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Abstract: In this paper, we study the effect of the introduction of a time delay on the dynamics
of toxoplasmosis. This time delay is the elapsed time from when oocysts become present in the
environment and when they become infectious. We construct a mathematical model that includes
cats and oocysts in the environment. We include the effect of oocysts, since they are crucial for
the dynamics of toxoplasmosis. The likelihood of the acquisition of Toxoplasma gondii infection
depends on the environmental load of the parasite. Furthermore, the model considers the possibility
of vaccination of the feline host. In the mathematical model, we consider directly the infection of
cats through the oocysts shed by other cats. We prove that the basic reproduction number R0 is a
secondary parameter that determines the global dynamics of toxoplasmosis in cat populations. We
study the effect of the time delay on the stability of the steady states. We find that the time delay
cannot change the stability of the endemic state, which is an important result from the biological
point of view. Numerical simulations are performed to support the theoretical results and obtain
further insight into understanding toxoplasmosis dynamics in cat populations.

Keywords: mathematical model; toxoplasmosis; time delay; cats; oocysts; vaccination; simulation

1. Introduction

T. gondii is an apicomplexan parasite with a worldwide distribution. Cats are the
final host, and humans (and other warm-blooded vertebrates) are intermediate hosts [1,2].
Following a period of asexual reproduction by tachyzoite forms, the parasite enters a
latent phase in the bradyzoite stage that persists for the host’s lifetime in pseudocysts,
macrophages and neurons of various tissues, notably in the brain [1,2]. T. gondii encysts in
the brain, where it can cause inflammation and inhibit apoptosis [2]. T. gondii is present
in a variety of animals worldwide and mostly in cats [3–5]. The T. gondii parasite in cats
goes through all stages of its life cycle and does not affect the cat’s life. Cats are immune
to toxoplasma, and it is estimated that approximately 20 million oocysts, between 4 and
13 days after the infection, can be cast [6]. T. gondii can be vertically transmitted [7]. Cats
are one of the Western world’s most popular pets [8].

T. gondii infection is highly prevalent around the world. The seroprevalence in cats and
humans over different regions is often around 30 to 40 percent [9]. About one-third of the
world human population has antibodies to T. gondii [2]. In 2013, the burden of congenital
toxoplasmosis was estimated to be 1.2 million [10]. Eye issues from congenital infection
are difficult to be identified at birth but are present in 20%–80% of congenitally infected
persons by adulthood [11]. In addition, toxoplasmosis is considered to be a leading cause of
death attributed to food-borne illness in the United States [11]. The testing of all pregnant
women for T. gondii infection is routine in some European countries, but the cost–benefit of
such mass screening has been debated [12].
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Cats are the main reason for the maintenance of T. gondii in the environment [9].
Domestic cats play a crucial part in the spread of T. gondii by excreting environmentally
resistant oocysts that may infect humans and other warm-blooded animals [13]. The
oocysts released in the feces of infected cats can contaminate the environment, including
water, vegetables and other kinds of food [14,15]. Thus, the T. gondii can be ingested orally.
Gamma irradiation can help to decontaminate food contaminated with oocysts [15]. The
contamination of drinking water with T. gondii oocysts has been documented [14]. Previous
analysis shown that the feces of cats shedding T. gondii may contain 2.5× 106 oocysts/gr
and a cat may shed as many as 20 million oocysts per day [16]. Oocysts of T. gondii can
be easily dispersed in the environment. The challenge of controlling the population of
cats has been mentioned in several studies [17]. Studies have found population densities
of approximately 500–1300 cats/square mile in urban areas [17,18]. Thus, controlling
toxoplamosis is related to cat populations, and its study is justified.

Much scientific literature has documented the public health importance of parasites
since they can impact population dynamics in different ways [19]. Mathematical models
are simplifications of real-world processes that allow us to obtain better insight into the dy-
namics of these processes. Mathematical models have been used extensively to investigate
the dynamics of diseases in populations [20–22]. Previous mathematical models have been
used to study the dynamics of toxoplasmosis in human populations [13,23–26]. In [13], the
authors studied the risks of exposure to T. gondii oocysts for humans and livestock living
on farms. In addition, the authors discussed the role of young cats in the maintenance of
environmental contamination by T. gondii oocysts on farms. The study included probabilis-
tic factors in order to deal with some uncertainties related to the T. gondii infection dynamic
in cat populations. An excellent systematic review of existing mathematical models for the
transmission of T. gondii is presented in [10].

Mathematical models that consider time delays have been proposed and studied
previously [27–30]. These models are useful to gain insight on epidemics and a variety
of viruses [31–36]. In this paper, we extend the mathematical model presented in [37].
We include in the model a time delay since when oocysts are shed by cats, they are not
immediately infective. In fact, the Toxoplasma parasite does not become infectious until one
to five days after it is shed in a cat’s feces [11]. This is due to the fact that oocysts released
from cat feces are not infective until sporulation, a process that requires external environ-
mental exposure of 24–48 h [38]. Moreover, sporulation is affected by the temperature
and, therefore, introduces uncertainty in the time delay [39]. Mathematical models that
consider differential equations with delays are introduced in order to account for incubation
periods, maturation times, age structure, etc. [40]. However, the resulting models present
difficulties, which often require rather complicated tools for their analysis [40].

The mathematical model also considers a vaccination program. The model divides
the cat population into three subpopulations: susceptibles S(t), infected I(t) and vacci-
nated/recovered VR(t). The model also considers the subpopulation of T. gondii oocysts
since this form can transmit toxoplasmosis. The model is based on a system of differential
equations, which includes different parameters that can impact dynamics of the transmis-
sion of toxoplasmosis in cat populations. The inclusion of a vaccination program allows
the assessment of control strategies of health institutions. Vaccinated cats have lifelong
immunity [41,42]. It is important to remark that in some regions where there are no cats,
the prevalence of toxoplasmosis is null [4]. Previous articles studied and incorporated the
vaccination of cats [37,43–47]. The inclusion of vaccines in the model allows the study of
the impact of control strategies. In [46], the authors proposed a model to study when a
vaccination program is cost effective.

We study the stability of the equilibrium points of the system and compute the basic
reproductive numberR0, which is a crucial threshold parameter for the dynamics of many
diseases at the population level. We investigate the impact that the time delay has on the
dynamics of toxoplasmosis and how modifying it can affect toxoplasmosis prevalence.
Numerical simulations of the mathematical model are included to support the theoretical
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results and obtain insight into the spread of the disease in cat populations. The simulations
are useful to assess prevention and control strategies. For instance, in [44] a computer
simulation model that includes the vaccination of cats is presented.

The organization of this paper is the following: In Section 2, we present the mathemat-
ical model. In Section 3, we study the stability of the equilibrium points and calculate the
basic reproduction numberR0. In Section 4, the numerical simulations of the mathematical
model are presented. Section 5 contains the conclusions.

2. Mathematical Model

In this section, the mathematical model for the transmission of toxoplasmosis in cat
populations is introduced. The model includes a time delay that represents the elapsed
time from when the oocysts become present in the environment and when they are able
to infect. The mathematical model also includes the possibility of vaccination of the cats.
The constructed mathematical model considers the infection of cats through the oocysts
shed by cats. The cats are the main host of the T. gondii parasite, and they shed them
in the environment [9]. The model constructed includes direct contact between cats and
oocysts. Contamination of the environment by oocysts is common [48]. As expected, the
likelihood of infection depends on the environmental load of T. gondii [44]. Thus, the rate
of infection is modeled using the amount of oocysts in the environment, which depends on
the population of infected cats [12].

The mathematical model is based on a system of nonlinear ordinary differential
equations. The model assumes that the oocysts suffer from natural decay when there are no
infected cats. This is a common assumption in modeling biological processes. Other options,
where there is a carrying capacity of the environment or a fixed lifetime, can be considered.
Sporulated oocysts can survive for a long time under a variety of environmental conditions.
In fact, oocysts can survive in moist soils for extended periods of time [12].

The model is based on the following assumptions:

• The population of cats N(t) is divided into three subpopulations: susceptible cats
(S(t)), infected cats (I(t)), and vaccinated/recovered cats (VR(t)). The cats in this last
subpopulation have lifelong immunity.

• The variable O(t) denotes the number of oocysts in the environment.
• The population of cats is constant, since the birth and death rates are equal to µ.
• Susceptible cats move to the infected subpopulation I(t) if they have effective contact

with a oocyst (at rate β).
• The period from when the oocysts are shed by the cats until they are infective is a time

delay of τ.
• Susceptible cats are vaccinated at a rate γ. An infected cat transits to the vacci-

nated/recovered subpopulation VR(t) at a rate of α.
• The increase in oocysts is proportional to the number of infectious cats.
• µ0 is the removal rate of oocysts from the environment.
• Vertical transmission occurs in the cats. [12,49–53].
• Vaccinated cats do not shed oocysts and have lifetime immunity.
• Homogeneous mixing.

Thus, the model is a first order nonlinear system of ordinary differential equations
given by

Ṡ(t) = µVR(t)− βS(t)O(t)− γS(t),
İ(t) = βS(t)O(t)− αI(t),

V̇R(t) = αI(t) + γS(t)− µVR(t),
Ȯ(t) = kI(t)− µ0 O(t),

(1)

where k > 0 is the amount of oocysts shed per infected cat.
Without loss of generality, the population of cats is assumed to be N(t) = S(t) + I(t) +

VR(t) = 1. The mathematical diagram is depicted in Figure 1. We study the dynamics of
the model (1) in the restricted region:
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Ω =
{
(S, I, VR, O) ∈ R4

+/0 < S ≤ µ
µ+γ , 0 ≤ I ≤ βkµ

µ0α(µ + γ)
, S + I + VR = 1, 0 ≤ O ≤ k

µ0

}
,

where R4
+ denotes the nonnegative cone of R4.

Figure 1. Flow diagram of toxoplasmosis transmission dynamics taking into account the oocysts in
the environment and a time delay tau related to when the oocysts become infective.

Now, we introduce a time delay τ > 0 in the mathematical model (1) in order to take
into account that the Toxoplasma parasite does not become infectious until one to five days
after it is shed in a cat’s feces [11]. Thus the mathematical model with delay becomes

Ṡ(t) = µVR(t)− βS(t)O(t)− γS(t),
İ(t) = βS(t)O(t)− αI(t),

V̇R(t) = αI(t) + γS(t)− µVR(t),
Ȯ(t) = k I(t− τ)− µ0 O(t),

(2)

with S(t) + I(t) + VR(t) = 1. Since the populations are normalized, we can study the
following reduced model

Ṡ(t) = µ (1− I(t))− βS(t)O(t)− (µ + γ)S(t),
İ(t) = βS(t)O(t)− αI(t),
Ȯ(t) = k I(t− τ)− µ0 O(t),

(3)

where VR(t) = 1− S(t)− I(t). In addition, the system (3) satisfies the initial conditions
given by

S(0) > 0, O(0) ≥ 0, I(s) = ξ(s) ≥ 0, s ∈ [−τ, 0], (4)

with ξ(s) continuous function defined from the interval [−τ, 0] to R+, and with the norm
‖ξ‖ = sup

−τ≤s≤0
|ξ(s)|. These initial conditions mean that, initially, there are susceptible cats

and oocysts in the environment (or none). In addition, before t = 0, the infected population
of cats is nonnegative. We will see later that either the populations of oocysts or infected
cats should be positive in order to have the possibility of an epidemic. Now, the model (3)
can be written as

Ẇ(t) = f (t,W(t)), (5)

where

W(t) =

S(t)
I(t)
O(t)

, f (t,W) =

µ (1− I(t))− βS(t)O(t)− (µ + γ)S(t), βS(t)O(t)− αI(t)
βS(t)O(t)− αI(t)
I(t− τ)− µ0 O(t),


with the initial conditions given in (4). We use the following theorem:
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Theorem 1. Suppose Ω is an open set inR× C
(
[−τ, 0],Rn

+

)
, f : Ω→ Rn is continuous, and

f (t, ϕ) is Lipschitizian in ϕ in each compact set in Ω. If (σ, ϕ) ∈ Ω then there is a unique solution
of model (5) through (σ, ϕ).

Proof. See [54] (p. 44).

Let S = C
(
[−τ, 0],R3

+

)
be the Banach space of continuous functions mapping the

interval [−τ, 0] into R3
+ which is equipped with the sup-norm. The function f (t,W(t))

given by in (5) is defined in f : [0, ∞) × C
(
[−τ, 0],R3

+

)
→ R3 is continuous and satis-

fies a local Lipschitz condition. Indeed, for ϕ1, ϕ2 ∈ C0 ⊂ S , C0 compact set, ϕ1 =

(S1(t), I1(t), O1(t))
t, ϕ2 = (S2(t), I2(t), O2(t))

t and 0 < a < b such that t ∈ [a, b], we
obtain that

‖ f (t, ϕ1)− f (t, ϕ2)‖ ≤ K‖ϕ1 − ϕ2‖,

where K = max
t∈[a,b]

{µ0 + 2β|S1(t)|, µ + γ2β|O2(t)|, µ + α + k}. Then, by Theorem 1 for any

ϕ ∈ S there exists a unique solutionW(t, ϕ) of the system (3) such thatW0 = ϕ. Next, from
the biological point of view, one characterization of epidemiological models represented by
differential equations must be that their solutions are positive for all time. The next section
is devoted to the stability analysis of the mathematical model (3).

3. Stability Analysis of the Model

In this section, we perform the stability analysis of the mathematical model (3). First,
we prove that the solutions are positive for all t ≥ 0 and that they are bounded. These
features are important from a realistic viewpoint.

Theorem 2. If the parameters of model (3) are all positive and the initial conditions given by (4)

are satisfied, then the solutions of the model (3) given by
(

S(t), I(t), O(t)
)

remain positive and

uniformly bounded in [0,+∞).

Proof. Using the first Equation of (3), we can see that

Ṡ(t) = µ (1− S(t)− I(t))− βS(t)O(t)− γS(t) ≥ −βS(t)O(t)− γS(t).

Therefore, it follows that

S(t) ≥ S(0) exp
(
−
∫ t

0
(βO(s) + γ) ds

)
> 0,

for all t ≥ 0. On the other hand, suppose that there exists a t1 > 0 such that I(t1) =
0, İ(t1) ≤ 0, and I(t) > 0 for all t ∈ (0, t1). Thus, from the second equation of model (3),
one obtains that

0 ≥ İ(t1) = βS(t1)O(t1). (6)

However, O(t) > 0 for all t ∈ (0, t1). If this is not the case, there exists a t2 > 0 such
that t2 < t1, Ȯ(t2) ≤ 0, O(t2) = 0 and O(t) > 0 for t ∈ (0, t2). From the third equation of
system (3), it follows that 0 ≥ kI(t2 − τ). Since τ > 0 and using the continuity of solution,
then one gets that 0 ≥ lim

τ→0
I(t2 − τ) = I(t2). This is a contradiction because I(t) > 0 for

all t ∈ (0, t1). Thus, using the continuity of O(t), it follows that O(t) > 0, with t ∈ (0, t1].
Therefore, (6) is false and thus I(t) ≥ 0 for t ≥ 0. From the third equation, it is concluded
that O(t) ≥ 0 for t ≥ 0.
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Now, the subpopulation S(t) is bounded by µ
µ+γ , because by the standard comparison

theorem [55], we can show that

S(t) ≤ S(0) exp(−(µ + γ)t) +
µ

µ + γ
(1− exp(−(µ + γ)t)).

In particular, if S(0) ≤ µ
µ+γ , then S(t) ≤ µ

µ+γ . Analogously, one gets that O(t) ≤ k
µ0

if

O(0) ≤ k
µ0

, and I(t) ≤ βµk
αµ0(µ + γ)

if I(0) ≤ βµk
αµ0(µ + γ)

. Thus, the set

O =
{
(S, I, O) ∈ R3

+/0 < S ≤ µ

µ + γ
, 0 ≤ I ≤ βkµ

µ0α(µ + γ)
, 0 ≤ O ≤ k

µ0

}
,

is positively invariant. However, if S(0) > µ
µ+γ , then either the solutions enters O in

finite time or S(t) approaches µ
µ+γ asymptotically (similarly for O(t) if O(0) > k

µ0
, and

an infectious mouse if I(t) >
βµk

αµ0(µ + γ)
). Hence, the region O attracts all solutions

in R3
+.

Consequently, it is sufficient to study the dynamics of the solutions of model (3) in this
set, i.e., system (3) is mathematically well posed in O.

3.1. Disease-Free Equilibrium Point

Steady states of epidemiological models are important since they provide insightful
information related to the dynamics of the disease. We will investigate the impact of a time
delay on the stability of the steady states of the system (2). A first step is to analyze the
stability of the steady states of the model without a time delay. Later, we study the stability
when the time delay is introduced. We also will determine the conditions such that the
time delay changes the stability of the steady states.

The reduced model (3) without delay has a disease-free equilibrium point (F∗0 ) and a
endemic point (EE). The disease-free point

F∗0 =

(
µ

µ + γ
, 0, 0

)
∈ O. (7)

The local stability of F∗0 is determined by the eigenvalues of the Jacobian of the system
(1) at F∗0 :

J(F∗0 ) =

−µ− γ −µ − βµ
µ+γ

0 −α
βµ

µ+γ

0 k −µ0

.

Clearly, the eigenvalues are given by λ = −µ− γ and the roots of the polynomial
p(λ) = (λ + α)(λ + µ0)− kβµ

µ+γ . We can write it as

λ2 + a1 λ + b1 = 0,

where a1 = α + µ0 and b1 = α µ0 − kβ
µ

µ + γ
. Clearly a1 is positive and b1 is positive if

kβ
µ

µ + γ
< α µ0. Using the Routh–Hurwitz criterion, we have that the real part of the roots

are negative under those conditions. Thus, we can define the basic reproduction number as

R0 =
µ kβ

µ0 (γ + µ)α
. (8)
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Another option to study the local stability is to use the next generation matrix
method [56]. The system (3) with τ = 0 can be written as

Ẇj(t) = Fj(W)−V−j (W) +V+
j (W),

where j = 1, 2, 3 and

F(W) =

F1(W)
F2(W)
F3(W)

 =

βS(t)O(t)
0
0

, V+(W) =

V+
1 (W)

V+
2 (W)

V+
3 (W)

 =

 0
kI(t)

µ

,

V−(W) =

V−1 (W)
V−2 (W)
V−3 (W)

 =

 αI(t)
µ0 O(t)

µI(t) + βS(t)O(t) + (µ + γ)S(t)

.

We can see that

1. ForW(t) ≥ 0, it follows that Fj(W), V−j (W), V+
j (W) ≥ 0, for j = 1, 2, 3.

2. When I(t) = 0 then V−1 (W) = 0. Notice that when W = F∗0 =
(

µ
µ+γ , 0, 0

)t
then

V−1 (F∗0 ) = 0.
3. Fj(W) = 0, for j > 1.

4. IfW = F∗0 =
(

µ
µ+γ , 0, 0

)t
, then F1(F∗0 ) = 0, and V+

1 (F∗0 ) = 0.

5. If
kβµ

µ + γ
< α µ0, then the eigenvalues of Jacobian matrix of model (3) evaluated at F∗0

with τ = 0 have negative real parts.

Accordingly, the next generation matrix is given by

FV−1 =


βµk

(µ + γ)αµ0

β µ

(µ + γ) µ0

0 0

.

The characteristic polynomial of the next generation matrix FV−1 is given by

λ2 − βµkλ

(µ + γ)αµ0
= 0.

Thus, the basic reproductive number is the dominant eigenvalue or spectral radius of
the next generation matrix FV−1

R0 =
µ kβ

µ0 (γ + µ)α
. (9)

Thus, one obtains the following theorem,

Theorem 3. The disease-free equilibrium F∗0 of model (3) with τ = 0 is locally asymptotically
stable ifR0 < 1, but unstable ifR0 > 1.

Proof. By Theorem 2 given in [57], since conditions A1–A5 are satisfied (see conditions
1–5 above).
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3.2. Disease-Free Equilibrium Point Analysis for the Delay Model

The steady states of the model with time delay are the same as the model without delay.
To study the stability of the steady states, we linearize the system (3). The characteristic
equation is given by

|J0 + Jτ e−λτ − λI| = |J0 + Jτ e−λτ − λI| = 0,

where

J0 =

−µ− γ −µ − βµ
µ+γ

0 −α
βµ

µ+γ

0 0 −µ0

, Jτ =

0 0 0
0 0 0
0 k 0

.

Thus, one gets the transcendental characteristic equation for the disease-free equilibrium∣∣∣λI − J0 − Jτ e−λτ
∣∣∣ = (λ + µ + γ) (λ2 + a λ + b e−λ τ + c) = 0, (10)

where a = α + µ0, b = − kβµ

µ + γ
, and c = α µ0.

Theorem 4. The disease-free equilibrium F∗0 of model (3) is locally asymptotically stable ifR0 < 1,
but unstable ifR0 > 1.

Proof. We define from Equation(10) the following function p(λ) = λ2 + a λ + b e−λ τ + c.
Obviously, p is a continuous function. Moreover,

p(0) = b + c = − kβµ

µ + γ
+ α µ0 = 1−R0,

and
lim

λ→∞
p(λ) = +∞.

Then, ifR0 > 1, there is a positive real root, and then the disease free equilibrium is
locally unstable. Let us consider the case whenR0 < 1. Notice that when τ = 0, one obtains

g(λ) = λ2 + a λ + 1−R0.

Hence, all the roots of g(λ) have negative real parts by the Routh–Hurwitz criterion.
We can see that p(λ) does not have nonnegative real solutions because in p(λ), it is

increasing when λ ≥ 0. Thus, if p(λ) has roots with nonnegative real parts, they must be
complex and should have been obtained from a pair of complex conjugate roots. Therefore,
p(λ) must have a pair of purely imaginary solutions.

Suppose that λ = i ω (ω > 0) is a root of p(λ). Then, it must satisfy

−ω2 + a iω + b e−iω τ + c = 0.

Separating the real and imaginary part, one obtains

−ω2 + b cos(ωτ) + c = 0 =⇒ −ω2 + c = −b cos(ωτ),

and
a ω− b sin(ω τ) = 0 =⇒ a ω = b sin(ω τ).

Adding up the squares of the previous equations, one obtains that

ω4 + (a2 − 2c)ω2 + (c2 − b2) = 0. (11)
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Thus, all the coefficients of Equation (11) are positive since the arithmetic mean is
smaller than the geometric mean, and c+ b = 1−R0 > 0. Consequently, Equation (11)) does
not have positive real roots. Then, there is no ω such that iω is a solution of Equation (10).
Therefore, it follows from Rouché’s theorem [58], that the real parts of all the eigenvalues
of the characteristic Equation (10) are negative for all τ > 0. This implies that disease-free
equilibrium F∗0 is locally asymptotically stable in O ifR0 < 1 for the model (3).

3.3. Global Stability of the Disease-Free Equilibrium F∗0 for the Delay Model

Now, we proceed to study the global stability of the disease-free equilibrium F∗0 . This
means that the extinction of toxoplasmosis is independent of the initial conditions of the
subpopulations. We want to prove that ifR0 < 1, the disease-free equilibrium F∗0 is globally
asymptotically stable (GAS). We have the following theorem.

Theorem 5. The disease-free equilibrium point F∗0 of system (3) is globally asymptotically stable in
O ifR0 ≤ 1.

Proof. To proceed with the global stability of the disease-free equilibrium F∗0 , we denote
by yt the translation of the solution of the system (3), by yt = (S(t + ξ), I(t + ξ), V(t + ξ))
where ξ ∈ [−τ, 0]. Consider the following Lyapunov functional:

L(I(t), S(t), O(t)) = k
∫ t

t−τ
I(ξ) dξ + O(t). (12)

At the disease-free equilibrium point F∗0 , we have that S∗ = µ
µ+γ , I∗ = 0, O∗ = 0, and

L(F∗0 ) = 0. The functional L also satisfies

L(I(t), S(t), O(t)) > 0, (13)

at any point different than the disease-free equilibrium point F∗0 . Now, computing the time
derivative of L(I(t), S(t), O(t)) along the trajectories of model (3), one obtains that

L′ =k
[
I(t)− I(t− τ)

]
+ O′(t) = kI(t)− kI(t− τ) + kI(t− τ)− µ0O(t)

=kI(t)− µ0O(t).

However, we know from the restricted region O that O(t) ≤ k
µ0

and 0 ≤ I(t) ≤

βkµ

µ0α(µ + γ)
= R0. Hence, O(t)µo ≤ k and kI(t) ≤ kR0. Then,

kI(t)−O(t)µ0 ≤ kR0 − k = k (R0 − 1).

Thus, one obtains
L′ ≤ k (R0 − 1).

Therefore, L′ ≤ 0 if R0 ≤ 1. By LaSalle’s invariance principle, this implies that the
disease-free equilibrium F∗0 is globally asymptotically stable inO. This proves the theorem.

3.4. Local Stability Analysis of the Endemic Point Equilibrium

The endemic equilibrium for the model (3) is

E∗ = (S∗, I∗, O∗), (14)

where

E∗=
(

S∗=
αµ0

βk
, I∗=

µβk− (γ + µ)αµ0

β k (µ + α)
, O∗=

µβk− (γ + µ)αµ0

µ0 β (µ + α)

)
∈ O. (15)
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This endemic equilibrium exists (positive components) only ifR0 − 1 > 0. Now, we
proceed to study the stability of the endemic point E∗ for the delayed model (3). Linearizing
this model, one obtains the following transcendental characteristic equation

|JE + Jτ e−λτ − λI| = 0, (16)

where

JE =

−βO∗ − µ− γ− λ − µ − βS∗

βO∗ −α− λ βS∗

0 0 −µ0 − λ

, and Jτ =

0 0 0
0 0 0
0 k 0

.

Thus, one obtains the characteristic equation

λ3 + (β O∗ + α + γ + µ + µ0)λ
2(

−β S∗ e−λ τk + O∗ α β + β O∗ µ + β O∗ µ0 + γ α + γ µ0 + α µ + α µ0 + µ µ0

)
λ

− γ e−λ τS∗ β k− e−λ τS∗ β kµ + O∗ α β µ0 + O∗ β µ µ0 + α γ µ0 + α µ0 µ = 0. (17)

We can rewrite this characteristic equation as

λ3 + Aλ2 + Bλ + C = e−λτ (T1 λ + T2), (18)

where

A = β O∗ + α + γ + µ + µ0,

B = O∗ α β + β O∗ µ + β O∗ µ0 + γ α + γ µ0 + α µ + α µ0 + µ µ0

= O∗ β (α + µ) + β O∗ µ0 + α(µ + γ) + γ µ0 + α µ0 + µ µ0

= (γ + µ) α (R0 − 1) + α(µ + γ) + β O∗ µ0 + γ µ0 + α µ0 + µ µ0

= α (µ + γ)R0 + β O∗ µ0 + γ µ0 + α µ0 + µ µ0,

C = O∗ α β µ0 + O∗ β µ µ0 + α γ µ0 + α µ0 µ = O∗ β µ0(α + µ) + αµ0(γ + µ)

= (γ + µ) α (R0 − 1) µ0 + αµ0(γ + µ) = (γ + µ) αR0 µ0,

T1 = S∗ β k = α µ0,

T2 = S∗ β k (γ + µ) = α µ0 (γ + µ),

where A, B, C, T1, T2 ≥ 0. Rewriting Equation (18), one obtains

λ3 + Aλ2 + (α (µ + γ)R0 + β O∗ µ0 + γ µ0 + α µ0 + µ µ0) λ

= e−λτ (T1 λ + T2)− C

= e−λτ α µ0 λ + e−λτ α µ0 (γ + µ)− (γ + µ) αR0 µ0

= e−λτ α µ0 λ + α µ0 (γ + µ) [e−λτ −R0].

Now we can rewrite it as

λ3 + Aλ2+(α (µ + γ)R0 + β O∗ µ0 + γ µ0 + µ µ0) λ

=e−λταµ0 λ− α µ0 λ + α µ0 (γ + µ) [e−λτ −R0]

=α µ0 λ [e−λτ − 1] + α µ0 (γ + µ) [e−λτ −R0].

Thus, one obtains

λ3 + Ãλ2 + B̃λ = T̃1 λ + T̃2, (19)
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where

Ã = A ≥ 0,

B̃ = α (µ + γ)R0 + β O∗ µ0 + γ µ0 + µ µ0 ≥ 0,

T̃1 = α µ0 [e−λτ − 1] ≤ 0,

T̃2 = α µ0 (γ + µ) [e−λτ −R0].

Therefore, ifR0 > 1, then T̃2 ≤ 0. Thus, the left-hand side of Equation (19) is positive
and the right-hand side is negative for all λ ≥ 0. Therefore, for any λ ≥ 0, Equation (18)
cannot have real non-negative solutions.

The next step is to find the distribution of the roots of Equation (18) when τ > 0.
To discard complex conjugate solutions with nonnegative real parts, let us assume that
λ = i ω (ω > 0) is a root of Equation (18). This occurs if and only if ω satisfies the
next equation:

−i ω3 − A ω2 + B i ω + C = e−iωτ [i ω T1 + T2] = (cos(ωτ)− i sin(ωτ)) [i ω T1 + T2].

Separating the imaginary and real part, one obtains

−ω3 + B ω = T1 ω cos(ωτ)− T2 sin(ωτ), (20)

and
− A ω2 + C = T2 cos(ωτ) + T1 ω sin(ωτ). (21)

Squaring the previous equations, one obtains

ω6 − 2B ω4 + B2 ω2 = T2
1 ω2 cos2(ωτ)− 2T1T2 ω cos(ωτ) sin(ωτ) + T2

2 sin2(ωτ),

and

A2ω4 − 2AC ω2 + C2 = T2
2 cos2(ωτ) + 2T1T2 ω cos(ωτ) sin(ωτ) + T2

1 ω2 sin2(ωτ).

Adding both equations, we obtain that

ω6 + (A2 − 2B)ω4 + (B2 − 2AC)ω2 + C2 = T2
1 ω2 + T2

2 .

Rearranging,

ω6 + (A2 − 2B)ω4 + (B2 − 2AC− T2
1 )ω2 + C2 − T2

2 = 0. (22)

Now let z = ω2, then

z3 + (A2 − 2B) z2 + (B2 − 2AC− T2
1 ) z + C2 − T2

2 = 0. (23)

Thus
z3 + α z2 + β z + ν = 0, (24)

where α = A2 − 2B, β = B2 − 2AC− T2
1 and ν = C2 − T2

2 .

Lemma 1. If α ≥ 0, β ≥ 0 and ν ≥ 0, then Equation (24) has no positive real roots.

Proof. Let h(ξ) = ξ3 + α ξ2 + β ξ + ν. Deriving with respect to ξ, one obtains that h′(ξ) =
3ξ2 + 2α ξ + β. Here ξ = ω2 > 0, α ≥ 0, β ≥ 0 and ν ≥ 0. Thus, h′(ξ) > 0, so h(ξ) is an
increasing function of ξ ≥ 0. Therefore, since h(0) = ν ≥ 0, then Equation (24) has no
positive real roots.

Therefore, there is no λ = iω (ω > 0) such that it is a solution of Equation (18) if the
previous conditions are satisfied. Accordingly, by Rouché’s theorem [58], the real parts
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of all the eigenvalues of Equation (18) are negative for all values of the time delay τ ≥ 0
under the previous conditions.

3.5. Bifurcation Analysis

In the previous subsection, we found conditions such that the endemic equilibrium E∗

is stable. If these conditions are not fulfilled, then the stability of the endemic equilibrium
depends on the time delay τ. Therefore, the endemic equilibrium point can lose stability,
and periodic solutions can appear. For instance, if the parameter ν < 0, then the polynomial
related to Equation (24) has at least one positive root z0, and then the endemic equilibrium
is no longer stable.

For the bifurcation analysis, we will use the time delay τ since we are interested in
understanding the effect of a time delay in the infectivity of the oocysts. For instance, some
chemicals can be developed such that the infectivity of the oocysts in the environment is
delayed. It has been shown that Gamma irradiation of oocysts changes their infectivity [15].

Let us see how the roots of Equation (18) vary when the bifurcation parameter τ varies.
Let λ(τ) = η(τ) + iω(τ) be one eigenvalue of Equation (18) such that for some particular
value of the bifurcation parameter τ0, we have that the real part is zero, i.e., η(τ0) = 0, and
the imaginary part ω(τ0) = ω0. Since the roots come in pairs, we can assume that without
loss of generality, ω0 > 0. We propose the following theorem.

Theorem 6. Assume that R0 > 1, then the endemic equilibrium E∗ of the delay model (3) is
asymptotically stable for all τ ≥ 0 and, therefore, Hopf bifurcation cannot occur.

Proof. We can proceed as before using Equation (18) to obtain Equation (23). Now comput-
ing α, β and ν of Equation (24), one obtains that

α = ν2 + 2(2βO∗ + µ)ν + β2(O∗)2 + µ2 + α2 + µ2
0 > 0,

β =

(
q + (R2

0α3 + 2R2
0α2ν + µ2

0(R2
0 − 2R0 + 2)α + 2R0νµ2

0)αµ +R2
0α2ν(α2µ2

0)
)
(ν + µ)

(α + µ)2 > 0,

with q = (R2
0α2 + µ2

0)
(
µ3 + 2(α + ν/2)µ0

)
, and

ν = α2(ν + µ)2 µ2
0 (R0 − 1).

It follows that α = A2− 2B > 0, β = B2− 2AC− T2
1 > 0 and ν = α2(ν + µ)2 µ2

0 (R0−
1) > 0 if R0 > 1. Therefore, using Lemma 1, there is no λ = iω (ω > 0) such that it is a
solution of Equation (18). Accordingly, by Rouché’s theorem [58], the real parts of all the
eigenvalues of Equation (18) are negative for all values of the time delay τ ≥ 0. Thus, Hopf
bifurcation cannot occur since the next transversal condition is not satisfied for any τ

dRe(λ(τ))

dτ

∣∣∣∣
τ=τ0

> 0. (25)

Thus, this Theorem indicates that if R0 > 1, there are no values of the parameter
τ such that the system (3) exhibits a Hopf bifurcation. Summarizing the above results,
we prove that the introduction of a time delay τ in the infectivity of the oocysts cannot
cause the endemic state E∗ of the delayed model (3) to become unstable. Moreover, it
cannot cause periodic solutions, due to Hopf bifurcation. In the next section, we perform
numerical simulations that are in good agreement with this theoretical result.

4. Numerical Simulations

In this section, we present a variety of numerical simulations of the mathematical
model (3) in order to explore the dynamics of toxoplasmosis and support the theoretical
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results obtained in the previous section. We explore a variety of scenarios with different
time delays and combining different parameter values in order to obtain values of the basic
reproduction numberR0 greater and less than one since this is an important threshold for
the outcome of the disease. These simulations provide insights related to the dynamics of
toxoplasmosis at the population level. We vary the values of the infectivity of the oocysts
and the time delay τ under the assumption that it can be modified by ecologically friendly
products that affect the infectivity of the oocysts. However, modifying the time when
oocysts become infectious might be difficult in the real world [59].

We use Matlab to compute the numerical simulations (on Intel(R) Core(TM) i7-8700
CPU 3.20 GHz and 16 GB RAM). In particular, we use the function (or solver) dde23, which
numerically solves delay differential equations [60,61]. For all the numerical simulations,
we use weeks as the time unit.

For most of the the numerical simulations, we use the base parameter values presented
in Table 1. A variety of initial conditions are used in order to support the theoretical results
regarding local and global stability. We compute the equilibrium points for each numerical
simulation and compare them with the theoretical result.

Table 1. Description of the parameters of the mathematical model (3) and values.

Parameter Description Value

µ Birth/Death rates (cats) 1/260 (1/weeks) [62]
α Shedding period 1/2 (1/weeks) [6]
µ0 Clearance rate 1/26 (1/day) [6,44]
k Oocysts per day (cat) 20× 106 (1/day) [16]
β Transmission rate varied
γ Vaccination rate varied

4.1. Numerical Simulations without Time Delay

We assume a transmission rate β such that the basic reproduction number R0 < 1.
Figure 2 shows the dynamics of the subpopulations when there is no time delay (τ = 0).
In this case, the system approaches the disease-free equilibrium F∗ as expected from the
theoretical results. Figure 3 shows the dynamics of the subpopulations whenR0 > 1 and
there is no time delay (τ = 0). In this case, the system does not approach the disease-free
equilibrium F∗ as the theoretical results indicate.

Figure 2. Dynamics of the different subpopulations when β = 0.17× 10−9, γ = 0.001 andR0 ≈ 0.99
(S∗ ≈ 0.793, I∗ = 0, and O∗ = 0 ). The initial condition is S(0) = 0.5, I(0) = 0.3 and O(0) = 300.
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Figure 3. Dynamics of the different subpopulations when β = 0.17× 10−9, γ = 0.001 andR0 ≈ 1.01.
The initial condition is S(0) = 0.5, I(0) = 0.3 and O(0) = 300.

4.2. Numerical Simulations with Time Delay

First, we consider a transmission rate β such that the basic reproduction number
R0 < 1. Figure 4 shows that in this case, the system still approaches the disease-free
equilibrium F∗ despite the introduction of a time delay on the infectivity of the oocysts. We
add an additional numerical simulation with a large time delay (τ = 50) to observe that the
solution still approaches the disease-free equilibrium F∗. Figure 5 shows the graph of the
solution for this previous scenario. The theoretical results indicate that wheneverR0 < 1
and for any initial condition, the disease will disappear due to the global stability. This is
quite important since it guarantees that the disease can become extinct. Figure 6 shows the
dynamics of the subpopulations whenR0 > 1. Notice that the system does not approach
the disease-free equilibrium F∗. This is due to an increase in the infectivity of the oocysts
that also increases the transmission rate β.

Figure 4. Dynamics of the different subpopulations when β = 0.17× 10−9, γ = 0.001, τ = 1, and
R0 ≈ 0.99 (S∗ ≈ 0.793, I∗ = 0, and O∗ = 0 ). The initial condition is S(0) = 0.5, I(0) = 0.3 and
O(0) = 300.
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Figure 5. Dynamics of the different subpopulations when β = 0.17× 10−9, γ = 0.001, τ = 50, and
R0 ≈ 0.99 (S∗ ≈ 0.793, I∗ = 0, and O∗ = 0 ). The initial condition is S(0) = 0.5, I(0) = 0.3 and
O(0) = 300.

Figure 6. Dynamics of the different subpopulations when β = 0.18× 10−9, γ = 0.001, τ = 1, and
R0 ≈ 1.01. The initial condition is S(0) = 0.5, I(0) = 0.3 and O(0) = 300.

4.3. Numerical Simulations without Hopf Bifurcation

Now, we consider a transmission rate β such that the basic reproduction number
R0 > 1, which allows the system to approach the endemic steadiness. Oftentimes, increas-
ing the time delay can give conditions such that periodic solutions arise and stability is no
longer present. This is crucial since we consider that the time delay τ can be modified by
ecologically friendly products that affect the infectivity of the oocysts. However, by the
theoretical results, we know that, even for large time delays, periodic solutions will not
arise, and the stability of the endemic equilibrium will be maintained.

Figure 7 shows the dynamics when τ = 300. In this case, the system still approaches
the endemic steady state E∗ despite the introduction of a very large time delay. The
theoretical results indicate that wheneverR0 > 1, the endemic steady state E∗ is stable. This
is important since it means that despite the application of ecologically friendly chemicals
to increase the delay of when the oocysts become infectious, the disease persists. Figure 8
shows the dynamics of the subpopulations when there is no time delay andR0 > 1. Finally,
we take initial conditions that are very close to the disease-free equilibrium (far from the
endemic point) andR0 > 1. In this case, Figure 9 shows that the system still approaches the
endemic point despite a very long time delay of τ = 300. This result is in good agreement
with the theoretical results.
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Figure 7. Dynamics of the different subpopulations when β = 0.18× 10−9, γ = 0.001, τ = 300 and
R0 ≈ 1.01. The initial condition is S(0) = 0.5, I(0) = 0.3 and O(0) = 300.

Figure 8. Dynamics of the different subpopulations when β = 0.58× 10−9, γ = 0.001 andR0 ≈ 1.83.
The initial condition is S(0) = 0.5, I(0) = 0.3 and O(0) = 300.

Figure 9. Dynamics of the different subpopulations when β = 0.58× 10−9, γ = 0.001, k = 140× 106,
τ = 300 and R0 ≈ 1.83 (S∗ ≈ 0.23, I∗ ≈ 0.005, and O∗ ≈ 19471603.2 ). The initial condition is
S(0) = 0.99, I(0) = 0.001 and O(0) = 0.001.

4.4. Effect of the Time Delay

In this subsection, we perform additional numerical simulations to see the effect
of the time delay. From the theoretical results, we obtain the conditions such that the
solutions approach one of the steady states. However, the numerical simulations provide
the transient behavior of the solutions. Figure 10 shows a comparison of the solutions of
models (1) and (3), i.e., without delay and with delay. In this case, we consider that the basic
reproduction numberR0 > 1, so both solutions approach the endemic steady state E∗, and
this is in good agreement with the theoretical results. The transient behavior of the solutions
differs due to the time delay. It can be observed that the peaks of infection occur later on
the delayed model and that both systems approach the endemic steady state E∗. Figure 11
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shows the solutions when the time delay is increased to τ = 30. Again, the infection peak
of the delayed model comes later than the model without delay. Moreover, the peak of
infected cats of the delayed model is lower. Thus, the time delay acts as a damping factor
on the epidemics when the basic reproduction numberR0 > 1. One additional simulation
is performed with a very large time delay τ = 300. Figure 12 shows that the delayed model
has lower infection peaks but still approaches the correct steady state despite the long time
delay, which is more challenging for the numerical scheme.

Figure 10. Dynamics of the different subpopulations when γ = 0.001, k = 140× 106, τ = 3 and
R0 ≈ 7.52. The initial condition is S(0) = 0.99, I(0) = 0.001 and O(0) = 0.001.

Figure 11. Dynamics of the different subpopulations when γ = 0.001, k = 140× 106, τ = 30 and
R0 ≈ 7.52. The initial condition is S(0) = 0.99, I(0) = 0.001 and O(0) = 0.001.

Figure 12. Dynamics of the different subpopulations when γ = 0.001, k = 140× 106, τ = 300 and
R0 ≈ 2.37. The initial condition is S(0) = 0.99, I(0) = 0.001 and O(0) = 0.001.

5. Conclusions

In this paper, we constructed a mathematical model to study toxoplasmosis dynamics.
The model considers a time delay from when the oocysts become present in the environment
to when they are able to infect. We investigated under what conditions the toxoplasmosis
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can be eradicated and the impact of the time delay on the dynamics. We calculated the
basic reproduction numberR0, which is an important parameter that determines the global
dynamics of the toxoplasmosis. We found that if R0 < 1, the disease-free equilibrium
is globally stable with or without a time delay, and toxoplasmosis can be eradicated. If
R0 > 1, we found that there is only one endemic equilibrium and we proved that this
is locally stable when there is no time delay. Moreover, we found conditions such that
the endemic steady state cannot become unstable and Hopf bifurcation cannot arise. This
means that under any conditions or any value of the time delay, the toxoplasmosis will
persist over time if the basic reproduction number R0 > 1. Thus, we proved that the
introduction of the time delay cannot destabilize the delayed model, and periodic solutions
due to Hopf bifurcation cannot appear. Numerical simulations were performed, and they
are in good agreement with the theoretical results.

The results presented in this study allow us to discuss the impact of vaccination
programs against toxoplasmosis and the time delay related to the infectivity of the oocysts
on the dynamics of toxoplasmosis in cat populations. The mathematical analysis provided
in this article is applicable for any parameter values. The values of some parameters were
taken from specialized works related to toxoplasmosis, despite there being some uncertainty
with them as is common in many biological processes. The basic reproduction number
found here determines the impact of the time delay on the dynamics of the toxoplasmosis
on the population of cats. Based on the results, we observed that the time delay cannot
affect the steady states of the biological system. Moreover, the time delay cannot change
the stability of the endemic state, which is an important result from a biological point of
view. It is important to remark that temperatures affect the time delay or when the oocysts
become infective, and thus, with climate change, the time delay can be affected [39].

The constructed mathematical model also allows the evaluation of prevention and
control strategies designed by health institutions against toxoplasmosis. Health authorities
can implement a vaccination program for cats and/or use ecologically friendly products to
reduce the amount of oocysts and/or the time when the oocysts become infective. Studies
using optimal control are recommended to evaluate the feasibility of these strategies, taking
into account economic and ecological factors [63,64].

Finally, we would like to mention some limitations of this work and possible future
work. As with any mathematical model for biological processes, there are limitations
due to the complexity of the real world. The proposed model does not consider other
intermediate hosts, such as humans and mice. The classical well-known homogeneous
mixing assumption used in most epidemiological mathematical models might not be
appropriate for some regions, but further research is needed. Creating different models
for rural and urban areas might be necessary. In this work, biological values for some
parameters were used, but there are still unknowns about the crucial transmission rate.
Further studies that consider additional hosts and the introduction of a latent class or
additional time delays could be profitable, although challenging.
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