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Abstract

:

Bivariate continuous negatively correlated proportional data defined in the unit square    ( 0 , 1 )  2   often appear in many different disciplines, such as medical studies, clinical trials and so on. To model this type of data, the paper proposes two new bivariate continuous distributions (i.e., negatively correlated proportional inverse Gaussian (NPIG) and negatively correlated proportional gamma (NPGA) distributions) for the first time and provides corresponding distributional properties. Two mean regression models are further developed for data with covariates. The normalized expectation–maximization (N-EM) algorithm and the gradient descent algorithm are combined to obtain the maximum likelihood estimates of parameters of interest. Simulations studies are conducted, and a data set of cortical thickness for schizophrenia is used to illustrate the proposed methods. According to our analysis between patients and controls of cortical thickness in typical mutual inhibitory brain regions, we verified the compensatory of cortical thickness in patients with schizophrenia and found its negative correlation with age.
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1. Introduction


In many aspects, experimental results or measurements are reported in the form of ratios, scores, proportions or percentages, which is frequently encountered in sociology, psychology, epidemiology and clinical trials. The characteristic of the data is that they are continuously valued within the unit interval   ( 0 , 1 )  ; thus, models focusing on this limited range are worthwhile. Researchers have developed different strategies for modeling such kinds of data. First, the beta distribution and beta regression models have been exhaustively studied by many authors, including [1,2,3]. Kieschnick and McCullough [4] summarized and compared different regression models for proportional data in the open interval. Next, the simplex distribution investigated by Zhang and Qiu [5] can also be utilized to model such continuous proportional data, and they further pointed out the simplex regression model is more robust than the beta model. By mimicking the construction of beta distributions with gamma variates, Lijoiu et al. [6] proposed a so-called normalized inverse Gaussian (IG) distribution by substituting the gamma variates with IG variates, as a new tool for modeling univariate proportional data. Later, Liu et al. [7] renamed it as the proportional inverse Gaussian (PIG) distribution and set up regression models. Due to the diversity and dimension enlarger of data, we need to generalize the univariate continuous proportional models to multivariate cases. Wang and Tu [8] considered the semiparametric tests for multigroup proportional data in a closed interval   [ 0 , 1 ]  .



From the perspective of data structure, the multi-dimensional data limited in unit intervals can be divided into compositional data and multivariate proportional data according to their domains. For compositional data, which often appear in various fields, such as biology, medicine and economics, the summation of all components of data values equals one, also known as structure relative numbers reflecting the composition of objects. Thus, the corresponding models fitting for the compositional data are defined in the open hyperplane    T m  =  x =   (  x 1  , ⋯ ,  x m  )    ⊤    :  x j  > 0 ,  j = 1 , ⋯ , m ,    1    1  m   ⊤    x = 1   . Due to the constraint of     1    1  m   ⊤    x = 1  , it leads to certain negative correlations between any two dimensions of compositional data. One of the well-known distributions is the Dirichlet distribution, which can be regarded as a generalization of the beta distribution to more than two components. It was first used to fit two compositional biological data in [9]. Campbell and Mosimann [10] considered a Dirichlet regression model by linking the parameters to a set of covariates via a polynomial function, and the models with applications to the analysis of psychiatric data are investigated in [11]. By the way, the beta distribution could be regarded as a two-dimensional Dirichlet distribution, and a beta variate X and its complement   1 − X   are also negatively correlated. Other research on related models can be found in recent literature [12,13].



For multivariate proportional data, it appears that each component of the data is valued between 0 and 1 with no direct constraint among components. The corresponding models for this type of data are defined in the unit cubic     ( 0 , 1 )  m  =  x =   (  x 1  , ⋯ ,  x m  )    ⊤    : 0 <  x j  < 1 ,  j = 1 , ⋯ , m    without restriction     1    1  m   ⊤    x = 1  . There are many ways to construct appropriate models, such as beta distribution with copula linking functions. Cepeda-Cuervo et al. [14] defined a bivariate beta regression model from copulas and considered the Bayesian approach, in which the correlation could be positive or negative. Petterle et al. [15] proposed a multivariate generalized linear mixed model for modeling continuous bounded variables in the interval   ( 0 , 1 )  . Sun et al. [16] proposed a linear stochastic representation (SR) to construct multivariate positively correlated continuous models based on IG and gamma distributions, named as multivariate PIG and proportional gamma (PGA) distributions, respectively, which can only fit positively correlated continuous proportional data.



The cortical thickness of schizophrenia data used in [16] shows high correlations and compensation behaviors related to disease severity among different brain regions. Further, we find that a large number of negative covariant region pairs may occur in patients if the changes of compensations are reduced. This indicates the observations of negatively correlated regions in cortical thickness are of great significance for the study of schizophrenia and its prognosis. Motivated by the construction technique in multivariate PIG and PGA distributions, we will propose models to capture the negative correlation among components for multivariate proportional data. To the best of our knowledge, work considering the negative correlation of multivariate proportion data is quite scarce. Here, we focus on the bivariate situations; thus, the proposed models are expected to provide efficient tools in modeling negatively correlated proportional data.



By combining the construction of multivariate PIG/PGA distributions and the negative correlation structure in beta/Dirichlet distributions, we define a new random vector   x =   (  X 1  ,  X 2  )    ⊤    ∈   ( 0 , 1 )  2    via the following SR:


   X 1  =   Y 1    Y 0  +  Y 1      and    X 2  = 1 −   Y 2    Y 0  +  Y 2    =   Y 0    Y 0  +  Y 2    ,  



(1)




where    {  Y j  }   j = 0  2   are independent random variables with the same support   R +  , and each   Y j   can follow any same continuous distribution family but with possibly different parameters. In the following, for each   Y j   (  j = 0 ,  1 ,  2  ), we applied the IG and gamma distributions to construct bivariate negatively correlated PIG (NPIG) and negatively correlated proportional gamma (NPGA) distributions.



The rest of the paper is organized as follows. In Section 2 and Section 3, the bivariate NPIG and NPGA distributions are, respectively, proposed and related distributional properties (e.g., moments, joint densities) are provided. Moreover, the normalized expectation–maximization (N-EM) facilitated by the one-step gradient descent algorithms are established for calculating the maximum likelihood (ML) estimations of parameters of interest. In Section 4, simulations for the proposed methods are performed. A data set on the cortical thickness of schizophrenia is used to illustrate the proposed methods in Section 5. Finally, a discussion is provided in Section 6. Some technical details are put in the Appendix A and Appendix B, and others are shown in the Supplementary Material.




2. Bivariate Negatively Correlated PIG Models


First, we propose a new bivariate NPIG distribution based on equi-dispersed IG distributions and develop the corresponding NPIG mean regression model. The N-EM algorithms for calculating the ML estimators of parameters are also provided.



2.1. Bivariate NPIG Distribution


The IG distribution with location parameter   a    (>0) and shape parameter   b    (>0), denoted by   Y ∼  IG  ( a , b )  , if it has the probability density function (pdf)


   f    I G     ( y | a , b )  =   b  2 π      y  −  3 2    exp  −   b   ( y − a )  2    2  a 2  y    ,  y > 0 .  











According to the results of [17], we have   E ( Y ) = a   and    Var   ( Y )  =  a 3  / b  . By setting   b =  a 2   , the general IG distribution reduces to the equi-dispersed    IG  ( a ,  a 2  )   as its mean equals the variance.



By adopting three independent equi-dispersed IG variates    Y j   ∼ ind   IG   (  μ j  ,  μ j 2  )    with    μ j  > 0   for   j = 0 , 1 , 2  , the random vector defined by (1) is said to follow a bivariate NPIG distribution, denoted by   x =   (  X 1  ,  X 2  )    ⊤    ∼   NPIG  2   ( μ )    with   μ =   (  μ 0  ,  μ 1  ,  μ 2  )    ⊤     . Since the moment generating functions (MGF) of   Y j   is    M  Y j    ( t )  = exp  [  μ j   ( 1 −   1 − 2 t    )  ]   , the expectations, variances and the covariance are computed based on (A1)–(A5) as


     E (  X 1  )    =      μ 1    μ 0  +  μ 1    ≜  θ 1  ∈  ( 0 , 1 )  ,     



(2)






     E (  X 2  )    =      μ 0    μ 0  +  μ 2    ≜  θ 2  ∈  ( 0 , 1 )  ,     



(3)






      Var  (  X j  )    =     μ 0   μ j   e   μ 0  +  μ j    Γ  ( − 2 ,  μ 0  +  μ j  )  ,  j = 1 , 2 ,     










      Cov  (  X 1  ,  X 2  )    =    −  μ 1   μ 2   e   μ 0  +  μ 1  +  μ 2     ∫ 1 ∞   ∫ 1 ∞   e  −  μ 1  t    e  −  μ 2  s     e  −  μ 0     t 2  +  s 2  − 1     −  e  −  μ 0   ( t + s − 1 )      d t  d s ,     








where   Γ  ( − 2 ,  μ 0  +  μ j  )  =  ∫   μ 0  +  μ j   ∞   t  − 3    e  − t    d t   is the incomplete gamma function. According to the numerical experiments in [16], the correlation coefficient is limited in the open interval   ( − 1 , 0 )  . The joint pdf of the bivariate NPIG distribution is derived as


   f     NPIG  2     ( x | μ )  =    ∏  j = 0  2   μ j  exp  (  μ j  )      ( 2 π )   3 2      x 1 3   x 2    ( 1 −  x 2  )  3   ( 1 −  x 1  )    1 2      ∫ 0 ∞  h  ( s | x , μ )   d s ,  x =   (  x 1  ,  x 2  )    ⊤    ∈   ( 0 , 1 )  2  ,  








where


       h  ( s | x , μ )  =  s  −  5 2    exp  −  1 2   s · a  ( x )  +  1 s  · b  ( x , μ )    ,         a  ( x )  = 1 +   x 1   1 −  x 1    +   1 −  x 2    x 2     and   b  ( x , μ )  =  μ 0 2  +   1 −  x 1    x 1    μ 1 2  +   x 2   1 −  x 2     μ 2 2  .     











From the perspective of practice, usually, we would like to have intuitive interpretations of population means. Therefore, we re-parametrize the bivariate NPIG distribution in terms of the parameter vector   θ =   (  θ 0  ,  θ 1  ,  θ 2  )    ⊤      according to (2) and (3) by making the following one-to-one mapping


   μ 0  =  θ 0  ,   μ 1  =  θ 0   θ 1  /  ( 1 −  θ 1  )    and    μ 2  =  θ 0  /  θ 2  −  θ 0  .  











The pdf of the re-parameterized bivariate NPIG distribution, denoted by   x ∼   NPIG  2   ( θ )   , is


   f     NPIG  2     ( x | θ )  =    θ 0 3  ·   θ 1   1 −  θ 1    ·   1 −  θ 2    θ 2   exp   θ 0  +  θ 0  ·   θ 1   1 −  θ 1    +  θ 0  ·   1 −  θ 2    θ 2        ( 2 π )   3 2      x 1 3   x 2    ( 1 −  x 2  )  3   ( 1 −  x 1  )    1 2      ∫ 0 ∞   h 1   ( s | x , θ )   d s ,  








where   x ∈   ( 0 , 1 )  2   ,


      h 1   ( s | x , θ )     =     s  −  5 2    exp  −  1 2   s · a  ( x )  +  1 s  ·  b 1   ( x , θ )      and       










      b 1   ( x , θ )     =     θ 0 2   1 +    ( 1 −  x 1  )   θ 1 2     x 1    ( 1 −  θ 1  )  2    +    x 2    ( 1 −  θ 2  )  2     ( 1 −  x 2  )   θ 2 2     .     



(4)







Figure 1 plots the bivariate NPIG distribution     NPIG  2   ( θ )    with two sets of different values of parameters. We note that a larger value of   θ 0   makes the distribution more concentrated, and it also influences the number of modes. When   θ 0   is large enough, the change in the values of    (  θ 1  ,  θ 2  )    ⊤     affects the location of modes and the skewness of distributions. Thus, it is appropriate to regard   θ 0   as the dispersion parameter and    θ 1  ,  θ 2    as the two location parameters. Sometimes, while the distributions are dense and unimodal, the modes are very different from the expectations.




2.2. ML Estimation of Parameters via the N-EM Algorithm


Let    x 1  , … ,  x n   ∼ iid    NPIG  2   ( θ )    and    Y  obs 1   =   {  x i  }   i = 1  n    denote the observed data, where    x i  =   (  x  i 1   ,  x  i 2   )    ⊤      is the realization of    x i  =   (  X  i 1   ,  X  i 2   )    ⊤     . The log-likelihood function of the parameter vector  θ  is given by


      ℓ 1   ( θ |  Y  obs 1   )     =    3 n log  θ 0  + n  θ 0  + n    θ 0   θ 1    1 −  θ 1    + n log   θ 1   1 −  θ 1    + n    θ 0   ( 1 −  θ 2  )    θ 2   + n log   1 −  θ 2    θ 2       










       +   ∑  i = 1  n  log   ∫ 0 ∞   h 1   ( s |  x i  , θ )   d s  +  c 1  ,     



(5)




where   c 1   is a constant free from the parameter vector  θ . Due to the existence of the intractable integrals in (5), neither the Newton–Raphson nor the Fisher scoring algorithm is attainable in dealing with the above expression. Instead, we adopt the N-EM algorithm, which is composed of three steps:




	N-step:

	
Establish the following normalized density function based on    h 1   ( · |  x i  , θ )    as


   g 1   ( s |  x i  , θ )  ≜    h 1   ( s |  x i  , θ )     ∫ 0 ∞   h 1   ( t |  x i  , θ )   d t   ,  s > 0 ,  








so that    g 1   ( s |  x i  ,  θ  ( t )   )    is also a valid pdf defined on   ( 0 , ∞ )  , where   θ  ( t )    denotes the t-th approximation of   θ ^  .




	E-step:

	
Construct a surrogate Q-function by utilizing the integral version of Jensen’s inequality as


      Q 1   ( θ |  θ  ( t )   )     =    3 n log  θ 0  + n  θ 0  + n    θ 0   θ 1    1 −  θ 1    + n log   θ 1   1 −  θ 1    + n    θ 0   ( 1 −  θ 2  )    θ 2       










       +  n log   1 −  θ 2    θ 2   −  1 2   ∑  i = 1  n    B 1   (  x i  ,  θ  ( t )   )  ·  b 1   (  x i  , θ )   +  c 1  ( t )   ,       



(6)




where


   B 1   (  x i  ,  θ  ( t )   )  ≜  ∫ 0 ∞   s  − 1   ·  g 1   ( s |  x i  ,  θ  ( t )   )   d s ,  











   b 1   ( x , θ )    is defined by (4), and   c 1  ( t )    is a constant not depending on  θ . It can be proven that    Q 1   ( θ |  θ  ( t )   )    satisfies


   Q 1   ( θ |  θ  ( t )   )  ⩽  ℓ 1   ( θ |  Y  obs 1   )    and    Q 1   (  θ  ( t )   |  θ  ( t )   )  =  ℓ 1   (  θ  ( t )   |  Y  obs 1   )  ,  








indicating that it minorizes    ℓ 1   ( θ |  Y  obs 1   )    at   θ =  θ  ( t )    .




	M-step:

	
Maximize    Q 1   ( θ |  θ  ( t )   )    with respect to  θ  and obtain


   θ  ( t + 1 )   = arg  max  θ ∈  R +  ×   ( 0 , 1 )  2     Q 1   ( θ |  θ  ( t )   )  .  

















However, it is difficult to obtain the unique explicit expression of   θ  ( t + 1 )    in the M-step. Instead, it is recommended to separate the estimation procedures into two parts:




	M-step-1:

	
Given   {  θ 1  ( t )   ,  θ 2  ( t )   }  , by solving   ∂  Q 1   ( θ |  θ  ( t )   )  / ∂  θ 0  = 0  , we have the   ( t + 1 )  -th approximation for    θ ^  0   as


    θ 0  ( t + 1 )   =    T 1  ( t )   +      T 1  ( t )    2  + 12 n  T 2  ( t )       2  T 2  ( t )     ,   



(7)




where


     T 1  ( t )     =    n  1 +   θ 1  ( t )    1 −  θ 1  ( t )     +   1 −  θ 2  ( t )     θ 2  ( t )       and         T 2  ( t )     =     ∑  i = 1  n   B 1   (  x i  ,  θ  ( t )   )   1 +    ( 1 −  x  i 1   )    [  θ 1  ( t )   ]  2     x  i 1     [ 1 −  θ 1  ( t )   ]  2    +    x  i 2     [ 1 −  θ 2  ( t )   ]  2     ( 1 −  x  i 2   )    [  θ 2  ( t )   ]  2     .     












	M-step-2:

	
The iteration for    θ  − 0   ≜   (  θ 1  ,  θ 2  )    ⊤      is obtained by adopting the gradient descent algorithm as


   θ  − 0   ( t + 1 )   =  θ  − 0   ( t )   +  s 1  ( t )   ∇  G 1   (  θ  − 0   ( t )   |  θ  ( t )   )  ,  



(8)




where


  ∇  G 1   (  θ  − 0   |  θ  ( t )   )  =   ∂  Q 1   ( θ |  θ  ( t )   )    ∂  θ  − 0     =     ∂  Q 1   ( θ |  θ  ( t )   )    ∂  θ 1    ,    ∂  Q 1   ( θ |  θ  ( t )   )    ∂  θ 2       ⊤    ,  








and   s 1  ( t )    is the step size at the t-th iteration of the algorithm, determined by


    s 1  ( t )   =    |    [  θ  − 0   ( t )   −  θ  − 0   ( t − 1 )   ]    ⊤     [ ∇  G 1   (  θ  − 0   ( t )   |  θ  ( t )   )  − ∇  G 1   (  θ  − 0   ( t − 1 )   |  θ  ( t − 1 )   )  ]   |     ∥ ∇   G 1   (  θ  − 0   ( t )   |  θ  ( t )   )  − ∇  G 1   (  θ  − 0   ( t − 1 )   |  θ  ( t − 1 )   )    ∥  2    .   

















The stopping rule of the above loops under the proposed N-EM embedded with the gradient descent algorithm is controlled by


  max   |   ℓ 1   (  θ  ( t + 1 )   |  Y  obs 1   )  −  ℓ 1   (  θ  ( t )   |  Y  obs 1   )   | ,  ∥   θ  ( t + 1 )   −  θ  ( t )     ∥  ∞   ⩽ δ ,  








where  δ  is a pre-determined precision. The details of constructing the N-EM algorithm are shown in Appendix B.1, and other relevant calculations are given in Supplementary Material A.1 and A.2. Finally, the ML estimates of   (  θ 0  ,  θ 1  ,  θ 2  )   can be obtained by combining (7) and (8) when the algorithm stops.




2.3. Bivariate NPIG Mean Regression Model


We extend the re-parametrized     NPIG  2   ( θ )    distribution to the corresponding regression model for investigating the relationship between the mean vector    (  θ 1  ,  θ 2  )    ⊤     with a set of covariates. The logit link function is adopted for    θ j  ∈  ( 0 , 1 )    with   j = 1 , 2  , then the resulting model can be formulated as


       x i  =   (  X  i 1   ,  X  i 2   )    ⊤      ∼ ind     NPIG  2   (  θ 0  ,  θ  i 1   ,  θ  i 2   )  ,  i = 1 , … , n ,        log     θ  i j    1 −  θ  i j       =  w i   ⊤     α j    or    θ  i j   =   exp (  w i   ⊤     α j  )   1 + exp (  w i   ⊤     α j  )   ,  j = 1 , 2 ,       



(9)




where    w i  =   ( 1 ,  w  i 1   , … ,  w  i q   )    ⊤      is the vector of covariates associated with the i-th subject, and    α j  =   (  α  0 j   ,  α  1 j   , … ,  α  q j   )    ⊤      is the   ( q + 1 )  -vector of unknown regression coefficients. The log-likelihood function of the new parameter vector   ϑ =   (  θ 0  ,  α 1   ⊤    ,  α 2   ⊤    )    ⊤      for the regression model given the observed data    Y  obs 2   =   {  x i  ,  w i  }   i = 1  n    is written as


      ℓ 2   ( ϑ |  Y  obs 2   )     =    3 n log  θ 0  + n  θ 0  +  ∑  i = 1  n    θ 0  exp  (  w i   ⊤     α 1  )  +  w i   ⊤     α 1  +  θ 0  exp  ( −  w i   ⊤     α 2  )  −  w i   ⊤     α 2           +   ∑  i = 1  n  log   ∫ 0 ∞   h 2   ( s |  x i  ,  w i  , ϑ )   d s  +  c 2  ,     








where   c 2   is a constant free from the parameter vector  ϑ ,


      h 2   ( s |  x i  ,  w i  , ϑ )     =     s  −  5 2    exp  −  1 2   s · a  (  x i  )  +  1 s  ·  b 2   (  x i  ,  w i  , ϑ )      and          b 2   (  x i  ,  w i  , ϑ )     =     θ 0 2  +    θ 0 2   ( 1 −  x  i 1   )    x  i 1    exp  ( 2  w i   ⊤     α 1  )  +    θ 0 2   x  i 2     1 −  x  i 2     exp  ( − 2  w i   ⊤     α 2  )  .     











Similar to the construction of    Q 1   ( θ |  θ  ( t )   )   , we can obtain


      Q 2   ( ϑ |  ϑ  ( t )   )     =    3 n log  θ 0  + n  θ 0  +  ∑  i = 1  n    θ 0  exp  (  w i   ⊤     α 1  )  +  w i   ⊤     α 1  +  θ 0  exp  ( −  w i   ⊤     α 2  )  −  w i   ⊤     α 2           −   1 2   ∑  i = 1  n    B 2   (  x i  ,  w i  ,  ϑ  ( t )   )  ·  b 2   (  x i  ,  w i  , ϑ )   +  c 2  ( t )   ,     








where   c 2  ( t )    is a constant,   ϑ  ( t )    denotes the t-th approximation of the ML estimator   ϑ ^   and


   B 2   (  x i  ,  w i  ,  ϑ  ( t )   )  ≜  ∫ 0 ∞     s  − 1   ·  h 2   ( s |  x i  ,  w i  ,  ϑ  ( t )   )     ∫ 0 ∞   h 2   ( t |  x i  ,  w i  ,  ϑ  ( t )   )   d t    d s .  











The procedure of obtaining the ML estimators of  ϑ  is similar to that in Section 2.2. First, for given   {  α 1  ( t )   ,  α 2  ( t )   }  , we set   ∂  Q 2   ( ϑ |  ϑ  ( t )   )  / ∂  θ 0  = 0   and find the positive root to obtain the   ( t + 1 )  -th approximation for    θ ^  0  , which is given by


   θ 0  ( t + 1 )   =    T 3  ( t )   +      T 3  ( t )    2  + 12 n  T 4  ( t )       2  T 4  ( t )      



(10)




with


     T 3  ( t )     =    n +  ∑  i = 1  n   exp  (  w i   ⊤     α 1  ( t )   )  + exp  ( −  w i   ⊤     α 2  ( t )   )     and         T 4  ( t )     =     ∑  i = 1  n   B 2   (  x i  ,  w i  ,  ϑ  ( t )   )   1 +   1 −  x  i 1     x  i 1    exp  ( 2  w i   ⊤     α 1  ( t )   )  +   x  i 2    1 −  x  i 2     exp  ( − 2  w i   ⊤     α 2  ( t )   )   .     











Moreover, to obtain the ML estimator of    ϑ  − 0   =   (  α 1   ⊤    ,  α 2   ⊤    )    ⊤     , we first define


  ∇  G 2   (  ϑ  − 0   |  ϑ  ( t )   )  ≜   ∂  Q 2   ( ϑ |  ϑ  ( t )   )    ∂  ϑ  − 0     =     ∂  Q 2   ( ϑ |  ϑ  ( t )   )    ∂  α 1   ⊤      ,    ∂  Q 2   ( ϑ |  ϑ  ( t )   )    ∂  α 2   ⊤         ⊤    .  











Using the one-step gradient descent algorithm, we have the iteration


   ϑ  − 0   ( t + 1 )   =  ϑ  − 0   ( t )   +  s 2  ( t )   ∇  G 2   (  ϑ  − 0   ( t )   |  ϑ  ( t )   )  ,  



(11)




where the step size   s 2  ( t )    is defined by


    s 2  ( t )   =    |    [  ϑ  − 0   ( t )   −  ϑ  − 0   ( t − 1 )   ]    ⊤     [ ∇  G 2   (  ϑ  − 0   ( t )   |  ϑ  ( t )   )  − ∇  G 2   (  ϑ  − 0   ( t − 1 )   |  ϑ  ( t − 1 )   )  ]   |     ∥ ∇   G 2   (  ϑ  − 0   ( t )   |  ϑ  ( t )   )  − ∇  G 2   (  ϑ  − 0   ( t − 1 )   |  ϑ  ( t − 1 )   )    ∥  2    .   











By combining (10) with (11), we could obtain the ML estimates of  ϑ .





3. Bivariate Negatively Correlated PGA Models


To provide other candidates for flexibly modeling the above-mentioned negatively correlated continuous proportional data, in this section, we propose a new bivariate NPGA distribution based on equi-dispersed gamma distributions (see the first paragraph in Section 3.1) and develop a bivariate NPGA mean regression model.



3.1. Bivariate NPGA Distribution


Let   Y ∼  Gamma  ( a , 1 )  , then it is an equi-dispersed gamma distribution with   E ( Y ) =  Var  ( Y )  , and its pdf is    f   GA    ( y | a )  =  y  a − 1    e  − y   / Γ  ( a )   ,   y > 0  . Let     {  Y j  }   j = 0  2   ∼ ind   Gamma   (  λ j  , 1 )    with    λ j  > 0   for   j = 0 , 1 , 2   be three independent equi-dispersed gamma variates, then the random vector defined by (1) is said to follow a bivariate NPGA distribution, denoted by   x =   (  X 1  ,  X 2  )    ⊤    ∼   NPGA  2   ( λ )    with   λ =   (  λ 0  ,  λ 1  ,  λ 2  )    ⊤     . The MGF of   Y j  , in this case, is    M  Y j    ( t )  =   ( 1 − t )   −  λ j     , with   t < 1  , from (A1)–(A5), we have


     E (  X 1  )    =      λ 1    λ 0  +  λ 1    ≜  ϕ 1  ∈  ( 0 , 1 )  ,     



(12)






     E (  X 2  )    =      λ 0    λ 0  +  λ 2    ≜  ϕ 2  ∈  ( 0 , 1 )  ,     



(13)






      Var  (  X j  )    =       λ 0   λ j      (  λ 0  +  λ j  )  2   ( 1 +  λ 0  +  λ j  )    ,  j = 1 , 2 ,     










      Cov  (  X 1  ,  X 2  )    =    −   λ 1   λ 2   ∫  1  ∞   ∫  1  ∞   t  −  λ 1  − 1    s  −  λ 2  − 1      ( t + s − 1 )   −  λ 0    −   ( t s )   −  λ 0      d t  d s .     











The correlation coefficient takes values within   ( − 1 , 0 )   as well. The pdf of   x ∼   NPGA  2   ( λ )    is


   f     NPGA  2     ( x | λ )  =    x 1   λ 1  − 1     ( 1 −  x 2  )    λ 2  − 1   Γ  (  λ +  )     x 2   λ 2  + 1     ( 1 −  x 1  )    λ 1  + 1    ∏  j = 0  2  Γ  (  λ j  )      1 +   x 1   1 −  x 1    +   1 −  x 2    x 2     −  λ +    ,  








where   x =   (  x 1  ,  x 2  )    ⊤    ∈   ( 0 , 1 )  2    is the realization of  x  and    λ +  =  ∑  j = 0  2   λ j   .



For the purpose of modeling the population means in (12) and (13) directly, we also make a one-to-one transformation among parameter vectors   ϕ =   (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )    ⊤      and  λ  by


   λ 0  =  ϕ 0  ,   λ 1  =  ϕ 0   ϕ 1  /  ( 1 −  ϕ 1  )    and    λ 2  =  ϕ 0  /  ϕ 2  −  ϕ 0  .  











The pdf of re-parameterized bivariate NPGA distribution, denoted by   x ∼   NPGA  2   ( ϕ )   , is


      f     NPGA  2     ( x | ϕ )     =      x 1     ϕ 0   ϕ 1    1 −  ϕ 1    − 1     ( 1 −  x 2  )     ϕ 0   ϕ 2   −  ϕ 0  − 1   Γ     ϕ 0   ϕ 1    1 −  ϕ 1    +   ϕ 0   ϕ 2       x 2    ϕ 0   ϕ 2   −  ϕ 0  + 1     ( 1 −  x 1  )      ϕ 0   ϕ 1    1 −  ϕ 1    + 1   Γ  (  ϕ 0  )  Γ     ϕ 0   ϕ 1    1 −  ϕ 1     Γ    ϕ 0   ϕ 2   −  ϕ 0            ×    1 +   x 1   1 −  x 1    +   1 −  x 2    x 2     −    ϕ 0   ϕ 1    1 −  ϕ 1    −   ϕ 0   ϕ 2     .     











Figure 2 plots the bivariate NPGA distribution     NPGA  2   ( ϕ )    with two sets of different values of parameters. Similar to those findings in Figure 1,   ϕ 0   is regarded as the dispersion parameter and    (  ϕ 1  ,  ϕ 2  )    ⊤     is the location vector.




3.2. ML Estimation of Parameters via the Gradient Descent Algorithm


Let    x 1  , … ,  x n   ∼ iid    NPGA  2   ( ϕ )    and    Y  obs 3   =   {  x i  }   i = 1  n    denote the observed data, where    x i  =   (  x  i 1   ,  x  i 2   )    ⊤      is the realization of    x i  =   (  X  i 1   ,  X  i 2   )    ⊤     . The log-likelihood function of the parameter vector  ϕ  is given by


      ℓ 3   ( ϕ |  Y  obs 3   )     =    n  log Γ     ϕ 0   ϕ 1    1 −  ϕ 1    +   ϕ 0   ϕ 2    − log Γ  (  ϕ 0  )  − log Γ     ϕ 0   ϕ 1    1 −  ϕ 1     − log Γ    ϕ 0   ϕ 2   −  ϕ 0            +     ϕ 0   ϕ 1    1 −  ϕ 1     ∑  i = 1  n  log   x  i 1    1 −  x  i 1     +    ϕ 0   ϕ 2   −  ϕ 0    ∑  i = 1  n  log   1 −  x  i 2     x  i 2            −      ϕ 0   ϕ 1    1 −  ϕ 1    +   ϕ 0   ϕ 2     ∑  i = 1  n  log  1 +   x  i 1    1 −  x  i 1     +   1 −  x  i 2     x  i 2     +  c 3  ,     








where   c 3   is a constant free from the parameter vector  ϕ . Then, we adopt the gradient descent algorithm directly to find the ML estimator   ϕ ^   of  ϕ  by setting


  ∇  ℓ 3   ( ϕ |  Y  obs 3   )  ≜   ∂  ℓ 3   ( ϕ |  Y  obs 3   )    ∂ ϕ   =     ∂  ℓ 3   ( ϕ |  Y  obs 3   )    ∂  ϕ 0    ,    ∂  ℓ 3   ( ϕ |  Y  obs 3   )    ∂  ϕ 1    ,    ∂  ℓ 3   ( ϕ |  Y  obs 3   )    ∂  ϕ 2       ⊤    .  











Thus, the   ( t + 1 )  -th estimation is given by


   ϕ  ( t + 1 )   =  ϕ  ( t )   +  s 3  ( t )   ∇  ℓ 3   (  ϕ  ( t )   |  Y  obs 3   )  ,  



(14)




where the step size at the t-th iteration is


   s 3  ( t )   =    |    [  ϕ  ( t )   −  ϕ  ( t − 1 )   ]    ⊤     [ ∇  ℓ 3   (  ϕ  ( t )   |  Y  obs 3   )  − ∇  ℓ 3   (  ϕ  ( t − 1 )   |  Y  obs 3   )  ]   |     ∥ ∇   ℓ 3   (  ϕ  ( t )   |  Y  obs 3   )  − ∇  ℓ 3   (  ϕ  ( t − 1 )   |  Y  obs 3   )    ∥  2    .  











We also provide another method in Appendix B.2 with the N-EM algorithm applied, which results in the same iteration shown in (14).




3.3. Bivariate NPGA Mean Regression Model


The bivariate NPGA mean regression model is formulated in a similar way as


       x i  =   (  X  i 1   ,  X  i 2   )    ⊤      ∼ ind     NPGA  2   (  ϕ 0  ,  ϕ  i 1   ,  ϕ  i 2   )  ,  i = 1 , … , n ,        log     ϕ  i j    1 −  ϕ  i j       =  v i   ⊤     β j  ,   or    ϕ  i j   =   exp (  v i   ⊤     β j  )   1 + exp (  v i   ⊤     β j  )   ,  j = 1 , 2 ,       



(15)




where    v i  =   ( 1 ,  v  i 1   , … ,  v  i q   )    ⊤      is the vector of covariates associated with the i-th subject, and    β j  =   (  β  0 j   ,  β  1 j   , … ,  β  q j   )    ⊤      is the   ( q + 1 )  -vector of unknown regression coefficients. The gradient descent algorithm still works for finding the ML estimators of   φ =   (  ϕ 0  ,  β 1   ⊤    ,  β 2   ⊤    )    ⊤      in the NPGA mean regression model, which is similar to that stated in Section 3.2.





4. Simulation Experiments


For all above bivariate NPIG- and NPGA-related models, although no explicit expressions for the ML estimators of parameters, the bootstrap method is an efficient tool to approximately calculate the standard errors and the confidence intervals (CIs) for them, while the details of the bootstrap procedure are omitted due to its routines. Based on it, we conduct several numerical experiments in the section to investigate the performances of the above-proposed estimation methods for the bivariate NPIG and NPGA distributions with their corresponding mean regression models. We use R software to design parallel computing on 64 CPUs of the windows system for the time-consuming simulations. The impacts of other computational aspects on the simulations are not considered.



4.1. Experiment for NPIG Models


Firstly, for the bivariate NPIG distribution, we choose the parameter configurations as follows: sample size is   n = 30 , 50 , 100 , 300  ; true values of   (  θ 0  ,  θ 1  ,  θ 2  )   are set as   ( 1.2 , 0.3 , 0.8 )  ,   ( 0.5 , 0.5 , 0.6 )   and   ( 0.2 , 0.8 , 0.1 )  , corresponding to a low, moderate and high correlations. In the regression model, the corresponding sample size is   n = 50 , 200 , 350 , 500  ;    θ 0  = 0.6  ,    α 1  =   ( 1.2 , 0.8 , − 0.5 , 0.5 )    ⊤     ,    α 2  =   ( 1.5 , − 2 , 0.7 , − 0.5 )    ⊤     ; the covariates are    w i  =   ( 1 ,  w  i 1   ,  w  i 2   ,  w  i 3   )    ⊤     , with    w  i 1    ∼ iid   Unif   ( − 1 , 1 )   ,   w  i 2    is randomly chosen from   { 0.2 , 0.4 , 0.6 , 0.8 }   and    w  i 3    ∼ iid   Poisson   ( 3 )    for   i = 1 , … , n  . For a given sample size n, experimental data    {  x i  }   i = 1  n   are i.i.d. sampled from     NPIG  2   (  θ 0  ,  θ 1  ,  θ 2  )    or each   x i   is generated from     NPIG  2   (  θ 0  ,  θ  i 1   ,  θ  i 2   )    according to the regression model specified by (9), where SR (1) based on three IG variates can facilitate the sample generation. Parameters of interest are   (  θ 0  ,  θ 1  ,  θ 2  )   and   (  θ 0  ,  α 1  ,  α 2  )  , respectively.



For each generated sample group, parameters are estimated by the proposed N-EM embedded with the gradient descent algorithm, and the whole process is repeated K times. The value of K is chosen as 1000 and 500 for the distribution and regression model, respectively. To better express the quantitative values on evaluating the estimation accuracy, we use a general symbol  ψ  to denote each component of parameters to be estimated, and   ψ 0   is its true value. The obtained ML estimate for  ψ  in each loop is denoted by    ψ ^   ( k )   , and the number of iterations is recorded as   t k   to the converged algorithm, where   k = 1 , … , K  .



The averaged ML estimate (Ave-MLE), standard deviation (Std) and mean squared error (MSE) for the estimator   ψ ^   and the averaged iterative number (it.no) are, respectively, computed as


      Ave-MLE  (  ψ ^  )    =     1 K   ∑  k = 1  K    ψ ^   ( k )   ,        Std  (  ψ ^  )    =       1  K − 1    ∑  k = 1  K      ψ ^   ( k )   −  1 K   ∑  k = 1  K    ψ ^   ( k )    2    ,        MSE  (  ψ ^  )    =       1 K   ∑  k = 1  K    ψ ^   ( k )   −  ψ 0   2  +  1  K − 1    ∑  k = 1  K      ψ ^   ( k )   −  1 K   ∑  k = 1  K    ψ ^   ( k )    2  ,       it.no    =     1 K   ∑  k = 1  K   t k  .     











The simulated results for   (  θ 0  ,  θ 1  ,  θ 2  )   of the bivariate NPIG distribution are summarized in Table 1. The simulated results for   (  θ 0  ,  α 1  ,  α 2  )   of the bivariate NPIG regression model are listed in Table 2. From the results, it is easy to find that the estimates of the parameters are well provided and are much closer to their true values as the sample size increases; more specifically, the estimation stability and accuracy are both improved, as indicated by the decreasing values of Stds and MSEs. The population correlation coefficient and the averaged estimated value calculated with the ML estimates of parameters are also presented, which shows the relationship is completely depicted.




4.2. Experiments for NPGA Models


For the bivariate NPGA distribution, the parameter settings are similar with those for the NPIG models. The choice of sample size n is the same. True values of   (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )   are chosen as   ( 2 , 0.9 , 0.2 )   and   ( 5 , 0.4 , 0.6 )   for the NPGA distribution. In the NPGA regression model,    ϕ 0  = 1.2  ,    β 1  =   ( − 0.9 , 1.4 , − 0.5 )    ⊤     ,    β 2  =   ( 0.5 , − 0.2 , − 0.8 )    ⊤     ; the covariates are    v i  =   ( 1 ,  v  i 1   ,  v  i 2   )    ⊤     , with    v  i 1    ∼ iid   Unif   ( 0 , 1 )   , and   v  i 2    is randomly sampled from   { − 0.5 , − 0.2 , 0.3 , 0.6 }   for   i = 1 , … , n  . Data    {  x i  }   i = 1  n   are generated from     NPGA  2   (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )    or     NPGA  2   (  ϕ 0  ,  ϕ  i 1   ,  ϕ  i 2   )    according to the model specified by (15). To assess the estimation performances on parameters of interest   (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )   and   (  ϕ 0  ,  β 1  ,  β 2  )  , we still adopt the measurements introduced in Section 4.1 for comparisons.



Table 3 and Table 4 summarize the results of simulation studies for the bivariate NPGA distribution and the corresponding mean regression model. The averaged ML estimates are provided, as well as the Stds and MSEs of the estimators. It is also observed that the estimation performance is satisfactory. The values of iterative numbers indicate that the computational efficiency and convergence rate are good. All averaged estimated values of the correlation calculated with the ML estimates of parameters are close to the population correlation coefficients.




4.3. Numerical Study on Means, Variances, Covariances and Correlations


In this subsection, we provide some numerical studies on the means, variances, covariances and correlations. For the bivariate NPIG distribution, we choose the values of mean parameters as    (  θ 1  ,  θ 2  )  =  ( 0.5 , 0.6 )  ,  ( 0.3 , 0.8 )  ,  ( 0.8 , 0.1 )   , combined with the value of   θ 0   being   0.2 , 0.4 , 0.6 , 0.8 , 1 , 3 , 5 , 10 , 15   and 20, respectively. The expectations, variances for two components, the covariances, and the correlation coefficients between them are presented in Table 5. For the bivariate NPGA distribution, we choose the values of the mean parameters as    (  ϕ 1  ,  ϕ 2  )  =  ( 0.9 , 0.2 )  ,  ( 0.4 , 0.7 )  ,  ( 0.2 , 0.2 )   , combined with the value of   ϕ 0   being the same as that of   θ 0  . The corresponding properties are summarized in Table 6. Note that the expectation for each component is just   θ i   or   ϕ i   for   i = 1 , 2   in the two distributions. “Mean1” indicates the expectation for the first component, and “Mean2” indicates the expectation for the second component. Variances and covariances are computed based on the derived formulae in the Section 2.1 and Section 3.1, respectively, and “Var1” indicates the variance for the first component, “Var2” indicates the variance for the second component and “Cov” indicates the covariance between the two components. The correlation coefficient indicated by “Coef” is calculated according to its definition.





5. Applications


We obtain the cortical thickness of 41 patients with schizophrenia and 40 healthy controls from [18]. Structural magnetic resonance imaging scans obtained from the participants were processed using Freesurfer. Cortical thickness was parcellated by the Destrieux atlas [19] to provide 148 brain regions and estimated by the standard procedures described in [20]. Regional Ethics Committees (Nottinghamshire & Derbyshire) approved the study and all participants provided written informed consent. We aim to analyze the negative co-varying pairs of regions for investigating the influence of schizophrenia on the cortical thickness between controls and patients. The negative correlation pairs among 148 dimensions of data based on Pearson correlation coefficients are shown in Figure 3. The locations of squares marked with red circles are our following examples in subsections. The descriptions of used data are given in the Supplementary Material.



5.1. Lateral and Suborbital Sulcus


We take the thickness difference of the horizontal ramus of the anterior segment of the lateral sulcus (  X 1  ) and suborbital sulcus (  X 2  ) in the right hemisphere as   x =   (  X 1  ,  X 2  )    ⊤     . Based on the significant, negative correlation between   X 1   and   X 2   in patients and a positive correlation in controls, we fit the patient and control groups data into the four different distributions, where bivariate PIG and PGA models are derived from [16]. The   95 %   CIs and Stds of parameters (Par.) are calculated by bootstrap re-samplings.



The results are shown in Table 7. We note that the bivariate PGA and NPGA distributions perform better under the model selection criterion. The ML estimates of the mean parameters in two distributions between the patient and control groups fall on the boundary of the corresponding parameters’ confidence intervals of the other group, respectively. This implies the different cortical thinness between the two groups. Although the two regions inhibited each other, their thicknesses in the patients were significantly reduced compared with the control group. With the weakening of the compensatory behaviors of the patients’ cortical thickness in these areas, the negatively correlated pair different from the control group was produced, which is consistent with the clinical manifestations of changes in the cerebral cortex of schizophrenia.



To further study the thickness changes in patients, we introduce two common covariates for the two groups:   w  i 1   ,   v  i 1    are the logarithm transformation of the age in years, and   w  i 2   ,   v  i 2    are gender (male=0, female=1). Based on (9) and (15), we have the following regression models:


  log     μ  i j    1 −  μ  i j       =  α  j 0   +  α  j 1    w  i 1   +  α  j 2    w  i 2     and   log     ϕ  i j    1 −  ϕ  i j       =  β  j 0   +  β  j 1    v  i 1   +  β  j 2    v  i 2   ,  








where   i = 1 , … , n  , and   j = 1 , 2  . Table 8 listed the results by fitting the data of patients and controls with the four corresponding regression models. From the   95 %   bootstrap CIs, we know that there are significantly negative relationships between  x  and log(age) only in controls. The other difference is focused on the influence of gender to   X 2  , which is significantly positive to   X 2   in controls and indicates irrelevant to   X 2   in patients. Based on the results, we see that the mutual inhibition between   X 1   and   X 2   is mainly due to the opposite compensation of   X 1   with gender and   X 2   with age in patients.



Summarizing the results in Table 7 and Table 8, we think the causes of these features, such as the effect of drug dose on different genders or the variable changes of brain regions with the durations, still need to be further explored.




5.2. Cingulate Gyrus and Lateral Occipito-Temporal Sulcus


In this subsection, we analyze regions in different hemispheres. The left posterior-dorsal part of the cingulate gyrus (  X 1  ) and right lateral occipito-temporal sulcus (  X 2  ) are taken as   x =   (  X 1  ,  X 2  )    ⊤     . Based on the significant negative correlation between   X 1   and   X 2   in controls and a positive correlation in patients, we fit the data of patients and controls into the four distributions, respectively. Similar to Section 5.1, we also consider covariates in four corresponding mean regression models. The correlation information from the samples implies that the data are not related to gender, so we only consider one covariate log(age). The results are summarized in Table 9 and Table 10.



Based on the selection criterion, bivariate PGA and NPGA distributions and models show better performance. The mean cortical thickness differences between the two groups are significant. Similar to the results of medical research, the thicknesses in patients were consistently smaller than those of the controls. In the mean regression models, the influences of log(age) to  x  are quite similar in the two groups, which is obviously different from the results shown in the previous subsection. The slight difference between the two groups is the influence of log(age) to   X 2  , which is not significant in controls.



Combining the results in the two tables, we find the thickness difference between the two groups due to the loss of compensatory behaviors in the patients and raise a reasonable doubt that the duration of patients may cause the loss.





6. Conclusions, Limitations, and Future Research


In this paper, we proposed models that fit bivariate negatively correlated continuous proportional data for the first time. Based on the equal-dispersed IG distribution and the gamma distribution with a single parameter, we developed the bivariate NPIG and NPGA distributions. Models with covariates are also considered by formulating the mean regression models based on the two new distributions. Moreover, we provide efficient methods for parameter estimations of the four different models, respectively. The N-EM algorithm aided by the gradient descent algorithms based on Jensen’s inequality is used to overcome the difficulties in calculating ML estimates of parameters. For readers interested in algorithms, we recommend reading [21,22]. In Section 5, we used two different criteria to evaluate the models. We study the negative correlation pairs that increase with the decrease in compensation behaviors, and the information obtained from the main research is consistent with our previous findings with the same dataset [23]. Moreover, we propose the hypotheses of the causes of them based on the results, which needs further medical exploration. According to our analysis of the cortical thickness of schizophrenic patients and the control group, we verified the compensatory nature of cortical thickness in schizophrenic patients and found that it was negatively correlated with age. If you want to use the original data and R code of this article for your research, please contact the corresponding author by email. In addition, the use of original data should be agreed with the data collection team.



There are other topics worthy of further research beyond this paper. We only considered the mean regression models for the proposed distributions and did not consider the mode regressions as there are no closed forms for their modes. Similarly, there are quantile regressions. To better interpret the data, we hope to explore the mode regression models and have already constructed a new model with an explicit expression of the mode. The construction structure is   1 / ( 1 + Y )   similar to (1). Moreover, linear constructions, such as SR (1), to set models with arbitrary positive or negative correlations are difficult to achieve. We consider changing independent    {  Y j  }   j = 1  2   to a bivariate correlated vector   y =   (  Y 1  ,  Y 2  )    ⊤      and then the correlation structure between components based on the construction (1) more flexible. Moreover, the Copula method may be one feasible way, or mixture models could be considered by combining PIG with NPIG and PGA with NPGA. Finally, the exact tests in the bivariate NPIG and NPGA models for one sample and multiple samples are also our interests. They can help us research the significance of differences.
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Appendix A. Some Properties of New Distributions[


Similar to [16], when the (MGF) of   Y 0   and   Y j   (  j = 1 ,  2  ) exist, we obtain the expectation and variance of   X j   with the SR (1) as follows:


     E (  X 1  )    =    −  ∫ 0 ∞     d  M  Y 1    ( − t )     d t    M  Y 0    ( − t )   d t ,     



(A1)






     E (  X 2  )    =    1 +  ∫ 0 ∞     d  M  Y 2    ( − t )     d t    M  Y 0    ( − t )   d t ,     



(A2)






      Var  (  X 1  )    =     ∫ 0 ∞  t ·     d 2   M  Y 1    ( − t )     d  t 2     M  Y 0    ( − t )   d t −   [ E  (  X 1  )  ]  2    and       



(A3)






      Var  (  X 2  )    =     ∫ 0 ∞  t ·     d 2   M  Y 0    ( − t )     d  t 2     M  Y 2    ( − t )   d t −   [ E  (  X 2  )  ]  2  ,     



(A4)




respectively, where    M Y   ( t )    denotes the MGF of Y. The covariance of   X 1   and   X 2   is given by


   Cov   (  X 1  ,  X 2  )  = −  ∫ 0 ∞   ∫ 0 ∞     d  M  Y 1    ( − t )     d t   ·    d  M  Y 2    ( − s )     d s   · Δ  ( t , s )   d t  d s ,  



(A5)




where   Δ  ( t , s )  =  M  Y 0    ( − t − s )  −  M  Y 0    ( − t )  ·  M  Y 0    ( − s )   . It is easy to verify that    Cov  (  X 1  ,  X 2  ) ⩽ 0  .




Appendix B. The Construction of the N-EM Algorithm


Appendix B.1. ML Estimation of Parameters in the Bivariate NPIG Distribution


We develop the N-EM algorithm by introducing the integral version of Jensen’s inequality:


  H   ∫ X  τ  ( x )  · g  ( x )   d x  ⩾  ∫ X  H  [ τ  ( x )  ]  · g  ( x )   d x ,  



(A6)




where   H ( · )   is a concave function,   τ ( · )   is a real-valued function and   g ( · )   is a pdf defined on   X ⊆ R   [7]. Then, we have


     log   ∫ 0 ∞  h  ( s |  x i  , θ )   d s     =    log   ∫ 0 ∞     h 1   ( s |  x i  , θ )     g 1   ( s |  x i  ,  θ  ( t )   )    ·  g 1   ( s |  x i  ,  θ  ( t )   )   d s      










      ⩾  ( A6 )       ∫ 0 ∞  log     h 1   ( s |  x i  , θ )     g 1   ( s |  x i  ,  θ  ( t )   )     ·  g 1   ( s |  x i  ,  θ  ( t )   )   d s     










     =     c  i 1   ( t )   +  ∫ 0 ∞  log  [  h 1   ( s |  x i  , θ )  ]  ·  g 1   ( s |  x i  ,  θ  ( t )   )   d s     










     =     c  i 2   ( t )   −  1 2   B 1   (  x i  ,  θ  ( t )   )  ·  b 1   (  x i  , θ )  ,     



(A7)




where    {  c  i k   ( t )   }   k = 1  2   are constants free from  θ . Based on (A7), we derive the surrogate function    Q 1   ( θ |  θ  ( t )   )    shown in (6). By the MM principle [24,25,26], given   θ  ( t )   , the   ( t + 1 )  -th approximation is updated by    θ  ( t + 1 )   = arg  max  θ ∈  R + 3     Q 1   ( θ |  θ  ( t )   )   . Obviously,    Q 1   ( θ |  θ  ( t )   )    minorizes    ℓ 1   ( θ |  Y  obs 1   )    at   θ =  θ  ( t )    .




Appendix B.2. ML Estimation of Parameters in the Bivariate NPGA Distribution


To apply the N-EM algorithm, we need to construct the surrogate function    Q 3   ( ϕ |  ϕ  ( t )   )   . By using Jensen’s inequality, we obtain


  log Γ  ( a )  ⩾  ∫  0  ∞  log     s  a − 1    e  − s      g 2   ( s |  a  ( t )   )     ·  g 2   ( s |  a  ( t )   )   d s =  c  ( t )   + a    Γ ′   (  a  ( t )   )    Γ (  a  ( t )   )   ,  








where    g 2   ( s | a )  =  s  a − 1    e  − s   / Γ  ( a )    is the pdf of    Gamma  ( a , 1 )  ,   c  ( t )    is a constant and    Γ ′   (  a  ( t )   )  =   d Γ ( a )   d a    |  a =  a  ( t )      . In addition, by the supporting hyperplane inequality, we have


  − log Γ  ( a )  ⩾ 1 − log Γ  (  a  ( t )   )  −   Γ ( a )   Γ (  a  ( t )   )   .  











With the two inequalities we obtained, the surrogate function is


      Q 3   ( ϕ |  ϕ  ( t )   )     =    n {     ϕ 0   ϕ 1    1 −  ϕ 1    +   ϕ 0   ϕ 2       Γ ′      ϕ 0  ( t )    ϕ 1  ( t )     1 −  ϕ 1  ( t )     +   ϕ 0  ( t )    ϕ 2  ( t )       Γ     ϕ 0  ( t )    ϕ 1  ( t )     1 −  ϕ 1  ( t )     +   ϕ 0  ( t )    ϕ 2  ( t )       −   Γ (  ϕ 0  )   Γ (  ϕ 0  ( t )   )   −   Γ     ϕ 0   ϕ 1    1 −  ϕ 1       Γ     ϕ 0  ( t )    ϕ 1  ( t )     1 −  ϕ 1  ( t )                −    Γ    ϕ 0   ϕ 2   −  ϕ 0     Γ    ϕ 0  ( t )    ϕ 2  ( t )    −  ϕ 0  ( t )      } +    ϕ 0   ϕ 1    1 −  ϕ 1     ∑  i = 1  n  log    x  i 1    1 −  x  i 1      +    ϕ 0   ϕ 2   −  ϕ 0    ∑  i = 1  n  log    1 −  x  i 2     x  i 2             −      ϕ 0   ϕ 1    1 −  ϕ 1    +   ϕ 0   ϕ 2     ∑  i = 1  n  log  1 +   x  i 1    1 −  x  i 1     +   1 −  x  i 2     x  i 2     +  c 3  ( t )   ,     








where   c 3  ( t )    is a constant.
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Figure 1. The contour plots and 3D perspectives of the bivariate NPIG distribution     NPIG  2   ( θ )    with different values of parameters: (a1,a2)   θ =   ( 0.5 , 0.5 , 0.5 )    ⊤     ; (b1,b2)   θ =   ( 1.5 , 0.8 , 0.3 )    ⊤     . 
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Figure 2. The contour plots and 3D perspectives of the bivariate NPIG distribution     NPGA  2   ( ϕ )    with different values of parameters: (a1,a2)   ϕ =   ( 2 , 0.3 , 0.5 )    ⊤     ; (b1,b2)   ϕ =   ( 6 , 0.1 , 0.8 )    ⊤     . 
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Figure 3. Negative correlations between the thickness of 74 different sulco-gyral cortical units in each hemisphere of (a) patients; (b) controls. (Each square represent a negative correlation of corresponding units under the Spearman significance test, where the p-values of black ones are   p < 0.01   and gray ones are   0.01 ⩽ p < 0.05  ). 
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Table 1. ML estimate, Std and MSE for   (  θ 0  ,  θ 1  ,  θ 2  )   in bivariate NPIG distribution.






Table 1. ML estimate, Std and MSE for   (  θ 0  ,  θ 1  ,  θ 2  )   in bivariate NPIG distribution.





	
(    θ 0  ,  θ 1  ,  θ 2   ) =  ( 1.2 , 0.3 , 0.8 )  ,  ρ = − 0.2586    




	
Parameter

	
Ave-MLE

	
Std

	
MSE

	

	
Ave-MLE

	
Std

	
MSE




	

	
   n = 30   

	

	
   n = 50   




	
   θ 0   

	
1.358641

	
0.442545

	
0.221013

	

	
1.316643

	
0.362304

	
0.144870




	
   θ 1   

	
0.298424

	
0.036809

	
0.001357

	

	
0.298486

	
0.028556

	
0.000818




	
   θ 2   

	
0.799534

	
0.031722

	
0.001007

	

	
0.801276

	
0.023760

	
0.000566




	

	
it.no = 231,   ρ ^   = −0.2569

	

	
it.no = 224,   ρ ^   = −0.2564




	

	
   n = 100   

	

	
   n = 300   




	
   θ 0   

	
1.243133

	
0.237282

	
0.058163

	

	
1.209933

	
0.121216

	
0.014792




	
   θ 1   

	
0.300323

	
0.020431

	
0.000418

	

	
0.300539

	
0.012035

	
0.000145




	
   θ 2   

	
0.799605

	
0.016497

	
0.000272

	

	
0.799794

	
0.009520

	
0.000091




	

	
it.no = 213,   ρ ^   = −0.2586

	

	
it.no = 197,   ρ ^   = −0.2588




	
(   θ 0  ,  θ 1  ,  θ 2   ) =  ( 0.5 , 0.5 , 0.6 )  ,  ρ = − 0.4390   




	
Parameter

	
Ave-MLE

	
Std

	
MSE

	

	
Ave-MLE

	
Std

	
MSE




	

	
   n = 30   

	

	
   n = 50   




	
   θ 0   

	
0.566086

	
0.174171

	
0.034703

	

	
0.544802

	
0.128736

	
0.018580




	
   θ 1   

	
0.498231

	
0.048484

	
0.002354

	

	
0.499272

	
0.037687

	
0.001421




	
   θ 2   

	
0.601595

	
0.046221

	
0.002139

	

	
0.600750

	
0.035776

	
0.001280




	

	
it.no = 172,   ρ ^   = −0.4366

	

	
it.no = 167,   ρ ^   = −0.4379




	

	
   n = 100   

	

	
   n = 300   




	
   θ 0   

	
0.519031

	
0.085486

	
0.007670

	

	
0.504517

	
0.049257

	
0.002447




	
   θ 1   

	
0.500203

	
0.026148

	
0.000684

	

	
0.500225

	
0.015722

	
0.000247




	
   θ 2   

	
0.600492

	
0.025049

	
0.000628

	

	
0.599723

	
0.014972

	
0.000224




	

	
it.no = 157,   ρ ^   = −0.4386

	

	
it.no = 145,   ρ ^   = −0.4391




	
(   θ 0  ,  θ 1  ,  θ 2   ) =  ( 0.2 , 0.8 , 0.1 )  ,  ρ = − 0.7321   




	
Parameter

	
Ave-MLE

	
Std

	
MSE

	

	
Ave-MLE

	
Std

	
MSE




	

	
   n = 30   

	

	
   n = 50   




	
   θ 0   

	
0.220128

	
0.055619

	
0.003499

	

	
0.211129

	
0.041009

	
0.001806




	
   θ 1   

	
0.800242

	
0.031396

	
0.000986

	

	
0.800302

	
0.022899

	
0.000524




	
   θ 2   

	
0.099971

	
0.018400

	
0.000339

	

	
0.099890

	
0.013603

	
0.000185




	

	
it.no = 119,   ρ ^   = −0.7350

	

	
it.no = 114,   ρ ^   = −0.7338




	

	
   n = 100   

	

	
   n = 300   




	
   θ 0   

	
0.205324

	
0.027086

	
0.000762

	

	
0.201148

	
0.015389

	
0.000238




	
   θ 1   

	
0.799645

	
0.016570

	
0.000275

	

	
0.800039

	
0.009393

	
0.000088




	
   θ 2   

	
0.100182

	
0.009942

	
0.000099

	

	
0.100087

	
0.005523

	
0.000031




	

	
it.no = 107,   ρ ^   = −0.7326

	

	
it.no = 97,   ρ ^   = −0.7323
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Table 2. ML estimate, Std and MSE for   (  θ 0  ,  α 1  ,  α 2  )   in bivariate NPIG regression model.






Table 2. ML estimate, Std and MSE for   (  θ 0  ,  α 1  ,  α 2  )   in bivariate NPIG regression model.





	
     θ 0  = 0.6 ,   α 1  =   ( 1.2 , 0.8 , − 0.5 , 0.5 )    ⊤    ,   α 2  =   ( 1.5 , − 2 , 0.7 , − 0.5 )    ⊤       




	
Parameter

	
Ave-MLE

	
Std

	
MSE

	

	
Ave-MLE

	
Std

	
MSE




	

	
   n = 50   

	

	
   n = 200   




	
   θ 0   

	
0.616064

	
0.098125

	
0.009887

	

	
0.594675

	
0.054724

	
0.003023




	
   α 01   

	
1.197065

	
0.182278

	
0.033234

	

	
1.202689

	
0.051280

	
0.002637




	
   α 11   

	
0.791274

	
0.159555

	
0.025534

	

	
0.797376

	
0.050753

	
0.002583




	
   α 21   

	
−0.503090

	
0.172935

	
0.029916

	

	
−0.501269

	
0.052572

	
0.002765




	
   α 31   

	
0.496402

	
0.052044

	
0.002721

	

	
0.495028

	
0.022855

	
0.000547




	
   α 02   

	
1.493490

	
0.172693

	
0.029865

	

	
1.493448

	
0.059934

	
0.003635




	
   α 12   

	
−1.994148

	
0.159105

	
0.025349

	

	
−1.994163

	
0.055346

	
0.003097




	
   α 22   

	
0.693314

	
0.189516

	
0.035961

	

	
0.695733

	
0.044827

	
0.002028




	
   α 32   

	
−0.497199

	
0.051602

	
0.002671

	

	
−0.496026

	
0.023453

	
0.000566




	

	
it.no = 141

	

	
it.no = 68




	

	
   n = 350   

	

	
   n = 500   




	
   θ 0   

	
0.594409

	
0.040014

	
0.001632

	

	
0.592610

	
0.034314

	
0.001232




	
   α 01   

	
1.199199

	
0.032275

	
0.001042

	

	
1.200771

	
0.021140

	
0.000447




	
   α 11   

	
0.795187

	
0.036466

	
0.001353

	

	
0.798587

	
0.025180

	
0.000636




	
   α 21   

	
−0.500220

	
0.028680

	
0.000823

	

	
−0.500038

	
0.021437

	
0.000460




	
   α 31   

	
0.499380

	
0.019778

	
0.000392

	

	
0.496742

	
0.018138

	
0.000340




	
   α 02   

	
1.494840

	
0.035134

	
0.001261

	

	
1.495448

	
0.025697

	
0.000681




	
   α 12   

	
−1.997357

	
0.033092

	
0.001102

	

	
−1.997702

	
0.025642

	
0.000663




	
   α 22   

	
0.698411

	
0.028526

	
0.000816

	

	
0.697747

	
0.020047

	
0.000407




	
   α 32   

	
−0.498473

	
0.019025

	
0.000364

	

	
−0.497432

	
0.015664

	
0.000252




	

	
it.no = 55

	

	
it.no = 49
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Table 3. ML estimate, Std and MSE for   (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )   in bivariate NPGA distribution.






Table 3. ML estimate, Std and MSE for   (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )   in bivariate NPGA distribution.





	
     (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )  =  ( 2 , 0.9 , 0.2 )  ,  ρ = − 0.8083    




	
Parameter

	
Ave-MLE

	
Std

	
MSE

	

	
Ave-MLE

	
Std

	
MSE




	

	
   n = 30   

	

	
   n = 50   




	
   ϕ 0   

	
1.997760

	
0.026205

	
0.000692

	

	
1.998313

	
0.023109

	
0.000537




	
   ϕ 1   

	
0.898923

	
0.010484

	
0.000111

	

	
0.899695

	
0.008393

	
0.000071




	
   ϕ 2   

	
0.202299

	
0.019508

	
0.000386

	

	
0.200620

	
0.015605

	
0.000244




	

	
it.no = 27,   ρ ^   = −0.8064

	

	
it.no = 27,   ρ ^   = −0.8078




	

	
   n = 100   

	

	
   n = 300   




	
   ϕ 0   

	
1.999660

	
0.024147

	
0.000583

	

	
1.998969

	
0.020451

	
0.000419




	
   ϕ 1   

	
0.900010

	
0.005360

	
0.000029

	

	
0.899674

	
0.003072

	
0.000010




	
   ϕ 2   

	
0.201871

	
0.010523

	
0.000114

	

	
0.201171

	
0.006473

	
0.000043




	

	
it.no = 26,   ρ ^   = −0.8072

	

	
it.no = 27,   ρ ^   = −0.8074




	
    (  ϕ 0  ,  ϕ 1  ,  ϕ 2  )  =  ( 5 , 0.4 , 0.6 )  ,  ρ = − 0.4057   




	
Parameter

	
Ave-MLE

	
Std

	
MSE

	

	
Ave-MLE

	
Std

	
MSE




	

	
   n = 30   

	

	
   n = 50   




	
   ϕ 0   

	
5.001001

	
0.036186

	
0.001310

	

	
4.998937

	
0.032888

	
0.001083




	
   ϕ 1   

	
0.402014

	
0.026780

	
0.000721

	

	
0.402845

	
0.020853

	
0.000443




	
   ϕ 2   

	
0.598549

	
0.026008

	
0.000679

	

	
0.598827

	
0.020339

	
0.000415




	

	
it.no = 21,   ρ ^   = −0.4069

	

	
it.no = 21,   ρ ^   = −0.4074




	

	
   n = 100   

	

	
   n = 300   




	
   ϕ 0   

	
4.996352

	
0.042099

	
0.001786

	

	
5.001158

	
0.038537

	
0.001486




	
   ϕ 1   

	
0.400435

	
0.015158

	
0.000230

	

	
0.399487

	
0.008230

	
0.000068




	
   ϕ 2   

	
0.599306

	
0.015034

	
0.000227

	

	
0.600232

	
0.007946

	
0.000063




	

	
it.no = 21,   ρ ^   = −0.4061

	

	
it.no = 16,   ρ ^   = −0.4053
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Table 4. ML estimate, Std and MSE for   (  ϕ 0  ,  β 1  ,  β 2  )   in bivariate NPGA regression model.






Table 4. ML estimate, Std and MSE for   (  ϕ 0  ,  β 1  ,  β 2  )   in bivariate NPGA regression model.





	
     ϕ 0  = 1.2 ,   β 1  =   ( − 0.9 , 1.4 , − 0.5 )    ⊤    ,   β 2  =   ( 0.5 , − 0.2 , − 0.8 )    ⊤       




	
Parameter

	
Ave-MLE

	
Std

	
MSE

	

	
Ave-MLE

	
Std

	
MSE




	

	
   n = 50   

	

	
   n = 200   




	
   ϕ 0   

	
1.273002

	
0.200704

	
0.045612

	

	
1.227011

	
0.092474

	
0.009281




	
   β 01   

	
−0.863261

	
0.274594

	
0.076752

	

	
−0.860950

	
0.137262

	
0.020366




	
   β 11   

	
1.374930

	
0.482249

	
0.233192

	

	
1.341559

	
0.226420

	
0.054681




	
   β 21   

	
−0.489769

	
0.324336

	
0.105299

	

	
−0.481630

	
0.147419

	
0.022070




	
   β 02   

	
0.437918

	
0.290704

	
0.088363

	

	
0.4730029

	
0.140378

	
0.020435




	
   β 12   

	
−0.146745

	
0.492742

	
0.245631

	

	
−0.177881

	
0.230247

	
0.053503




	
   β 22   

	
−0.784241

	
0.340255

	
0.116021

	

	
−0.773613

	
0.157350

	
0.025455




	

	
it.no = 51

	

	
it.no = 44




	

	
   n = 350   

	

	
   n = 500   




	
   ϕ 0   

	
1.218954

	
0.072089

	
0.005556

	

	
1.210845

	
0.028854

	
0.000950




	
   β 01   

	
−0.867234

	
0.106863

	
0.012493

	

	
−0.867112

	
0.042890

	
0.002921




	
   β 11   

	
1.362347

	
0.170824

	
0.030598

	

	
1.353711

	
0.068964

	
0.006899




	
   β 21   

	
−0.486299

	
0.120704

	
0.014757

	

	
−0.486765

	
0.048496

	
0.002527




	
   β 02   

	
0.467544

	
0.101781

	
0.011413

	

	
0.476607

	
0.042584

	
0.002361




	
   β 12   

	
−0.168965

	
0.166065

	
0.028541

	

	
−0.174730

	
0.069102

	
0.005414




	
   β 22   

	
−0.772744

	
0.117103

	
0.014456

	

	
−0.777010

	
0.049669

	
0.002996




	

	
it.no = 42

	

	
it.no = 36
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Table 5. Means, variances, covariances and correlations for the bivariate NPIG distribution.
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	    θ 0    
	Mean1
	Mean2
	Var1
	Var2
	Cov
	Coef





	0.2
	0.5
	0.6
	0.095957
	0.095424
	−0.041228
	−0.430854



	0.4
	0.5
	0.6
	0.080300
	0.081386
	−0.035332
	−0.437049



	0.6
	0.5
	0.6
	0.069668
	0.071562
	−0.031100
	−0.440454



	0.8
	0.5
	0.6
	0.061796
	0.064130
	−0.027863
	−0.442600



	1
	0.5
	0.6
	0.055664
	0.058245
	−0.025285
	−0.444056



	3
	0.5
	0.6
	0.028704
	0.031267
	−0.013426
	−0.448160



	5
	0.5
	0.6
	0.019542
	0.021624
	−0.009222
	−0.448594



	10
	0.5
	0.6
	0.010927
	0.012291
	−0.005197
	−0.448441



	15
	0.5
	0.6
	0.007596
	0.008602
	−0.003623
	−0.448208



	20
	0.5
	0.6
	0.005823
	0.006620
	−0.002782
	−0.448038



	0.2
	0.3
	0.8
	0.085745
	0.066704
	−0.019270
	−0.254800



	0.4
	0.3
	0.8
	0.074236
	0.058458
	−0.016938
	−0.257123



	0.6
	0.3
	0.8
	0.065981
	0.052423
	−0.015181
	−0.258120



	0.8
	0.3
	0.8
	0.059627
	0.047708
	−0.013789
	−0.258536



	1
	0.3
	0.8
	0.054527
	0.043879
	−0.012652
	−0.258650



	3
	0.3
	0.8
	0.030294
	0.025118
	−0.007072
	−0.256390



	5
	0.3
	0.8
	0.021249
	0.017844
	−0.004950
	−0.254195



	10
	0.3
	0.8
	0.012261
	0.010441
	−0.002841
	−0.251100



	15
	0.3
	0.8
	0.008637
	0.007400
	−0.001995
	−0.249545



	20
	0.3
	0.8
	0.006671
	0.005735
	−0.001538
	−0.248617



	0.2
	0.8
	0.1
	0.047708
	0.020039
	−0.022637
	−0.732127



	0.4
	0.8
	0.1
	0.035625
	0.013569
	−0.016702
	−0.759669



	0.6
	0.8
	0.1
	0.028700
	0.010334
	−0.013357
	−0.775590



	0.8
	0.8
	0.1
	0.024122
	0.008365
	−0.011170
	−0.786306



	1
	0.8
	0.1
	0.020844
	0.007035
	−0.009616
	−0.794114



	3
	0.8
	0.1
	0.008965
	0.002734
	−0.004079
	−0.823825



	5
	0.8
	0.1
	0.005735
	0.001700
	−0.002599
	−0.832436



	10
	0.8
	0.1
	0.003022
	0.000874
	−0.001365
	−0.839907



	15
	0.8
	0.1
	0.002052
	0.000588
	−0.000926
	−0.842639



	20
	0.8
	0.1
	0.001554
	0.000443
	−0.000701
	−0.844056
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Table 6. Means, variances, covariances and correlations for the bivariate NPGA distribution.






Table 6. Means, variances, covariances and correlations for the bivariate NPGA distribution.





	    ϕ 0    
	Mean1
	Mean2
	Var1
	Var2
	Cov
	Coef





	0.2
	0.9
	0.2
	0.030000
	0.080000
	−0.031973
	−0.652641



	0.4
	0.9
	0.2
	0.018000
	0.053333
	−0.022113
	−0.713705



	0.6
	0.9
	0.2
	0.012857
	0.040000
	−0.016892
	−0.744877



	0.8
	0.9
	0.2
	0.010000
	0.032000
	−0.013669
	−0.764106



	1
	0.9
	0.2
	0.008182
	0.026667
	−0.011480
	−0.777230



	3
	0.9
	0.2
	0.002903
	0.010000
	−0.004421
	−0.820416



	5
	0.9
	0.2
	0.001765
	0.006154
	−0.002738
	−0.830996



	10
	0.9
	0.2
	0.000891
	0.003137
	−0.001404
	−0.839489



	15
	0.9
	0.2
	0.000596
	0.002105
	−0.000944
	−0.842438



	20
	0.9
	0.2
	0.000448
	0.001584
	−0.000711
	−0.843936



	0.2
	0.4
	0.7
	0.180000
	0.163333
	−0.052559
	−0.306532



	0.4
	0.4
	0.7
	0.144000
	0.133636
	−0.045743
	−0.329747



	0.6
	0.4
	0.7
	0.120000
	0.113077
	−0.039804
	−0.341705



	0.8
	0.4
	0.7
	0.102857
	0.098000
	−0.034977
	−0.348383



	1
	0.4
	0.7
	0.090000
	0.086471
	−0.031078
	−0.352290



	3
	0.4
	0.7
	0.040000
	0.039730
	−0.014237
	−0.357122



	5
	0.4
	0.7
	0.025714
	0.025789
	−0.009141
	−0.354974



	10
	0.4
	0.7
	0.013585
	0.013738
	−0.004805
	−0.351719



	15
	0.4
	0.7
	0.009231
	0.009363
	−0.003256
	−0.350212



	20
	0.4
	0.7
	0.006990
	0.007101
	−0.002462
	−0.349366



	0.2
	0.2
	0.2
	0.128000
	0.080000
	−0.026476
	−0.261637



	0.4
	0.2
	0.2
	0.106667
	0.053333
	−0.022288
	−0.295506



	0.6
	0.2
	0.2
	0.091429
	0.040000
	−0.019121
	−0.316183



	0.8
	0.2
	0.2
	0.080000
	0.032000
	−0.016708
	−0.330219



	1
	0.2
	0.2
	0.071111
	0.026667
	−0.014822
	−0.340368



	3
	0.2
	0.2
	0.033684
	0.010000
	−0.006910
	−0.376481



	5
	0.2
	0.2
	0.022069
	0.006154
	−0.004494
	−0.385587



	10
	0.2
	0.2
	0.011852
	0.003137
	−0.002395
	−0.392746



	15
	0.2
	0.2
	0.008101
	0.002105
	−0.001632
	−0.395167



	20
	0.2
	0.2
	0.006154
	0.001584
	−0.001238
	−0.396378
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Table 7. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.1) between controls and patients in two distributions with model selection criterion AIC and BIC.






Table 7. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.1) between controls and patients in two distributions with model selection criterion AIC and BIC.





	
Par.

	
Controls

	
Patients




	
MLE

	
CI

	
Std

	
MLE

	
CI

	
Std






	

	
Bivariate PIG distribution

	
Bivariate NPIG distribution




	
   θ 0   

	
0.4296

	
[0.2744, 0.7503]

	
0.1242

	
0.4837

	
[0.3158, 0.8444]

	
0.1370




	
   θ 1   

	
0.4664

	
[0.3821, 0.5473]

	
0.0416

	
0.4249

	
[0.3504, 0.5042]

	
0.0399




	
   θ 2   

	
0.5029

	
[0.4213, 0.5877]

	
0.0427

	
0.4209

	
[0.3438, 0.4923]

	
0.0378




	

	
AIC = 18.0480; BIC = 23.1147

	
AIC = 1.4008; BIC = 6.5415




	

	
Bivariate PGA distribution

	
Bivariate NPGA distribution




	
   ϕ 0   

	
1.4540

	
[1.0527, 2.0820]

	
0.2606

	
1.5477

	
[1.2360, 1.8403]

	
0.1418




	
   ϕ 1   

	
0.5071

	
[0.4317, 0.5812]

	
0.0373

	
0.4294

	
[0.3659, 0.5023]

	
0.0359




	
   ϕ 2   

	
0.5161

	
[0.4454, 0.5881]

	
0.0383

	
0.4059

	
[0.3394, 0.4676]

	
0.0319




	

	
AIC = 2.0847; BIC = 7.1514

	
AIC = −9.9734; BIC = −4.8327
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Table 8. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.1) between controls and patients in two regression models with selection criterion AIC and BIC.






Table 8. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.1) between controls and patients in two regression models with selection criterion AIC and BIC.





	
Par.

	
Controls

	
Patients




	
MLE

	
CI

	
Std

	
MLE

	
CI

	
Std






	

	
Bivariate PIG mean regression

	
Bivariate NPIG mean regression




	
   θ 0   

	
0.5588

	
[0.3899, 1.0599]

	
0.1789

	
0.5355

	
[0.4019, 1.0499]

	
0.1579




	
   α 10   

	
4.9412

	
[1.7141, 8.1186]

	
1.6109

	
2.6217

	
[−1.0682, 6.7279]

	
1.8809




	
   α 11   

	
−1.5045

	
[−2.4762, −0.6009]

	
0.4686

	
−0.8339

	
[−2.0480, 0.2186]

	
0.5428




	
   α 12   

	
0.6536

	
[0.0220, 1.4045]

	
0.3506

	
−0.0466

	
[−0.7188, 0.7475]

	
0.3654




	
   α 20   

	
4.0251

	
[0.7731, 7.6577]

	
1.6832

	
0.4262

	
[−3.5984, 4.4486]

	
1.8909




	
   α 21   

	
−1.1637

	
[−2.2148, −0.2369]

	
0.4891

	
−0.2414

	
[−1.3743, 0.8807]

	
0.5476




	
   α 22   

	
0.1555

	
[−0.4933, 0.8664]

	
0.3469

	
0.3114

	
[−0.5136, 0.9808]

	
0.3816




	

	
AIC = 15.0705; BIC = 26.8926

	
AIC = 4.6480; BIC = 16.6430




	

	
Bivariate PGA mean regression

	
Bivariate NPGA mean regression




	
   ϕ 0   

	
1.5535

	
[1.1976, 2.2985]

	
0.2744

	
1.6295

	
[1.2301, 2.5405]

	
0.3288




	
   β 10   

	
6.1568

	
[4.3330, 7.6466]

	
0.7389

	
1.4482

	
[−1.7922, 5.0879]

	
1.7278




	
   β 11   

	
−1.7962

	
[−2.2712, −1.2685]

	
0.2251

	
−0.4871

	
[−1.5415, 0.4178]

	
0.4990




	
   β 12   

	
0.4822

	
[0.0032, 1.0710]

	
0.2857

	
−0.1693

	
[−0.7979, 0.4999]

	
0.3374




	
   β 20   

	
4.8569

	
[3.3534, 6.5856]

	
0.7110

	
1.8815

	
[−1.3326, 4.7364]

	
1.5787




	
   β 21   

	
−1.3976

	
[−1.9201, −0.9069]

	
0.2127

	
−0.6746

	
[−1.5283, 0.2427]

	
0.4539




	
   β 22   

	
0.2720

	
[−0.2365, 0.9072]

	
0.2990

	
0.3070

	
[−0.2977, 0.8459]

	
0.3052




	

	
AIC = 4.2536; BIC = 16.0757

	
AIC = −6.7527; BIC = 5.2424
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Table 9. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.2) between controls and patients in two distributions with model selection criterion AIC and BIC.






Table 9. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.2) between controls and patients in two distributions with model selection criterion AIC and BIC.





	
Par.

	
Patients

	
Controls




	
MLE

	
CI

	
Std

	
MLE

	
CI

	
Std






	

	
Bivariate PIG distribution

	
Bivariate NPIG distribution




	
   θ 0   

	
0.6307

	
[0.4001, 1.1844]

	
0.1903

	
1.6761

	
[1.1946, 2.6281]

	
0.3711




	
   θ 1   

	
0.4010

	
[0.3243, 0.4790]

	
0.0396

	
0.5031

	
[0.4390, 0.5676]

	
0.0325




	
   θ 2   

	
0.4552

	
[0.3859, 0.5331]

	
0.0386

	
0.5215

	
[0.4614, 0.5843]

	
0.0320




	

	
AIC = 4.1243; BIC = 9.2650

	
AIC = −29.0117; BIC = −23.9451




	

	
Bivariate PGA distribution

	
Bivariate NPGA distribution




	
   ϕ 0   

	
1.9787

	
[1.5283, 2.8760]

	
0.3586

	
3.0165

	
[2.8431, 3.1387]

	
0.0711




	
   ϕ 1   

	
0.3967

	
[0.3249, 0.4524]

	
0.0334

	
0.5000

	
[0.4531, 0.5639]

	
0.0267




	
   ϕ 2   

	
0.4650

	
[0.4009, 0.5221]

	
0.0334

	
0.5374

	
[0.4771, 0.5886]

	
0.0273




	

	
AIC = −12.8517; BIC = −7.7109

	
AIC = −43.0450; BIC = −37.9783
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Table 10. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.2) between controls and patients in two regression models with selection criterion AIC and BIC.






Table 10. ML estimates (MLEs), stds and CIs for the thickness of   X 1   and   X 2   (Section 5.2) between controls and patients in two regression models with selection criterion AIC and BIC.





	
Par.

	
Patients

	
Controls




	
MLE

	
CI

	
Std

	
MLE

	
CI

	
Std






	

	
Bivariate PIG mean regression

	
Bivariate NPIG mean regression




	
   θ 0   

	
0.7825

	
[0.5220, 1.3723]

	
0.2194

	
1.8085

	
[1.3285, 2.8110]

	
0.3876




	
   α 10   

	
3.4074

	
[0.3196, 6.1716]

	
1.5023

	
3.2295

	
[0.3851, 6.4295]

	
1.5459




	
   α 11   

	
−1.0921

	
[−1.9158, −0.2041]

	
0.4349

	
−0.9194

	
[−1.8404, −0.0923]

	
0.4459




	
   α 20   

	
3.6225

	
[0.4132, 6.5227]

	
1.5104

	
−0.1836

	
[−2.8446, 2.9085]

	
1.4255




	
   α 21   

	
−1.0925

	
[−1.9570, −0.1878]

	
0.4373

	
0.0806

	
[−0.8328, 0.8209]

	
0.4091




	

	
AIC = 0.0722; BIC = 8.6400

	
AIC = −31.1357; BIC = −22.6913




	

	
Bivariate PGA mean regression

	
Bivariate NPGA mean regression




	
   ϕ 0   

	
2.1331

	
[1.6301, 3.0572]

	
0.3632

	
3.2817

	
[2.5071, 4.8420]

	
0.6160




	
   β 10   

	
3.0007

	
[1.0820, 4.6351]

	
0.7655

	
3.2619

	
[0.4007, 6.0649]

	
1.4288




	
   β 11   

	
−0.9823

	
[−1.4382, −0.4542]

	
0.2243

	
−0.9366

	
[−1.7524, −0.1013]

	
0.4134




	
   β 20   

	
2.6646

	
[0.8734, 4.2967]

	
0.8151

	
−0.0168

	
[−2.9359, 2.9117]

	
1.5148




	
   β 21   

	
−0.8051

	
[−1.3183, −0.3098]

	
0.2397

	
0.0486

	
[−0.8062, 0.8667]

	
0.4337




	

	
AIC = −16.1259; BIC = −7.5581

	
AIC = −46.5825; BIC = −38.1381
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