
����������
�������

Citation: Mao, P.; Lin, Y.; Xue, S.;

Zhang, B. Remaining Useful Life

Estimation of Aircraft Engines Using

Differentiable Architecture Search.

Mathematics 2022, 10, 352. https://

doi.org/10.3390/math10030352

Academic Editors: Andrea Prati and

Yolanda Vidal

Received: 20 December 2021

Accepted: 20 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Remaining Useful Life Estimation of Aircraft Engines Using
Differentiable Architecture Search
Pengli Mao 1, Yan Lin 2,*, Song Xue 3 and Baochang Zhang 4

1 School of Energy and Power Engineering, Beihang University, Beijing 100191, China; paulimao@buaa.edu.cn
2 College of Electrical Engineering and Automation, Shandong University of Science and Technology,

Qingdao 266590, China
3 School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;

songxue@buaa.edu.cn
4 Institute of Artificial Intelligence, Beihang University, Beijing 100191, China; bczhang@buaa.edu.cn
* Correspondence: linyan@sdust.edu.cn

Abstract: Prognostics and health management (PHM) applications can prevent engines from potential
serious accidents by predicting the remaining useful life (RUL). Recently, data-driven methods have
been widely used to solve RUL problems. The network architecture has a crucial impact on the
experiential performance. However, most of the network architectures are designed manually based
on human experience with a large cost of time. To address these challenges, we propose a neural
architecture search (NAS) method based on gradient descent. In this study, we construct the search
space with a directed acyclic graph (DAG), where a subgraph represents a network architecture. By
using softmax relaxation, the search space becomes continuous and differentiable, then the gradient
descent can be used for optimization. Moreover, a partial channel connection method is introduced
to accelerate the searching efficiency. The experiment is conducted on C-MAPSS dataset. In the data
processing step, a fault detection method is proposed based on the k-means algorithm, which drops
large valueless data and promotes the estimation performance. The experimental result shows that
our method achieves superior performance with the highest estimation accuracy compared with
other popular studies.

Keywords: prognostics and health management; remaining useful life estimation; differentiable
architecture search; neural architecture search; aircraft engines

1. Introduction

The prognostics and health management (PHM) of aircraft engines has received
increasing attention owing to the fast development of deep learning. Remaining useful
life (RUL) estimation, which is a technical term used to describe the progression of faults
in PHM [1], is defined as the time from the current moment to the end of the useful life.
In traditional industry, RUL estimation mainly depends on the physical model-based
method. In the first international conference on prognostics and health management,
Saxena et al. [2] used a damage propagation model to predict the RUL value. In comparison
with other model-based methods (e.g., Arrhenius and Eyring models), Saxena achieved a
better performance. Owing to the highly nonlinear features, it is difficult to improve the
performance to a relatively large extent on physical model-based methods.

Apart from model-based methods, data-based methods have become more popular
and are widely used in the industry. With the attribution of the fast development of neural
networks (NN) [3], data-based methods have achieved great progress in RUL problems.
Heimes proposed a method based on recurrent neural networks (RNN) [4], whereas
Peel proposed a method using a Kalman filter based on NN [5], both of which have
achieved excellent performance in the PHM08 conference. To date, convolutional neural
networks (CNN) and RNN have become the most important branches of NN. Thus, great

Mathematics 2022, 10, 352. https://doi.org/10.3390/math10030352 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030352
https://doi.org/10.3390/math10030352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10030352
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030352?type=check_update&version=3

Mathematics 2022, 10, 352 2 of 19

achievements have been realized in signal processing [6] and motion captures [7]. Several
advanced networks have been proposed based on CNN and RNN (for instance, deep
convolution neural networks (DCNN) [8,9], echo state networks [10], and long short-term
memory networks (LSTM) [11]).

Compared with manually designed networks, whose performances are mainly domi-
nated by the fixed network architecture and hyper parameters, neural architecture search
(NAS) is a more efficient method to design a proper architecture [12]. The performance of
NAS mainly depends on the transformative network architecture and NAS has achieved
success in image classification and semantic segmentation [13,14]. According to different
methods used in the architecture search, the search strategies can be divided into several
categories: random search, reinforcement learning (RL), evolutionary algorithm, Bayesian
optimization (BO), and gradient-based algorithm [15]. To solve the NAS problem in a
RL method [16,17], the generation of a neural architecture can be considered to be the
agent’s action, and the search space is considered the action space. The performance of the
candidate architecture is identical to the agent’s reward. However, because of the reason
that there is no external observed state and intermediate rewards, the RL method on NAS is
more similar to a stateless multi-armed bandit problem. The first method of an evolutionary
algorithms for network architecture dates back to the work of Miller at al. [18] in which
the genetic algorithm is proposed to design architectures and backpropagation is used to
optimize the weights. Since then, many works have used similar methods to optimize the
network architecture weights [19–21]. Bayesian optimization on NAS was first proposed
by Swersky et al. [22] and Kandasamy et al. [23]; in their works, kernel functions is derived
for architecture search spaces in order to use classic GP-based BO methods.

Different from these approaches, a softmax function is used to optimize the edge
parameters, making the search space a continuous from, and thereafter, differentiable
architecture search (DARTS) can be used for the architecture search [24]. Both network
weights and architecture parameters are optimized by alternating gradient descent steps
on the differentiable loss function. By choosing the operation with the best performance on
every edge, the best architecture is obtained. The continuous search strategy remarkably
reduces the search cost. A problem with DARTS is that a collapse in performance usually
happens when the search epoch becomes large. The “early stopping” strategy is proposed
to solve these problems without degrading the performance [25]. Furthermore, a partial
channel strategy is proposed to reduce the search cost with only a slight influence on the
network performance [26].

Until now, most of the research has preferred to use a human-designed network to
give a solution in RUL problems [27]. NAS has been applied to the RUL problem in a
few works. A gradient descent method is proposed to search for the best architecture in a
continuous search space on a recurrent neural network [28]; another solution is based on
the evolutionary algorithm to explore the combinatorial parameter space of a multi-head
CNN network with LSTM [29]. The application of NAS on RUL problems does not need
much preliminary research on the architecture of the artificial neural network, and thus, it
is a efficient method to design a suitable network for RUL problems.

The remainder of this paper is organized as follows: Section 2 introduces an outline
of our proposed method, including a brief introduction of NAS and the basic algorithm
of DARTS. Section 3 introduces the C-MAPSS dataset, and thereafter, highlights the data
processing and the fault detection. Section 4 elucidates the experimental results and the
superiority performance of our method in comparison with other related works. Finally,
Section 5 concludes the paper.

2. The Proposed Method
2.1. Neural Architecture Search

Neural architecture search, which is different from manually designed NN, is a branch
of auto machine learning (autoML). As shown in Figure 1, NAS consists of three basic parts:
search space, search strategy, and performance estimation strategy [15].

Mathematics 2022, 10, 352 3 of 19

• Search space: The search space is a universal set containing all the candidate network
architectures. The earliest search space is defined as a single chain-structured net-
work or a simple chain with some branches and skip connections [30,31]. To make
an improvement on the poor transferable search space, recent works search for a
proper architecture in a more transferable search space called cells or blocks [12]. The
purpose of the architecture search is to select an appropriate architecture from the
candidates. A better design will significantly reduce both the size of search space and
the computational burden. Compared with the chain-structured network, the size of
the cells is smaller. Moreover, architectures based on cells and blocks are more easily
to adapted to different tasks and datasets

• Search strategy: The search strategy describes the exploration mechanism of the search
space. The advantages and disadvantages of popular strategies are mentioned in
Section 1. Generally speaking, compared with discrete search strategies, the contin-
uous search strategy costs fewer computational sources and achieves a better per-
formance. The experimental result on CIFAR-10 dataset only costs 1.5 GPU days
within a test error 3.00% [24]. The strategy determines the search speed and network
performance. The optimization of the search strategy is a key factor that affects the
architecture performance and time cost.

• Performance estimation strategy: The performance estimation strategy also has a
crucial effect on the training speed. The basic and simplest way to estimate the
performance of a search strategy is loss functions. Our proposed method uses weights
sharing to accelerate training. This strategy speeds up training by reducing the
scale of the search space. In weights sharing, all cells and blocks share the same
architecture weights, and the search space contains only cells and blocks but not the
whole network architecture.

Figure 1. Illustration of NAS. The search space contains all the candidate architectures, from which
the search strategy searches for a proper architecture with the best performance. The performance
estimation strategy estimates the architecture by maximizing or minimizing some performance
measure, and then updates architecture weights.

2.2. Proposed Method for RUL

DARTS was first proposed with a specifically designed search space and search
strategy, and it achieved fast search speed and low test error in image classification [24].
In contrast to a discrete search space, DARTS transforms the search space into a continuous
form. Thus, the gradient descent can be used to optimize the system performance. In com-
parison with discontinuous search strategies, the gradient-based method requires fewer
computation resources and achieves better performance. In this study, the method is based
on convolutional networks.

The search space is a single directed acyclic graph (DAG) with N nodes, and each
candidate architecture is a subgraph of the DAG. Each node xi represents a computational
unit, and each edge (i, j) represents an alternative operation o(i,j). As shown in Figure 2,
the process of the architecture search mainly contains four steps:

• Step 1: The whole search space is a single DAG with four nodes, which contains at
least one input node and one output node. In this example, node 1 is the input and
node 4 is the output node, while nodes 2 and 3 are intermediate nodes.

• Step 2: The cells are initialized with random operations. Candidate operations contain
skip-connect, sep-convolution, and pooling.

Mathematics 2022, 10, 352 4 of 19

• Step 3: With a continuous relaxed function, every edge has a continuous architecture
parameter α, which represents the candidate operations. Then, a gradient descent
strategy is used to search for the best architecture for each edge, according to a
differentiable loss function.

• Step 4: A well-searched architecture is obtained according to the largest architecture
parameter a in each edge.

The searching process of DARTS.
Step 1: In this figure, the whole search space contains a cell with several nodes, and each node has a candidate
connection with another node.
Step 2: The initial operations of each edge are unknown and initialized with random operations. For instance,
the candidate operations include skip-connect, sep-convolution, and pooling.
Step 3: Search for the best operation for each edge in a continuous search space, according to a gradient
descent strategy on a differentiable loss function.
Step 4: Finally, a well-searched architecture with the best performance is obtained.

Figure 2. DARTS model.

Every value of the intermediate node follows the following equation [24]:

xj = ∑
i<j

o(i,j)(xi), (1)

where o(i,j) represents the operations of predecessor nodes.
Let O be a set of all candidate operations (e.g., convolution, pooling, skip, and zero).

To create a continuous search space, we relax the particular operation choice to a softmax
function as follows:

o(i,j)(x) = ∑
o∈O

exp(α(i,j)o)

∑o′∈O exp(α(i,j)
o′

)
o(x), (2)

where α(i,j) represents the operation weights connected to the node (i, j).
In the search stage, Ltrain and Lval are the loss functions on the training and validation

sets. Thereafter, based on gradient descent algorithm, the parameters are updated using
the following equation:

minα Lval(ω
∗(α), α)

s.t. ω∗(α) = argminω Ltrain(ω, α).
(3)

The proposed method guarantees the continuity of the search space. When the search
process is completed, every edge (i, j) has the largest αo

i,j.
When ω is unchanged, the partial derivatives of loss function can be rewritten as

5αL(ω(α), α) = 5αL(ω, α) ≈ 5αLval(ω− ξ5ω Ltrain(ω, α), α) (4)

where ξ is the learning rate.

Mathematics 2022, 10, 352 5 of 19

The whole process of network training contains two parts: architecture search and
network weights training. The first part, architecture search, consists of two steps: training
the cells architecture α and training the shared weights ω. The two steps update alternately
in every training epoch.

• Step 1: In this step, network weights ω are fixed and we update the architecture α
by descending the loss function Lval(ω(α), α). The derivative of α is calculated by
5αLval(ω− ξ5ω Ltrain(ω, α), α) on the validation set.

• Step 2: In this step, architecture α is fixed and we update the network weights ω
by descending the loss function Ltrain(ω, α). The derivative of ω is calculated by
5ωLtrain(ω, α) on the training set.

When the epoch reaches the preset upper bound or architecture α becomes relatively
stable, the process of network training comes into the second part, network weights training,
which is the common part for neural networks. In this study, stochastic gradient descent is
used to update network weights, and the loss function is RMSE.

The convolutional cells consist of N = 7 nodes, and the depth of the network is defined
as a concatenation of all the intermediate nodes. The rest of the setup follows [24], where a
network is then formed by stacking multiple cells together. The network is composed of
two types of cells with different architectures: normal cells and reduction cells. We always
place one reduction cell after every two normal cells. αreduce is shared by all the reduction
cells, and αnormal is shared by all the normal convolutional cells.

3. Data processing
3.1. C-MAPSS Dataset

The Commercial Modular Aero Propulsion System Simulation (C-MAPSS) is an aircraft
engine turbofan simulation dataset provided by NASA [2]. It is part of the prognostics
data repository donated by various universities, agencies, and companies. The dataset
contains several time series from some nominal states to a failed state. Data collection in
this repository is an ongoing process.

In C-MAPSS, each time series is obtained from a different engine. The data are consid-
ered to be obtained from a fleet of engines of the same type, and they are with different
degrees of initial wear and manufacturing variation, which is unknown to users. This wear
and variation is considered normal, implying that a fault condition is not considered. There
are three operational settings included in the data that have a substantial effect on engine
performance. The data are contaminated with sensor noise.

3.2. Feature Cutting

The C-MAPSS dataset includes four subsets, and each subset contains a particular
operating condition that is different from the other conditions. The operating conditions
are monitored by three sensors with working states monitored by 21 sensors. Details of
these sensors are provided in Tables 1 and 2.

As shown in Figure 3, in subset FD001, it can be divided into four groups according
to the sensors outputs: 10 of the values are ascending, 4 are descending, 6 are unchanged
and 1 is irregular. The unchanged and irregular outputs, which are not of any help for
RUL estimation, are abandoned. Thereafter, the remaining 14 sensors are selected as the
valuable features. This method is also carried out on subsets FD002 to FD004.

Mathematics 2022, 10, 352 6 of 19

Figure 3. All the 21 sensors outputs in training set FD001.

Mathematics 2022, 10, 352 7 of 19

Table 1. Details of 21 sensors.

Sensor Number Symbol Description Unit

1 T2 Total temperature at fan inlet ◦R
2 T24 Total temperature at LPC outlet ◦R
3 T30 Total temperature at HPC outlet ◦R
4 T50 Total temperature at LPT outlet ◦R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed rpm

10 epr Engine pressure ratio(P50/P2) –
11 Ps30 Static pressure at HPC outlet psia
12 phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass Ratio –
16 farB Bumer fuel-air ration –
17 htBleed Bleed Enthalpy –
18 N fd Demanded fan speed rpm
19 PCN f Rd Demanded corrected fan speed rpm
20 W31 HPT coolant bleed lbm/s
21 W32 LPT coolant bleed lbm/s

Table 2. Details of C-MAPSS dataset.

Dataset FD001 FD002 FD003 FD004

Engine units 100 260 100 249
Max life span(Cycles) 362 378 525 543
Min life span(Cycles) 31 21 38 19
Samples in training set 20,631 53,579 24,720 61,249
Average span in training set 206 213 247 246
Samples in test set 13,096 33,991 16,596 41,214
Average span in test set 131 131 166 166
Fault modes HPC (1) HPC HPC, Fan (2) HPC, Fan
Working conditions 1 6 1 6

(1) HPC represents HPC degradation. (2) Fan represents fan degradation.

3.3. Fault Detection

In the C-MAPSS dataset, the engines operate normally at the start of each time series,
and develop a fault at some point during the series. In the training set, the fault grows
in magnitude until system failure occurs, but in the test set, the time series ends prior to
system failure. The DARTS algorithm aims at giving an accurate estimation on RUL when
the aero-engine is under a fault condition, witch means that the data process on the healthy
data is meaningless.

Under these circumstances, a fault-diagnosis process is essential, aiming at giving a
detection on the time step when a fault happens. A piecewise linear degradation model
was first proposed, which discovered that faults have a high probability of occurrence at
time steps between 120 and 130 cycles [4]. This experiential method is mainly based on
observations at the initial steps of the training data and it cannot be used in the test set.
To achieve a better fault detection performance on both training set and test set, a support
vector machine (SVM) method with penalty parameters was proposed, using a supervised
learning method to detect the fault [32]. In this study, we treat the fault detection problem as
a unsupervised binary classification problem: to classify the data into two classes, according

Mathematics 2022, 10, 352 8 of 19

to the whether time is before a fault happen or not. Therefore, a k-means algorithm is
proposed as the fault detection [33] with a radial basis function.

Figure 4 illustrates the classification result of two samples chosen from subset FD001.
The detector achieves excellent performance on both the training set and test set. In the
training set, the fault always happens between 100 and 150 cycles, but in the test set, the
fault usually happens before 100 cycles. The data before the fault happens are worthless to
the architecture search. Thereafter, the network costs fewer computing resource and the
estimation accuracy is promoted.

Version January 12, 2022 submitted to Journal Not Specified 8 of 17

(a) (b)

(c) (d)

Figure 4. Fault detection using k-means.

di = RULesti − RULreal , (7)

Score =

n

∑
i=1

(e−
di
13 − 1), f or di < 0,

n

∑
i=1

(e
di
10 − 1), f or di > 0,

(8)

where i denotes the number of total input samples, di the predicting errors, RULesti225

the estimated value of RUL, and RULreal the correct RUL value. Generally, a negative226

estimation error is more tolerated than a positive error, because a positive error implies227

that the monitoring system does not provide warning information before the failure228

occurs, which may lead to an irretrievable damage. To avoid this situation, we promote229

the scores of negative errors but reduce the positive errors, as expressed in Equation (8).230

Another scoring function is the root mean squared error (RMSE) function, which is
a general scoring function widely used in RUL.

eRMSE =

√
1
n

n

∑
i=1

d2
i , (9)

4. Experiments and Result Analysis231

4.1. Experimental platform232

Our experimental device is a personal computer, with Intel Core i3 CPU, 16GB233

RAM and NVIDIA GTX 1070 GPU. The operating system is Windows 10 Professional234

and the programming language is Python 3.8 with the library PyTorch 1.7.1.235

Figure 4. Fault detection using k-means. (a) K-means scatter plot; (b) Fault detection in training set;
(c) K-means scatter plot; (d) Fault detection in test set.

3.4. Normalization

In the engineering application, it is impossible to know the minimum and maximum
values of the whole test set, so the min-max normalization is not suitable. Under this
circumstance, the z-score normalization is used in both the train set and test set, and
the equation is determined as follows:

x∗ =
x− µ

δ
, (5)

where x∗ denotes the normalized value, and µ and δ denote the mean and standard
deviation values of the original data, respectively. When it comes to practical use, it is
difficult to obtain the mean and standard deviation values of the whole test set. Instead,
the mean and standard deviation values of the known samples are used. Equation (5) is
rewritten as

x∗ =
xi − x̄

S
, (6)

where xi denotes the ith sample of the dataset, and x̄ and S denote the mean and standard
deviation values of the samples, respectively.

Mathematics 2022, 10, 352 9 of 19

3.5. Scoring Functions

The scoring function is a widely used method in RUL estimation [2]. The equations
are as follows:

di = RULesti − RULreal , (7)

Score =

n

∑
i=1

(e−
di
13 − 1), f or di < 0,

n

∑
i=1

(e
di
10 − 1), f or di > 0,

(8)

where i denotes the number of total input samples, di the predicting errors, RULesti the
estimated value of RUL, and RULreal the correct RUL value. Generally, a negative esti-
mation error is more tolerated than a positive error, because a positive error implies that
the monitoring system does not provide warning information before the failure occurs,
which may lead to irretrievable damage. To avoid this situation, we promote the scores of
negative errors, but reduce the positive errors, as expressed in Equation (8).

Another scoring function is the root mean squared error (RMSE) function, which is a
general scoring function widely used in RUL.

eRMSE =

√
1
n

n

∑
i=1

d2
i , (9)

4. Experiments and Result Analysis
4.1. Experimental Platform

Our experimental device is a personal computer, with Intel Core i3 CPU, 16GB RAM
and NVIDIA GTX 1070 GPU. The operating system is Windows 10 Professional and the
programming language is Python 3.8 with the library PyTorch 1.7.1.

4.2. Architecture Search

Our network training consists of two steps: cell architecture search and network
weights training. In the search step, the aim is to search for a suitable architecture based on
the performance of the valid set. In the training step, the aim is to update network weights
and construct the entire network with the architectures obtained from the first step.

We propose a network with 10 cells—7 normal cells and 3 reduction cells—each
containing N = 7 nodes. The search batch size is 64, with 200 search epochs and 36 initial
channels. We run the network repeatedly several times with different random initial cell
architectures. Then, 80% of the train set is randomly chosen for training use and the
remaining 20% are for valid use. Adam optimizer [34] is used with a learning rate of
1× 10−4, weight decay of 3× 10−4, and momentum of 0.9. Finally, the normal cells and
reduction cells are obtained, as shown in Figure 5.

Mathematics 2022, 10, 352 10 of 19

(a)

(b)

Figure 5. Architectures learned on C-MAPSS. (a) normal cell; (b) reduction cell.

Figure 6 is a flowchart to give an introduction of our method for RUL problem. This
flowchart contains three parts. The first part describes the pre-process of C-MAPSS dataset.
The second part is process of network training, which includes architecture search and
network weights updating. The third part is the experimental results.

4.3. Experimental Results on Single Fault Mode

FD001 contains 100 different aero-engine units, and 4 out of the 100 units are randomly
selected to show the RUL estimation results in Figure 7. The engine unit numbers are 58
and 71. As shown in the figure, the engines work normally at the initial stage. After several
time steps, faults are detected with performance degradation.

In general, the estimation error is relatively higher when the system is far from
complete failure. However, when the system is close to failure, the error decreases rapidly
and tends close to zero. This is because in the initial stage, the data attenuation is small,
and the healthy features are stronger. When the system is close to zero, the signal damping
is enhanced, and the fault features are easily captured by the networks, so the error is
relatively lower. Moreover, all the test data end before zero because the last part of the
entire cycle is not provided.

Mathematics 2022, 10, 352 11 of 19

Figure 6. Flowchart of our proposed method.

Mathematics 2022, 10, 352 12 of 19

Version January 12, 2022 submitted to Journal Not Specified 11 of 17

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Estimation results on multiple faults modes.Figure 7. Estimation results on multiple faults modes.

Mathematics 2022, 10, 352 13 of 19

4.4. Experimental Results on Multiple Fault Modes

As shown in Table 2, in FD001, the fault mode and working condition are simple,
but the fault modes and working conditions are more complicated and hard to deal with in
dataset FD002–FD004. In FD002, the working conditions vary from a sea level environment
to a high-altitude, high-speed environment; in FD003, the fault modes contains both HPC
degradation and fan degradation; in FD004, the problem is a collection of all the two faults
modes and six working conditions. Because of the different fault modes and working
conditions, the tendencies of sensors in FD002–FD004 are different and complex, and the
process of feature cutting is the same as in Section 3.2, so the data processing procedure is
omitted here.

We list the estimation results in Figure 7, which are randomly chosen from FD002 to
FD004. Because of the single fault mode and the large scale of training set, the result on
FD002 achieves excellent performance, and the error varies in a very small range during
the whole life span. In FD003 and FD004, the absolute error grows larger in the beginning
then descends slowly with the growth of the life cycle. Generally, due to the complexity of
the fault modes and working conditions, the estimation accuracy result of the last three
datasets is relatively lower than in FD001. In addition, the average life span of the last
three datasets is larger than in FD001, so the absolute error is bigger. However, with the
time approaching the end of a life span, the local error descends remarkably, and the local
relative error is basically equal with it in FD001. For a brief summary, the proposed network
is able to give an accurate estimation of the RUL problem in both the simple fault condition
and complicated fault condition.

In this study, a particular performance index is proposed to evaluate the network
performance: local estimation accuracy Acc. Acc is defined as the estimation error within a
particular RUL cycle interval. For instance, when the system is less than 50 cycles away
from complete failure, Acci is defined as the estimation accuracy under the condition: if the
absolute discrepancy between the real remaining life value RULreal and the prediction value
RULesti is less than i cycles, which means when |RULesti − RULreal | ≤ i, the estimation is
regarded as correct.

We select Acc5, Acc3, and Acc1 under the conditions that the system is less than 50,
20, and 10 cycles away from failure, and the prediction accuracy is illustrated in Table 3.
In fact, when the system is far from complete failure, a relatively higher error is tolerable.
However, when the system is close to failure, the estimation error has to be limited to a
lower value, since a higher error may be a threat on the safety of both aircraft engines and
aeroplanes, which may lead to unacceptable disasters. In subset FD001, when the engine
unit is less than 50 cycles away from failure, 80% of the estimation errors are limited within
±5 cycles; when it is less than 10 cycles away, more than 88% of the estimation errors are
limited within ±1 cycles. In subsets FD002 to FD004, the absolute errors are relatively
higher than in subset FD001, and this result is in correspondence with the performance in
Figure 7.

Table 3. Local estimation accuracy.

Remaining Cycles 50 Cycles Left 20 Cycles Left 10 Cycles Left

Accuracy(%) Acc5 Acc3 Acc1 Acc5 Acc3 Acc1 Acc5 Acc3 Acc1

FD001 80.0 57.7 30.2 84.8 77.4 55.3 98.2 94.4 88.5
FD002 62.3 40.2 20.8 68.6 50.4 22.1 83.5 66.4 57.5
FD003 70.1 48.9 25.4 78.2 66.1 45.4 93.5 84.9 78.2
FD004 40.8 26.5 13.2 55.7 39.6 20.3 76.7 65.2 50.4

In this table, d = RULesti − RULreal , and Acci represents the predicting accuracy when |d| ≤ i.

Mathematics 2022, 10, 352 14 of 19

4.5. Other Effective Factors

Generally, there are four factors that have an effect on the test performance: the size
of the time window, network layers, training epochs, and channels. The effects of these
factors are as follows.

The size of the time window has an important effect on RUL performance. A large
time window implies that the time data sequences can obtain more information from the
previous sequence, and develops a strong connection between the present and previous
sequences. However, two additional factors limit the size of the time window. As shown
in Figure 8a, an increase in the time window apparently enhances the experimental time.
Another factor is the dataset itself. According to Figure 2, in subset FD0001, the shortest
engine unit has only 31 cycles, followed by FD002 to FD004 for which the shortest unit
cycles are 21, 38, and 19, respectively. Considering these two factors, the window size is set
to 30 for the four subsets. The engine unit with fewer than 30 cycles is filled with zeros at
the beginning of the time steps.

The number of network layers and the training epoch play another two important
roles. In our method, the depth of the network is determined by both the number of
nodes in a cell and the number of cells. Tables 4–7 show the influence of different depths
on the experimental results. Because of the larger scale of samples and complex working
conditions, the depths in subsets FD002 and FD004 are higher than in FD001 and FD003.
An increase in the network depth can help to obtain better results on RMSE and scoring
function, but with an ascent in training time. To achieve a balance between performance
and training time, and also prevent overfitting, we set depth d = 70 for subset FD001 and
FD003, and d = 160 for FD002 and FD004. Training epoch is set for 200. Figure 8b,c show
the influence of these two factors.

The partial channels method was proposed to accelerate the searching and training
process of DARTS by sampling a small part of the super network to reduce the redundancy
in exploring the network space [26]. Here, we define a binary signal bi,j, which assigns 1 to
selected channels and 0 to skipped ones. The selected channels are sent into computation
as usual, while the skipped ones are directly copied to the output:

f pc
i,j (xi; bi,j) = ∑

o∈O

exp(αi,j
o)

∑o′∈O exp(αi,j
o′
)

o(bi,j ∗ xi) + (1− bi,j) ∗ xi. (10)

In the partial channels step, all the channels in the cells are randomly chosen for
optimization. However, the uncertainty of the randomness may cause unstable searching
results. To retard this problem, edge normalization is proposed:

xpc
j = ∑

i<j

exp(β
i,j
o)

∑h<j exp(β
h,j
o′
)

fi,j(xi), (11)

where β is introduced to reinforce searching stability. Thus, every edge is parameterized
with both α and β, making the architecture less sensitive.

In the operation selection step, we regard K as a hyperparameter, and thereafter, only
1/K of the channels are randomly selected. By reducing the number of channels, we can
select a larger batch size and reduce the experimental time. Figure 8d shows the relationship
between channels, RMSE, and the training time. In our experiment, we select K = 6.

Mathematics 2022, 10, 352 15 of 19

(a) (b)

(c) (d)

Figure 8. The effect of other factors.

Table 4. Effect of layers in test set FD001.

Nodes (n) Cells (c) Depth (n ∗ c) RMSE Scoring Function

5 6 30 20.53 773
5 8 40 16.64 552
5 10 50 13.32 388
7 6 42 14.48 390
7 8 56 11.65 264
7 10 70 10.36 215

Table 5. Effect of layers in test set FD002.

Nodes (n) Cells (c) Depth (n ∗ c) RMSE Scoring Function

8 8 64 26.67 6530
8 12 96 22.36 3834
8 16 128 18.86 2466

10 8 80 19.06 2680
10 12 120 16.83 1917
10 16 160 16.24 1782

Mathematics 2022, 10, 352 16 of 19

Table 6. Effect of layers in test set FD003.

Nodes (n) Cells (c) Depth (n ∗ c) RMSE Scoring Function

5 6 30 20.88 943
5 8 40 17.57 668
5 10 50 15.45 411
7 6 42 15.67 501
7 8 56 12.01 284
7 10 70 11.33 232

Table 7. Effect of layers in test set FD004.

Nodes (n) Cells (c) Depth (n ∗ c) RMSE Scoring Function

8 8 64 27.36 9092
8 12 96 24.78 7741
8 16 128 20.45 4230

10 8 80 22.58 4436
10 12 120 18.38 2898
10 16 160 17.03 2470

4.6. Compared with Other Related Researches

The C-MAPSS dataset in widely used in the study of the RUL problem, with many
research works published in recent years. To show the superiority of the performance,
Table 8 reports the estimation results of our proposed method and other popular works.
All the experimental results in this table are the best results provided from the references.
Our method has a similar scale in network layers, time window size, training batch size
and other hyperparameters with all the referenced studies. It is obvious to see that the
estimation result of our proposed method achieves the best performance over all these
popular works. Whatever the prognostic approach used, both of the score functions in
subsets FD002 and FD004 are much higher than in subsets FD001 and FD003, due to the
mixed conditions of the fault mode and operation conditions. DARTS achieves lower RMSE
and scoring functions in all the popular works.

Table 8. RMSE and the scoring function.

Method Year FD001 FD002 FD003 FD004
RMSE SF (1) RMSE SF RMSE SF RMSE SF

RUL Clipper [35] 2014 13.27 - (2) 22.89 - 16.00 - 24.33 -
CNN [36] 2016 18.45 1290 30.29 13600 19.82 1600 29.16 24,380

Random forest [37] 2016 17.91 - 29.59 - 20.27 - 31.12 -
vanilla LSTM [32] 2018 19.74 - 27.25 - 24.04 - 34.71 -

DCNN [38] 2018 12.61 273 22.36 10412 12.64 284 23.31 12,466
BiLSTM [39] 2018 13.65 295 23.18 4130 13.74 317 24.86 5430

Stacking ensemble [40] 2019 16.7 - 25.6 - 18.4 - 26.8 -
Hybrid-DNN [41] 2019 13.05 247 16.65 1599 12.22 287 19.83 2253

Semi-supervised [42] 2019 12.56 231 22.73 3366 12.10 251 22.66 2840
DAG netowrk [43] 2019 11.96 229 20.34 2730 12.46 553 22.43 3370

CatBoost [44] 2020 13.44 339 24.03 14245 13.36 315 24.02 13,931
Multi-head CNN-LSTM [45] 2020 12.19 259 19.93 4350 12.85 343 22.89 4340

AdaBN-DCNN [46] 2020 11.94 220 19.29 2250 12.31 260 22.14 3630
GD-NAS [28] 2021 15.45 - 24.91 - 14.35 - 26.43 -
EA-NAS [29] 2021 11.48 214 17.76 1683 12.10 251 18.97 2712

The proposed method 10.36 215 16.24 1782 11.33 232 17.03 2470
(1) SF represents for the scoring function in Equation (8). (2) ‘-’ represents for the results are not given.

Mathematics 2022, 10, 352 17 of 19

5. Conclusions

In this study, we introduce an autoML approach to design a network architecture based
on gradient descent, to solve the RUL estimation problem on the C-MAPSS dataset. In the
data processing stage, a fault detector is proposed to determine when the fault occurred.
We construct the whole search space as a DAG, where each subgraph of the DAG represents
a network architecture. Thereafter, we relax the search space into a continuous form by
using a softmax function, then the search space and loss function become continuous
and differentiable, so gradient descent can be used for optimization in the searching
process. In the architecture search step, a particular group of normal convolutional cells
and reduction cells are well searched for subsequent network weights training. Finally,
a partial channel connection method is introduced to accelerate the searching efficiency.
Compared with other related work on the C-MAPSS dataset, our proposed method achieves
better performance on all four subsets, with a lower RMSE function and a lower scoring
function. Moreover, the local estimation accuracy is proposed to evaluate the network
performance. To take an average estimation accuracy of the four subsets, when the system
is less than 50 cycles away from complete failure, the accuracy Acc5 is up to 60.0% under
an error of ±5 cycles, and Acc1 is 22% under a error of ±1 cycle. When the system is less
than 10 cycles away from failure, the accuracy Acc5 is up to 87% and Acc1 is up to 68%.
As a result, with the system approaching failure, Acc becomes higher. That is to say, when
the engine approaches failure, the estimation accuracy is at a very high level.

Author Contributions: Conceptualization, P.M.; methodology, P.M.; writing—original draft prepa-
ration, P.M.; writing—review and editing, P.M.; software, S.X.; investigation and supervision, B.Z.;
validation and funding acquisition, Y.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC)
under Grant 62073197, Grant 61933006, and the Special Funding for Top Talents of Shandong Province.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Si, X.; Wang, W.; Hu, C.; Zhou, D. Remaining useful life estimation—A review on the statistical data driven approaches. Eur. J.

Oper. Res. 2011, 213, 1–14. [CrossRef]
2. Saxena, A.; Simon, D. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation. In Proceedings of the

International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008.
3. LeCun, Y.; Bengio, Y.; Hinton, G.E. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
4. Heimes, F.O. Recurrent Neural Networks for Remaining Useful Life Estimation. In Proceedings of the International Conference

on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008.
5. Peel, L. Data Driven Prognostics using a Kalman Filter Ensemble of Neural Network Models. In Proceedings of the International

Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008.
6. Sutskever, I.; Martens, J.; Hinton, G.E. Generating text with recurrent neural networks. In Proceedings of the 28th International

Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011.
7. Sutskever, I.; Hinton, G.E.; Taylor, G.W. The recurrent temporal restricted boltzmann machine. In Proceedings of the Advances in

Neural Information Processing Systems, Vancouver, BC, CA, 8–10 December 2008; pp. 1601–1608.
8. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolution Neural Networks. In Proceedings of

the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.
9. Khishe, M.; Caraffini, F.; Kuhn, S. Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in

Chest X-ray Images. Mathematics 2021, 9, 1002. [CrossRef]
10. Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science

2004, 304, 78–80. [CrossRef] [PubMed]
11. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

http://doi.org/10.1016/j.ejor.2010.11.018
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.3390/math9091002
http://dx.doi.org/10.1126/science.1091277
http://www.ncbi.nlm.nih.gov/pubmed/15064413
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Mathematics 2022, 10, 352 18 of 19

12. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

13. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network achitectures using reinforcement learning. In Proceedings of
the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

14. Tan, R.Z.; Chew, X.Y.; Khaw, K.W. Neural Architecture Search for Lightweight Neural Network in Food Recognition. Mathematics
2021, 9, 1245. [CrossRef]

15. Elsken, T.; Metzen, J.H.; Hutter, F. Neural Architecture Search: A Survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
16. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. In Proceedings of the International Conference on

Learning Representations, Toulon, France, 24–26 April 2017.
17. Zhong, Z.; Yang, Z.C.;Deng, B.Y.; Yan, J.J.; Wu, W.; Shao, J.; Liu, C.L. BlockQNN: Efficient Block-Wise Neural Network Architecture

Generation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 7. [CrossRef]
18. Geoffrey, F.M.; Peter, M.T.; Shailesh, U.H. Designing neural networks using Genetic Algorithms. In Proceedings of the 3rd

International Conference on Genetic Algorithms, San Francisco, CA, USA, 1 June 1989.
19. Peter, J.A.; Gregory, M.S.; Jordan, B.P. An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural

Netw. 1994, 5, 54–65.
20. Kenneth, O.S.; Risto, M. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.
21. Liu, Y.Q.; Sun, Y.N.; Xue, B.; Zhang, M.J.; Yen, G.G; Tan, K.C. A Survey on Evolutionary Neural Architecture Search. arXiv 2021,

arXiv:2008.10937.
22. Kevin, S.; David, D.; Jasper, S.; Hutter, F.; Osborne, M.A. Raiders of the lost architecture: Kernels for bayesian optimization in

conditional parameter spaces. In Proceedings of the NIPS Workshop on Bayesian Optimization in Theory and Practice, Lake
Tahoe, NV, USA, 10 December 2013.

23. Kandasamy, K.; Neiswanger, W.; Schneider, J.; Póczos, B.; Xing, E.P. Neural architecture search with bayesian optimisation and
optimal transport. arXiv 2019, arXiv:1802.07191.

24. Liu, H.X.; Simonyan, K.; Yang, Y.M. Darts: Differentiable architecture search. In Proceedings of the International Conference on
Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

25. Liang, H.W.; Zhang, S.F.; Sun, J.C.; He, X.Q.; Huang, W.R.; Zhuang, K.C.; Li, Z.G. DARTS+: Improved Differentiable Architecture
Search with Early Stopping. arXiv 2019, arXiv:1909.06035v1.

26. Xu, Y.H.; Xie, L.X.; Zhang, X.P.; Chen, X.; Qi, G.J.; Tian, Q.; Xiong, H.K. PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search. arXiv 2020, arXiv:1907.05737v4.

27. Deng, F.; Bi, Y.; Liu, Y.; Yang, S. Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated
Convolution Network. Mathematics 2021, 9, 3035. [CrossRef]

28. Zhao, J.K.; Zhang, R.F.; Zhou, Z.; Chen, S.; Jin, J.; Liu, Q.F. A neural architecture search method based on gradient descent for
remaining useful life estimation. Neurocomputing 2021, 438, 184–194. [CrossRef]

29. Moa, H.; Custode, L.L.; Iacca, G. Evolutionary neural architecture search for remaining useful life prediction. Appl. Soft Comput.
2021, 108, 107474. [CrossRef]

30. Cai, H.; Chen, T.Y.; Zhang, W.N.; Yu, Y.; Wang, J. Efficient architecture search by network transformation. arXiv 2017,
arXiv:1070.004873.

31. Cai, H.; Yang, J.C.; Zhang, W.N.; Han S.; Yu Y. Path-Level Network Transformation for Efficient Architecture Search. In
Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

32. Wu, Y.T.; Yuan, M.; Dong, S.P.; Lin, L.; Liu, Y.Q. Remaining useful life estimation of engineered systems using vanilla LSTM
neural networks. Neurocomputing 2018, 275, 167–179. [CrossRef]

33. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. 1979, 28, 100–108. [CrossRef]
34. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning

Representations, San Diego, CA, USA, 7–9 May 2015.
35. Ramasso, E. Investigating computational geometry for failure prognostics. Int. J. Progn. Health Manag. 2014, 5, 005. [CrossRef]
36. Babu, G.S.; Zhao, P.; Li, X.L. Deep convolutional neural network based regression approach for estimation of remaining useful

life. In Proceedings of the International Conference on Database Systems for Advanced Applications, Dallas, TX, USA, 16–19
April 2016; pp. 214–228.

37. Zhang, C.; Lim, P.; Qin, A.K.; Tan, K.C. Multiobjective deep belief networks ensemble for remaining useful life estimation in
prognostics. IEEE Trans. Neural Netw. Learn. Syst. 2016, 99, 2306–2318. [CrossRef] [PubMed]

38. Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng.
Syst. Saf. 2018, 172, 1–11. [CrossRef]

39. Wang, J.; Wen, G.; Yang, S.; Liu, Y. Remaining useful life estimation in prognostics using deep bidirectional LSTM neural
network. In Proceedings of the Prognostics and System Health Management Conference, Chongqing, China, 26–28 October 2018;
pp. 1037–1042.

40. Singh, S.K.; Kumar, S.; Dwivedi, J.P. A novel soft computing method for engine rul prediction. Multimed. Tools Appl. 2017, 78,
4065–4087. [CrossRef]

41. Al-Dulaimia, A.; Zabihia, S.; Asifa, A.; Mohammadib, A. A multimodal and hybrid deep neural network model for Remaining
Useful Life estimation. Comput. Ind. 2019, 108, 186–196. [CrossRef]

http://dx.doi.org/10.3390/math9111245
http://dx.doi.org/10.1109/TPAMI.2020.2969193
http://dx.doi.org/10.3390/math9233035
http://dx.doi.org/10.1016/j.neucom.2021.01.072
http://dx.doi.org/10.1016/j.asoc.2021.107474
http://dx.doi.org/10.1016/j.neucom.2017.05.063
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.36001/ijphm.2014.v5i1.2205
http://dx.doi.org/10.1109/TNNLS.2016.2582798
http://www.ncbi.nlm.nih.gov/pubmed/27416606
http://dx.doi.org/10.1016/j.ress.2017.11.021
http://dx.doi.org/10.1007/s11042-017-5204-x
http://dx.doi.org/10.1016/j.compind.2019.02.004

Mathematics 2022, 10, 352 19 of 19

42. Ellefsen, A.L.; Bjørlykhauga, E.; Æsøya, V.; Ushakovb, S.; Zhanga, H.X. Remaining useful life predictions for turbofan engine
degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Saf. 2019, 183, 240–251. [CrossRef]

43. Li, J.; Li, X.; He, D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE
Access 2019, 7, 75464–75475. [CrossRef]

44. Deng, K.Y.; Zhang, X.Y.; Cheng, Y.J.; Zheng, Z.Y.; Jiang, F.; Liu, W.R.; Peng, J. A remaining useful life prediction method with
long-short term feature processing for aircraft engines. Appl. Soft Comput. J. 2020, 93, 106344. [CrossRef]

45. Mo, H.; Lucca, F.; Malacarne, J.; Iacca, G. Multi-Head CNN-LSTM with Prediction Error Analysis for Remaining Useful Life
Prediction. In Proceedings of the 27th Conference of Open Innovations Association (FRUCT), Trento, Italy, 7–9 September 2020.

46. Li J.; He, D. A Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters for Domain
Adaptation Remaining Useful Life Prediction. IEEE Access 2020, 8, 41482–41501. [CrossRef]

http://dx.doi.org/10.1016/j.ress.2018.11.027
http://dx.doi.org/10.1109/ACCESS.2019.2919566
http://dx.doi.org/10.1016/j.asoc.2020.106344
http://dx.doi.org/10.1109/ACCESS.2020.2976595

	Introduction
	The Proposed Method
	Neural Architecture Search
	Proposed Method for RUL

	Data processing
	C-MAPSS Dataset
	Feature Cutting
	Fault Detection
	Normalization
	Scoring Functions

	Experiments and Result Analysis
	Experimental Platform
	Architecture Search
	Experimental Results on Single Fault Mode
	Experimental Results on Multiple Fault Modes
	Other Effective Factors
	Compared with Other Related Researches

	Conclusions
	References

