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Abstract: Bivariate continuous negatively correlated proportional data defined in the unit square
(0, 1)2 often appear in many different disciplines, such as medical studies, clinical trials and so
on. To model this type of data, the paper proposes two new bivariate continuous distributions
(i.e., negatively correlated proportional inverse Gaussian (NPIG) and negatively correlated proportional gamma
(NPGA) distributions) for the first time and provides corresponding distributional properties. Two
mean regression models are further developed for data with covariates. The normalized expectation–
maximization (N-EM) algorithm and the gradient descent algorithm are combined to obtain the
maximum likelihood estimates of parameters of interest. Simulations studies are conducted, and a
data set of cortical thickness for schizophrenia is used to illustrate the proposed methods. According
to our analysis between patients and controls of cortical thickness in typical mutual inhibitory brain
regions, we verified the compensatory of cortical thickness in patients with schizophrenia and found
its negative correlation with age.

Keywords: bivariate NPGA models; bivariate NPIG models; cortical thickness; N-EM algorithm;
proportional data

1. Introduction

In many aspects, experimental results or measurements are reported in the form of
ratios, scores, proportions or percentages, which is frequently encountered in sociology,
psychology, epidemiology and clinical trials. The characteristic of the data is that they are
continuously valued within the unit interval (0, 1); thus, models focusing on this limited
range are worthwhile. Researchers have developed different strategies for modeling such
kinds of data. First, the beta distribution and beta regression models have been exhaustively
studied by many authors, including [1–3]. Kieschnick and McCullough [4] summarized and
compared different regression models for proportional data in the open interval. Next, the
simplex distribution investigated by Zhang and Qiu [5] can also be utilized to model such
continuous proportional data, and they further pointed out the simplex regression model
is more robust than the beta model. By mimicking the construction of beta distributions
with gamma variates, Lijoiu et al. [6] proposed a so-called normalized inverse Gaussian
(IG) distribution by substituting the gamma variates with IG variates, as a new tool for
modeling univariate proportional data. Later, Liu et al. [7] renamed it as the proportional
inverse Gaussian (PIG) distribution and set up regression models. Due to the diversity and
dimension enlarger of data, we need to generalize the univariate continuous proportional
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models to multivariate cases. Wang and Tu [8] considered the semiparametric tests for
multigroup proportional data in a closed interval [0, 1].

From the perspective of data structure, the multi-dimensional data limited in unit
intervals can be divided into compositional data and multivariate proportional data ac-
cording to their domains. For compositional data, which often appear in various fields,
such as biology, medicine and economics, the summation of all components of data values
equals one, also known as structure relative numbers reflecting the composition of objects.
Thus, the corresponding models fitting for the compositional data are defined in the open
hyperplane Tm =

{
x = (x1, . . . , xm)>: xj > 0, j = 1, . . . , m, 11>mx = 1

}
. Due to the con-

straint of 11>mx = 1, it leads to certain negative correlations between any two dimensions of
compositional data. One of the well-known distributions is the Dirichlet distribution, which
can be regarded as a generalization of the beta distribution to more than two components. It
was first used to fit two compositional biological data in [9]. Campbell and Mosimann [10]
considered a Dirichlet regression model by linking the parameters to a set of covariates
via a polynomial function, and the models with applications to the analysis of psychiatric
data are investigated in [11]. By the way, the beta distribution could be regarded as a
two-dimensional Dirichlet distribution, and a beta variate X and its complement 1− X
are also negatively correlated. Other research on related models can be found in recent
literature [12,13].

For multivariate proportional data, it appears that each component of the data is
valued between 0 and 1 with no direct constraint among components. The corresponding
models for this type of data are defined in the unit cubic (0, 1)m =

{
x = (x1, . . . , xm)>: 0 <

xj < 1, j = 1, . . . , m
}

without restriction 11>mx = 1. There are many ways to construct
appropriate models, such as beta distribution with copula linking functions. Cepeda-
Cuervo et al. [14] defined a bivariate beta regression model from copulas and considered the
Bayesian approach, in which the correlation could be positive or negative. Petterle et al. [15]
proposed a multivariate generalized linear mixed model for modeling continuous bounded
variables in the interval (0, 1). Sun et al. [16] proposed a linear stochastic representation (SR)
to construct multivariate positively correlated continuous models based on IG and gamma
distributions, named as multivariate PIG and proportional gamma (PGA) distributions,
respectively, which can only fit positively correlated continuous proportional data.

The cortical thickness of schizophrenia data used in [16] shows high correlations
and compensation behaviors related to disease severity among different brain regions.
Further, we find that a large number of negative covariant region pairs may occur in
patients if the changes of compensations are reduced. This indicates the observations of
negatively correlated regions in cortical thickness are of great significance for the study of
schizophrenia and its prognosis. Motivated by the construction technique in multivariate
PIG and PGA distributions, we will propose models to capture the negative correlation
among components for multivariate proportional data. To the best of our knowledge, work
considering the negative correlation of multivariate proportion data is quite scarce. Here,
we focus on the bivariate situations; thus, the proposed models are expected to provide
efficient tools in modeling negatively correlated proportional data.

By combining the construction of multivariate PIG/PGA distributions and the nega-
tive correlation structure in beta/Dirichlet distributions, we define a new random vector
x = (X1, X2)

> ∈ (0, 1)2 via the following SR:

X1 =
Y1

Y0 + Y1
and X2 = 1− Y2

Y0 + Y2
=

Y0

Y0 + Y2
, (1)

where {Yj}2
j=0 are independent random variables with the same support R+, and each Yj

can follow any same continuous distribution family but with possibly different parameters.
In the following, for each Yj (j = 0, 1, 2), we applied the IG and gamma distributions to
construct bivariate negatively correlated PIG (NPIG) and negatively correlated proportional
gamma (NPGA) distributions.
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The rest of the paper is organized as follows. In Sections 2 and 3, the bivariate NPIG
and NPGA distributions are, respectively, proposed and related distributional proper-
ties (e.g., moments, joint densities) are provided. Moreover, the normalized expectation–
maximization (N-EM) facilitated by the one-step gradient descent algorithms are estab-
lished for calculating the maximum likelihood (ML) estimations of parameters of interest. In
Section 4, simulations for the proposed methods are performed. A data set on the corti-
cal thickness of schizophrenia is used to illustrate the proposed methods in Section 5.
Finally, a discussion is provided in Section 6. Some technical details are put in the
Appendices A and B, and others are shown in the Supplementary Material.

2. Bivariate Negatively Correlated PIG Models

First, we propose a new bivariate NPIG distribution based on equi-dispersed IG
distributions and develop the corresponding NPIG mean regression model. The N-EM
algorithms for calculating the ML estimators of parameters are also provided.

2.1. Bivariate NPIG Distribution

The IG distribution with location parameter a (>0) and shape parameter b (>0),
denoted by Y ∼ IG(a, b), if it has the probability density function (pdf)

fIG(y|a, b) =

√
b

2π
y−

3
2 exp

[
− b(y− a)2

2a2y

]
, y > 0.

According to the results of [17], we have E(Y) = a and Var(Y) = a3/b. By setting b = a2,
the general IG distribution reduces to the equi-dispersed IG(a, a2) as its mean equals
the variance.

By adopting three independent equi-dispersed IG variates Yj
ind∼ IG(µj, µ2

j ) with
µj > 0 for j = 0, 1, 2, the random vector defined by (1) is said to follow a bivariate NPIG
distribution, denoted by x = (X1, X2)

> ∼ NPIG2(µ) with µ = (µ0, µ1, µ2)
>. Since the

moment generating functions (MGF) of Yj is MYj(t) = exp[µj(1−
√

1− 2t )], the expectations,
variances and the covariance are computed based on (A1)–(A5) as

E(X1) =
µ1

µ0 + µ1
, θ1 ∈ (0, 1), (2)

E(X2) =
µ0

µ0 + µ2
, θ2 ∈ (0, 1), (3)

Var(Xj) = µ0µje
µ0+µj Γ(−2, µ0 + µj), j = 1, 2,

Cov(X1, X2) = −µ1µ2eµ0+µ1+µ2

∫ ∞

1

∫ ∞

1
e−µ1te−µ2s

[
e−µ0

√
t2+s2−1 − e−µ0(t+s−1)

]
dt ds,

where Γ(−2, µ0 + µj) =
∫ ∞

µ0+µj
t−3e−t dt is the incomplete gamma function. According to

the numerical experiments in [16], the correlation coefficient is limited in the open interval
(−1, 0). The joint pdf of the bivariate NPIG distribution is derived as

fNPIG2
(x|µ) =

∏2
j=0 µj exp(µj)

(2π)
3
2
[
x3

1x2(1− x2)3(1− x1)
] 1

2

∫ ∞

0
h(s|x, µ)ds, x = (x1, x2)

> ∈ (0, 1)2,

where

h(s|x, µ) = s−
5
2 exp

{
−1

2

[
s · a(x) +

1
s
· b(x, µ)

]}
,

a(x) = 1 +
x1

1− x1
+

1− x2

x2
and b(x, µ) = µ2

0 +
1− x1

x1
µ2

1 +
x2

1− x2
µ2

2.
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From the perspective of practice, usually, we would like to have intuitive interpretations of
population means. Therefore, we re-parametrize the bivariate NPIG distribution in terms
of the parameter vector θ = (θ0, θ1, θ2)

> according to (2) and (3) by making the following
one-to-one mapping

µ0 = θ0, µ1 = θ0θ1/(1− θ1) and µ2 = θ0/θ2 − θ0.

The pdf of the re-parameterized bivariate NPIG distribution, denoted by x ∼ NPIG2(θ), is

fNPIG2
(x|θ) =

θ3
0 ·

θ1
1−θ1
· 1−θ2

θ2
exp

(
θ0 + θ0 · θ1

1−θ1
+ θ0 · 1−θ2

θ2

)
(2π)

3
2
[
x3

1x2(1− x2)3(1− x1)
] 1

2

∫ ∞

0
h1(s|x, θ)ds,

where x ∈ (0, 1)2,

h1(s|x, θ) = s−
5
2 exp

{
−1

2

[
s · a(x) +

1
s
· b1(x, θ)

]}
and

b1(x, θ) = θ2
0

[
1 +

(1− x1)θ
2
1

x1(1− θ1)2 +
x2(1− θ2)

2

(1− x2)θ
2
2

]
. (4)

Figure 1 plots the bivariate NPIG distribution NPIG2(θ) with two sets of different
values of parameters. We note that a larger value of θ0 makes the distribution more
concentrated, and it also influences the number of modes. When θ0 is large enough,
the change in the values of (θ1, θ2)

> affects the location of modes and the skewness of
distributions. Thus, it is appropriate to regard θ0 as the dispersion parameter and θ1, θ2 as
the two location parameters. Sometimes, while the distributions are dense and unimodal,
the modes are very different from the expectations.

2.2. ML Estimation of Parameters via the N-EM Algorithm

Let x1, . . . , xn
iid∼ NPIG2(θ) and Yobs1 = {xi}n

i=1 denote the observed data, where
xi = (xi1, xi2)

> is the realization of xi = (Xi1, Xi2)
>. The log-likelihood function of the

parameter vector θ is given by

`1(θ|Yobs1
) = 3n log θ0 + nθ0 + n

θ0θ1
1− θ1

+ n log
θ1

1− θ1
+ n

θ0(1− θ2)

θ2
+ n log

1− θ2
θ2

+
n

∑
i=1

log
[∫ ∞

0
h1(s|xi, θ)ds

]
+ c1, (5)

where c1 is a constant free from the parameter vector θ. Due to the existence of the
intractable integrals in (5), neither the Newton–Raphson nor the Fisher scoring algorithm is
attainable in dealing with the above expression. Instead, we adopt the N-EM algorithm,
which is composed of three steps:

N-step: Establish the following normalized density function based on h1(·|xi, θ) as

g1(s|xi, θ) ,
h1(s|xi, θ)∫ ∞

0 h1(t|xi, θ)dt
, s > 0,

so that g1(s|xi, θ(t)) is also a valid pdf defined on (0, ∞), where θ(t) denotes the t-th
approximation of θ̂.
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Figure 1. The contour plots and 3D perspectives of the bivariate NPIG distribution NPIG2(θ) with
different values of parameters: (a1,a2) θ = (0.5, 0.5, 0.5)>; (b1,b2) θ = (1.5, 0.8, 0.3)>.

E-step: Construct a surrogate Q-function by utilizing the integral version of Jensen’s in-
equality as

Q1(θ|θ(t)) = 3n log θ0 + nθ0 + n
θ0θ1

1− θ1
+ n log

θ1

1− θ1
+ n

θ0(1− θ2)

θ2

+ n log
1− θ2

θ2
− 1

2

n

∑
i=1

[
B1(xi, θ(t)) · b1(xi, θ)

]
+ c(t)1 , (6)

where
B1(xi, θ(t)) ,

∫ ∞

0
s−1 · g1(s|xi, θ(t))ds,

b1(x, θ) is defined by (4), and c(t)1 is a constant not depending on θ. It can be proven
that Q1(θ|θ(t)) satisfies

Q1(θ|θ(t)) 6 `1(θ|Yobs1) and Q1(θ
(t)|θ(t)) = `1(θ

(t)|Yobs1),

indicating that it minorizes `1(θ|Yobs1) at θ = θ(t).

M-step: Maximize Q1(θ|θ(t)) with respect to θ and obtain

θ(t+1) = arg max
θ∈R+×(0,1)2

Q1(θ|θ(t)).

However, it is difficult to obtain the unique explicit expression of θ(t+1) in the M-step.
Instead, it is recommended to separate the estimation procedures into two parts:
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M-step-1: Given {θ(t)1 , θ
(t)
2 }, by solving ∂Q1(θ|θ(t))/∂θ0 = 0, we have the (t + 1)-th approx-

imation for θ̂0 as

θ
(t+1)
0 =

T(t)
1 +

√[
T(t)

1
]2

+ 12nT(t)
2

2T(t)
2

, (7)

where

T(t)
1 = n

(
1 +

θ
(t)
1

1− θ
(t)
1

+
1− θ

(t)
2

θ
(t)
2

)
and

T(t)
2 =

n

∑
i=1

B1(xi, θ(t))

{
1 +

(1− xi1)[θ
(t)
1 ]2

xi1[1− θ
(t)
1 ]2

+
xi2[1− θ

(t)
2 ]2

(1− xi2)[θ
(t)
2 ]2

}
.

M-step-2: The iteration for θ−0 , (θ1, θ2)
> is obtained by adopting the gradient descent

algorithm as
θ
(t+1)
−0 = θ

(t)
−0 + s(t)1 ∇G1(θ

(t)
−0|θ

(t)), (8)

where

∇G1(θ−0|θ(t)) =
∂Q1(θ|θ(t))

∂θ−0
=

(
∂Q1(θ|θ(t))

∂θ1
,

∂Q1(θ|θ(t))
∂θ2

)>
,

and s(t)1 is the step size at the t-th iteration of the algorithm, determined by

s(t)1 =
|[θ(t)−0 − θ

(t−1)
−0 ]>[∇G1(θ

(t)
−0|θ

(t))−∇G1(θ
(t−1)
−0 |θ(t−1))]|

‖∇G1(θ
(t)
−0|θ

(t))−∇G1(θ
(t−1)
−0 |θ(t−1))‖2

.

The stopping rule of the above loops under the proposed N-EM embedded with the
gradient descent algorithm is controlled by

max
{
|`1(θ

(t+1)|Yobs1)− `1(θ
(t)|Yobs1)|, ‖θ

(t+1) − θ(t)‖∞

}
6 δ,

where δ is a pre-determined precision. The details of constructing the N-EM algorithm
are shown in Appendix B.1, and other relevant calculations are given in Supplementary
Material A.1 and A.2. Finally, the ML estimates of (θ0, θ1, θ2) can be obtained by combining
(7) and (8) when the algorithm stops.

2.3. Bivariate NPIG Mean Regression Model

We extend the re-parametrized NPIG2(θ) distribution to the corresponding regression
model for investigating the relationship between the mean vector (θ1, θ2)

>with a set of
covariates. The logit link function is adopted for θj ∈ (0, 1) with j = 1, 2, then the resulting
model can be formulated as

xi = (Xi1, Xi2)
> ind∼ NPIG2(θ0, θi1, θi2), i = 1, . . . , n,

log

(
θij

1− θij

)
= w>i αj or θij =

exp(w>i αj)

1 + exp(w>i αj)
, j = 1, 2,

(9)

where wi = (1, wi1, . . . , wiq)
> is the vector of covariates associated with the i-th subject,

and αj = (α0j, α1j, . . . , αqj)
> is the (q + 1)-vector of unknown regression coefficients. The
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log-likelihood function of the new parameter vector ϑ = (θ0, α>1, α>2)
> for the regression

model given the observed data Yobs2 = {xi, wi}n
i=1 is written as

`2(ϑ|Yobs2) = 3n log θ0 + nθ0 +
n

∑
i=1

[
θ0 exp(w>i α1) + w>i α1 + θ0 exp(−w>i α2)−w>i α2

]

+
n

∑
i=1

log
[∫ ∞

0
h2(s|xi, wi, ϑ)ds

]
+ c2,

where c2 is a constant free from the parameter vector ϑ,

h2(s|xi, wi, ϑ) = s−
5
2 exp

{
−1

2

[
s · a(xi) +

1
s
· b2(xi, wi, ϑ)

]}
and

b2(xi, wi, ϑ) = θ2
0 +

θ2
0(1− xi1)

xi1
exp(2w>i α1) +

θ2
0xi2

1− xi2
exp(−2w>i α2).

Similar to the construction of Q1(θ|θ(t)), we can obtain

Q2(ϑ|ϑ(t)) = 3n log θ0 + nθ0 +
n

∑
i=1

[
θ0 exp(w>i α1) + w>i α1 + θ0 exp(−w>i α2)−w>i α2

]

− 1
2

n

∑
i=1

[
B2(xi, wi, ϑ(t)) · b2(xi, wi, ϑ)

]
+ c(t)2 ,

where c(t)2 is a constant, ϑ(t) denotes the t-th approximation of the ML estimator ϑ̂ and

B2(xi, wi, ϑ(t)) ,
∫ ∞

0

s−1 · h2(s|xi, wi, ϑ(t))∫ ∞
0 h2(t|xi, wi, ϑ(t))dt

ds.

The procedure of obtaining the ML estimators of ϑ is similar to that in Section 2.2. First,
for given {α(t)

1 , α
(t)
2 }, we set ∂Q2(ϑ|ϑ(t))/∂θ0 = 0 and find the positive root to obtain the

(t + 1)-th approximation for θ̂0, which is given by

θ
(t+1)
0 =

T(t)
3 +

√[
T(t)

3
]2

+ 12nT(t)
4

2T(t)
4

(10)

with

T(t)
3 = n +

n

∑
i=1

[
exp(w>i α

(t)
1 ) + exp(−w>i α

(t)
2 )
]

and

T(t)
4 =

n

∑
i=1

B2(xi, wi, ϑ(t))

[
1 +

1− xi1
xi1

exp(2w>i α
(t)
1 ) +

xi2
1− xi2

exp(−2w>i α
(t)
2 )

]
.

Moreover, to obtain the ML estimator of ϑ−0 = (α>1, α>2)
>, we first define

∇G2(ϑ−0|ϑ(t)) ,
∂Q2(ϑ|ϑ(t))

∂ϑ−0
=

(
∂Q2(ϑ|ϑ(t))

∂α>1
,

∂Q2(ϑ|ϑ(t))

∂α>2

)>
.

Using the one-step gradient descent algorithm, we have the iteration

ϑ
(t+1)
−0 = ϑ

(t)
−0 + s(t)2 ∇G2(ϑ

(t)
−0|ϑ

(t)), (11)
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where the step size s(t)2 is defined by

s(t)2 =
|[ϑ(t)
−0 − ϑ

(t−1)
−0 ]>[∇G2(ϑ

(t)
−0|ϑ

(t))−∇G2(ϑ
(t−1)
−0 |ϑ(t−1))]|

‖∇G2(ϑ
(t)
−0|ϑ

(t))−∇G2(ϑ
(t−1)
−0 |ϑ(t−1))‖2

.

By combining (10) with (11), we could obtain the ML estimates of ϑ.

3. Bivariate Negatively Correlated PGA Models

To provide other candidates for flexibly modeling the above-mentioned negatively
correlated continuous proportional data, in this section, we propose a new bivariate NPGA
distribution based on equi-dispersed gamma distributions (see the first paragraph in
Section 3.1) and develop a bivariate NPGA mean regression model.

3.1. Bivariate NPGA Distribution

Let Y ∼ Gamma(a, 1), then it is an equi-dispersed gamma distribution with

E(Y) = Var(Y), and its pdf is fGA(y|a) = ya−1e−y/Γ(a), y > 0. Let {Yj}2
j=0

ind∼ Gamma(λj, 1)
with λj > 0 for j = 0, 1, 2 be three independent equi-dispersed gamma variates, then the
random vector defined by (1) is said to follow a bivariate NPGA distribution, denoted
by x = (X1, X2)

> ∼ NPGA2(λ) with λ = (λ0, λ1, λ2)
>. The MGF of Yj, in this case, is

MYj(t) = (1− t)−λj , with t < 1, from (A1)–(A5), we have

E(X1) =
λ1

λ0 + λ1
, φ1 ∈ (0, 1), (12)

E(X2) =
λ0

λ0 + λ2
, φ2 ∈ (0, 1), (13)

Var(Xj) =
λ0λj

(λ0 + λj)2(1 + λ0 + λj)
, j = 1, 2,

Cov(X1, X2) = − λ1λ2

∫ ∞

1

∫ ∞

1
t−λ1−1s−λ2−1

[
(t + s− 1)−λ0 − (ts)−λ0

]
dt ds.

The correlation coefficient takes values within (−1, 0) as well. The pdf of x ∼ NPGA2(λ) is

fNPGA2
(x|λ) =

xλ1−1
1 (1− x2)

λ2−1Γ(λ+)

xλ2+1
2 (1− x1)λ1+1 ∏2

j=0 Γ(λj)

(
1 +

x1

1− x1
+

1− x2

x2

)−λ+

,

where x = (x1, x2)
> ∈ (0, 1)2 is the realization of x and λ+ = ∑2

j=0 λj.
For the purpose of modeling the population means in (12) and (13) directly, we also

make a one-to-one transformation among parameter vectors φ = (φ0, φ1, φ2)
> and λ by

λ0 = φ0, λ1 = φ0φ1/(1− φ1) and λ2 = φ0/φ2 − φ0.

The pdf of re-parameterized bivariate NPGA distribution, denoted by x ∼ NPGA2(φ), is

fNPGA2
(x|φ) =

x
φ0φ1
1−φ1

−1

1 (1− x2)
φ0
φ2
−φ0−1Γ

(
φ0φ1
1−φ1

+ φ0
φ2

)
x

φ0
φ2
−φ0+1

2 (1− x1)
φ0φ1
1−φ1

+1Γ(φ0)Γ
(

φ0φ1
1−φ1

)
Γ
(

φ0
φ2
− φ0

)

×
(

1 +
x1

1− x1
+

1− x2

x2

)− φ0φ1
1−φ1

− φ0
φ2

.
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Figure 2 plots the bivariate NPGA distribution NPGA2(φ) with two sets of different
values of parameters. Similar to those findings in Figure 1, φ0 is regarded as the dispersion
parameter and (φ1, φ2)

> is the location vector.
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Figure 2. The contour plots and 3D perspectives of the bivariate NPIG distribution NPGA2(φ) with
different values of parameters: (a1,a2) φ = (2, 0.3, 0.5)>; (b1,b2) φ = (6, 0.1, 0.8)>.

3.2. ML Estimation of Parameters via the Gradient Descent Algorithm

Let x1, . . . , xn
iid∼ NPGA2(φ) and Yobs3 = {xi}n

i=1 denote the observed data, where
xi = (xi1, xi2)

> is the realization of xi = (Xi1, Xi2)
>. The log-likelihood function of the

parameter vector φ is given by

`3(φ|Yobs3 ) = n
[

log Γ
(

φ0φ1
1− φ1

+
φ0
φ2

)
− log Γ(φ0)− log Γ

(
φ0φ1

1− φ1

)
− log Γ

(
φ0
φ2
− φ0

)]

+
φ0φ1

1− φ1

n

∑
i=1

log
xi1

1− xi1
+

(
φ0
φ2
− φ0

) n

∑
i=1

log
1− xi2

xi2

−
(

φ0φ1
1− φ1

+
φ0
φ2

) n

∑
i=1

log
(

1 +
xi1

1− xi1
+

1− xi2
xi2

)
+ c3,

where c3 is a constant free from the parameter vector φ. Then, we adopt the gradient
descent algorithm directly to find the ML estimator φ̂ of φ by setting

∇`3(φ|Yobs3) ,
∂`3(φ|Yobs3)

∂φ
=

(
∂`3(φ|Yobs3)

∂φ0
,

∂`3(φ|Yobs3)

∂φ1
,

∂`3(φ|Yobs3)

∂φ2

)>
.

Thus, the (t + 1)-th estimation is given by

φ(t+1) = φ(t) + s(t)3 ∇`3(φ
(t)|Yobs3), (14)
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where the step size at the t-th iteration is

s(t)3 =
|[φ(t) −φ(t−1)]>[∇`3(φ

(t)|Yobs3)−∇`3(φ
(t−1)|Yobs3)]|

‖∇`3(φ(t)|Yobs3)−∇`3(φ(t−1)|Yobs3)‖2
.

We also provide another method in Appendix B.2 with the N-EM algorithm applied,
which results in the same iteration shown in (14).

3.3. Bivariate NPGA Mean Regression Model

The bivariate NPGA mean regression model is formulated in a similar way as
xi = (Xi1, Xi2)

> ind∼ NPGA2(φ0, φi1, φi2), i = 1, . . . , n,

log

(
φij

1− φij

)
= v>i βj, or φij =

exp(v>i βj)

1 + exp(v>i βj)
, j = 1, 2,

(15)

where vi = (1, vi1, . . . , viq)
> is the vector of covariates associated with the i-th subject,

and βj = (β0j, β1j, . . . , βqj)
> is the (q + 1)-vector of unknown regression coefficients. The

gradient descent algorithm still works for finding the ML estimators of ϕ = (φ0, β>1, β>2)
> in

the NPGA mean regression model, which is similar to that stated in Section 3.2.

4. Simulation Experiments

For all above bivariate NPIG- and NPGA-related models, although no explicit ex-
pressions for the ML estimators of parameters, the bootstrap method is an efficient tool
to approximately calculate the standard errors and the confidence intervals (CIs) for them,
while the details of the bootstrap procedure are omitted due to its routines. Based on it, we
conduct several numerical experiments in the section to investigate the performances of
the above-proposed estimation methods for the bivariate NPIG and NPGA distributions
with their corresponding mean regression models. We use R software to design parallel
computing on 64 CPUs of the windows system for the time-consuming simulations. The
impacts of other computational aspects on the simulations are not considered.

4.1. Experiment for NPIG Models

Firstly, for the bivariate NPIG distribution, we choose the parameter configurations as
follows: sample size is n = 30, 50, 100, 300; true values of (θ0, θ1, θ2) are set as (1.2, 0.3, 0.8),
(0.5, 0.5, 0.6) and (0.2, 0.8, 0.1), corresponding to a low, moderate and high correlations.
In the regression model, the corresponding sample size is n = 50, 200, 350, 500; θ0 = 0.6,
α1 = (1.2, 0.8,−0.5, 0.5)>, α2 = (1.5,−2, 0.7,−0.5)>; the covariates are wi = (1, wi1, wi2, wi3)

>,

with wi1
iid∼ Unif(−1, 1), wi2 is randomly chosen from {0.2, 0.4, 0.6, 0.8} and wi3

iid∼ Poisson(3)
for i = 1, . . . , n. For a given sample size n, experimental data {xi}n

i=1 are i.i.d. sampled from
NPIG2(θ0, θ1, θ2) or each xi is generated from NPIG2(θ0, θi1, θi2) according to the regression
model specified by (9), where SR (1) based on three IG variates can facilitate the sample
generation. Parameters of interest are (θ0, θ1, θ2) and (θ0, α1, α2), respectively.

For each generated sample group, parameters are estimated by the proposed N-EM
embedded with the gradient descent algorithm, and the whole process is repeated K
times. The value of K is chosen as 1000 and 500 for the distribution and regression model,
respectively. To better express the quantitative values on evaluating the estimation accuracy,
we use a general symbol ψ to denote each component of parameters to be estimated, and
ψ0 is its true value. The obtained ML estimate for ψ in each loop is denoted by ψ̂(k), and
the number of iterations is recorded as tk to the converged algorithm, where k = 1, . . . , K.
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The averaged ML estimate (Ave-MLE), standard deviation (Std) and mean squared error
(MSE) for the estimator ψ̂ and the averaged iterative number (it.no) are, respectively, com-
puted as

Ave-MLE(ψ̂) =
1
K

K

∑
k=1

ψ̂(k),

Std(ψ̂) =

√√√√ 1
K− 1

K

∑
k=1

(
ψ̂(k) − 1

K

K

∑
k=1

ψ̂(k)

)2

,

MSE(ψ̂) =

(
1
K

K

∑
k=1

ψ̂(k) − ψ0

)2

+
1

K− 1

K

∑
k=1

(
ψ̂(k) − 1

K

K

∑
k=1

ψ̂(k)

)2

,

it.no =
1
K

K

∑
k=1

tk.

The simulated results for (θ0, θ1, θ2) of the bivariate NPIG distribution are summarized
in Table 1. The simulated results for (θ0, α1, α2) of the bivariate NPIG regression model are
listed in Table 2. From the results, it is easy to find that the estimates of the parameters
are well provided and are much closer to their true values as the sample size increases;
more specifically, the estimation stability and accuracy are both improved, as indicated
by the decreasing values of Stds and MSEs. The population correlation coefficient and
the averaged estimated value calculated with the ML estimates of parameters are also
presented, which shows the relationship is completely depicted.

Table 1. ML estimate, Std and MSE for (θ0, θ1, θ2) in bivariate NPIG distribution.

(θ0, θ1, θ2) = (1.2, 0.3, 0.8), ρ = −0.2586

Parameter Ave-MLE Std MSE Ave-MLE Std MSE

n = 30 n = 50

θ0 1.358641 0.442545 0.221013 1.316643 0.362304 0.144870
θ1 0.298424 0.036809 0.001357 0.298486 0.028556 0.000818
θ2 0.799534 0.031722 0.001007 0.801276 0.023760 0.000566

it.no = 231, ρ̂ = −0.2569 it.no = 224, ρ̂ = −0.2564

n = 100 n = 300

θ0 1.243133 0.237282 0.058163 1.209933 0.121216 0.014792
θ1 0.300323 0.020431 0.000418 0.300539 0.012035 0.000145
θ2 0.799605 0.016497 0.000272 0.799794 0.009520 0.000091

it.no = 213, ρ̂ = −0.2586 it.no = 197, ρ̂ = −0.2588

(θ0, θ1, θ2) = (0.5, 0.5, 0.6), ρ = −0.4390

Parameter Ave-MLE Std MSE Ave-MLE Std MSE

n = 30 n = 50

θ0 0.566086 0.174171 0.034703 0.544802 0.128736 0.018580
θ1 0.498231 0.048484 0.002354 0.499272 0.037687 0.001421
θ2 0.601595 0.046221 0.002139 0.600750 0.035776 0.001280

it.no = 172, ρ̂ = −0.4366 it.no = 167, ρ̂ = −0.4379

n = 100 n = 300

θ0 0.519031 0.085486 0.007670 0.504517 0.049257 0.002447
θ1 0.500203 0.026148 0.000684 0.500225 0.015722 0.000247
θ2 0.600492 0.025049 0.000628 0.599723 0.014972 0.000224

it.no = 157, ρ̂ = −0.4386 it.no = 145, ρ̂ = −0.4391
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Table 1. Cont.

(θ0, θ1, θ2) = (0.2, 0.8, 0.1), ρ = −0.7321

Parameter Ave-MLE Std MSE Ave-MLE Std MSE

n = 30 n = 50

θ0 0.220128 0.055619 0.003499 0.211129 0.041009 0.001806
θ1 0.800242 0.031396 0.000986 0.800302 0.022899 0.000524
θ2 0.099971 0.018400 0.000339 0.099890 0.013603 0.000185

it.no = 119, ρ̂ = −0.7350 it.no = 114, ρ̂ = −0.7338

n = 100 n = 300

θ0 0.205324 0.027086 0.000762 0.201148 0.015389 0.000238
θ1 0.799645 0.016570 0.000275 0.800039 0.009393 0.000088
θ2 0.100182 0.009942 0.000099 0.100087 0.005523 0.000031

it.no = 107, ρ̂ = −0.7326 it.no = 97, ρ̂ = −0.7323

Table 2. ML estimate, Std and MSE for (θ0, α1, α2) in bivariate NPIG regression model.

θ0 = 0.6, α1 = (1.2, 0.8,−0.5, 0.5)>, α2 = (1.5,−2, 0.7,−0.5)>

Parameter Ave-MLE Std MSE Ave-MLE Std MSE

n = 50 n = 200

θ0 0.616064 0.098125 0.009887 0.594675 0.054724 0.003023
α01 1.197065 0.182278 0.033234 1.202689 0.051280 0.002637
α11 0.791274 0.159555 0.025534 0.797376 0.050753 0.002583
α21 −0.503090 0.172935 0.029916 −0.501269 0.052572 0.002765
α31 0.496402 0.052044 0.002721 0.495028 0.022855 0.000547
α02 1.493490 0.172693 0.029865 1.493448 0.059934 0.003635
α12 −1.994148 0.159105 0.025349 −1.994163 0.055346 0.003097
α22 0.693314 0.189516 0.035961 0.695733 0.044827 0.002028
α32 −0.497199 0.051602 0.002671 −0.496026 0.023453 0.000566

it.no = 141 it.no = 68

n = 350 n = 500

θ0 0.594409 0.040014 0.001632 0.592610 0.034314 0.001232
α01 1.199199 0.032275 0.001042 1.200771 0.021140 0.000447
α11 0.795187 0.036466 0.001353 0.798587 0.025180 0.000636
α21 −0.500220 0.028680 0.000823 −0.500038 0.021437 0.000460
α31 0.499380 0.019778 0.000392 0.496742 0.018138 0.000340
α02 1.494840 0.035134 0.001261 1.495448 0.025697 0.000681
α12 −1.997357 0.033092 0.001102 −1.997702 0.025642 0.000663
α22 0.698411 0.028526 0.000816 0.697747 0.020047 0.000407
α32 −0.498473 0.019025 0.000364 −0.497432 0.015664 0.000252

it.no = 55 it.no = 49

4.2. Experiments for NPGA Models

For the bivariate NPGA distribution, the parameter settings are similar with those
for the NPIG models. The choice of sample size n is the same. True values of (φ0, φ1, φ2)
are chosen as (2, 0.9, 0.2) and (5, 0.4, 0.6) for the NPGA distribution. In the NPGA re-
gression model, φ0 = 1.2, β1 = (−0.9, 1.4,−0.5)>, β2 = (0.5,−0.2,−0.8)>; the covari-

ates are vi = (1, vi1, vi2)
>, with vi1

iid∼ Unif(0, 1), and vi2 is randomly sampled from
{−0.5,−0.2, 0.3, 0.6} for i = 1, . . . , n. Data {xi}n

i=1 are generated from NPGA2(φ0, φ1, φ2)
or NPGA2(φ0, φi1, φi2) according to the model specified by (15). To assess the estimation
performances on parameters of interest (φ0, φ1, φ2) and (φ0, β1, β2), we still adopt the
measurements introduced in Section 4.1 for comparisons.
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Tables 3 and 4 summarize the results of simulation studies for the bivariate NPGA
distribution and the corresponding mean regression model. The averaged ML estimates
are provided, as well as the Stds and MSEs of the estimators. It is also observed that the
estimation performance is satisfactory. The values of iterative numbers indicate that the
computational efficiency and convergence rate are good. All averaged estimated values of
the correlation calculated with the ML estimates of parameters are close to the population
correlation coefficients.

Table 3. ML estimate, Std and MSE for (φ0, φ1, φ2) in bivariate NPGA distribution.

(φ0, φ1, φ2) = (2, 0.9, 0.2), ρ = −0.8083

Parameter Ave-MLE Std MSE Ave-MLE Std MSE

n = 30 n = 50

φ0 1.997760 0.026205 0.000692 1.998313 0.023109 0.000537
φ1 0.898923 0.010484 0.000111 0.899695 0.008393 0.000071
φ2 0.202299 0.019508 0.000386 0.200620 0.015605 0.000244

it.no = 27, ρ̂ = −0.8064 it.no = 27, ρ̂ = −0.8078

n = 100 n = 300

φ0 1.999660 0.024147 0.000583 1.998969 0.020451 0.000419
φ1 0.900010 0.005360 0.000029 0.899674 0.003072 0.000010
φ2 0.201871 0.010523 0.000114 0.201171 0.006473 0.000043

it.no = 26, ρ̂ = −0.8072 it.no = 27, ρ̂ = −0.8074

(φ0, φ1, φ2) = (5, 0.4, 0.6), ρ = −0.4057

Parameter Ave-MLE Std MSE Ave-MLE Std MSE

n = 30 n = 50

φ0 5.001001 0.036186 0.001310 4.998937 0.032888 0.001083
φ1 0.402014 0.026780 0.000721 0.402845 0.020853 0.000443
φ2 0.598549 0.026008 0.000679 0.598827 0.020339 0.000415

it.no = 21, ρ̂ = −0.4069 it.no = 21, ρ̂ = −0.4074

n = 100 n = 300

φ0 4.996352 0.042099 0.001786 5.001158 0.038537 0.001486
φ1 0.400435 0.015158 0.000230 0.399487 0.008230 0.000068
φ2 0.599306 0.015034 0.000227 0.600232 0.007946 0.000063

it.no = 21, ρ̂ = −0.4061 it.no = 16, ρ̂ = −0.4053

Table 4. ML estimate, Std and MSE for (φ0, β1, β2) in bivariate NPGA regression model.

φ0 = 1.2, β1 = (−0.9, 1.4,−0.5)>, β2 = (0.5,−0.2,−0.8)>

Parameter Ave-MLE Std MSE Ave-MLE Std MSE

n = 50 n = 200

φ0 1.273002 0.200704 0.045612 1.227011 0.092474 0.009281
β01 −0.863261 0.274594 0.076752 −0.860950 0.137262 0.020366
β11 1.374930 0.482249 0.233192 1.341559 0.226420 0.054681
β21 −0.489769 0.324336 0.105299 −0.481630 0.147419 0.022070
β02 0.437918 0.290704 0.088363 0.4730029 0.140378 0.020435
β12 −0.146745 0.492742 0.245631 −0.177881 0.230247 0.053503
β22 −0.784241 0.340255 0.116021 −0.773613 0.157350 0.025455

it.no = 51 it.no = 44

n = 350 n = 500

φ0 1.218954 0.072089 0.005556 1.210845 0.028854 0.000950
β01 −0.867234 0.106863 0.012493 −0.867112 0.042890 0.002921
β11 1.362347 0.170824 0.030598 1.353711 0.068964 0.006899
β21 −0.486299 0.120704 0.014757 −0.486765 0.048496 0.002527
β02 0.467544 0.101781 0.011413 0.476607 0.042584 0.002361
β12 −0.168965 0.166065 0.028541 −0.174730 0.069102 0.005414
β22 −0.772744 0.117103 0.014456 −0.777010 0.049669 0.002996

it.no = 42 it.no = 36
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4.3. Numerical Study on Means, Variances, Covariances and Correlations

In this subsection, we provide some numerical studies on the means, variances, co-
variances and correlations. For the bivariate NPIG distribution, we choose the values of
mean parameters as (θ1, θ2) = (0.5, 0.6), (0.3, 0.8), (0.8, 0.1), combined with the value of θ0
being 0.2, 0.4, 0.6, 0.8, 1, 3, 5, 10, 15 and 20, respectively. The expectations, variances for two
components, the covariances, and the correlation coefficients between them are presented in
Table 5. For the bivariate NPGA distribution, we choose the values of the mean parameters
as (φ1, φ2) = (0.9, 0.2), (0.4, 0.7), (0.2, 0.2), combined with the value of φ0 being the same
as that of θ0. The corresponding properties are summarized in Table 6. Note that the
expectation for each component is just θi or φi for i = 1, 2 in the two distributions. “Mean1”
indicates the expectation for the first component, and “Mean2” indicates the expectation
for the second component. Variances and covariances are computed based on the derived
formulae in the Sections 2.1 and 3.1, respectively, and “Var1” indicates the variance for
the first component, “Var2” indicates the variance for the second component and “Cov”
indicates the covariance between the two components. The correlation coefficient indicated
by “Coef” is calculated according to its definition.

Table 5. Means, variances, covariances and correlations for the bivariate NPIG distribution.

θ0 Mean1 Mean2 Var1 Var2 Cov Coef

0.2 0.5 0.6 0.095957 0.095424 −0.041228 −0.430854
0.4 0.5 0.6 0.080300 0.081386 −0.035332 −0.437049
0.6 0.5 0.6 0.069668 0.071562 −0.031100 −0.440454
0.8 0.5 0.6 0.061796 0.064130 −0.027863 −0.442600
1 0.5 0.6 0.055664 0.058245 −0.025285 −0.444056
3 0.5 0.6 0.028704 0.031267 −0.013426 −0.448160
5 0.5 0.6 0.019542 0.021624 −0.009222 −0.448594
10 0.5 0.6 0.010927 0.012291 −0.005197 −0.448441
15 0.5 0.6 0.007596 0.008602 −0.003623 −0.448208
20 0.5 0.6 0.005823 0.006620 −0.002782 −0.448038

0.2 0.3 0.8 0.085745 0.066704 −0.019270 −0.254800
0.4 0.3 0.8 0.074236 0.058458 −0.016938 −0.257123
0.6 0.3 0.8 0.065981 0.052423 −0.015181 −0.258120
0.8 0.3 0.8 0.059627 0.047708 −0.013789 −0.258536
1 0.3 0.8 0.054527 0.043879 −0.012652 −0.258650
3 0.3 0.8 0.030294 0.025118 −0.007072 −0.256390
5 0.3 0.8 0.021249 0.017844 −0.004950 −0.254195
10 0.3 0.8 0.012261 0.010441 −0.002841 −0.251100
15 0.3 0.8 0.008637 0.007400 −0.001995 −0.249545
20 0.3 0.8 0.006671 0.005735 −0.001538 −0.248617

0.2 0.8 0.1 0.047708 0.020039 −0.022637 −0.732127
0.4 0.8 0.1 0.035625 0.013569 −0.016702 −0.759669
0.6 0.8 0.1 0.028700 0.010334 −0.013357 −0.775590
0.8 0.8 0.1 0.024122 0.008365 −0.011170 −0.786306
1 0.8 0.1 0.020844 0.007035 −0.009616 −0.794114
3 0.8 0.1 0.008965 0.002734 −0.004079 −0.823825
5 0.8 0.1 0.005735 0.001700 −0.002599 −0.832436
10 0.8 0.1 0.003022 0.000874 −0.001365 −0.839907
15 0.8 0.1 0.002052 0.000588 −0.000926 −0.842639
20 0.8 0.1 0.001554 0.000443 −0.000701 −0.844056
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Table 6. Means, variances, covariances and correlations for the bivariate NPGA distribution.

φ0 Mean1 Mean2 Var1 Var2 Cov Coef

0.2 0.9 0.2 0.030000 0.080000 −0.031973 −0.652641
0.4 0.9 0.2 0.018000 0.053333 −0.022113 −0.713705
0.6 0.9 0.2 0.012857 0.040000 −0.016892 −0.744877
0.8 0.9 0.2 0.010000 0.032000 −0.013669 −0.764106
1 0.9 0.2 0.008182 0.026667 −0.011480 −0.777230
3 0.9 0.2 0.002903 0.010000 −0.004421 −0.820416
5 0.9 0.2 0.001765 0.006154 −0.002738 −0.830996
10 0.9 0.2 0.000891 0.003137 −0.001404 −0.839489
15 0.9 0.2 0.000596 0.002105 −0.000944 −0.842438
20 0.9 0.2 0.000448 0.001584 −0.000711 −0.843936

0.2 0.4 0.7 0.180000 0.163333 −0.052559 −0.306532
0.4 0.4 0.7 0.144000 0.133636 −0.045743 −0.329747
0.6 0.4 0.7 0.120000 0.113077 −0.039804 −0.341705
0.8 0.4 0.7 0.102857 0.098000 −0.034977 −0.348383
1 0.4 0.7 0.090000 0.086471 −0.031078 −0.352290
3 0.4 0.7 0.040000 0.039730 −0.014237 −0.357122
5 0.4 0.7 0.025714 0.025789 −0.009141 −0.354974
10 0.4 0.7 0.013585 0.013738 −0.004805 −0.351719
15 0.4 0.7 0.009231 0.009363 −0.003256 −0.350212
20 0.4 0.7 0.006990 0.007101 −0.002462 −0.349366

0.2 0.2 0.2 0.128000 0.080000 −0.026476 −0.261637
0.4 0.2 0.2 0.106667 0.053333 −0.022288 −0.295506
0.6 0.2 0.2 0.091429 0.040000 −0.019121 −0.316183
0.8 0.2 0.2 0.080000 0.032000 −0.016708 −0.330219
1 0.2 0.2 0.071111 0.026667 −0.014822 −0.340368
3 0.2 0.2 0.033684 0.010000 −0.006910 −0.376481
5 0.2 0.2 0.022069 0.006154 −0.004494 −0.385587
10 0.2 0.2 0.011852 0.003137 −0.002395 −0.392746
15 0.2 0.2 0.008101 0.002105 −0.001632 −0.395167
20 0.2 0.2 0.006154 0.001584 −0.001238 −0.396378

5. Applications

We obtain the cortical thickness of 41 patients with schizophrenia and 40 healthy
controls from [18]. Structural magnetic resonance imaging scans obtained from the partici-
pants were processed using Freesurfer. Cortical thickness was parcellated by the Destrieux
atlas [19] to provide 148 brain regions and estimated by the standard procedures described
in [20]. Regional Ethics Committees (Nottinghamshire & Derbyshire) approved the study
and all participants provided written informed consent. We aim to analyze the nega-
tive co-varying pairs of regions for investigating the influence of schizophrenia on the
cortical thickness between controls and patients. The negative correlation pairs among
148 dimensions of data based on Pearson correlation coefficients are shown in Figure 3.
The locations of squares marked with red circles are our following examples in subsections.
The descriptions of used data are given in the Supplementary Material.
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(a) (b)

Figure 3. Negative correlations between the thickness of 74 different sulco-gyral cortical units in each
hemisphere of (a) patients; (b) controls. (Each square represent a negative correlation of corresponding
units under the Spearman significance test, where the p-values of black ones are p < 0.01 and gray
ones are 0.01 6 p < 0.05).

5.1. Lateral and Suborbital Sulcus

We take the thickness difference of the horizontal ramus of the anterior segment of
the lateral sulcus (X1) and suborbital sulcus (X2) in the right hemisphere as x = (X1, X2)

>.
Based on the significant, negative correlation between X1 and X2 in patients and a positive
correlation in controls, we fit the patient and control groups data into the four different
distributions, where bivariate PIG and PGA models are derived from [16]. The 95% CIs
and Stds of parameters (Par.) are calculated by bootstrap re-samplings.

The results are shown in Table 7. We note that the bivariate PGA and NPGA distribu-
tions perform better under the model selection criterion. The ML estimates of the mean
parameters in two distributions between the patient and control groups fall on the bound-
ary of the corresponding parameters’ confidence intervals of the other group, respectively.
This implies the different cortical thinness between the two groups. Although the two
regions inhibited each other, their thicknesses in the patients were significantly reduced
compared with the control group. With the weakening of the compensatory behaviors of
the patients’ cortical thickness in these areas, the negatively correlated pair different from
the control group was produced, which is consistent with the clinical manifestations of
changes in the cerebral cortex of schizophrenia.

Table 7. ML estimates (MLEs), stds and CIs for the thickness of X1 and X2 (Section 5.1) between
controls and patients in two distributions with model selection criterion AIC and BIC.

Par.
Controls Patients

MLE CI Std MLE CI Std

Bivariate PIG distribution Bivariate NPIG distribution

θ0 0.4296 [0.2744, 0.7503] 0.1242 0.4837 [0.3158, 0.8444] 0.1370
θ1 0.4664 [0.3821, 0.5473] 0.0416 0.4249 [0.3504, 0.5042] 0.0399
θ2 0.5029 [0.4213, 0.5877] 0.0427 0.4209 [0.3438, 0.4923] 0.0378

AIC = 18.0480; BIC = 23.1147 AIC = 1.4008; BIC = 6.5415

Bivariate PGA distribution Bivariate NPGA distribution

φ0 1.4540 [1.0527, 2.0820] 0.2606 1.5477 [1.2360, 1.8403] 0.1418
φ1 0.5071 [0.4317, 0.5812] 0.0373 0.4294 [0.3659, 0.5023] 0.0359
φ2 0.5161 [0.4454, 0.5881] 0.0383 0.4059 [0.3394, 0.4676] 0.0319

AIC = 2.0847; BIC = 7.1514 AIC = −9.9734; BIC = −4.8327
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To further study the thickness changes in patients, we introduce two common co-
variates for the two groups: wi1, vi1 are the logarithm transformation of the age in years,
and wi2, vi2 are gender (male=0, female=1). Based on (9) and (15), we have the following
regression models:

log

(
µij

1− µij

)
= αj0 + αj1wi1 + αj2wi2 and log

(
φij

1− φij

)
= β j0 + β j1vi1 + β j2vi2,

where i = 1, . . . , n, and j = 1, 2. Table 8 listed the results by fitting the data of patients
and controls with the four corresponding regression models. From the 95% bootstrap CIs,
we know that there are significantly negative relationships between x and log(age) only
in controls. The other difference is focused on the influence of gender to X2, which is
significantly positive to X2 in controls and indicates irrelevant to X2 in patients. Based
on the results, we see that the mutual inhibition between X1 and X2 is mainly due to the
opposite compensation of X1 with gender and X2 with age in patients.

Summarizing the results in Tables 7 and 8, we think the causes of these features, such
as the effect of drug dose on different genders or the variable changes of brain regions with
the durations, still need to be further explored.

Table 8. ML estimates (MLEs), stds and CIs for the thickness of X1 and X2 (Section 5.1) between
controls and patients in two regression models with selection criterion AIC and BIC.

Par.
Controls Patients

MLE CI Std MLE CI Std

Bivariate PIG mean regression Bivariate NPIG mean regression

θ0 0.5588 [0.3899, 1.0599] 0.1789 0.5355 [0.4019, 1.0499] 0.1579
α10 4.9412 [1.7141, 8.1186] 1.6109 2.6217 [−1.0682, 6.7279] 1.8809
α11 −1.5045 [−2.4762, −0.6009] 0.4686 −0.8339 [−2.0480, 0.2186] 0.5428
α12 0.6536 [0.0220, 1.4045] 0.3506 −0.0466 [−0.7188, 0.7475] 0.3654
α20 4.0251 [0.7731, 7.6577] 1.6832 0.4262 [−3.5984, 4.4486] 1.8909
α21 −1.1637 [−2.2148, −0.2369] 0.4891 −0.2414 [−1.3743, 0.8807] 0.5476
α22 0.1555 [−0.4933, 0.8664] 0.3469 0.3114 [−0.5136, 0.9808] 0.3816

AIC = 15.0705; BIC = 26.8926 AIC = 4.6480; BIC = 16.6430

Bivariate PGA mean regression Bivariate NPGA mean regression

φ0 1.5535 [1.1976, 2.2985] 0.2744 1.6295 [1.2301, 2.5405] 0.3288
β10 6.1568 [4.3330, 7.6466] 0.7389 1.4482 [−1.7922, 5.0879] 1.7278
β11 −1.7962 [−2.2712, −1.2685] 0.2251 −0.4871 [−1.5415, 0.4178] 0.4990
β12 0.4822 [0.0032, 1.0710] 0.2857 −0.1693 [−0.7979, 0.4999] 0.3374
β20 4.8569 [3.3534, 6.5856] 0.7110 1.8815 [−1.3326, 4.7364] 1.5787
β21 −1.3976 [−1.9201, −0.9069] 0.2127 −0.6746 [−1.5283, 0.2427] 0.4539
β22 0.2720 [−0.2365, 0.9072] 0.2990 0.3070 [−0.2977, 0.8459] 0.3052

AIC = 4.2536; BIC = 16.0757 AIC = −6.7527; BIC = 5.2424

5.2. Cingulate Gyrus and Lateral Occipito-Temporal Sulcus

In this subsection, we analyze regions in different hemispheres. The left posterior-
dorsal part of the cingulate gyrus (X1) and right lateral occipito-temporal sulcus (X2) are
taken as x = (X1, X2)

>. Based on the significant negative correlation between X1 and X2 in
controls and a positive correlation in patients, we fit the data of patients and controls into
the four distributions, respectively. Similar to Section 5.1, we also consider covariates in
four corresponding mean regression models. The correlation information from the samples
implies that the data are not related to gender, so we only consider one covariate log(age).
The results are summarized in Tables 9 and 10.
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Based on the selection criterion, bivariate PGA and NPGA distributions and models
show better performance. The mean cortical thickness differences between the two groups
are significant. Similar to the results of medical research, the thicknesses in patients
were consistently smaller than those of the controls. In the mean regression models, the
influences of log(age) to x are quite similar in the two groups, which is obviously different
from the results shown in the previous subsection. The slight difference between the two
groups is the influence of log(age) to X2, which is not significant in controls.

Combining the results in the two tables, we find the thickness difference between the
two groups due to the loss of compensatory behaviors in the patients and raise a reasonable
doubt that the duration of patients may cause the loss.

Table 9. ML estimates (MLEs), stds and CIs for the thickness of X1 and X2 (Section 5.2) between
controls and patients in two distributions with model selection criterion AIC and BIC.

Par.
Patients Controls

MLE CI Std MLE CI Std

Bivariate PIG distribution Bivariate NPIG distribution

θ0 0.6307 [0.4001, 1.1844] 0.1903 1.6761 [1.1946, 2.6281] 0.3711
θ1 0.4010 [0.3243, 0.4790] 0.0396 0.5031 [0.4390, 0.5676] 0.0325
θ2 0.4552 [0.3859, 0.5331] 0.0386 0.5215 [0.4614, 0.5843] 0.0320

AIC = 4.1243; BIC = 9.2650 AIC = −29.0117; BIC = −23.9451

Bivariate PGA distribution Bivariate NPGA distribution

φ0 1.9787 [1.5283, 2.8760] 0.3586 3.0165 [2.8431, 3.1387] 0.0711
φ1 0.3967 [0.3249, 0.4524] 0.0334 0.5000 [0.4531, 0.5639] 0.0267
φ2 0.4650 [0.4009, 0.5221] 0.0334 0.5374 [0.4771, 0.5886] 0.0273

AIC = −12.8517; BIC = −7.7109 AIC = −43.0450; BIC = −37.9783

Table 10. ML estimates (MLEs), stds and CIs for the thickness of X1 and X2 (Section 5.2) between
controls and patients in two regression models with selection criterion AIC and BIC.

Par.
Patients Controls

MLE CI Std MLE CI Std

Bivariate PIG mean regression Bivariate NPIG mean regression

θ0 0.7825 [0.5220, 1.3723] 0.2194 1.8085 [1.3285, 2.8110] 0.3876
α10 3.4074 [0.3196, 6.1716] 1.5023 3.2295 [0.3851, 6.4295] 1.5459
α11 −1.0921 [−1.9158, −0.2041] 0.4349 −0.9194 [−1.8404, −0.0923] 0.4459
α20 3.6225 [0.4132, 6.5227] 1.5104 −0.1836 [−2.8446, 2.9085] 1.4255
α21 −1.0925 [−1.9570, −0.1878] 0.4373 0.0806 [−0.8328, 0.8209] 0.4091

AIC = 0.0722; BIC = 8.6400 AIC = −31.1357; BIC = −22.6913

Bivariate PGA mean regression Bivariate NPGA mean regression

φ0 2.1331 [1.6301, 3.0572] 0.3632 3.2817 [2.5071, 4.8420] 0.6160
β10 3.0007 [1.0820, 4.6351] 0.7655 3.2619 [0.4007, 6.0649] 1.4288
β11 −0.9823 [−1.4382, −0.4542] 0.2243 −0.9366 [−1.7524, −0.1013] 0.4134
β20 2.6646 [0.8734, 4.2967] 0.8151 −0.0168 [−2.9359, 2.9117] 1.5148
β21 −0.8051 [−1.3183, −0.3098] 0.2397 0.0486 [−0.8062, 0.8667] 0.4337

AIC = −16.1259; BIC = −7.5581 AIC = −46.5825; BIC = −38.1381

6. Conclusions, Limitations, and Future Research

In this paper, we proposed models that fit bivariate negatively correlated continuous
proportional data for the first time. Based on the equal-dispersed IG distribution and
the gamma distribution with a single parameter, we developed the bivariate NPIG and
NPGA distributions. Models with covariates are also considered by formulating the mean
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regression models based on the two new distributions. Moreover, we provide efficient
methods for parameter estimations of the four different models, respectively. The N-
EM algorithm aided by the gradient descent algorithms based on Jensen’s inequality is
used to overcome the difficulties in calculating ML estimates of parameters. For readers
interested in algorithms, we recommend reading [21,22]. In Section 5, we used two different
criteria to evaluate the models. We study the negative correlation pairs that increase with
the decrease in compensation behaviors, and the information obtained from the main
research is consistent with our previous findings with the same dataset [23]. Moreover, we
propose the hypotheses of the causes of them based on the results, which needs further
medical exploration. According to our analysis of the cortical thickness of schizophrenic
patients and the control group, we verified the compensatory nature of cortical thickness
in schizophrenic patients and found that it was negatively correlated with age. If you
want to use the original data and R code of this article for your research, please contact the
corresponding author by email. In addition, the use of original data should be agreed with
the data collection team.

There are other topics worthy of further research beyond this paper. We only consid-
ered the mean regression models for the proposed distributions and did not consider the
mode regressions as there are no closed forms for their modes. Similarly, there are quantile
regressions. To better interpret the data, we hope to explore the mode regression models
and have already constructed a new model with an explicit expression of the mode. The
construction structure is 1/(1 + Y) similar to (1). Moreover, linear constructions, such as
SR (1), to set models with arbitrary positive or negative correlations are difficult to achieve.
We consider changing independent {Yj}2

j=1 to a bivariate correlated vector y = (Y1, Y2)
>

and then the correlation structure between components based on the construction (1) more
flexible. Moreover, the Copula method may be one feasible way, or mixture models could
be considered by combining PIG with NPIG and PGA with NPGA. Finally, the exact tests
in the bivariate NPIG and NPGA models for one sample and multiple samples are also our
interests. They can help us research the significance of differences.
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culations for ∇G2(ϑ−0|ϑ(t)), A.4: Calculations for ∇`3(φ|Yobs3 ), A.5: Calculations for ∇Q3(φ|φ(t)),
A.6: Calculations for∇`4(ϕ|Yobs4
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occipito-temporal sulcus.
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Appendix A. Some Properties of New Distributions

Similar to [16], when the (MGF) of Y0 and Yj (j = 1, 2) exist, we obtain the expectation
and variance of Xj with the SR (1) as follows:

E(X1) = −
∫ ∞

0

dMY1(−t)
dt

MY0(−t)dt, (A1)

E(X2) = 1 +
∫ ∞

0

dMY2(−t)
dt

MY0(−t)dt, (A2)

Var(X1) =
∫ ∞

0
t ·

d2MY1(−t)
dt2 MY0(−t)dt− [E(X1)]

2 and (A3)

Var(X2) =
∫ ∞

0
t ·

d2MY0(−t)
dt2 MY2(−t)dt− [E(X2)]

2, (A4)

respectively, where MY(t) denotes the MGF of Y. The covariance of X1 and X2 is given by

Cov(X1, X2) = −
∫ ∞

0

∫ ∞

0

dMY1(−t)
dt

·
dMY2(−s)

ds
· ∆(t, s)dt ds, (A5)

where ∆(t, s) = MY0(−t− s)−MY0(−t) ·MY0(−s). It is easy to verify that Cov(X1, X2) 6 0.

Appendix B. The Construction of the N-EM Algorithm

Appendix B.1. ML Estimation of Parameters in the Bivariate NPIG Distribution

We develop the N-EM algorithm by introducing the integral version of Jensen’s
inequality:

H
[∫

X
τ(x) · g(x)dx

]
>
∫
X

H[τ(x)] · g(x)dx, (A6)

where H(·) is a concave function, τ(·) is a real-valued function and g(·) is a pdf defined on
X ⊆ R [7]. Then, we have

log
[∫ ∞

0
h(s|xi, θ)ds

]
= log

[∫ ∞

0

h1(s|xi, θ)

g1(s|xi, θ(t))
· g1(s|xi, θ(t))ds

]

(A6)
>

∫ ∞

0
log

[
h1(s|xi, θ)

g1(s|xi, θ(t))

]
· g1(s|xi, θ(t))ds

= c(t)i1 +
∫ ∞

0
log[h1(s|xi, θ)] · g1(s|xi, θ(t))ds

= c(t)i2 −
1
2

B1(xi, θ(t)) · b1(xi, θ), (A7)

where {c(t)ik }
2
k=1 are constants free from θ. Based on (A7), we derive the surrogate function

Q1(θ|θ(t)) shown in (6). By the MM principle [24–26], given θ(t), the (t + 1)-th approxi-
mation is updated by θ(t+1) = arg maxθ∈R3

+
Q1(θ|θ(t)). Obviously, Q1(θ|θ(t)) minorizes

`1(θ|Yobs1) at θ = θ(t).
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Appendix B.2. ML Estimation of Parameters in the Bivariate NPGA Distribution

To apply the N-EM algorithm, we need to construct the surrogate function Q3(φ|φ(t)).
By using Jensen’s inequality, we obtain

log Γ(a) >
∫ ∞

0
log
[

sa−1e−s

g2(s|a(t))

]
· g2(s|a(t))ds = c(t) + a

Γ′(a(t))
Γ(a(t))

,

where g2(s|a) = sa−1e−s/Γ(a) is the pdf of Gamma(a, 1), c(t) is a constant and Γ′(a(t)) =
dΓ(a)

da

∣∣
a=a(t) . In addition, by the supporting hyperplane inequality, we have

− log Γ(a) > 1− log Γ(a(t))− Γ(a)
Γ(a(t))

.

With the two inequalities we obtained, the surrogate function is

Q3(φ|φ(t)) = n

{(
φ0φ1

1− φ1
+

φ0
φ2

)Γ′
(

φ
(t)
0 φ

(t)
1

1−φ
(t)
1

+
φ
(t)
0

φ
(t)
2

)
Γ
(

φ
(t)
0 φ

(t)
1

1−φ
(t)
1

+
φ
(t)
0

φ
(t)
2

) − Γ(φ0)

Γ(φ(t)
0 )
−

Γ
(

φ0φ1
1−φ1

)
Γ
(

φ
(t)
0 φ

(t)
1

1−φ
(t)
1

)

−
Γ
(

φ0
φ2
− φ0

)
Γ
(

φ
(t)
0

φ
(t)
2

− φ
(t)
0

)}+
φ0φ1

1− φ1

n

∑
i=1

log
(

xi1
1− xi1

)
+

(
φ0
φ2
− φ0

) n

∑
i=1

log
(

1− xi2
xi2

)

−
(

φ0φ1
1− φ1

+
φ0
φ2

) n

∑
i=1

log
(

1 +
xi1

1− xi1
+

1− xi2
xi2

)
+ c(t)3 ,

where c(t)3 is a constant.
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