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Abstract: The problem of an unsteady 3D boundary layer flow induced by a stretching sheet in a
rotating hybrid nanofluid is studied. A dimensionless set of variables is employed to transform the
system of partial differential equations (PDEs) to a set of nonlinear ordinary differential equations
(ODEs). Then, the system of ODEs is solved numerically using the MATLAB software. The impacts of
different parameters, such as copper nanoparticles volume fraction, radiation, rotation, unsteadiness,
and stretching parameters are graphically displayed. It is found that two solutions exist for the flow
induced by the stretching sheet. Furthermore, the increasing nanoparticle volume fraction enhances
the skin friction coefficient. It is noticed that the skin friction coefficient, as well as the heat transfer
rate at the surface, decrease as the rotating parameter increases. Additionally, the thermal radiation
as well as the unsteadiness parameter stimulate the temperature.

Keywords: unsteady flow; rotation; heat transfer; hybrid nanofluid; stretching sheet; radiation

1. Introduction

The investigation into heat transfer is useful in various engineering applications, such
as transpiration cooling, drag reduction, thrust bearing, and radial diffuser design [1].
Usually, fluids are used as heat transporters, such as in heating and cooling processes
in transportation systems and industrial processes. It is also noticed that the stretching
sheet has gained researchers’ attention for years. Researchers have conducted various
studies on the physical phenomena and heat transmissions past a stretching plate. It
has numerous important applications in industrial production, including the extrusion of
plastic sheets, the process of condensation of metallic plates, and glass filer fabrication [2].
The study of flow and heat transfer is of significant importance since the quality of the final
product depends on the large extent of the skin friction coefficient and the heat transfer
rate at the surface [2]. Recently, the investigation of flow over a stretching sheet has been
broadened to many different cases that make the study more interesting. For instance,
Shahid et al. [3] studied the effects of swimming gyrotactic microorganisms using Darcy law
and Vafai et al. [4] explored the effects of Dufour, Soret, and radiation on the Powell–Eyring
fluid flow.

Even though the study of steady-state flows has the greatest practical significance,
many scholars are now paying close attention to the study of unsteady-state flows. Steady
flow can be defined as a flow in which the fluid characteristics at a given location in the
system stay constant throughout time. In contrast, the unsteady flow is defined otherwise,
which is time-dependent flow. Sears and Telionis [5] reported the numerical studies of
steady and unsteady distinguishing boundary layer flow with Goldstein’s type singularities,
and a possible comparison between the position of the singularity in relation to the time
curves and the point of vanishing wall shear can be made. They discovered a significant
difference between vanishing wall shear and separation. The unsteady (transient) boundary
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layer that is time-varying consists of mostly start-up processes, such as the movements
from rest or transitions from one steady-state to another or occasional movements [6].
According to Liao [7], the unsteady flow problem may be resolved in the same manner
as the steady-state similarities governed by the nonlinear ODEs. The study found that
solving the problem for unsteady flow is as easy as steady flow using the homotopy
analysis method (HAM). Suali et al. [8] considered both shrinking and stretching sheets
with injection or suction to explore the unsteady flow towards a stagnation point on the
sheet. According to this study, the spectrum of dual outcomes rises with mass suction,
whereas it reduces with mass injection. The problems related to the unsteady flow can also
be found in numerous literature [9–16].

The applications involved the problem of rotating flow, such as flywheels, cutting
discs, rotating machinery, computer storage devices, electrical items, and many others [17].
Anuar et al. [18] stated that the fluid flow with a rotating plane was initially introduced by
Kármán [19] using the momentum integral method. In the year 1988, Wang [20] explored
the rotating fluid flow of the stretching plate. The solutions were determined by the rotation
rate parameter, and it was found that the perturbation solutions for small and large rotation
rates were comparable to other works of literature. A few years later, Rajeswari and
Nath [21] broadened Wang’s problem to include the unsteady flow problem by combining
the finite-difference scheme with the quasilinearization technique. Takhar et al. [22] have
also extended Wang’s analysis to include the magnetic field. The application that is related
to the present magnetic-rotational model was the chilling process in amalgamation reactors
of liquid metal blankets. Yacob et al. [23] investigated a steady rotating flow in a nanofluid
containing carbon nanotubes past a stretching/shrinking surface. Carbon nanotubes can
be classified into single-walled (SWCNT) and multi-walled (MWCNT). They discovered
that the heat transfer enhancement is greater in water-MWCNTs than in water-SWCNTs.
Moreover, recent studies in this area may be found in references [24–27].

Nanofluid is a new amalgamation formed, as stated by Choi [28]. A nanofluid is
formed by adding tiny particles in nano-dimensions to the base fluid. Nanofluids have
higher thermal conductivity and are more effective in heat transport activities compared
to their base fluid. Hence, it is also well acknowledged and accepted empirically and
conceptually that dispersing nanoparticles in a liquid may improve the liquid’s thermo-
physical properties [29]. Nanotechnology has advanced rapidly in recent years, and by
combining many nanoparticle elements, stability issues and low heat conductivity can be
addressed. Nanofluids will save energy, improve thermal efficiency, speed up processes,
and increase the life of the equipment. Using a finite element simulation, Rana et al. [24]
observed the unsteady magnetohydrodynamic (MHD) boundary layer rotating nanofluid
flow on a stretching plate. Apart from that, nanofluid provides a number of advantages,
including less component degradation and blockage in tiny channels than fluid containing
micro-to millimeter-sized particles in suspension [30]. Similar problems in nanofluid
but with different approaches were published by Ghadimi et al. [31], Noor et al. [32],
Ahmad et al. [33], and Khan et al. [34].

Due to its importance in providing greater properties than nanofluid, hybrid nanofluid
has recently been a topic of discussion. It’s employed in heat transfer applications using
particles that are less than 100 nanometers in size. Higher energy efficiency, lower operating
costs, and greater performance are among the contributions of the high thermal conductivity
of a hybrid nanofluid [35]. Hybrid nanofluids have recently piqued the curiosity of many
academics as a novel technological idea. Using a two-step technique, Suresh et al. [36]
studied the combination of Al2O3-Cu/H2O hybrid nanofluid. They found that the distinct
nanoparticles improved the parameters of the hybrid nanofluid. Later, Suresh et al. [37]
discussed the heat transport and the impacts of the alumina-copper/H2O hybrid nanofluid.
Numerical research of the 3D hybrid nanofluid flux with Newtonian heating and Lorentz
force effects on a stretching plate was conducted by Devi and Devi [38]. Later, they
continued the investigation across a stretching plate on increasing heat transmission in a
copper-alumina/H2O hybrid nanofluid [35].
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Moreover, Waini et al. [39] investigated the unsteady hybrid nanofluid flow and heat
transmission through a stretching, as well as a shrinking surface. For a particular unsteadi-
ness parameter range, dual solutions exist; the results demonstrate that increasing the
nanoparticle volume percentage of Cu for the first solution will improve the skin friction co-
efficient, while the second solutions show the opposite. Furthermore, the unsteady hybrid
nanofluid flow on a porous biaxial stretching or shrinking plate, the effects of buoyancy and
stagnation flow on an exponentially stretching or shrinking vertical plate, heat transfer, and
MHD flow over a porous stretching/shrinking wedge, as well as the flow past a permeable
non-isothermal shrinking surface were reviewed by Waini et al. [40–43]. The stability
analysis was conducted by Zainal et al. [44] for the unsteady 3D magnetohydrodynamic
hybrid nanofluid for Homann flow. Hayat and Nadeem [45] described how heat dissipa-
tion might be improved using Ag-CuO/H2O hybrid nanofluid. Later, Hayat et al. [26]
extended the study of rotational flow with partial slip and radiation effects. Subsequently,
Anuar et al. [18] explored copper-alumina/water hybrid nanofluid with radiation on a
rotating surface. They reported the stability of the solutions over time. The study of hybrid
nanofluid flows has been diversified by Khan et al. [46] to various nanoparticle shape
factors and for different base fluids.

Motivated by the earlier studies on rotating hybrid nanofluids, the present work
intends to explore the rotation and radiation impacts on the unsteady 3D rotating flow
of a hybrid nanofluid over a stretching sheet. The boundary value problem is solved
numerically using the MATLAB software. The model is adopted from Rana et al. [24] and
Devi and Devi [35], where the hybrid nanofluid Al2O3-Cu/H2O is considered in this study.
Rana et al. [24] studied the unsteady magnetohydrodynamic flow on a stretching sheet in
a rotating nanofluid. The influences of the related parameters are visually depicted, and
the numerical findings obtained are compared with the existing literature. The novelty
of this study can also be seen in the discovery of dual solutions when the surface of the
sheet is stretched. This discovery also has applications in a variety of sectors of science and
technology, and it is useful for engineers as well as scientists to understand the behavior of
the boundary layer flow.

2. Problem Formulation

The unsteady rotating flow of a hybrid nanofluid on a stretching sheet is considered as
demonstrated in Figure 1, where (x, y, z) are cartesian coordinates with the sheet at z = 0.
The stretching velocities in the x and y directions are denoted by uw(x, t) and vw(x, t),
respectively, while ω is the uniform angular velocity of the rotation, see Figure 1. Moreover,
the ambient temperature of the fluid is T∞ and the sheet temperature is Tw. The hybrid
nanofluid Al2O3-Cu/H2O is considered in this study. The desired hybrid nanofluid is
formed by scatting copper nanoparticles in water to create Cu-H2O nanofluid, and then
aluminum oxide nanoparticles are added into that Cu-H2O nanofluid.
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The governing equations are adopted from Refs. [2,20,21,25], and may be written as

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)
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∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= 2ωv +
µhn f

ρhn f

∂2u
∂z2 (2)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −2ωu +
µhn f

ρhn f

∂2v
∂z2 (3)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

=
µhn f

ρhn f

∂2w
∂z2 (4)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
khn f(

ρCp
)

hn f

∂2T
∂z2 −

1(
ρCp

)
hn f

∂qr

∂z
(5)

The boundary conditions are

u = uw(x, t) = cx
1−αt , v = 0, w = 0, T = Tw at z = 0

u→ 0, v→ 0, T → T∞ as z→ ∞
(6)

where (u, v, w) are the velocity components along the (x, y, z) directions, t refers to time, T
is the fluid temperature, c > 0 for the stretching sheet and qr is the radiative heat flux, khn f
is the thermal conductivity, µhn f is the dynamic viscosity, ρhn f is the density,

(
ρCp

)
hn f is

the heat capacity, and σhn f is the electrical conductivities. The thermophysical properties
are given in [47] as presented in Table 1.

Table 1. Thermophysical properties.

Properties Hybrid Nanofluid

Density ρhn f = φAl2O3 ρAl2O3 + φCuρCu +
(

1− φhn f

)
ρ f

Dynamic viscosity µhn f = µ f
(
1− φAl2O3 − φCu

)−2.5

Thermal conductivity

khn f
k f

=
{

φAl2O3 kAl2O3+φCukCu

φAl2O3+φCu
+ 2k f + 2

(
φAl2O3 kAl2O3 + φCukCu

)
− 2
(
φAl2O3 + φCu

)
k f

}
×{

φAl2O3 kAl2O3+φCukCu

φAl2O3+φCu
+ 2k f −

(
φAl2O3 kAl2O3 + φCukCu

)
+
(
φAl2O3 + φCu

)
k f

}−1

Heat capacity
(
ρCp

)
hn f = φAl2O3

(
ρCp

)
Al2O3

+ φCu
(
ρCp

)
Cu +

(
1− φhn f

)(
ρCp

)
f

Where φhn f = φAl2O3 + φCu.

In Table 1, φ denotes the nanoparticle volume fraction where φ = 0 indicates the regular
fluid, φAl3O2 correlates to Al2O3, and φCu correlates to Cu. The physical properties of the
nanoparticles and the base fluid are given in Table 2, as reported in [48].

Table 2. Thermophysical properties of nanoparticles and water (base liquid).

Physical Properties Al2O3 Cu Water

Cp(J/KgK) 765 385 4179
ρ
(

kg/m3
)

3970 8933 997.1

k(W/mK) 40 400 0.613
β× 10−5(1/K) 0.85 1.67 21

Following Bataller [49], Ishak [50], Magyari and Pantokratoras [51], and Roşca, Roşca
and Pop [52], the Rosseland approximation is applied to exhibit qr as

qr = −
4
3

σ∗

k∗
∂T4

∂y
(7)

where qr, k∗ and σ∗ respectively indicate the radiative heat flux, mean absorption coefficient,
and the Stefan–Boltzmann constant. By neglecting higher-order terms and employing the
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Taylor series, T4 may be approximated as T4 ≈ 4T3
∞T− 3T4

∞. Equation (5) is now may be
written as

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
1(

ρCp
)

hn f

(
khn f +

16σ∗T∞
3

3k∗

)
∂2T
∂z2 (8)

The given transformation variables are according to Maqsood et al. [25],

u = ax
1−αt f ′(η), v = ax

1−αt h(η), w = −
√

aν f
1−αt f (η)

θ(η) = T−T∞
Tw−T∞

, η = z
√

a/ν f
1−αt

(9)

where (′) denotes differentiation w.r.t. η, a > 0 is the stretching constant along the x
direction, α is a parameter indicating the flow unsteadiness, ν f is the kinematic viscosity of
the base fluid, and the nonlinear rotating angular velocity is ω = ω∗/(1− αt).

Substituting the similarity variables (9) into Equations (1)–(4) and (8) yields

µhn f /µ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 + 2Ωh− β

(
f ′ +

η

2
f ′′
)
= 0 (10)

µhn f /µ f

ρhn f /ρ f
h′′ + f h′ − f ′ h− 2Ω f ′ − β

(
h +

η

2
h′
)
= 0 (11)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
θ′′ + f θ′ − β

η

2
θ′ = 0 (12)

The boundary conditions are as follows:

f (0) = 0, f ′(0) = λ, h(0) = 0, θ(0) = 1
f ′(η)→ 0, h(η)→ 0, θ(η)→ 0 as η → ∞

(13)

where Ω is the rotation parameter, β the unsteadiness parameter, Pr indicates the Prandtl
number, Rd the radiation parameter, and λ > 0 is the stretching parameter respectively
defined as

Ω =
ω∗

a
, β =

α

a
, Pr =

ν f

α f
, Rd =

4σ∗T∞
3

k∗k f
, λ =

c
a

(14)

It is noted that λ > 0 is for stretching sheet, λ < 0 for shrinking sheet, and λ = 0
corresponds to static sheet.

We notice that the regular fluid
(
φAl2O3 = φCu = 0

)
and the absence of rotating param-

eter (Ω = 0), Equation (10) becomes Equation (15) which is consistent with Equation (6) as
in Fang et al. [53].

f ′′′ + f f ′′ − f ′2 − β
(

f ′ +
η

2
f ′′
)
= 0 (15)

The quantities of physical interest are the skin friction coefficients and the local Nusselt
number which are given as follows:

C f x =
µhn f

ρ f ue2(x)

(
∂u
∂z

)
z=0

, C f y =
µhn f

ρ f ue2(x)

(
∂v
∂z

)
z=0

,

Nux = − xkhn f

k f (Tf−T∞)

(
∂T
∂z

)
z=0

+ x(qr)z=0

(16)

Using Equations (10) and (17) yields

Rex
1/2C f x =

µhn f
µ f

f ′′ (0), Rex
1/2C f y =

µhn f
µ f

h′(0),

Rex
−1/2Nux = −

( khn f
k f

+ 4
3 Rd

)
θ′(0)

(17)
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where Rex is the local Reynolds number defined as Rex = ue(x)x/ν f .

3. Results and Discussion

The governing non-linear ordinary differential equations (ODEs) (10)–(12) subjected
to the boundary conditions (13) are solved numerically using the built-in function “bvp4c”
available in the MATLAB software. The detailed settings are described in [54]. The
validation for the skin friction coefficient in x and y directions f ′′ (0) and h′(0), respectively,
is obtained, which agrees with Wang [20], Nazar et al. [2], and Rana et al. [24]. The
comparisons are for the stretching surface, λ = 1 in the absence of solid volume fraction
(φ1 = φ2 = 0) at a steady state for different values of Ω as presented in Table 3. For
convenient purposes, the subscripts ‘1′ and ‘2′ indicate the alumina (Al2O3) and the copper
(Cu), respectively.

Table 3. Comparison of f ′′ (0) and h′(0) for β = 0, λ = 1 and variation of Ω.

Ω Wang [20] Nazar et al. [2] Rana et al. [24] Present Study

f
′′
(0) h

′
(0) f

′′
(0) h

′
(0) f

′′
(0) h

′
(0) f

′′
(0) h

′
(0)

0 −1 0 −1 0 −1 0 −1 0
0.5 −1.1384 −0.5128 −1.1384 −0.5128 −1.1384 −0.5128 −1.1384 −0.5128
1.0 −1.3250 −0.8371 −1.3250 −0.8371 −1.3250 −0.8371 −1.3250 −0.8371
2.0 −1.6523 −1.2873 −1.6523 −1.2873 −1.6523 −1.2873 −1.6523 −1.2873
5.0 - - - - −2.3903 −2.1502 −2.3903 −2.1502

The effects of non-dimensional parameters like Cu nanoparticle volume fraction φ2,
rotating parameter Ω, radiation parameter Rd, and unsteadiness parameter β, are discussed
and illustrated in Figures 2–9. We can see from these diagrams that there are two solutions
within the first and second solutions when λ > 0. The solutions are found up to a specific
critical value λ = λc.
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Figures 2 and 3 depict the changes in the skin friction f ′′ (0) in the x direction and
h′(0) in the y direction, respectively, for the various values of φ2 when Pr = 6.2, Rd = 2.3,
β = −1, φ1 = 0.01 and Ω = 0.01. It is discovered that as the Cu nanoparticle volume
fraction φ2 increases, the values of f ′′ (0) and h′(0) decrease (increase in absolute sense) for
both solutions. There are two solutions for a particular range of stretching strength λ > 0.
It is noted that the critical value λc for Cu/H2O nanofluid (φ1 = 0.01, φ2 = 0.00) is 0.00087
and for the hybrid nanofluid Al2O3-Cu/H2O (φ1 = 0.01, φ2 = 0.01, 0.02) are 0.00082 and
0.00071, respectively. It is found that the critical values λc decrease when the values of φ2
increase. When compared to the nanofluid, the hybrid nanofluid has a higher concentration
of nanoparticles. In particular, a higher concentration of nanoparticles will lead to the
boundary layer separation being delayed. In Figure 2, the magnitude of f ′′ (0) rises in
perfect sync with the Cu nanoparticle volume fraction φ2. It is noted that the solid surface
exerts a drag force on the fluid for negative values of f ′′ (0). Meanwhile, if the stretching
strength is less (0.05 < λ < 0.4), it has the opposite behavior, in which the fluid exerts a
drag force on the sheet, represented by positive values of f ′′ (0). The solution exists up to
the critical values of λ as shown in Figure 2, where λc = 0.00087, 0.00082, and 0.00071 for Cu
nanoparticle volume fraction parameter φ2 =0.00, 0.01, and 0.02, respectively. It is noted
that there are positive and negative values of f ′′ (0). The positive values indicate a drag
force imposed by the fluid on the solid surface, while the negative sign implies a drag force
imposed by the solid surface on the fluid. On the other hand, the case f ′′ (0) = 0 indicates
that the fluid-solid contact is free of friction moving at the same velocity. Overall, the higher
the ratio of stretching, the higher the drag force on the surface. There are significant effects
on the second solution in Figure 3, where the y-direction skin friction coefficient, h′(0) is
always negative for λ > 0 as the drag force is dominant on the solid surface. The effects of
drag force in the y direction are less than the effects in the x direction.

In addition, Figures 4 and 5 elucidate the variation in the skin friction f ′′ (0) in the x
direction and heat transfer −θ′(0) for various values of the rotating parameter Ω when
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Pr = 6.2, Rd = 2.3, β = −1, and φ1 = φ2 = 0.01. It is observed that the critical values
λc are getting bigger with the increasing values of the rotating parameter Ω. The critical
values of λ for the rotating parameter Ω = 0.01, 0.02, and 0.03 are λc =0.00076, 0.00078,
and 0.00079, respectively. The increment values of the rotating parameter depend on the
rotation rate, as well as the stretching rate [25]. Figure 4 shows that f ′′ (0) decreases as Ω
increases for the first solution, but it increases for the second solution, which is consistent
with the results presented in Figure 2. Even though the gap is small, due to the small
variation of the rotating parameter Ω, but the existence of the dual solutions can still be
seen. However, Figure 5 shows the opposite results, where for the first solution, increasing
Ω leads to a decrease in the heat transfer rate −θ′(0), while for the second solution, it rises.

The variations of heat transfer rate −θ′(0) with λ for various values of radiation
parameter Rd when Pr = 6.2, Ω = 0.01, β = −1, and φ1 = φ2 = 0.01 are presented in
Figure 6. We note that as Rd increases, the absolute value of −θ′(0) decreases. The critical
values, λc = 0.00914, 0.00873, and 0.00687 for Rd =2.0, 2.3, and 2.5, respectively, are also
presented in this figure. It is noted that Rd gives no effect on the skin friction coefficients
for both the x and y directions, which is expected since the velocity field is not affected by
the thermal field, see Equations (10)–(13).

Figures 7–9 elucidate the effects of the unsteadiness parameter β on the fluid velocity
in the x and y directions, as well as the fluid temperature. Initially, by increasing β, the
velocity of the first solution decreases, while the velocity of the second solution increases.
However, the opposite behavior is seen in the velocity in the y direction. When the fluid
moves towards inviscid flow, the directional movement of the velocity changes in the x
direction for first and second solutions, while the movement of velocity in the y direction is
consistent with decreasing towards the quiescent fluid. These scenarios imply thickening
of the velocity boundary layer. In addition, the temperature increases for both solutions. It
shows a consistent analysis that the thermal boundary layer thickness is also rising.

4. Conclusions

The problem of the unsteady 3D rotating hybrid nanofluid flow on a stretching sheet
was explored. The governing PDEs were transformed to ODEs using a suitable similarity
transformation. The effects of the involved parameters on the physical quantities of interest
were visually shown and analyzed. The existence of double solutions was discovered for
the stretching situation. In addition, the higher concentration of the nanoparticle volume
fraction slowed down the boundary layer flow separation. The function h(η) was found to
be negative, which explains that the counterclockwise fluid rotation influences the fluid flow
in the negative y direction. The positive skin friction coefficient shows that the fluid imposes
a drag force on the solid surface, while the negative value implies the contrary. The results
showed that the radiation parameter, Rd, emits the heat energy into the boundary layer,
thus leading to a temperature rise of the hybrid nanofluid and subsequently enhancing the
heat transfer rate of the fluid.
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Nomenclature

a, c constants
C∞ ambient concentration
C f skin friction coefficient
Cp specific heat at constant pressure (Jkg−1K−1)
(ρCp) heat capacitance of the fluid (JK−1m−3)
f ′ velocity in the x-direction
h velocity in the y-direction
k thermal conductivity of the fluid (Wm−1K−1)
k∗ Rosseland mean absorption coefficient (m−1)
Nux local Nusselt number
Pr Prandtl number
qr radiative heat flux (Wm−2)
Rd radiation parameter
Rex local Reynolds number
t time (s)
T fluid temperature (K)
T∞ ambient temperature (K)
Tw surface temperature (K)
u, v, w velocity component in the x-, y- and z- directions (ms−1)
uw velocity in the x direction (ms−1)
vw velocity in the y direction (ms−1)
x, y, z Cartesian coordinates (m)
Greek Symbols
α a parameter indicates the flow unsteadiness
β unsteadiness parameter
η similarity variable
θ dimensionless temperature
λ stretching parameter
µ dynamic viscosity (kgm−1s−1)
ν kinematic viscosity of the fluid (m2s−1)
ρ density of the fluid (kgm−3)
σ electric conductivity (Sm−1)
σ∗ Stefan-Boltzmann constant (Wm−2K−4)
φ nanoparticle volume fraction
Ω rotating parameter
ω angular velocity (rad s−1)
Subscripts
f base fluid
hn f hybrid nanofluid
Superscript
′ differentiation with respect to η
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