330 440

Oulu-NPU 55
Printed photo

Video 1980 3960 5940

4.2. Test Metrics

Internal tests were carried out on CASIA-MFSD, Replay-Attack, and MSU-MFSD for
proposed method in [4]. The main test metric is the area under the receiver operating
characteristic (ROC) curve, known as AUC. The abscissa of ROC is the probability of
judging a fake face as a real face, which is called the false positive rate (FPR), and the
ordinate is the probability of judging a real face as a real face, which is called the true
positive rate (TPR). The thresholds for a binary classification model may be set high or low,
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and each threshold setting results in different FPR and TPR. The (FPR, TPR) coordinates
corresponding to each threshold of the model are drawn in the ROC space to become the
ROC curve of the model. AUC measures the merits and demerits of classification methods,
and the larger its value is, the more robust and correct the classification method is. Tests
are performed on the OULU-NPU dataset using the test modality originally specified in
the dataset, which specified four test modalities to evaluate the model’s generalization
capability for different environments. The main test metric is the average classification error
rate (ACER), which is the average of attack presentation classification error rate (APCER)
and bona fide presentation classification error rate (BPCER) [31], as follows

ACER =
APCER + BPCER

2
. (5)

APCER refers to the proportion of fake faces classified as real faces by face anti-
spoofing methods, while BPCER represents the proportion of face anti-spoofing methods
that classify real faces as fake faces. ROC, APCER, and BPCER need to count the number
of correct and incorrect classifications according to different thresholds. When APCER is
equal to BPCER on the validation dataset, the obtained threshold is used in the test dataset,
and the ACER can be calculated by (5).

4.3. Experimental Process

According to the network training method in [15], the video in the dataset is decoded to
extract frames to obtain images (denoted as Pic-A), and then the corresponding DepthMaps
of size 32× 32 (denoted as DepthMap-Real) are generated through PRNet [32]. When
training the network, DepthMap-Real are used as the DepthMap labels for living faces,
and all zeros with a size of 32× 32 are used as the DepthMap labels for non-living faces
(denoted as DepthMap-Fake). The network can make the output DepthMaps closer to
the corresponding DepthMap labels of the input image by training; that is, if the living
face image is input, the output DepthMap DepthMap-Out-Real is close to DepthMap-Real,
and a DepthMap-Out-Fake DepthMap similar to DepthMap-Fake is output if a non-living
face image is input. The characteristic patterns generated by the network are shown in
Figure 7, in which a5 and b5 are the depth maps generated by the network. The depth map
a5 corresponding to a1 contains more information than depth map b5 corresponding to b1.
Then, according to (6), the sum of elements of the corresponding matrices of DepthMap-
Real, DepthMap-Out-Real, and DepthMap-Fake can be calculated, respectively, m1 norm
SUMDepthMap−Real , SUMDepthMap−Out−Real , and SUMDepthMap−Out−Fake.

SUMPIC = ‖PIC‖m1 =
m

∑
i=1

n

∑
j=1
|pici,j|. (6)

where PIC ∈ {DepthMap−Real, DepthMap−Out−Real, DepthMap−Out− Fake}, m, n
represent the rows and columns of matrix PIC, respectively. According to (7), the spe-
cific value of m1 norm of the corresponding matrix DepthMap-Out to the m1 norm of
the corresponding matrix DepthMap-Real is calculated, that is, the score of the network
output DepthMap, where PICout ∈ {DepthMap−Out− Real, DepthMap−Out− Fake},
PICreal ∈ {DepthMap − Real}. Finally, the corresponding ROC curve can be drawn
through all the scores of the verification set, and the optimal threshold can be obtained
to distinguish whether the network output is correct or not. According to the test cri-
teria proposed in [31], the threshold of the test set needs a threshold obtained on the
verification set.

score =
SUMPICout

SUMPICreal

. (7)
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Figure 7. Feature graphs generated by CDCN++ networks with combined convolution, from (left) to
(right) are the original real face image, feature map from Block1, feature map from Block2, feature
map from Block3, and depth map from the network, respectively. (upper row): living face; (lower
row): non-living face.

4.4. Experimental Methods and Hyperparameter Settings

The experimental methods are mainly divided into three aspects:

• Test the effect of various θ values;
• Cross-type testing among various types within the datasets;
• Cross-type testing between different types of datasets.

When testing the effect of various θ values, we use Protocol 1 of the OULU-NPU
dataset, which defined the training set, validation set, and test set originally. We divided
CASIA-MFSD, Replay-Attack, and MSU-MFSD datasets into four sub-datasets according
to the types contained therein. For Cross-type testing among various types within the
datasets, the type to be tested plus the real type is the test set, and the other two attack
types plus the real type is the training set. When doing Cross-type testing between different
types of datasets, the subtype to be tested plus the real types in that dataset are the test
set, and all types of the other two datasets are the training set. The training equipment
we used was Inspur AI server, whose operating system was CentOs 7.5 and the graphics
card was NVIDIA TITAN V. The size of the convolution kernel used in the experiment is
3× 3, the initial learning rate (lr) is 2× 10−4, which is adjusted by the optimizer Adam,
to lr× 0.5. When testing the effect of θ with different values, the highest training round
is set as 1200, and when testing the performance of combined convolution on different
datasets, the highest training round is set as 600. Since the convergence rates in various tests
are different, we set different hyperparameters for the three tests, as shown in Table 2. Intra
test in the Table 2 represents Cross-type testing among various types within the datasets
and Inter test in the Table 2 means Cross-type testing between different types of datasets.

Table 2. Hyperparameters used in the experiment.

Hyperparameter Test the Effect of Various θ
Values Intra Test Inter Test

gpu number 3 3 3
initial learning rate 0.0002 0.0002 0.0002

kernel size 3× 3 3× 3 3× 3
θ 0, 0.1, . . . , 1.0 0.6 0.6

batch size 8 8 8
step size 300 200 200
gamma 0.5 0.5 0.5
epochs 1200 600 600



Mathematics 2022, 10, 365 10 of 14

5. Experimental Results
5.1. The Effect of θ

In this section, combined convolution is evaluated using Protocol 1 of the OULU-NPU
dataset. During the experiment, the CDCN and CDCN++ structures proposed in [15]
are used, where the convolution kernel was replaced by combined convolution, and the
values of θ are 0, 0.1, 0.2, . . . , 1. Figure 8 shows the data obtained from this test, and it
can be seen in Figure 8a, θ = 0 means that only DDC is used in the network, and ACER
is 5.42%, while θ = 1 means that only traditional convolution is used, and the ACER
is 5.73%. The ACER achieved from DDC is smaller than that achieved from traditional
convolution, indicating that DDC extracts more information than traditional convolution.
Moreover, ACER = 4.27% is achieved from combined convolution at θ = 0.5, which is
less than the ACER obtained from DDC or traditional convolution merely, indicating that
the features extracted by traditional convolution and DDC are effectively fused in CDCN,
and the gradient information extracted by DDC makes up for the deficiency of traditional
convolution. Meanwhile, it can be seen from Figure 8b that ACER is 3.96% at θ = 0,
ACER is 6.77% at θ = 1, and ACER is 2.81% at θ = 0.6, which is better than when using
traditional convolution or DDC merely. This shows that the features extracted by traditional
convolution and DDC are effectively fused, and the gradient information extracted by DDC
makes up for the deficiency of traditional convolution. Summarily, with the variation of
θ, ACER achieved from different combinations of the two convolutions has little change
on CDCN except at θ = 0.1 and at θ = 0.3 but is better than that achieved from traditional
convolution alone. On CDCN++, the combined convolution also achieves better results
except at θ = 0.1 and at θ = 0.3, but the range of change is larger than that on CDCN,
which indicates that the combined convolution needs to combine the two convolutions
with a fine θ value on CDCN++. We can conclude that the combination of DDC and
traditional convolution can obtain better performance than traditional convolution in most
combination modes from these two sets of data. DDC makes up for the deficiency of the
traditional convolution in extracting effective information in the face anti-spoofing detection
task, which made a great contribution to the characteristics of the network learning.

For the case of θ = 0.1 and θ = 0.3, we input the image into the convolution layer to
obtain the corresponding combined convolution feature map, shown in Figures 9 and 10,
where a is the original image, b is the image obtained at θ = 0.1, c is the image obtained
at θ = 0.3, and d is the image obtained when θ was set to the value of minimum ACER
achieved from the network. As can be seen from the figures, at θ = 0.1 or θ = 0.3, the ob-
tained images are fuzzy and contain more noise, indicating that the results of the two
convolutions in these two combinations have a great influence on each other, and the
network weight cannot be optimized in the direction of the optimal gradient. In Figures 9d
and 10d, the edges are clear, and each edge contour in the image can be clearly distin-
guished, indicating that the two convolutions function together to fully extract the gradient
information and suppress the noise information of the original image in this combination.
Thus, the weight of the network is optimized, and the feature extraction ability of the neural
network is improved, where CDCN++ is used in subsequent experiments, and θ is 0.6.

Figure 8. The effect of θ on CDCN (a) and CDCN++ (b).
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Figure 9. The feature map corresponding to different θ on CDCN.

Figure 10. The feature map corresponding to different θ on CDCN++.

5.2. Cross-Type Testing among Various Types within the Datasets

The cross-type testing mainly evaluates the adaptability of the face anti-spoofing
detection method to different sub-types in the dataset. Specifically, it tests the adaptability
of the face anti-spoofing detection method to attacks that have not been encountered in
the dataset. According to the test method proposed in [4], internal tests are carried out
on CASIA-MFSD, Replay-Attack and MSU-MFSD datasets. To test the sub-class Video
of CASIA-MFSD dataset, three sub-classes, Normal, Cut photo, and Wrapped photo, are
used for training and testing on the two sub-classes Normal and Video. As shown in
Table 3, combined convolution achieves the best effect on CASIA-MFSD dataset, where
AUC = 100% can be achieved in all three types of attack methods. The results obtained on
the Replay-Attack dataset are slightly inferior to CDCN and CDCN++, but the difference is
not significant. In the Printed photo sub-class of MSU-MFSD dataset, the result of AUC is
87.29%, which is higher than the results of 81.6% obtained from DTN [3] before, indicating
that combined convolution can better deal with the types of attacks in this kind of attacks
that have not been encountered before. The Mobile photo sub-class also exceeded the
result achieved by CDCN (99.99%). In general, the mean AUC and standard deviation of
combined convolution on the three datasets tested are 98.47% and 3.96, which beats the
current relevant methods.

Table 3. AUC(%) of combined convolution crossing type tests within different datasets.

Method
CASIA-MFSD Replay-Attack MSU-MFSD

Overall
Video Cut Photo Wrapped Photo Video Digital Photo Printed Photo Printed Photo HR Video Mobile Video

OC-SVMRBF+BSIF [4] 70.74 60.73 95.90 84.03 88.14 73.66 64.81 87.44 74.69 78.68 ± 11.74

SVMRBF+LBP [5] 91.94 91.70 84.47 99.08 98.17 87.28 47.68 99.50 97.61 88.55 ± 16.2

NN+LBP [6] 94.16 88.39 79.85 99.75 95.17 78.86 50.57 99.93 93.54 86.69 ± 16.25

DTN [3] 90.0 97.30 97.50 99.90 99.90 99.60 81.60 99.90 97.50 95.90 ± 6.2

Wu’s fusion [33] 90.69 98.96 97.91 99.99 99.98 99.72 − − − −

SAPLC [34] 90.67 92.67 90.67 96.25 97.75 87.50 − − − −

CDCN [15] 98.48 99.90 99.80 100.00 99.43 99.92 70.82 100.00 99.99 96.48 ± 9.64

CDCN++ [15] 98.07 99.90 99.60 99.98 99.89 99.98 72.29 100.00 99.98 96.63 ± 9.15

OURS 100.00 100.00 100.00 99.99 99.48 99.48 87.29 100.00 100.00 98.47 ± 3.96
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5.3. Cross-Type Testing between Different Types of Datasets

The cross-type testing between different types of datasets mainly tests the ability of face
anti-spoofing detection method to judge the attack form which has not been encountered
before. According to [4], when testing the Video sub-class of CASIA-MFSD dataset, training
is required using Normal, Printed photo, and Digital photo sub-classes of the Replay-Attack
dataset and Normal and Printed photo subsets of the MSU-MFSD dataset. Normal and
Video sub-classes of CASIA-MFSD dataset are used for testing. This method reduces the
internal influence of the dataset to a minimum. Thus, the obtained test data can better reflect
the objectivity of face anti-spoofing detection. As shown in Table 4, the AUC achieved
from combined convolution in the Video sub-class of CASIA-MFSD dataset and in the
Printed photo sub-class of MSU-MFSD dataset is 86.83% and 79.70%, respectively, which
are superior to the current methods. The AUC achieved from combined convolution in
Wrapped photo sub-class of CASIA-MFSD dataset, Digital photo sub-class, and Printed
photo sub-class of Replay-Attack dataset ranks second place in the current correlation
methods, and the AUC achieved from combined convolution in HR video sub-class and
Mobile sub-class of MSU-MFSD dataset ranks third place in the current correlation methods,
both ranking in the forefront. At the same time, the AUC achieved from all sub-classes
in the CASIA-MFSD dataset and the printed photo sub-classes in the MSU-MFSD dataset
have a certain improvement over CDCN and CDCN++. Summarily, the average value
of AUC achieved from combined convolution is 86.74%, and the standard deviation is
8.64, ranking first, which fully proves that combined convolution extracts more feature
information from images and improves the feature extraction capability of the convolution
layer.

Table 4. AUC (%) of combined convolution crossing type tests between different datasets.

Method
CASIA-MFSD Replay-Attack MSU-MFSD

Overall
Video Cut Photo Wrapped Photo Video Digital Photo Printed Photo Printed Photo HR Video Mobile Video

OC-SVMRBF+BSIF [4] 67.59 51.01 96.33 46.54 63.24 38.88 62.06 80.56 64.06 63.36 ± 17.46

SVMRBF+LBP [5] 77.41 87.14 69.48 69.64 73.31 71.85 55.39 96.02 94.88 77.24 ± 13.24

NN+LBP [6] 71.80 70.26 67.55 36.93 75.43 69.45 26.10 96.84 85.31 66.63 ± 22.11

GMM+LBP [6] 65.41 85.00 50.15 60.78 61.46 55.32 59.35 91.18 86.43 68.34 ± 15.09

OC-SVMRBF+LBP [6] 64.94 85.75 55.15 84.83 72.62 57.34 60.90 68.41 75.51 69.49 ± 11.15

AE+LBP [6] 77.72 80.30 52.92 79.67 54.92 52.71 55.67 87.94 92.18 70.45 ± 16.18

CDCN [15] 85.69 67.90 69.93 88.41 92.39 96.06 72.86 99.21 99.04 85.72 ± 11.78

CDCN++ [15] 82.77 68.82 70.28 91.58 90.61 97.40 72.21 99.05 99.86 85.84 ± 11.95

OURS 86.83 75.34 73.88 78.97 91.73 96.37 79.70 98.93 98.93 86.74 ± 8.64

6. Conclusions

Traditional convolution mainly extracts intensity information but gradient information
from the images. To make up its deficiency in feature extraction and improve the learning
ability of neural network, directional difference convolution is proposed to extract the gra-
dient information of the image, which is based on the correlation across pixels in the image
domain. Because of the emphasis of traditional convolution and directional difference
convolution, they are combined, and the proportions in convolution are optimized by a pa-
rameter, which is defined as combined convolution. Experiments on public datasets show
that the proposed method is effective with better feature extraction. In future studies, it is
necessary to improve the usability of directional difference convolution; thereby, balance
parameters can be adjusted adaptively with the training process of neural network so as
to adapt to a wider range of tasks. In addition, based on the advantages of DDC in image
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gradient feature extraction, more industrial scenes can be tested in the future, since there
are more typical gradient information, such as workpiece boundaries.
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