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Abstract: This paper is supposed to form a keystone towards a new and alternative approach
to Fourier analysis over LCA (locally compact Abelian) groups G. In an earlier paper the au-
thor has already shown that one can introduce convolution and the Fourier–Stieltjes transform on
(M(G), ‖ · ‖M), the space of bounded measures (viewed as a space of linear functionals) in an ele-
mentary fashion over Rd. Bounded uniform partitions of unity (BUPUs) are easily constructed in the
Euclidean setting (by dilation). Moving on to general LCA groups, it becomes an interesting chal-
lenge to find ways to construct arbitrary fine BUPUs, ideally without the use of structure theory, the
existence of a Haar measure and even Lebesgue integration. This article provides such a construction
and demonstrates how it can be used in order to show that any so-called homogeneous Banach space
(B, ‖ · ‖B) on G, such as

(
Lp(G), ‖ · ‖p

)
, for 1 ≤ p < ∞, or the Fourier–Stieltjes algebra FM(G), and

in particular any Segal algebra is a Banach convolution module over (M(G), ‖ · ‖M) in a natural way. Via
the Haar measure we can then identify

(
L1(G), ‖ · ‖1

)
with the closure (of the embedded version) of

Cc(G), the space of continuous functions with compact support, in (M(G), ‖ · ‖M), and show that
these homogeneous Banach spaces are essential L1(G)-modules. Thus, in particular, the approximate
units act properly as one might expect and converge strongly to the identity operator. The approach
is in the spirit of Hans Reiter, avoiding the use of structure theory for LCA groups and the usual
techniques of vector-valued integration via duality. The ultimate (still distant) goal of this approach
is to provide a new and elementary approach towards the (extended) Fourier transform in the setting
of the so-called Banach–Gelfand triple (S0, L2, S′0)(G), based on the Segal algebra S0(G). This direction
will be pursued in subsequent papers.

Keywords: bounded measures; convolution; homogeneous Banach spaces; integrated group
representation; Segal algebra; Wiener amalgam space; bounded uniform partition of unity; locally
compact groups

1. Introduction

Let us begin with the observation that the usual approach to harmonic analysis over
locally compact Abelian (LCA) groups G (see for example [1–4]) starts with a description of
the Lebesgue space

(
L1(G), ‖ · ‖1

)
, which turns out to be a Banach algebra with respect to

convolution. Based on the description of the Fourier transform as an integral transform, the
traditional approach continues with the demonstration of the fact that the Fourier transform
turns convolution into pointwise multiplication (the so-called convolution theorem). This
result describes one of the crucial properties of the Fourier transform, and Lebesgue
space appears to be a very natural and the best possible domain, because it allows one to
describe the convolution product of two functions (more precisely of equivalence classes
of measurable functions) in the pointwise sense (almost everywhere), combined with the
corresponding norm estimate

‖ f ∗ g‖L1 ≤ ‖ f ‖L1 ‖g‖L1 , f , g ∈ L1(G).
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It is also plausible that
(

L1(G), ‖ · ‖1
)

is considered the natural domain for the Fourier
transform, because for any character χ ∈ Ĝ the integral

f̂ (χ) =
∫

G
f (x)χ(x)dx (1)

exists in the Lebesgue sense (for one and then for any χ ∈ Ĝ) if and only if f ∈ L1(G). In a
similar way, it appears as a natural restriction to assume that f̂ belongs to L1(Ĝ) if one wants
to obtain f (x) back (again via the usual integral formula describing the inverse Fourier
transform) from f̂ . The range of the Fourier transform is denoted by

(
FL1(Rd), ‖ · ‖FL1

)
.

It is a Banach algebra with respect to pointwise multiplication, hence called the Fourier
algebra, with respect to the norm ‖ f̂ ‖FL1 := ‖ f ‖L1 .

Although technically demanding, this approach based on measure theory allows
one to formulate and answer interesting mathematical questions (e.g., about the almost-
everywhere convergence of Fourier series), but it does not reveal the relevance of convolution
for applications. The situation is different when moving on to tempered distributions, which
have become the key tool for the treatment of PDEs. However, in order to make use of
these tools it is necessary to first study to some extent the Schwartz space S(Rd), a nuclear
Fréchet space with a countable system of seminorms involving differentiation. For general
LCA groups one can define the Schwartz–Bruhat space via structure theory, but it is even
more complicated and very difficult to use.

Recalling the fact that engineers learn about the concept of convolution in their in-
troductory courses on translation-invariant linear systems (TILS), this author has so far
developed an approach to convolution (for bounded measures) which is based on the
isometric one-to-one correspondence between linear functionals on

(
C0(G), ‖ · ‖∞

)
(we

call them bounded measures and use the symbol (M(G), ‖ · ‖M)) and bounded linear op-
erators commuting with translations. Obviously, the space

(
C0(G), ‖ · ‖∞

)
of continuous,

complex-valued functions vanishing at infinity forms a Banach space (even a pointwise
algebra) if endowed with the sup-norm, and Cc(G) (compactly supported functions) are
dense in

(
C0(G), ‖ · ‖∞

)
. It is also invariant under translations, defined as usual by

[Tz f ](y) = f (y− z), y, z ∈ G. (2)

Any such TILS can be identified with a moving average resp. a convolution operator
by a uniquely determined bounded measure µ ∈ (M(G), ‖ · ‖M) =

(
C′0(G), ‖ · ‖C′0

)
. This

isometric identification allows us to transfer the composition structure of linear operators to
the corresponding bounded measures, and call it convolution. Of course, this viewpoint
is compatible with the usual approach (see [2], p.46). It turns out that it is the unique
w∗−continuous extension of the identification of translation operators Tx with the corre-
sponding Dirac measures δx ∈ M(G). In this way

(
C0(G), ‖ · ‖∞

)
is a Banach module over

(M(G), ‖ · ‖M) with respect to convolution. Details are given in [5] (and in the Lecture
Notes for the ETH course, see www.nuhag.eu/ETH20, accessed on 3 January 2021).

The realization of this correspondence makes use of so-called BUPUs, i.e., bounded
uniform partitions of unity. They allow one to decompose every µ ∈ M(G) into an
absolutely convergent sum of well-localized measures, which, among other approaches,
allows the extension of the action of µ ∈ C′0(G) to all of Cb(G), the continuous, bounded
functions on G (also endowed with the sup-norm). In this way it is possible to define the
Fourier–Stieltjes transform of bounded measures and derive the convolution theorem before
even discussing the existence of a Haar measure or the necessary Lebesgue integration
theory required in order to study everything in the L1-context.

The goal of the present manuscript is to provide an important step towards a de-
scription of the (generalized) Fourier transform over LCA groups along the lines of the
approach described above. This author is convinced that the appropriate setting is that
of the Banach–Gelfand triple (S0, L2, S′0)(G), consisting of the Segal algebra S0(G), which
can be defined on arbitrary LCA groups, its dual space S′0(G), the space of so-called mild

www.nuhag.eu/ETH20
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distributions, and in the middle the Hilbert space L2(G) (defined as the completion of
S0(G) with respect to the usual scalar product).

Although such an approach can be realized easily in the context of G = Rd, the
Euclidean setting, making use of the special ingredients available in this context, notably
the existence of a Fourier-invariant Gaussian function and dilation operators, which among
other uses, allow one to create arbitrary fine BUPUs in a natural fashion, it is not so obvious
whether and how one can obtain such BUPUs in the context of an abstract LCA group.
Moreover, many important convolution relations make use of the fact that convolution
operators induced by bounded measures act also boundedly on a large variety of Banach
spaces of functions over the group G, e.g., on the usual spaces

(
Lp(G), ‖ · ‖p

)
, or the

Fourier algebra FL1(G) and (hence) on
(
S0(G), ‖ · ‖S0

)
. We will provide a relatively simple

construction of such arbitrary fine BUPUs, avoiding the use of structure theory of LCA
groups, and derive similar results making use of these BUPUs.

The natural setting for the realization of such a general statement is the setting of
homogeneous Banach spaces (HBS) (in the sense of Y. Katznelson), which are isometrically
translation invariant by assumption. The family of Segal algebras (in the sense of H. Reiter)
is an interesting subfamily of this class of Banach spaces of locally integrable functions
over G. The second main result of this paper will deal with such Banach spaces and will
demonstrate that any such HBS (B, ‖ · ‖B) is actually a Banach module over (M(G), ‖ · ‖M)
(hence over

(
L1(G), ‖ · ‖1

)
) with respect to convolution.

The paper is organized in the following way. First we discuss several variations of the
concept of a bounded uniform partition of unity (BUPU) in Section 2, and explain their mutual
relationship. We also provide a few historical comments on their use in the literature.

In Section 3 the existence of arbitrary fine BUPUs is established as our first main result.
Instead of the Haar measure, we use a kind of coarse measurement of the size of sets, called
a capacity (with respect to a sufficiently small reference set). This provides the basis for our
key results, without making use of the structure theory for LCA groups. Subsequently it is
shown in Section 4 how to make use of such BUPUs. In Section 5 we also discuss various
characterizations of the Wiener algebra W = W(C0, `1)(G) and its dual via BUPUs.

In Section 6 our second main result is shown: any homogeneous Banach space (in the
sense of Y. Katznelson) is a Banach module over (M(G), ‖ · ‖M) with respect to convolution.
In fact, we formulate an even more general abstract approach based on isometric, strongly
continuous representations of the group G on an arbitrary Banach space (B, ‖ · ‖B). This
approach is based on the methods developed in [5] and makes use of a constructive way of
approximating bounded measures by discrete measures in the w∗− sense. The technical
realization of this second main result is based on the completeness of Banach spaces,
which also implies that (bounded) Cauchy nets are actually convergent in any Banach space.
The necessary background is described in Section 7. This approach also permits us to
demonstrate that the w∗−convergence of bounded and tight nets leads to strong operator
convergence of the corresponding convolution operators (Theorem 5).

Only then is the existence of the Haar measure invoked in order to define
(

L1(G), ‖ · ‖1
)

as a subspace of (M(G), ‖ · ‖M), namely, as a closure of Cc(G). In this sense, Section 6 char-
acterizes the usual integrated group representation as the restriction of the established module
structure over M(G). In particular it is shown that any homogeneous Banach space is also
an essential Banach module over

(
L1(G), ‖ · ‖1

)
.

2. Different Types of Uniform Partitions

It is the purpose of this section to compare various notions of uniform partitions of
unity in the context of harmonic analysis over LCA groups. It is easy to construct arbitrary
fine BUPUs of a given degree of smoothness on R merely by applying appropriate dilations
to the basis of B-splines of sufficiently high order (or even infinitely differentiable) which
are obtained as translations along the integer lattice Z of the convolution powers of the
indicator function 1[−1/2,1/2]. For B-splines of order 3 (four-fold convolution power) one
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obtains a Riesz basis for the cubic spline function in
(

L2(R), ‖ · ‖2
)
. Via tensor products,

the same can be achieved on Rd for d ≥ 2.
In contrast, it is not at all clear how to provide similar families of functions in a situation

where there is a lack of fine lattices (and corresponding fundamental domains) and without
having an appropriate automorphism group on the underlying group (replacing dilations).

It is our main goal in this section to demonstrate that the existence of such BUPUs
(using a suitable version of the BUPU concept) can be guaranteed, using relatively elemen-
tary arguments. Thus, we will not rely on the existence of a Haar measure on such a group G,
although that would make the proof a little bit shorter.

The notion of uniform partitions of unity appears in different papers, which are usually
similar in spirit and which mostly refer to the uniform size of the constituents of the partition of
unity. In order to compare the different possible concepts, let us recall the corresponding
definitions. The concept of choice for this article is that of BUPUs as introduced in [6] (i.e.,
Definition 2 below). It has been used regularly since then (e.g., in [7], Section 3.2.2 and in
many other papers by the author).

The following situation will be the most simple and still the most useful for our
purpose. It is a simplification of the concept of BUPUs as introduced in [6] (given below).
Since it is natural to formulate these results in the context of locally compact groups G, we
formulate the next definition by writing the group operation in a multiplicative way.

Definition 1. Given some neighborhood U ∈ U (e) of the identity of a locally compact group G, a
non-negative U-BUPU, a so-called (left) bounded uniform partition of unity of size U is a family
Ψ = (ψi)i∈I of continuous, non-negative functions on G satisfying the following conditions (we
write the group law multiplicatively here):

1. For some family (xi)i∈I in G one has: supp(ψi) ⊆ xiU for all i ∈ I;
2. The family (xiU)i∈I satisfies the bounded overlap property (BOP); the number of intersecting

neighbors is uniformly bounded (with respect to i ∈ I):

sup
i∈I

#{j | xiU ∩ xjU 6= ∅} ≤ B0 < ∞;

3. ∑i∈I ψi(x) ≡ 1 on G.

Remark 1. The continuity of the constituents ψi of the BUPU requires some overlap of their
supports, which is illustrated in Figure 1. On the other hand, we can apply bounded measures
(i.e., linear functionals on

(
C0(G), ‖ · ‖∞

)
) only on continuous functions with compact support,

and not on the indicator functions of compact sets. Although one might think of a fine partition
of the group (e.g., translates of a fundamental domain), we do not want to make use of this more
measure-theoretic setting.

Remark 2. Observe that the bounded overlap property implies that the sum in (3) is a finite
sum (with at most B0 non-zero terms for each x ∈ G). We call B0 the “overlap bound” of the
family (xiU).

The non-negativity of the functions ψi implies by (3) that supi∈I‖ψi‖∞ ≤ 1, i.e., the family
Ψ is bounded in

(
C0(G), ‖ · ‖∞

)
(the space of continuous complex-valued functions vanishing at

infinity, endowed with the sup-norm).
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Figure 1. A typical BUPU, illustrating Definition 1, obtained by positioning shifted bump functions
at well-spread locations (marked with ∗) on the line, followed by a division through the sum of those
bump functions, displayed in black.

For the characterization of general Wiener amalgam spaces of the form W(B, `q), for
example, (with a local component (B, ‖ · ‖B), which are more general than being just another
Lp-space, but something like (B, ‖ · ‖B) =

(
FL1(Rd), ‖ · ‖FL1

)
or FLp), it is important

to assume the boundedness of the family Ψ in some Banach algebra (with respect to
pointwise multiplication), contained in the multiplier algebra of (B, ‖ · ‖B). We assume in
that case that (A, ‖ · ‖A) ↪→

(
C0(G), ‖ · ‖∞

)
(continuous embedding). On the other hand,

non-negativity is not required in this case. The subsequent definition of BUPUs goes back
to [6].

Definition 2. Given U ∈ U (e), a family Ψ = (ψi)i∈I is a BUPU, a bounded uniform partition of
unity (of size U) in the Banach algebra (A, ‖ · ‖A) if one has:

1. There exists a family (xi)i∈I in G such that supp(ψi) ⊆ xiU for all i ∈ I;
2. The family Ψ is bounded in (A, ‖ · ‖A), i.e., supi∈I‖ψi‖A ≤ CΨ < ∞;
3. There exists B0 > 0 such that #{j | xiU ∩ xjU 6= ∅} ≤ B0;
4. ∑i∈I ψi(x) ≡ 1 on G.

The constant CΨ = C(Ψ, A) is called the norm of the family Ψ in (A, ‖ · ‖A), and B0 is
the overlapping constant of the family. The family X = (xi)i∈I is called the family of centers of
the BUPU Ψ = (ψi)i∈I .

For the case of a metric group G we can use balls of radius δ > 0 as a basis of
neighborhoods and thus it is natural to write |Ψ| ≤ δ if one has supp(ψi) ⊆ Bδ(xi) for i ∈ I.
In this case we call Ψ a δ− BUPU, or a BUPU of size δ.

Remark 3. The usefulness of BUPUs with different specific properties arises in various contexts.
Let us mention only a few of them here.

Sometimes it is enough to have some BUPUs, which may be bounded in a suitable Banach alge-
bra (A, ‖ · ‖A), e.g., for the construction of Wiener amalgam spaces, such as
(W(FL1, `1)(Rd), ‖ · ‖W(FL1,`1)). In fact, for such spaces one can show that different BUPUs
define the same Wiener amalgam spaces with equivalent norms. However, BUPUs are not only
helpful in defining new function spaces, they also play an important role in the alternative approach
to convolution for the measure algebra (M(G), ‖ · ‖M), as presented in [5]. The decomposition of
µ ∈ M(G) as an absolutely convergent sum of measures with small support allows us to take a
crucial step in the isometric isomorphism between (M(G), ‖ · ‖M) and the Banach algebra (under
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composition) of bounded linear operators on
(
C0(G), ‖ · ‖∞

)
which commute with translation, the

so-called TILS (translation-invariant linear systems, as they are called in engineering books).
For the work on coorbit theory developed jointly with K. Gröchenig, as well as the closely

related work on irregular sampling, it is important to be able to have BUPUs which are centered at a
given δ−dense subset of Rd (or a LCA group); see [8] or [9]; see also [10–12].

For the current paper the existence of arbitrary fine BUPUs over general LC groups will
be crucial. Currently it is not clear whether one can find UPUs (in the sense of [13]) of size U
(meaning with supp(ϕ) ⊆ U, for a given neighborhood of the identity) in the case of general groups.
Fortunately, the concept of BUPUs is more flexible, and it will be the first main result of this paper
to demonstrate that one can derive the existence of arbitrary fine non-negative BUPUs over any
given locally compact group G using elementary considerations (reminding perhaps some readers of
the construction of a Haar measure on G, see [14]).

For most applications, so-called regular BUPUs will be sufficient (and in fact easier to
handle), and these are obtained as translates of a (smooth) function with compact support
along some lattice Λ C G. Especially over G = Rd it would be natural to make use of
smooth BUPUs with respect to some lattice of the form Λ = AZd, for some non-singular
d × d matrix A. Note that in the Euclidean case (or, for example, also for stratified Lie
groups) one can obtain “arbitrary fine BUPUs” by applying a simple dilation (or rather
compression) routine to a given BUPU. If one only needs some BUPU over Rd it is quite
natural to obtain BUPUs as translates of a single function:

Definition 3. A family Ψ = (ψλ)λ∈Λ = (Tλψ0)λ∈Λ is called a regular (smooth) uniform
partition of unity on Rd in

(
FL1(Rd), ‖ · ‖FL1

)
if it satisfies:

1. ψ0 is compactly supported and ψ̂0 ∈ L1(Rd), (resp. ψ0 ∈ D(Rd));
2. ∑λ∈Λ ψλ(x) = ∑λ∈Λ ψO(x− λ) ≡ 1 on Rd.

Note that the finite overlap condition of support easily follows from the properties
of a lattice, and that furthermore the boundedness of the family Ψ is an easy consequence
of the isometric translation invariance of the algebra (A, ‖ · ‖A) under consideration (here(
FL1(Rd), ‖ · ‖FL1

)
).

Historical note: BUPUs were introduced (although not first used) by this name by the
author in [6] for the “discrete” characterization of Wiener amalgam spaces.

A slightly different approach has been taken in [13], based on earlier work of [15].

Definition 4. Let G be a locally compact group. A family Ψ in Cc(G) is called a UPU (a uniform
partition of unity) if there exists some function ϕ ∈ Cc(G) (i.e., continuous and compactly supported,
perhaps satisfying some smoothness conditions) such that, for a suitable family (yi)i∈I in G one has

∑
i∈I

Tyi ϕ(x) = ∑
i∈I

ϕ(y−1
i x) ≡ 1 on G. (3)

Although formally there is no BOP property required in this case it is shown in [13]
that the family of shift parameters (yi)i∈I is relatively separated, or equivalently, that such
an UPU is in fact a BUPU of size supp(ϕ).

We can give the following characterization of relatively separated families (xi)i∈I as they
appear in the above definitions. For details see e.g., Theorem 22 in [12].

Lemma 1. For a discrete family (xi)i∈I in G the following properties are equivalent:

1. The family is relatively separated, i.e., a finite union of separated sets, i.e., of subfamilies
(xj)j∈J with the property that xjV ∩ xlV = ∅ for j 6= l ∈ J, for some open set V in G;

2. For any relatively compact set W the family (xiW)i∈I has the uniformly controlled neighbors
property;
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3. For any compact set Q ⊂ G the number of points in zQ is controlled as follows:

sup
z∈G

#{i | xi ∈ zQ} = B(Q) < ∞.

Remark 4. The latter property can be equivalently described as the property that the (irregular)
Dirac comb ttX := ∑i∈I δxi belongs to the Wiener amalgam space W(M, `∞), which is the dual
of the Wiener algebra

(
W(C0, `1)(G), ‖ · ‖W

)
. We will not pursue this connection any further as

it might confuse readers who are not familiar with the theory of Wiener amalgam spaces.

Let us next recall that the main result of [13] describes (making use of the structure
theory of locally compact groups) the existence of UPUs for arbitrary LC groups G. How-
ever, it is not claimed that one can find arbitrary fine UPUs in that paper. Still, for further
reference, let us formulate their main result as follows:

Proposition 1 (Leptin/Müller). For any locally compact group G there exist UPUs.

Remark 5. Using a simple compactness argument one can even rewrite the function ϕ as a finite
sum ϕ = ∑K

k=1 ϕk of functions with arbitrary small support and thus derive the existence of
BUPUs by translating each of them using the same family of shift-parameters (yj). However,
the disadvantage (from our perspective) of this approach is the fact that it is heavily based on
structure theory.

Remark 6. Note that of course one even can obtain a situation where the indicator function of a
relatively compact set covers the group by translates along a discrete family (yj)j∈J , without having
any group structure, i.e., not using a lattice (discrete subgroup) as the parameter set of the shift
operators. Such a situation is known from wavelet theory, where one obtains such coverings on the

“ax + b”-group. Although the translation parameters (taken from Z) and the dilation parameters of
the form 2k, k ∈ Z form discrete subgroups of Abelian subgroups; the combined “geometric lattice”
is not a discrete subgroup of the affine group.

Historical Notes

There are several situations in which BUPUs have played an important role in the past.
The first of these was the paper which introduced the general Wiener amalgams (originally
called Wiener-type spaces) [6].

Of course, various forms of smooth BUPUs, such as B-spline systems had already
been used early on, e.g., in the theory of numerical integration. In fact, any BUPU allows
one to define a so-called quasi-interpolation operator of the form SpΨ f (x) := ∑i∈I f (xi)ψi.
Sometimes (e.g., for the BUPU obtained by B-splines of order one, which are triangular
functions), these operators interpolate the function f at the node points, but in most other
cases they just approximate a given smooth function. Integration formulas thus allow us
to calculate the integral of SpΨ in a closed form, based on the knowledge of the sampling
values ( f (xi)) only.

BUPUs over LC groups play a prominent role in the development of coorbit theory,
which was put in place by the author together with K. Gröchenig (see [16]).

At the heart of coorbit theory are reconstruction methods which allow us to reconstruct
an abstract wavelet transform Vg f defined over a locally compact group G (such as the
Heisenberg group, the “ax + b”-group, or the shearlet group, to mention concrete examples)
from samples, taken over a sufficiently dense, discrete family (xi)i∈I in G. The first step
here is to establish a quasi-interpolation for Vg f , using the given sampling values only.
However, one then observes that the resulting function may not belong to the range of the
transform f 7→ Vg f , and thus one has to project back to the range, which can be realized by
means of a convolution with Vgg. The details are found in [8] and related papers. Of course,
one has to estimate the guaranteed approximation quality for this kind of approximation,
in order to have a basis for an iterative method of reconstruction (at a geometric rate).
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The intuitive similarity of the properties of those wavelet transforms Vg f with band-
limited functions of two variables (as well as the existence of a reproducing convolution
relation in both cases) then inspired the authors to deal with the “irregular sampling
problem”, i.e., the problem of reconstructing a band-limited function from irregular samples.
Recall that the regular case, i.e., the reconstruction of a band-limited function in L2(Rd)

(with compact support supp( f̂ ) ⊆ BR(0)) from samples along some lattice Λ can be
guaranteed if the lattice Λ is fine enough, essentially making use of Poisson’s formula.
In the irregular case the first generation of iterative algorithms was based on the use of
BUPUs, which are fine enough and are centered at the given sampling points (see [10,12]).

3. Arbitrary Fine BUPUs over LC Groups

In this section we establish our first main result, in the context of general locally
compact groups. Since this includes many non-commutative groups, we choose the usual
multiplicative notation for the group law.

Definition 5. For any fixed and relatively compact subset S ⊂ G the mapping M 7→ capS(M) is
defined on the collection of (relatively) compact sets M according to the following rule

capS(M) := min{#F |M ⊆
⋃
i∈F

xiS} (4)

where the minimum is taken over all finite subsets of possible translation parameters.

Note that, based on the fact that the interior of S is non-empty and M is supposed to
be compact, the minimum is taken over a non-empty subset of N.

Remark 7. The term “capacity” originates from a similar construction, where one measures the
size of an indicator function by minimizing over all the (typically non-negative) functions in a given
function’s spaces, typically a Sobolev spaceHs(Rd), which dominate the indicator function 1M of
the set M.

Such an interpretation is in fact also possible here: Given a set S, capS(M) can be interpreted
as the infimum over all norms in W(L∞, `1)(G) of functions, dominating the indicator function
1M. We leave it to the interested reader to check the details.

Lemma 2. For any fixed and relatively compact subset S ⊂ G the mapping M 7→ capS(M),
defined on the collection of compact sets M, has the following properties:

1. capS(S) = 1
2. capS(zM) = capS(M), ∀z ∈ G
3. The mapping M 7→ capS(M) is subadditive in the sense that we have for finite unions of

compact sets:

capS

(
K⋃

k=1

Mk

)
≤

K

∑
k=1

capS(Mk)

4. Given any finite collection of compact sets Mk, k = 1, ..., K which are S-separated, i.e., satisfy-
ing the condition that MkS ∩MjS = ∅ for k 6= j, one has

capS

(
K⋃

k=1

Mk

)
=

K

∑
k=1

capS(Mk).

Proof. Claim (1) is obvious, and the translation invariance (2) follows from

M ⊆
⋃
i∈F

xiS ⇔ zM ⊆
⋃
i∈F

(zxi)S, ∀z ∈ G.

Thus, any covering of M has a corresponding covering of equal cardinality for zM.
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The subadditivity property (3) is easy to check, since the combination of all the trans-
lates needed to cover all the sets Mi, i ∈ F, obviously constitutes a covering of their union.

Finally, we check for the additivity property (4). Given a minimal covering of
⋃K

k=1 Mk,
using a set of translates of the form yiS, i = 1, ...L, we argue that each of the translates
will be relevant for exactly one of the constituting sets Mk, 1 ≤ k ≤ K, since due to the
minimality we can limit our consideration to translates of the form zS which intersect at
least one of the sets Mk.

Using an indirect argument we assume that zS has non-trivial intersection with, for
instance, x1S and x2S. Then we have zs = x1s1 = x2s2 for some elements s, s1, s2 ∈ S.
However, we then have z ∈ M1S ∩M2S = ∅, in contradiction to the assumption. Thus, for
every index k the collection of sets siS with i ∈ Ik given by

Ik := {i ∈ F |Mk ∩ siS 6= ∅}

describes a covering of the set Mk.
This is a minimal covering, because if there was another covering of the set Mk with

fewer terms, it could be used to obtain an even better covering of their union (by simply
leaving the other contributions fixed), in contradiction to the assumed minimality of the
covering and property (3) in Lemma 2.

Remark 8. Note that up to this point we have only used a few topological properties of locally
compact groups G. The use of the simple expression of a capacity (which should be seen as a simplified
or coarse form of a measure) will allow us to derive the existence of arbitrary fine BUPUs on any
locally compact group G.

Note that similar expressions appear in the construction of the Haar measure on a given locally
compact group. We leave it to the reader to check this similarity. For us it is only important to
mention that the use of this “coarse form of a measure” precedes the construction of a Haar measure
and thus allows us to derive the validity of the integrated group action (as described in Section 3.2
of [2]) without any measure theory, as it does not make use of Lebesgue integration theory nor the
existence of the Haar measure.

Theorem 1. Let G be any locally compact group and U ∈ U (e) be any neighborhood of the neutral
element e ∈ G. Then there exist (plenty of) BUPUs Ψ = (ψi)i∈I of non-negative functions of size
U, meaning that

supp(ψi) ⊆ xiU, ∀i ∈ I, (5)

for a suitable discrete (in fact uniformly separated) family X = (xi)i∈I in G, and

∑
i∈I

ψi(x) ≡ 1. (6)

Proof. Given U we choose some compact neighborhood V ∈ U (e) such that V3 ⊆ U, and
an even smaller neighborhood S ∈ U (e) with S2 ⊆ V. Without the loss of generality, we
will assume that all these neighborhoods are symmetric (with respect to the group action),
i.e., that z ∈ U if and only if z−1 ∈ U (and the same for the other neighborhoods).

We then select a maximal family (xi)i∈I with respect to the property that {xiV | i ∈ I}
forms a pavement in G, i.e., such that the sets xiV do not intersect in a non-trivial way,
but that there is no z ∈ G such that zV could be added to the family without destroying
this property. Consequently, any translate zV intersects at least one of the sets xiV, or
zV ∩ xiV 6= ∅ for some index i ∈ I. Due to the symmetry assumption, this implies that the
family (xiV2) covers the group G.

Due to the regularity of a locally compact group there exists ϕ ∈ Cc(G) with ϕ(y) = 1
on V2, supp(ϕ) ⊆ V3 and ‖ϕ‖∞ = 1. Thus (by setting Lx ϕ(y) = ϕ(x−1y)) the sum

Φ(x) := ∑
i∈I

Lxi ϕ(x) = ∑
i∈I

ϕ(xi
−1x)
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is well defined and satisfies Φ(x) ≥ 1 for all x ∈ G. In order to show that the sum is finite
(in a uniform sense) for each x ∈ G, let us fix i ∈ I and consider Ii := {j |ψiψj 6= 0}. Since
Ii ⊆ {j | xiV3 ∩ xjV3 6= ∅} we have to count the indices j ∈ I with xj ∈ xiV6, or

xjS ⊆ xiV6S ⊂ xiV7.

Since the family of sets xjS, i ∈ I is an S-separated family of translates of S, thanks to
the assumption S2 ⊆ V and the pavement conditions stated at the beginning of the proof
we can apply property (4) of Lemma 2 in order to finish our proof.

Hence for any fixed i ∈ I the number of possible indices such that ψi · ψj 6= 0 is at
most capS(V

7) (because we have capS(xjS) = capS(S) = 1, using properties (1) and (2)
from Lemma 2 above).

Overall, we have established that the sum defining Φ(x) is pointwise a finite sum and
the resulting function Φ satisfies

1 ≤ Φ(x) ≤ capS(V
7), x ∈ G. (7)

Consequently, we observe that the family defined by

ψi(x) := Łxi ϕ(x)/Φ(x), i ∈ I,

defines a partition of unity of size U, since V3 ⊆ U and

supp(ψi) = supp(Lxi ϕ) = xi supp(ϕ) ⊂ xiV3 ⊂ xiU.

4. Towards Integrated Group Representations

To some extent the usefulness of BUPUs is based on the fact that they allow us to
define natural operators. Any non-negative BUPU Ψ = (ψi)i∈I induces two operators,
namely, the spline quasi-interpolation operator SpΨ on

(
C0(G), ‖ · ‖∞

)
, given by

SpΨf := ∑
i∈I

f (xi)ψi, (8)

and its adjoint operator, the so-called discretization operator DΨ on (M(G), ‖ · ‖M) =(
C′0(G), ‖ · ‖C′0

)
, which takes the form

DΨµ = ∑
i∈I

µ(ψi)δxi . (9)

Since any SpΨ is obviously a nonexpansive operator on
(
C0(G), ‖ · ‖∞

)
it is also clear

that its adjoint is nonexpansive on (M(G), ‖ · ‖M) as well.
Let us first recall a few facts concerning the discretized measures for the case of

G = Rd.
In [5] the following facts were derived:

Proposition 2. Given µ ∈ M(Rd) the net (the reader is definitely familiar with such a concept,
recalling the concept of convergence of Riemann sums, which approach the limit

∫ b
a f (x)dx, given

that f ∈ C([a, b]).) (DΨµ) |Ψ|→0 is w∗-convergent:

DΨµ( f )→ µ( f ), ∀ f ∈ C0, |Ψ| → 0. (10)

In fact, we have for any BUPU Ψ:

‖DΨµ‖M ≤ ‖µ‖M , µ ∈ M(Rd). (11)
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Moreover, the family (DΨµ)|Ψ|≤1 is uniformly tight in (M(Rd), ‖ · ‖M) (a bounded set S ⊂
M(Rd) is called tight if for every ε > 0 there exists p ∈ Cc(G) such that ‖pµ− µ‖M ≤ ε, ∀µ ∈ S).

We do not go into a discussion of tightness combined with w∗-convergence, but
recall that we have established strong operator norm convergence for the corresponding
convolution operators (by [5]), given pointwise by µ ∗ f (x) = µ(Tx fX), x ∈ Rd:

lim
|Ψ|→0

‖DΨµ ∗ f − µ ∗ f ‖∞ = 0, f ∈ C0(Rd). (12)

Our next goal is to verify that a corresponding behaviour remains valid for general
(isometric) group representations on Banach spaces. In a sense, this shows that the Banach
algebra (M(G), ‖ · ‖M), with the composition rule being internal convolution), provides
a universal algebra which can be embedded into the Banach algebra of all operators on
a variety of Banach spaces. Note that in addition to the crucial estimate (controlling the
operator norm of the convolution operator f 7→ µ ∗ f by ‖µ‖M) we have to ensure the
validity of the associative law, i.e., that we have for µ1, µ2 ∈ M(G):

(µ1 ? µ2) ∗ f = µ1 ∗ (µ2 ∗ f ), f ∈ B. (13)

This is non-trivial and authors often neglect to mention it, but it is obvious for Dirac
measures, and hence for discrete measures, and thus can be obtained by taking limits.

Since our goal is mostly application for LCA groups, we have formulated the next
definition for the Abelian setting, thus making use of additive notation for the group law.

Definition 6. A mapping ρ : G → L(B), the bounded, linear operators on a Banach spaces
(B, ‖ · ‖B), is called an isometric representation of a group G on the Banach space (B, ‖ · ‖B) if the
mapping ρ is a group homomorphism, i.e., satisfies

ρ(x + y) = ρ(x) ◦ ρ(y), x, y ∈ G,

and if each of the operators are isometric on (B, ‖ · ‖B), i.e., if one has

‖ρ(x) f ‖B = ‖ f ‖B, f ∈ B, x ∈ G. (14)

Moreover, if the mapping x 7→ ρ(x) f is continuous from G to (B, ‖ · ‖B), i.e.,

lim
x→0
‖ρ(x) f − f ‖B = 0, f ∈ B. (15)

we say that the representation ρ is strongly continuous.

An important family of examples arises from the so-called regular representation of G,
i.e., the action of the group by (left or right) translation on functions or distributions over G,
i.e., ρ(x) = Tx the integrated action corresponds to the usual convolution (see [2], p. 73). In
this case the notation of homogeneous Banach spaces is used, which suggests calling Banach
spaces endowed with an isometric, strongly continuous group representation of an LC
group G an abstract homogeneous Banach space (cf. [17], Chap. 9).

The main result of this paper is the observation that we can establish the fact that every
strongly continuous, isometric representation of Rd on a Banach space (B, ‖ · ‖B) gives rise
to an extended representation (the so-called integrated group representation) of the Banach
convolution algebra (M(Rd), ‖ · ‖M). In fact, this extension is unique among all those who
respect tight, w∗-convergence of nets (or just sequences), with the understanding that ρ(x)
is of course identified with ρ(δx) (we avoid the use of a different symbol for the integrated
representation).
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Remark 9. Usually, in the standard literature on the subject, the integrated group representation
describes the action of f ∈ L1(G) on f ∈ B, and is thus not immediately visible as a natural
extension of the group representation. Aside from technical arguments (and there are many such
considerations, involving abstract measure theory and a lot of functional analysis) the focus on
L1(G) appears to come from a similar situation, where the group representation of a discrete
group G can be extended naturally to `1(G), which has the “unit vectors” δx, x ∈ G as a natural
(unconditional) basis. In other words, in this case any f ∈ `1(G) can be written (uniquely) as

f = ∑
x∈G

f (x)δx with ‖ f ‖1 := ∑
x∈G
| f (x)| < ∞. (16)

However, for a discrete group we have of course `1(G) = M(G) and the finite, discrete
measures are dense in (M(G), ‖ · ‖M) (see [18], Example 6.1.7). In contrast, for non-discrete
groups the subspace Md(G) of discrete measures (of the form µ = ∑∞

k=1 ckδxk with ∑∞
k=1 |ck| < ∞)

forms a proper closed subalgebra of (M(G), ‖ · ‖M). However, fortunately Md(G) is w∗−dense in
M(G) and the constructive way of proving this fact (described in [5]) serves as the basis for the
results presented in this paper.

Remark 10. Using the terminology of Banach modules we can state that any strongly continuous,
isometric representation of G on (B, ‖ · ‖B) turns (B, ‖ · ‖B) into a Banach module over the
(commutative, unital) Banach convolution algebra (M(G), ‖ · ‖M) (we use the symbol ? for internal
convolution).

Later (see Section 6) we will see that the restriction of the module action to L1(G) makes
(B, ‖ · ‖B) an essential Banach (convolution) module over

(
L1(G), ‖ · ‖1

)
.

Next we will show that the convolution action of bounded discrete measures on a
homogenous Banach space can be extended to all of the measures in order to generate an
action of (M(G), ‖ · ‖M) on such a Banach space (B, ‖ · ‖B).

Theorem 2. Any abstract homogeneous Banach space (B, ‖ · ‖B) with respect to a given, strongly
continuous and isometric representation ρ of a locally compact group G is also a Banach module over
the Banach algebra (M(G), ‖ · ‖M) (with respect to convolution). This claim includes the validity
of the following associativity law:

ρ(µ1 ? µ2) = ρ(µ1) ◦ ρ(µ2), µ1, µ2 ∈ M(G). (17)

The mapping (µ, f ) 7→ µ•ρ f = ρ(µ) f is the natural extension of the action of discrete
measure given by δx•ρ f = ρ(x) f and satisfies the norm estimate

‖µ•ρ f ‖B ≤ ‖µ‖M‖ f ‖B, µ ∈ M(G), f ∈ B. (18)

Proof. We start from the expected action of Dirac measures via

δx•ρ f =: ρ(x) f , f ∈ B. (19)

Since discrete measures are absolutely convergent sums of Dirac measures it is then
clear that we have for a discrete measure µ = ∑∞

k=1 ckδxk , with ∑∞
k=1 |ck| = ‖µ‖M < ∞:

µ•ρ f =
∞

∑
n=1

ckρ(xk) f , (20)

the sum being absolutely convergent for each f and µ ∈ Md(G), since we have

‖µ•ρ f ‖B ≤
∞

∑
n=1
|ck|‖ρ(xk) f ‖B ≤ ‖ f ‖B

∞

∑
n=1
|ck| = ‖µ‖M‖ f ‖B. (21)
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Observe also that the assumptions concerning ρ imply that this action of Md(G) is not
only an individual action (given for each µ ∈ Md(G)) but it in fact defines a representation
of the Banach convolution algebra (Md(G), ‖ · ‖Mb), since we have

(µ1 ? µ2)•ρ f = µ1•ρ(µ2•ρ f ), µ1, µ2 ∈ Md(G), f ∈ B (22)

as a consequence of the validity of

(δx ? δy)•ρ f = δx+y•ρ f = ρ(x + y) f = ρ(x)(ρ(y) f ) = δx•ρ(δy•ρ f ). (23)

Consequently, for a given µ ∈ M(G) and f ∈ B we set

DΨµ•ρ f = ∑
i∈I

µ(ψi)ρ(xi) f . (24)

Based on (21) and (11) we have for any Ψ:

‖DΨµ•ρ f ‖B ≤ ‖ f ‖B ∑
i∈I
|µ(ψi)| = ‖ f ‖B‖DΨµ‖M ≤ ‖µ‖M‖ f ‖B. (25)

We will show next that it is convergent, as |Ψ| → 0 or diam(Ψ)→ 0. The motivation
for this approach becomes plausible once one understands DΨµ on f as a Riemann-type sum
for the Banach-space-valued integral of x → ρ(x) f , usually written as

∫
G ρ(x) f (x)dµ(x).

Given two families Ψ = (ψi)i∈I and Φ = (φj)j∈J , with their centers (xi)i∈I and (yj)j∈J
respectively, we define their joint refinement Ψ−Φ as the family (ψiφj)(i,j)∈I�J . It is natural to
take I � J, the family of all index pairs such that ψi ·φj 6= 0 (because all the other products are
trivial and should be neglected) as the new index set. In fact, if both Ψ and Φ are sufficiently
“fine” BUPUs, one has: (using the fact that ψi = ∑j∈j ψiφj, hence ∑(i,j)∈I�J ψiφj ≡ 1 and
∑(i,j)∈I�J ‖(ψiφj)µ‖M = ‖µ‖M .)

‖DΨµ•ρ f −DΦµ•ρ f ‖B = ∑
(i,j)∈I�J

‖ρ(xi) f − ρ(yj) f ‖B|µ(ψiφj)| ≤ (26)

sup
(i,j)∈I�J

‖ρ(xi)[ f − ρ(yj − xi) f ]‖B ∑
(i,j)∈I�J

‖(ψiφj)µ‖M ≤ ε‖µ‖M ,

if only Ψ resp. Φ are fine enough. Due to the completeness of (B, ‖ · ‖B) one finds that
there is a uniquely determined limit, which we will call µ•ρ f . It is then obvious that

‖µ•ρ f ‖B = lim
|Ψ|→0

‖DΨµ•ρ f ‖B ≤ lim sup
|Ψ|→0

‖DΨµ‖M‖ f ‖B = ‖µ‖M‖ f ‖B. (27)

Of course, it remains to be shown that the action defined in this way is associative, i.e., that

(µ1 ? µ2)•ρ f = µ1•ρ(µ2•ρ f ), ∀µ1, µ2 ∈ M(G), f ∈ B, (28)

but this follows from the associativity for the discrete measures DΨµ and DΦµ. Note that
H. S. Shapiro (cf. [17]) makes this associativity an extra axiom, apparently because he
could not prove it directly for technical reasons, based on the way in which he defines
the action of bounded measures on an “abstract homogeneous Banach space”. H.C. Wang
exhibits in [19] an example of what he calls a semi-homogeneous Banach space (without strong
continuity of the action of G on (B, ‖ · ‖B), which does not allow the extension to all of the
bounded measures. Indeed, it is a Banach space of measurable and bounded functions on
R which is non-trivial, but which does not contain any non-zero continuous function. The
example was suggested to him in a correspondence by the author of this note.

Remark 11. In the derivation above we have used the isometric property and the fact that ρ(x1x2) =
ρ(x1) ◦ ρ(x2). It would have been no problem if this identity was only true “up to some constant
of absolute value one”, i.e., if one has a projective representation of G only, such as the mapping
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λ = (t, ω) 7→ ρ(λ) = MωTt from Rd× R̂d into the unitary operators on the Hilbert space(
L2(Rd), ‖ · ‖2

)
, which is one of the key players in time-frequency analysis. This direction will also

be explored further in subsequent notes.

Remark 12. Another possible and powerful extension of the above result will involve cases where
the group action is not isometric anymore, but still bounded by some weight function, i.e., the case
where each ρ(x) is a bounded operator and one has control over the operator norms of these operators
on (B, ‖ · ‖B). In this case, one has to replace the algebra (M(G), ‖ · ‖M) by weighted versions,
and

(
L1(G), ‖ · ‖1

)
by Beurling algebras (see [3]). This direction will also be pursued elsewhere

in more detail. This is a crucial starting point for the analysis of TMIBs, i.e., translation- and
modulation-invariant function spaces (see e.g., [20,21]).

5. The Wiener Algebra W(C0,`1)

The purpose of this section is to demonstrate that the concept of homogeneous Ba-
nach spaces over LCA groups, originally introduced in a book by Y. Katznelson [22] (see
Remark 14 below), can be introduced without making use of the Haar integral. For this
purpose we will make use of Wiener’s algebra (as described in [23]), which is found already
in Reiter’s book [3,4] for G = Rd, as a prototypical example of a Segal algebra. It was the
model case for many characterizations of minimal spaces (a pointwise C0(Rd)-module in
this case); see [23] and the subsequent papers [24,25].

Obviously, BUPUs play an important role in the description of Wiener amalgam spaces
(such as Wiener’s algebra, which is of the form W(C0, `1)(Rd), or the Segal algebra
S0(Rd) = W(FL1, `1)(Rd)). The justification for characterizing Wiener amalgam spaces via
BUPUs comes from the main results of [6]. Leaving out the details, let us summarize a few
properties of Wiener’s algebra on a general LCA group G:

Definition 7.

W(G) := W(C0, `1)(G) := { f ∈ C0(G) | ‖ f ‖W := ∑
i∈I
‖ f ψi‖∞ < ∞}.

We have the following general facts, which are easily proved without making use of
the existence of a Haar measure on G:

Proposition 3. 1. (W , ‖ · ‖W ) is a Banach space, for any BUPU Ψ, and continuously embed-
ded into

(
C0(G), ‖ · ‖∞

)
.

2. (W , ‖ · ‖W ) is a Banach ideal in
(
C0(G), ‖ · ‖∞

)
, i.e., pointwise products are in W ; in

particular, it is a Banach algebra under pointwise multiplication;
3. The space does not depend on the particular choice of Ψ, i.e., different BUPUs define the same

space and equivalent norms;
4. The decomposition of f ∈W as f = ∑i∈I f ψi is not only valid absolutely in

(
C0(G), ‖ · ‖∞

)
, but

even in (W , ‖ · ‖W ). Hence, Cc(G) is dense in (W , ‖ · ‖W ) and W is dense in
(
C0(G), ‖ · ‖∞

)
;

5. For any open, relatively compact neighborhood Q of the identity we have the following atomic
characterization of W , via the absolutely convergent series:

Wat := { f ∈ C0(G) | f =
∞

∑
k=1

fk, with
∞

∑
k=1
‖ fk‖∞ < ∞, ∃xk ∈ G : supp( fk) ⊆ xk + Q}.

6. The corresponding (equivalent) inf-norm (infimum over all admissible sums) is isometrically
translation-invariant, with continuous translation, i.e.,

‖Tx f ‖W = ‖ f ‖W , x ∈ G, and lim
x→e
‖Tx f − f ‖W = 0, ∀ f ∈W . (29)

Remark 13. As a matter of fact, the functions in W(Rd) are (even absolutely Riemann) integrable
and thus W is a dense subspace of

(
L1(Rd), ‖ · ‖1

)
. Combined with property (29), this implies that
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W(C0, `1)(Rd) is in fact a Segal algebra on Rd (see [3,4]). Similar comments apply for general
LCA groups based on Proposition 3, once the existence of a Haar measure is established (in order to
characterize

(
L1(G), ‖ · ‖1

)
as a closed ideal of (M(G), ‖ · ‖M); see Section 6).

Since (W , ‖ · ‖W ) ↪→
(
C0(G), ‖ · ‖∞

)
as a dense subspace, the dual space W∗ (which

can be characterized as the subspace W(M, `∞)(G) of all Radon measures) is known in the
literature as the space of translation-bounded measures.

First we give a characterization of W∗ as a subspace of all tempered distributions (for
the case G = Rd). Note that in this case S(Rd) is a dense subspace of W .

Lemma 3. A tempered distribution σ ∈ S ′ extends to a bounded linear functional on (W , ‖ · ‖W )
if and only if one has the following estimate:

Fixing a compact set Q (with non-void interior) there exists a constant B(Q) such that one has:
For any ϕ ∈ D(Rd) = S(Rd) ∩ Cc(Rd) (the space of infinitely smooth functions with compact
support) with supp(ϕ) ⊆ x + Q for some x ∈ G:

|σ(ϕ)| ≤ B(Q)‖ϕ‖∞. (30)

Equivalently one has: A tempered distribution defines a translation-bounded measure if and
only if for any p ∈ D(Rd) the family (Tx p · σ) constitutes a bounded family in (M(Rd), ‖ · ‖M).

Dueto the atomic characterization of W(G), we can also provide a kind of atomic
representation of W∗, which works as follows:

Lemma 4. Given any well-spread family (xi)i∈I in G, the elements σ ∈W∗ can be characterized
as the w∗−convergent series of the following form (recall that (σ · h) := σ(h · f ) by definition.)

σ = ∑
i∈I

µi · Txi p, (31)

for some fixed, non-zero p ∈ Cc(G) and some bounded family (µi)i∈I in (M(G), ‖ · ‖M).

Proof. The proof has two directions. First of all we fix some U-BUPU Ψ = (ψi)i∈I and
some p ∈ Cc(G) with ‖p‖∞ = 1, p(x) ≡ 1 on U, and hence ψi = ψi · Txi p for i ∈ I.

This allows us to decompose any linear functional σ ∈ W∗ in the usual way as a
w∗−convergent series of the form

σ = ∑
i∈I

σ · ψi = ∑
i∈I

(σ · ψi) · Txi p. (32)

We will check that the functionals µi := σ ·ψi define a bounded family in (M(G), ‖ · ‖M).
In fact, we have, thanks to the atomic characterization

‖µi‖M = ‖σψi‖M ≤ ‖ψi‖∞‖σ · (Txi p)‖M ≤ C‖σ‖W∗ , i ∈ I. (33)

In order to prove the converse, let (µi)i∈I be a bounded family in (M(G), ‖ · ‖M). We
have to control the norm of the functional σ given by Equation (32). Due to the atomic
characterization it is enough to present an estimate for the atoms, i.e., a uniform estimate
(with respect to the sup-norm) for functions f ∈ Cc(G) with supp( f ) ⊂ z + Q, for some
z ∈ G. The assumptions concerning the family (xi)i∈I then imply that one has for the
compact set K = supp(p) the following uniform bound (independent of z):

#F = #{i ∈ I, (xi + I) ∩ (z + K) 6= ∅} ≤ C(X) < ∞.

Using supp(Txi p · f ) ⊆ supp(Txi p) = xi + K and ‖Txi p · f ‖∞ ≤ ‖ f ‖∞ we conclude

|σ( f )| ≤∑
i∈I
|(µi · Txi p)( f )| = ∑

i∈F
|µi(Txi p · f )| ≤ C(X) sup

i∈I
‖µi‖M‖ f ‖∞. (34)
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Remark 14. This definition appears to be different from the setting chosen in Katznelson’s book [22],
p. 127. He assumes only instead of condition (1) that one has a continuous embedding (B, ‖ · ‖B) ↪→
L1

loc(R
d). However, due to the translation invariance property (2) imposed on the norm of (B, ‖ · ‖B),

this implies immediately that one has (B, ‖ · ‖B) ↪→ W(L1, `∞), which is a closed subspace of
W(M, `∞) (the usual characterization of the dual of W(C0, `1) in the context of Wiener amal-
gam spaces).

Conversely, one can show that the continuous shift property implies that in the case that(
L1(G), ‖ · ‖1

)
is defined in the usual way with the help of Lebesgue integration combined with the

existence of a Haar measure on G, the continuous shift property (3), in conjunction with (1) and (2),
actually implies that B is contained in the subspace W(L1, `∞) ⊂W(M, `∞).

Equipped with these spaces, which can be described now for any LCA group G
without the use of the Haar measure or structure theory, we can provide a definition of a
homogeneous Banach space on G (HBSG).

Definition 8. A Banach space (B, ‖ · ‖B) is called a homogeneous Banach space on an LCA group
G (HBSG) given that

1. (B, ‖ · ‖B) ↪→W∗;
2. Translation is isometric on (B, ‖ · ‖B), i.e.,

‖Tx f ‖B = ‖ f ‖B, ∀ f ∈ B, x ∈ G;

3. Translation is strongly continuous on (B, ‖ · ‖B), i.e.,

lim
x→0
‖Tx f − f ‖B = 0, ∀ f ∈ B.

The following lemma provides a connection between the different notions. For sim-
plicity we formulate the result for G = Rd, endowed with the Lebesgue integral. It is valid
for general LCA groups.

Lemma 5. For any HSBG on G = Rd, we have (B, ‖ · ‖B) ↪→ L1
loc(R

d).

Proof. In the current situation the abstract results imply that (B, ‖ · ‖B) is an essential
Banach module over L1(Rd) with respect to convolution. By means of the Cohen–Hewitt
factorization theorem (see [26]) any f ∈ B can be written as f = g ∗ h, for some g ∈
L1(Rd) and some h ∈ B ⊂W(M, `∞)(Rd). However, the convolution relations for Wiener
amalgams established in [6] imply (altogether) that

B = L1(Rd) ∗ B ⊂ L1(G) ∗W(M, `∞)(Rd) ⊂W(L1, `∞)(Rd) ⊂ L1
loc(R

d). (35)

6. Homogeneous Banach Spaces as Essential L1-Modules

Let us start with the comment that the so-called regular representation of a group G,
i.e., the mapping which assigns to any x ∈ C(G) the (left) translation operator Tx (this
operator is denoted by Lx in [3]) is of course one of the most important cases for the
application of the abstract principle developed in Section 6.

It is also clear that the general assumptions which allow us to invoke Theorem 2
are satisfied for any homogeneous Banach space on G. Since such Banach spaces usually
contain many functions from Cc(G) and since in this case it is clear that the abstract form of
the convolution coincides with the pointwise action as defined via the pairing of C0(G) and
M(G) it is justified to still call the mapping µ•ρ f convolution in this case and simply write
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µ ∗ f . In view of density considerations, it is possible to verify, in case there are different
possible interpretations of the symbol “∗”, that the result does not depend on the context.

This seemingly harmless, but nevertheless highly non-trivial use of this symbol in
situations which are generated by different technical considerations is well justified in all
the cases which are considered here. Occasionally a strict verification of such a claim has to
be undertaken. However, unlike the approach taken occasionally by experts in distribution
theory, we take care in regard to the “existence of the convolution product” at an individual
level (in such a situation even the associative law may fail!) and we emphasize module
actions and bilinear pairings for Banach spaces, which are obtained via an extension of
standard operations.

We can thus summarize our findings so far in the following theorem:

Theorem 3. Let (B, ‖ · ‖B) be a homogeneous Banach space of an LCA group G. Then (B, ‖ · ‖B)
is a Banach module over (M(G), ‖ · ‖M) with respect to convolution. In fact, the action of µ on
f ∈ B is defined as the limit of expressions of the form DΨµ ∗ f , in the norm of (B, ‖ · ‖B).

Altjough it is enough to know the Riemann integral (on Cc(Rd)) for the case G = Rd

(or similar elementary LCA groups), we have to invoke to the existence of the Haar measure
on G, which is a translation-invariant linear functional on Cc(G) (in fact on W(C0, `1)(G)).
This allows us to endow Cc(G) with the L1-norm, and establish that Cc(G) with this norm
is a normed space. With a little bit of extra work, one then goes on to show that the
bounded measure µk induced by k ∈ Cc(G) via the mapping f 7→

∫
G f (x)k(x)dx, or better

f 7→ H( f · k) (here we write H for the Haar functional, i.e., the linear functional arising
in the construction of the so-called Haar measure (see e.g., [1])) is in fact an isometric
embedding from Cc(G) into (M(G), ‖ · ‖M). Consequently, it makes sense to define the
space

(
L1(G), ‖ · ‖1

)
simply as the closure of Cc(G), more precisely of {µk | k ∈ Cc(G)} in

(M(G), ‖ · ‖M).
Continuing our efforts to develop the foundations of harmonic analysis without the

use of measure theory, we have to establish a few basic properties:

Lemma 6. 1.
(

L1(G), ‖ · ‖1
)

is a Banach space;
2.

(
L1(G), ‖ · ‖1

)
is a homogeneous Banach space;

3. In fact,
(

L1(G), ‖ · ‖1
)

is a closed ideal in (M(G), ‖ · ‖M).
4. L1(G) is w∗−dense in (M(G), ‖ · ‖M).

Proof. By definition
(

L1(G), ‖ · ‖1
)

is a closed subspace subspace of (M(G), ‖ · ‖M) and
hence complete, and thus a Banach space. The uniform continuity of any k ∈ Cc(G) implies
that ‖Txk− k‖∞ → 0 for x → 0. Due to the(joint) compact support of all these translates
(for x near 0, resp. the neutral element e ∈ G) one also has limx→0 ‖Tx f − f ‖1 = 0 for
f ∈ L1(G) by approximation. Due to the continuous embedding

(
W(C0, `1)(G), ‖ · ‖W

)
↪→(

C0(G), ‖ · ‖∞
)

it is clear that L1(G) is contained in W∗, and thus the formal axioms for an
HBSG are satisfied.

As a consequence of Theorem 3 it is also an M(G)-module with respect to convolu-
tion and thus a closed ideal in (M(G), ‖ · ‖M), once it is verified that the external action
of (M(G), ‖ · ‖M) on

(
L1(G), ‖ · ‖1

)
is compatible with the internal (e.g., obtained by a

pointwise definition of f ∗ g(x) for f , g ∈ Cc(G), or using Lebesgue integration). Observe
that the convolution of a compactly supported measure µ ∈ (M(G), ‖ · ‖M) with k ∈ Cc(G)
is a continuous function in Cc(G) and thus, by taking limits, L1(G) is a closed ideal of
(M(G), ‖ · ‖M). The pointwise relation µ ∗ k(x) = µ(TxkX) implies

supp(µ ∗ k) ⊂ supp(µ) + supp(k). (36)
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Since any measure µ ∈ (M(G), ‖ · ‖M) can be approximated by finite sums of the form
∑i∈Fµψi (in the norm of M(G)) the obvious estimate

‖µ ∗ k‖1 = ‖µ ? µk‖M ≤ ‖µ‖M‖µk‖M = ‖µ‖M‖k‖1, µ ∈ M(G), k ∈ Cc(G), (37)

we see that
(

L1(G), ‖ · ‖1
)

is a closed ideal in (M(G), ‖ · ‖M).
In order to verify the w∗−density of L1(G) in M(G) it is enough to check that it is

possible to find an approximation of Dirac measures in the w∗−sense, because this implies
the possibility of approximating discrete measures by elements of L1(G) (in fact by elements
in Cc(G)) by means of transitivity.

In fact, given h ∈ C0(G) and x ∈ G, the uniform continuity of h implies that δx can be
approximated well by non-negative functions k ∈ Cc(G) with small support U centered
around x. In fact, assuming

∫
G k(x)dx = 1 (just a normalization) it is easy to estimate

the difference

|δx( f )− µk( f )| = |1 · f (x)−
∫

G
f (y)g(y)dy| ≤

∫
U
| f (x)− f (y)||k(x)|dx < ε. (38)

Next, we can also recall the definition of a Segal algebra:

Definition 9. A Banach space (B, ‖ · ‖B), which is continuously and densely embedded into(
L1(G), ‖ · ‖1

)
, and which is also a homogeneous Banach space, is called a Segal algebra (in Reiter’s

sense; see [3,4]).

Our knowledge so far implies immediately the following claim:

Lemma 7. Any Segal algebra (B, ‖ · ‖B) is a so-called Banach ideal in
(

L1(G), ‖ · ‖1
)
, i.e., it is a

Banach space with its own right, and an (left) ideal in
(

L1(G), ‖ · ‖1
)
, satisfying the estimate

‖g ∗ f ‖B ≤ ‖g‖1‖ f ‖B, g ∈ L1(G), f ∈ B. (39)

In order to check that any homogeneous Banach space is an essential Banach module
over

(
L1(G), ‖ · ‖1

)
we will prove the third main result of this article. We start from the

same situation as in Theorem 2. The following theorem is inspired by the results in [27], in
particular Theorem 2.2, in which such a result was shown using different arguments.

Theorem 4. Given a HBSG and a bounded and tight net (µα)α∈I in (M(G), ‖ · ‖M) with

µ0 = w∗- lim α→∞ µα

then one has norm convergence

lim
α→∞
‖µα ∗ f − µ0 ∗ f ‖B = 0, f ∈ B.

The result will be realized in the abstract setting of Theorem 2. This is our third main
result. It shows that in the current context for bounded and tight nets in (M(G), ‖ · ‖M),
the w∗-convergence of measures results in strong operator norm convergence of the corre-
sponding convolution operators.

Theorem 5. Let ρ be a strongly continuous, isometric representation of the locally compact group
G on the Banach space (B, ‖ · ‖B) and (µα)α∈I a bounded and tight net in (M(G), ‖ · ‖M) with
µ0 = w∗- lim α→∞ µα. Then one has

lim
α→∞
‖µα•ρ f − µ0•ρ f ‖B = 0, ∀ f ∈ B. (40)
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Proof. Given ε > 0 and f ∈ B we have to find α0 such that α � α0 implies

‖µα•ρ f − µ0•ρ f ‖B ≤ ε. (41)

For convenience we assume that ‖ f ‖B = 1.
According to Theorem 2 we can find U ∈ U (e) such that for any U− BUPU Ψ one has

‖(DΨµα − µα)•ρ f ‖B = ‖µα•ρ f −DΨµα•ρ f ‖B ≤ ε/4 ∀α ∈ {I, 0}. (42)

Let us now fix one such BUPU Ψ = (ψi)i∈I . Based on the definition of tightness, we
find that there exist compactly supported functions p ∈ Cc(G) (one should think of plateaus
as similar to functions, as they arise, e.g., as finite partial sums of the form ∑i∈Fψi from any
BUPU Ψ on G.) such that

‖µα · p− µα‖M ≤ ε/4, ∀α ∈ I. (43)

By taking limits, the estimate (43) will be also valid for α = 0 (the limit measure µ0).
Thus, up to a controllable error we may assume that the measures (µα)α∈I (and their

limit µ0) have joint compact support, and consequently there exists some finite set F ⊂ I
such that µα(ψi) = 0 for i ∈ I \ F, for all α∈I and α = 0.

Based on the assumed w∗−convergence of the net (µα)α∈I , we can find some index α0
with

∑
i∈F
|µα(ψi)− µ0(ψi)| ≤ ε/4, ∀α � α0, (44)

which in turn implies that we have for α � α0:

‖DΨµα•ρ f −DΨµ0•ρ f ‖B ≤ ∑
i∈F
|µα(ψi)− µ0(ψi)|‖ρ(xi) f ‖B ≤ ε/4. (45)

By combining the estimates (42), (44) and (45) we have verified (41), i.e., we can
estimate ‖(µα − µ0)•ρ f ‖B in the following way:

≤ ‖(µα −DΨµα)•ρ f ‖B + ‖(DΨµα −DΨµ0)•ρ f ‖B + ‖(DΨµ0 − µ0)•ρ f ‖B ≤ 3ε/4.

There are many applications of this rather strong statement, so we present only a strik-
ing one. As is well known, bounded approximate units in

(
L1(G), ‖ · ‖1

)
are obtained by

taking a sequence (or net) of non-negative (for simplicity) functions (kα)α∈I with shrinking
support and with

∫
G kα(x) = 1 for all α∈I. Such a sequence is often called a Dirac sequence

in the literature, and it is obviously tight and bounded in
(

L1(G), ‖ · ‖1
)
. It is a simple

exercise to verify that µα := µkα
is then a w∗−convergent net with

w∗- lim α→∞ µα = δ0. (46)

As a consequence we thus have:

Corollary 1. Given the situation of Theorem 4, and a bounded approximate unit (gα)α∈I in(
L1(G), ‖ · ‖1

)
, then one has

lim
α→∞
‖gα•ρ f − f ‖B = 0, ∀ f ∈ B. (47)

As pointed out in Section 5.2 of [5] the net DΨµ provides a tight w∗−approximation to
µ. Combining this fact with the iteration principle (see [28], p. 69) for convergent nets, we
come up with a verification of the associativity law which is required for Banach modules.
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Corollary 2. In the situation of Theorem 5 let µ1, µ2 ∈ M(G) be given. Then

lim
|Ψ|→0

‖DΨµ1•ρ(DΨµ2•ρ f )− (µ1 ? µ2)•ρ f ‖B = 0, f ∈ B. (48)

Combining the observations made so far we come to the following final result, which
shows that the notion of the integrated group representation arises as a consequence of the
approach presented in this paper:

Theorem 6. Given an isometric, strongly continuous representation of a locally compact group G
on a Banach space (B, ‖ · ‖B), the restriction of the Banach module action of (M(G), ‖ · ‖M) to the
closed ideal

(
L1(G), ‖ · ‖1

)
turns (B, ‖ · ‖B) into an essential Banach module over

(
L1(G), ‖ · ‖1

)
.

Conversely, the w∗−continuity of the action of M(G) for bounded and tight families implies
that the action of all of M(G) is uniquely determined by the integrated group action, i.e., the
L1(G)-module properties.

Remark 15. We think that it is easier to obtain the integrated group representation of
(

L1(G), ‖ · ‖1
)

on (B, ‖ · ‖B) by way of restriction, instead of going the more cumbersome way of extending the
representation of

(
L1(G), ‖ · ‖1

)
by taking (vague) limits.

7. Some Basic Functional Analysis

An important tool from functional analysis is the fact that any Banach space is complete
with respect to convergence of the Cauchy net, not just Cauchy sequences.

Although Cauchy nets (implicitly) appear in many places, e.g., in the definition of
the Riemann integral, they are typically not discussed as such. The reader could consult
Bourbaki ([29]) for details on nets, or [30] (Prop. 2.1.40), but in order to make this note more
self-contained, let us collect some relevant facts.

Definition 10. A set (I,�) is called a directed set with respect to the orientation (given by �), if
it satisfies the following properties:

1. one has transitivity, i.e., if α � β and β � γ then α � γ;
2. Given α, β ∈ I there exists γ ∈ I such that γ � α and γ � β.

Of course, in many cases one can have a partially ordered set and choose γ = max(α, β)
in the above setting, but this operation need not be meaningful in the general case.

Definition 11. A net in a set X is a mapping from a directed set (I,�), usually described as an
indexed family (xα)α∈I .

A net in a metric space (X, d) is called convergent if there exists some x0 ∈ X such that one
has: Given ε > 0 there exists α0 such that

α � α0 ⇒ d(x0, xα) < ε.

In this case we also write: limα→∞ xα = x0.

Nets are natural generalizations of sequences (and are thus often just called generalized
sequences). The analogue of a Cauchy sequence is of course a Cauchy net.

Definition 12. A net (xα)α∈I is a Cauchy net if for any ε > 0 ∃ α0 ∈ I such that

α, β � α0 ⇒ d(xα, xβ) < ε.

Remark 16. Typical nets relevant for our discussion are the nets of the form (Stρg)ρ→0, with
[Stρg](x) = ρ−dg(x/ρ), with ρ1 � ρ2 if ρ2 ≤ ρ1, which are used to generate Dirac nets (bounded
approximate units) in

(
L1(Rd), ‖ · ‖1

)
.
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Other nets occur naturally, such as the index set to the Riemann sums for an integral of the
form

∫ b
a f (x)dx, given by some finite decomposition of the interval [a, b] and the choice of a family

of points (ξi) in the corresponding intervals. As we all know, a Riemannian sum is considered
good if the maximal length appearing in the corresponding decomposition is controlled by a positive
value δ > 0. Furthermore, given two decompositions, one can generate the joint refinement as a
decomposition which is “better” than both of the decompositions generating it.

Theorem 7. A normed space (B, ‖ · ‖B) is complete if and only if any Cauchy net is convergent in
(B, ‖ · ‖B).

Note: it is well known that a Banach space is complete if and only if every Cauchy
sequence is convergent, or equivalently, if every absolutely convergent series is convergent
in (B, ‖ · ‖B). It is also clear that any Cauchy sequence is a Cauchy net (using the index set
N with natural ordering as index set). Thus, it is clear that we only have to verify that any
Cauchy sequence (xα)α∈I is convergent in (B, ‖ · ‖B).

Proof. First we determine a sequence εn, e.g., ε = 2−n for n ≥ 1, and, following the
definition of a Cauchy net, a sequence αn such that α, β � αn

α, β � αn ⇒ ‖xα − xβ‖B < εn. (49)

Without the loss of generality (due to the majorization property) we can determine the
sequence αn inductively with αn+1 � αn. Formally we choose xα0 = 0 ∈ B.

The series ∑n≥1
(
xαn − xαn−1

)
is then absolutely convergent, because

∑
n≥1
‖xαn − xαn−1‖B ≤ ∑

n≥1
εn ≤ 1 < ∞.

Hence the partial sums are

N

∑
n=1

(
xαn − xαn−1

)
= xαN (!)

are convergent, i.e., there exists some x0 ∈ B with

lim
n→∞

xαn = x0 in (B, ‖ · ‖B).

Invoking the initial Cauchy net condition, we complete the argument by showing
(once a limit has been identified) that we indeed have

lim
α→∞

xα = x0 in (B, ‖ · ‖B).

Remark 17. It should be noted as a delicate point that the convergent Cauchy sequence obtained in
the proof does not have to be a subnet of the original Cauchy net, because the notation of a subnet
(which we do not need here) is more complex than just the idea of a subsequence of a given sequence.
At least, it does not just mean reducing the index set (which for sequences has a natural order)
to a subset of the original index set with strictly increasing enumeration of the elements of the
subsequence.
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