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Abstract: This paper deals with the mathematical modeling of the second wave of COVID-19 and
verifies the current Omicron variant pandemic data in India. We also we discussed such as uniformly
bounded of the system, Equilibrium analysis and basic reproduction number R0. We calculated the
analytic solutions by HPM (homotopy perturbation method) and used Mathematica 12 software for
numerical analysis up to 8th order approximation. It checked the error values of the approximation
while the system has residual error, absolute error and h curve initial derivation of square error at up
to 8th order approximation. The basic reproduction number ranges between 0.8454 and 2.0317 to
form numerical simulation, it helps to identify the whole system fluctuations. Finally, our proposed
model validated (from real life data) the highly affected five states of COVID-19 and the Omicron
variant. The algorithm guidelines are used for international arrivals, with Omicron variant cases
updated by the Union Health Ministry in January 2022. Right now, the third wave is underway in
India, and we conclude that it may peak by the end of May 2022.

Keywords: COVID-19; omicron variant; pandemic; HPM; stability and numerical analysis; error
analysis

1. Introduction

COVID-19 spread is increasing in urban areas across India and Omicron cases are also
increasing. In December 2021, Omicron is the leading variants compare to other variants.
So for, each state has increased the cases of Omicron spread. Now COVID-19 active cases
were increased in India and it is very soon end for this pandemic. COVID-19 cases in India
as of 30 December 2021, collected from the WHO (World Health Organization) is as follows:
via passengers screened at the airport (1,524,266), active cases (82,402), cured or discharged
(34,258,778), deaths (480,860), total active cases (160,989), last total cured (33,614,434), last
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total death (456386), and total samples tested (605,885,769). The total vaccination doses as
of the current date is 1,438,322,742.

The Omicron variant of COVID-19 has been detected in 653 cases across India by Union
Health Ministry data updated in December 2021. As of 30 December 2021, COVID-19 cases
are increasing in India. On 29 December 2021, there were 13187 new cases identified, a 77%
increase from the previous week. Cases are surging in other states such as Mumbai, Delhi,
Pune, Bengaluru, Chennai, Thane, Kolkata and Ahmedabad. Mumbai identified 2510 cases
on 29 December 2021; this was an 80% increase from the previous day and 400% rise from
a week previous. Similarly, Delhi identified 923 cases (600% rise), Bengaluru 400 cases
(90%), Chennai 294 (100%), Mumbai (15%), etc. The current high rate is due to the Omicron
variant. It is a type of the SARS-CoV-2 virus and dominant in India in the last few days
of December 2021. The percentage of vaccination is 63% of its adults and 89% of partial
in India.

Even though there are some vaccinations and medicines for control this pandemic
treated at COVID-19 gives a big challenge to the people. Moreover, we discuss equilib-
rium points of COVID-19 to lessen the infected individuals in India. We have given the
convergent, comparable and most appropriate solution of each and every compartment
involved in the model by using the most powerful and elegant method via the homotopy
perturbaton method. Particularly in India, it has decided lots of control strategy polices
followed by peoples, due to quarantine period measures such as lock down, social dis-
tances, speed up of treatment, wearing mask, sanitizer usages and frequently wash hands
are respectively [1–7].

Chakraborty T, Ghosh I. [8], discuss the real life data and dangerous assessment
of COVID-19 by using data-driven analysis. The analysis of prediction of COVID-19
spreads are in China, Italy and France in [9]. The isolation of cases and contacts are to
control COVID-19 outbreaks [10]. We collected the Indian data separately in the Indian
council of medical research (ICMR) [11]. Dynamics and bifurcation approaches are defined
in [12]. Kucharski AJ et al. [13], it gives a spread model study on transmission and infected
data on COVID-19. The R0 of COVID-19 is calculated and data fluctuations to other
viruses [14,15]. Ndariou F, et al. [16], the COVID-19 model in Wuhan which is considered
and control strategies in [17] with similar to Brazil [18]. The mathematical modelling of
the improved SIR model with real life government control strategies [19] with SARSCoV-2
in India [20]. We collected the tracker data from crowd sourcing in India [21]. SEIR is
a good model which enables the COVID-19 outbreak in all countries with government
polices and other endemic models for source data [22–25]. M. A. Khan, A. Atangana [26],
A Mathematical Modeling of novel Corona-virus (2019-nCoV) is studied with numerical
simulation and asymptomatic carrier transmission [27]. The compartment models are
defined by [28] with phase based [29]. The numerical data’s are in all countries, we used
this procedure the calculations [30–32]. It helps to all the analysis such as control in Wuhan,
China [33,34]. The Indian dynamics are of transmission and control strategy are derived
from the mathematical modeling [35] with New dynamical behavior in [36]. In this regard,
we calculated the active cases from the mathematical modeling and then created a new
model in the second wave with the Omicron variant. We obtained the infected ratio for
the period October 2021 to December 2021 and the parameter estimation of the model.
The described model is solved numerically as well as approximated analytically by using
the homotopy perturbation method.

In general, we collected all data from the WHO [37] with optimal control theories [38–40].
The supporting data collected from other government recongnised websites [41–44]. The four
states (Kerala, Sikkim, Mizoram and Meghalaya) are an exception to the endemic state (they are
not yet endemic). It will soon change and become endemic. Almost the majority of population is
infected state. The affected population had 68 percentage (nearly 1000 million) antibodies from
4th ICMR survey by end of December 2021. The cumulative COVID-19 cases had 30,410,577
(3.2 percentage out of affected population).
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Finally, we concluded that the five highly affected states of Maharashtra, kerala,
Karnataka, Tamilnadu and Andra Pradesh need more attention to decrease the spread to
the infected populations. The number of people infected with COVID-19 was still high in
many areas, and transmission of the virus was easily regenerated once people increased
their activities and contact with each other. The current pandemic situation is to reduce the
infection of COVID-19 cases in India. Scientists are currently working to find opt vaccine
for corona virus disease from various countries.

This research paper is written as follows: In Section 2, we have given the detailed
mathematical modeling of the second wave of the Indian COVID-19 pandemic. In Section 3,
Stability analysis of the model like uniformly bounded of the system, equilibrium analysis
such as disease free equilibrium and endemic free equilibrium and basic reproduction
number is studied.

In Sections 4 and 5, the approximate analytical expressions of each and every compart-
ment appeared in the given model are derived using HPM. Also, we briefly discuss the
numerical analysis and error analysis for the Sections 6 and 7. The concluding remarks are
provided in Section 7.

2. Mathematical Modelling of Second Wave COVID-19

In the Indian perspective, the analysis of different strategies on COVID-19 trans-
mission dynamics in the presence of different intervention schemes becomes significant.
Considering the significant role of intervention strategies, there are many researchers that
have obtained a new epidemic model with different intervention strategies of COVID-19
in a homogeneous host population. The appearance and recurrence of coronavirus are
epidemics modeling researchers to model. The proposed model all parameters details are
given by Table 1. Let us define the compartmental mathematical model (epidemic model)
that has been developed by Kham and Atangana [26] for understanding the transmission
of the virus and some interesting in Figure 1 (see also [16,27,32,37]).

In this epidemic model a total number of populations N at a time t, is divided into the
following six compartments:

Table 1. The proposed model variables and parameters description.

S(t) Susceptible people
E(t) Exposed people
I(t) Infected strength
Ia(t) Asymptotically infected people
R(t) Recovered people
M(t) Reservoir people
α0 Birth rates
α1 death rates
α2 Coefficient of transmission
α3 Multiple transmission
α4 Disease transmission
α5 Infection of Asymptomatic
α6 Incubation parameter
α7 Infected transmission
α8 Rate of recovery
α9 Asymptomatic peoples
α10 Virus transmission of Asymptomatic
α11 Virus transmission of reservoir

The system of nonlinear ordinary differential equations representing this epidemic
model is as follows:
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dS
dt

= α0 − α1S− α2S(I + α3 Ia)

N
− α4SM

dE
dt

=
α2S(I + α3 Ia)

N
+ α4SM− (1− α5)α6E− α5α7E− α1E

dI
dt

= (1− α5)α6E− (α8 + α1)I

dIa

dt
= α5α7E− (α9 + α1)Ia

dR
dt

= α8 I + α9 Ia − α1R

dM
dt

= α10 I + α11 Ia − α1M

(1)

Figure 1. The compartmental diagram for COVID-19 epidemic model.

To understand the above system of Equation (1) more clearly, we rewrite the same
system in the following way by substituting some more constants as follows:

dS
dt

= α0 − α1S− α13S(I + α3 Ia)− α4SM

dE
dt

= α13S(I + α3 Ia) + α4SM− α14E− α15E− α1E

dI
dt

= α14E− α16 I

dIa

dt
= α15E− α17 Ia

dR
dt

= α8 I + α9 Ia − α1R

dM
dt

= α10 I + α11 Ia − α1M

(2)
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where

α13 =
α2

N
, α14 = (1− α5)α6, α15 = α5α7, α16 = α8 + α1 and α17 = α9 + α1 (3)

with the initial conditions for finding the solution of Equation (2) are

S(0) = S0, E(0) = E0, I(0) = I0, Ia(0) = Ia0 , R(0) = R0 and M(0) = M0 (4)

3. Stability Analysis of Second Wave COVID-19
3.1. Uniformly Bounded of The System

In this section, we produced uniformly boundedness of the system. It analyzed the
initial values of the system with boundary of positivity, and identified the region of the
system of equations. Let

X = S + E + I + Ia + R + M

dX
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dIa

dt
+

dR
dt

+
dM
dt

dX
dt

= α0 − α1X + α10 I + α11 Ia

dX
dt

+ α1X ≤ α0, t→ ∞.

Region =

{
X ∈ R6

+ : 0 ≤ X(S, E, I, Ia, R, M) <
α0

α1
+ ε

}
, ε > 0.

3.2. Equilibrium Analysis of COVID-19

This section is very important role in mathematical model while the systems analysis
to get the disturbances of the boundary. It makes to find the solutions either stable or
unstable with stability of whole system of equations. The study on equilibrium of COVID-
19 deals with several things such as the equilibrium on the regional economies of a country,
the equilibrium at the population level. It is calculated to derive the disease free and
endemic equilibrium points. These two cases the derivative is equal to zero.

α0 − α1S− α13S(I + α3 Ia)− α4SM = 0
α13S(I + α3 Ia) + α4SM− α14E− α15E− α1E = 0
α14E− α16 I = 0
α15E− α17 Ia = 0
α8 I + α9 Ia − α1R = 0
α10 I + α11 Ia − α1M = 0

Then we solved the equilibrium points of S, E, I, Ia, R and M.

3.3. Disease Free Equilibrium for COVID-19

The current scenario spread is low or not affected the infection such cases only exposed
and infection classes must be zero. In this case, we got the susceptible solutions and
remaining all are zero. This case there is no infection of COVID-19. We put E = I = Ia = 0.

The disease free equilibrium points are:

S =
α0

α1
, E = 0, I = 0, Ia = 0, R = 0, M = 0

3.4. Endemic Equilibrium for COVID-19

It is used to find the spread of COVID-19 infection. This case all compartments are
not equal to zero. We have found the calculations of spread and all fluctuations clearly
identified. It is very useful for whole boundary. The endemic equilibrium points are:
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S =
α1α16α17(α14 + α15 + α1)

α14α17(α4α10 + α13α1) + α15α16(α4α11 + α13α3α1)

E =
α0(α4α10 + α13α1)α14α17 + α15α16(α4α11 + α13α1α3)− α1α16α17α1(α14 + α15 + α1)

(α14 + α15 + α1)[α4(α10α14α17 + α11α15α16) + α13(α14α17α1 + α15α3α16α1)]

I =
−α14(α1α16α17α1(α14 + α15 + α1) + α0α4(α14α10α17 + α11α15α16) + α0α13(α14α17α1 − α15α3α16α1)

α16[(α14 + α15 + α1)(α4(α10α14α17 + α11α15α16) + α13(α14α17α1 + α15α3α16α1)]

Ia =
−α15[α1α16α17α1(α14 + α15 + α1)− α0α4(α10α14α17 − α11α15α16)− α0α13α1(α14α17 − α15α3α16)]

α17(α14 + α15 + α1)((α4α14(α10α17 + 1) + α1α13(α14α17 + α15α3α16))

R =

−((α1α16α17α1(α14α15 + α1)− α0α4(α10α14α17 + α11α15α16)
−α0α1α13(α14α17 − α15α3))(α8α14α17 + α9α15α16))

(α1α16α17)(α14 + α15 + α1)[α4(α10α17 + α11α15α16) + α1α13(α14α17 + α15α3α16)]

M =

−((α1α16α17α1(α14 + α15 + α1)− α0α4(α10α14α17 + α11α15α16
−α0α1α13(α14α17 + α15α3α16))(α10α14α17 + α11α15α16)))

((α14 + α15 + α1)(α4(α10α14α17 + α11α15α16) + α1α13(α14α17α1 + α15α3α16α1)(α1α16α17)))

we calculate the Jacobian matix

J =

∣∣∣∣∣∣∣∣∣∣∣∣

−α1 0 −α13s α3s 0 −α4s
0 −(α14 + α15 + α1) α13s α3s 0 α4s
0 α14 −α16 0 0 0
0 α15 0 −α17 0 0
0 0 α8 α9 −α1 0
0 0 α10 α11 0 −α1

∣∣∣∣∣∣∣∣∣∣∣∣
Then to find the eigen values of the above matrix

|λI − J| =

∣∣∣∣∣∣∣∣∣∣∣∣

λ + α1 0 −α13s α3s 0 −α4s
0 λ + α14 + α15 + α1 α13s α3s 0 α4s
0 α14 λ + α16 0 0 0
0 α15 0 λ + α17 0 0
0 0 α8 α9 λ + α1 0
0 0 α10 α11 0 λ + α1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

a0λ6 + a1λ5 + a2λ4 + a3λ3 + a4λ2 + a5λ + a6 = 0
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a0 = 1,

a1 = (4α1 + α14 + α15 + α17 + α16),

a2 = (α14α17 + 2α16α1 + α16(α15 + α14 + α17) + α14α1 + α17α1
+α16α1 + 2α17α1 + α2

1 + 2α1α1 − α14α13s + α15α1 + α15α1 + α15α17
+α14α1 − α15α13α3s− α1(−α14
−2α1 − α15 − α1 − α17 − α16)),

a3 = (α2
1(α16 + α17 + α1)− α15α13α3s(α1 − α1) + α15α16α1 − α14α13sα1

+α15α11α4s− α14α13sα1 + α14α10α4s− α14α13sα17
−α1(−α14α17 − α16(2α1 + α15 + α14 + α17 + α1)

−α1(α14 + 2α17 + α1 + 2α1) + α14α13s− α15(α1 + α1 + α17 − α13α3s)
−α1(α14 + α17)) + α14α1α1
+α15α17α1 + α15α17α1 + α14α17α1 + 2α17α2

1 + α15α16α1 + α14α16α17 + α14α17α1 + α16α17α1
+2α16α2

1 + α15α2
1 + α14α16α1 + α14α16α1 − α15α16α13α3s + α15α16α17 + 2α16α17α1),

a4 = (α14α16α2
1 + α14α16α17α1 + α15α16α17α1 + α14α10α4sα1 − α14α13sα2

1 + α14α10α4sα17
−α14α13sα17α1 + α17α2

1α12 + α17α15α2
1 + α15α16α2

1 + α15α16α11α4s + α16α2
1α17 + α14α17α2

1
+α15α16α17α1 + α16α3

1 + α15α11α4sα1 − α15α16α13α3sα1 − α14α13α17sα1
+α14α16α17α1
−α15α16α13α3sα1 + 2α16α17α2

1 − α15α13α3sα2
1 − α1(−α2

1α16 − α17α2
1 − α3

1 + α15α13α3sα1
+α15α13α3sα1 − α15α16α1 + α14α13sα1 − α15α11α4s + α14α13sα1 − α14α10α4s
+α14α13sα17 − α14α2

1
−α15α17α1 − α15α17α1 − α14α12α17 − 2α17α2

1 − α15α16α1 − α14α16α17 − α14α17α1 −−α17α16α1
−2α16α2

1 − α15α1 − α14α16α1 − α14α16α1 + α15α16α13α3s− α15α16α17 − 2α16α17α1)),

a5 = (−α1(−α14α16α2
1 − α14α16α17α1 − α15α16α17α1 − α14α10α4sα1 + α14α13sα2

1
−α14α10α4sα17
+α14α13sα17α1 − α17α3

1 − α15α17α2
1 − α15α16α2

1 − α15α16α11α4s− α17α2
1α16 − α14α17α2

1
−α15α16α17α1 − α16α3

1 − α15α11α4sα1 + α15α16α13α3sα1 + α14α13sα17α1
−α14α16α17α1 + α15α16α13α3sα1
−2α16α17α2

1 + α15α13α3sα2
1) + α15α16α11α4sα1 + α14α10α4sα17α1 + α15α16α17α2

1
+α14α16α17α2

1
−α14α13sα17α2

1 + α2
1α16α17α1 − α15α16α13α3sα2

1),

a6 = −α1(−α15α16α11α4sα1 − α14α10α4sα17α1 − α15α16α17α2
1 − α14α16α17α2

1
+α14α13sα17α2

1 − α3
1α16α17 + α15α16α13α3sα2

1).

We changed the above characteristic equation by using Descartes’ rule of sign as follows:

a0λ6 − a1λ5 + a2λ4 − a3λ3 + a4λ2 − a5λ + a6 = 0,

with conditions a0, a1, a2, a3, a4, a5, a6 > 0 & λ1, λ2, λ3, λ4, λ5, λ6 < 0.
The eigen values are negative, the equilibrium point is globally asymptotic stable.

3.5. The Basic Reproduction Number R0

The system of equations all nature fluctuations are controlled by R0 and either greater
or less than compare to one. The control parameter R0 is the model validation with nature
of disease spread when compare to real life data. This section we used by next generation
matrix method as defined:
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F =

∣∣∣∣∣∣∣∣
0 α13s α13α3s α4s

α14 0 0 0
α15 0 0 0
0 α10 α11 0

∣∣∣∣∣∣∣∣

V−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
α14 + α15 + α1

− α14

α16(α14 + α15 + α1)
− α14

α17(α14 + α15 + α1)
0

0
1

α16
0 0

0 0
1

α17
0

0 0 0
1
α1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P = FV−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
α13s
α16

α13α3s
α17

α4s
α1

α14

α14 + α15 + α1

α2
14

α16(α14 + α15 + α1)

α14α15

α17(α14 + α15 + α1)
0

α15

α14 + α15 + α1

−α14α15

α16(α14 + α15 + α1)

−α2
15

α17(α14 + α15 + α1)
0

0
α10

α16

α11

α17
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
R0 = −

2α4α2
15α10α14α0

α2
1α16α17(α14 + α15 + α1)2

4. Homotopy Perturbation Method (HPM) Procedure for COVID-19 Model

It is a good method to find the analytic solutions for the system of nonlinear differential
equations with convergence solutions of the derivation in the series solutions. The first
two terms are enough to get the convergence solutions of zeroth order deformation at
approximations. The series solutions are to get the error analysis up to maximum in
mathematical modeling of nonlinear ODE. Let us consider the given equation is converted
to below form:

(1-p) (linear terms of given differential equations) + p (linear and nonlinear all terms
of given differential equations) = 0.

Let us organized the given model all variables as follows:

S(t) = S0 + pS1 + p2S2 + ... + ∞.

E(t) = E0 + pE1 + p2E2 + ... + ∞.

I(t) = I0 + pI1 + p2 I2 + ... + ∞.

Ia(t) = Ia0 + pIa1 + p2 Ia2 + ... + ∞.

R(t) = R0 + pR1 + p2R2 + ... + ∞.

M(t) = M0 + pM1 + p2M2 + ... + ∞.

Approximate solutions of COVID-19 are:
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S(t) = lim
p→1

S(t) = S0 + S1 + S2 + ... + ∞.

E(t) = lim
p→1

E(t) = E0 + E1 + E2 + ... + ∞.

I(t) = lim
p→1

I(t) = I0 + I1 + I2 + ... + ∞.

Ia(t) = lim
p→1

Ia(t) = Ia0 + Ia1 + Ia2 + ... + ∞.

R(t) = lim
p→1

R(t) = R0 + R1 + R2 + ... + ∞.

M(t) = lim
p→1

M(t) = M0 + M1 + M2 + ... + ∞.

Here the first two terms are enough to get the approximate analytic solutions of
converges of numerical simulations. This method is very helpful for solving nonlinear
ordinary differential equations.

5. Application of HPM in COVID-19 Model

The solution of the system of Equation (2) can be obtained by using HPM as follows:

dS
dt

= α0 − α1S− α13S(I + α3 Ia)− α4SM (5)

dE
dt

= α13S(I + α3 Ia) + α4SM− α14E− α15E− α1E (6)

dI
dt

= α14E− α16 I (7)

dIa

dt
= α15E− α17 Ia (8)

dR
dt

= α8 I + α9 Ia − α1R (9)

dM
dt

= α10 I + α11 Ia − α1M (10)

To obtain the analytical solution, we construct the homotopy as follows:

(1− p)
(

dS
dt
− α0 + α1S

)
+ p

(
dS
dt
− α0 + α1S + α13S(I + α3 Ia) + α4SM

)
= 0 (11)

(1− p)
(

dE
dt

+ (α14 + α15 + α1)E
)

+ p
(

dE
dt

+ (α14 + α15 + α1)E− α13S(I + α3 Ia) + α4SM
)
= 0 (12)

(1− p)
(

dI
dt

+ α16 I
)
+ p

(
dI
dt

+ α16 I − α14E
)
= 0 (13)

(1− p)
(

dIa

dt
+ α17 Ia

)
+ p

(
dIa

dt
+ α17 Ia + α15E

)
= 0 (14)

(1− p)
(

dR
dt

+ α1R
)
+ p

(
dR
dt

+ α1R− α8 I − α9 Ia

)
= 0 (15)

(1− p)
(

dM
dt

+ α1M
)
+ p

(
dM
dt

+ α12M− α10 I − α11 Ia

)
= 0 (16)
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Equating p0 terms on both sides of the above system of Equations (11)–(16), we get
constructing homotopy, we get

p0 :
dS0

dt
= α0 − α1S0 (17)

p0 :
dE0

dt
= α14E0 − α15E0 − α1E0 (18)

p0 :
dI0

dt
= −α16 I0 (19)

p0 :
dIa0

dt
= −α17 Ia0 (20)

p0 :
dR0

dt
= −α1R0 (21)

p0 :
dM0

dt
= −α1M0 (22)

The solution for these equations are given as follows

S0 =
α0

α1
+ c1e−α1t (23)

E0 = c2e−(α14+α15+α1)t (24)

I0 = c3e−α16t (25)

Ia0 = c4e−α17t (26)

R0 = c5e−α1t (27)

M0 = c6e−α1t (28)

Applying initial conditions,

S(0) = β0; E(0) = β1; I(0) = β2; Ia(0) = β3; R(0) = β4; M(0) = β5, (29)

for all βi > 0, i = 0, 1, 2, 3, 4, 5 and initial approximations,

S(i) = 0; E(i) = 0; I(i) = 0; Ia(i) = 0; R(i) = 0; M(i) = 0 for all i = 1, 2, 3... (30)

By applying Equation (29) into Equation (23), we get

c1 = β0 −
α0

α1
(31)

Therefore

S0 =
α0

α1
+

(
β0 −

α0

α1

)
e−α1t (32)

Similarly by applying Equation (29) into Equations (24)–(28), we get
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c2 = β1 (33)

E0 = β1e−E0(α14+α15+α1)t (34)

c3 = β2 (35)

I0 = β2e−α16t (36)

c4 = β3 (37)

Ia0 = β3e−α17t (38)

c5 = β4 (39)

R0 = β4e−α1t (40)

c6 = β5 (41)

M0 = β5e−α1t (42)

Again equating p1 terms, we get

p1 :
dS1

dt
= α0 − α1S1 − α13S0 I0 − α13α3S0 Ia0 − α4S0M0 (43)

p1 :
dE1

dt
= α13S0 I0 + α13α3S0 Ia0 + α4S0M0 − α14E1 − α15E1 − α1E1 (44)

p1 :
dI1

dt
= α14E0 − α16 I1 (45)

p1 :
dIa1

dt
= α15E0 − α17 Ia1 (46)

p1 :
dR1

dt
= α8 I0 + α9 Ia0 − α1R1 (47)

p1 :
dM1

dt
= α10 I0 + α11 Ia0 − α1M1 (48)

From Equation (43)⇒

dS1

dt
= α0 − α1S1 − α13

(
α0

α1
+

(
β0 −

α0

α1

)
exp(−α1t)

)
β2 exp(−α16t)

− α13α3

(
α0

α1
+

(
β0 −

α0

α1

)
exp(−α1t)

)
β3 exp(−α17t)

− α4

(
α0

α1
+

(
β0 −

α0

α1

)
exp(−α1t)

)
β5 exp(−α1t)

S1 =

 − α0
α1

+ α13β2
−α16+α1

α0
α1
− 1

α16

[
α13

(
β0 − α0

α1

)]
+ α13α3β3
−α17+α1

α0
α1

− 1
α17

[
α13α3

(
β0 − α0

α1

)]
+ α4β5
−α2+α1

α0
α1
− 1

α1

[
α4

(
β0 − α0

α1

)] e−α1t

+
α0

α1
− α13β2

−α16 + α1

α0

α1
e−α16t +

α13β2

α16

[(
β0 −

α0

α1

)
e−(α1+α16)t

]
− α13α3β3

α1 − α17

α0

α1
e−α17t

+
α13α3β3

α17

[(
β0 −

α0

α1

)
e−(α1+α17)t

]
− α4β5

α1 − α2

α0

α1
e−α12t +

β3

α1

[(
β0 −

α0

α1

)
e−(2α1)t

]
(49)
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dE1
dt

= α13

(
α0
α1

+

(
β0 −

α0
α1

)
exp(−α1t)

)
β2 exp(−α16t) (50)

+ α13α3

(
α0
α1

+

(
β0 −

α0
α1

)
exp(−α1t)

)
β3 exp(−α17t)

+ α4

(
α0
α1

+

(
β0 −

α0
α1

)
exp(−α1t)

)
β5 exp(−α1t)− α14E1 − α15E1 − α1E

E1 =



− 1
−α16 + (α14 + α15 + α1)

α13
α0
α1

β2

− 1
−(α1 + α16) + (α14 + α15 + α1)

[
α13

(
β0 −

α0
α1

)]
− 1
−α17 + (α14 + α15 + α1)

α13α3
α0
α1

β3

− 1
−(α1 + α17) + (α14 + α15 + α1)

[
α13α3

(
β0 −

α0
α1

)]
− 1
−α1 + (α14 + α15 + α1)

α4
α0
α1

β5

− 1
−(2α1) + (α14 + α15 + α1)

[
α4

(
β0 −

α0
α1

)]



exp(−(α14 + α15 + α1)t)

+
1

−α16 + (α14 + α15 + α1)
α13

α0
α1

β2 exp(−α16t)

+
1

−(α1 + α16) + (α14 + α15 + α1)

[
α13

(
β0 −

α0
α1

)
exp(−α1t)β2 exp(−α16t)

]
+

1
−α17 + (α14 + α15 + α1)

α13α3
α0
α1

β3 exp(−α17t)

+
1

−(α1 + α17) + (α14 + α15 + α1)

[
α13α3

(
β0 −

α0
α1

)
exp(−α1t)β3 exp(−α17t)

]
+

1
−α1 + (α14 + α15 + α1)

α4
α0
α1

β5 exp(−α1t)

+
1

−(2α1) + (α14 + α15 + α1)

[
α4

(
β0 −

α0
α1

)
exp(−α1t)β3 exp(−α1t)

]
(51)

I1 = c9 exp(−α16t) +
1

−(α14 + α15 + α1) + α16
α14β1 exp(−(α14 + α15 + α1)t)

Applying initial condition I(0) = 0

c9 +
1

−(α14 + α15 + α1) + α16
α14β1 = 0

I1 =
1

−(α14 + α15 + α1) + α16
α14β1 exp(−α16t) (52)

+
1

−(α14 + α15 + α1) + α16
α14β1 exp(−(α14 + α15 + α1)t)

dI1

dt
= α14β1 exp(−(α14 + α15 + α1)t)− α16 I1

dIa1

dt
= α15β1 exp(−(α14 + α15 + α1)t)− α17 Ia1

Ia1 = c10 exp(−α17t) +
1

−(α14 + α15 + α1) + α17
α15β1 exp(−(α14 + α15 + α1)t)
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Applying initial condition Ia(0) = 0

c10 +
1

−(α14 + α15 + α1) + α17
α15β1 = 0

Ia1 =
1

−(α14 + α15 + α1) + α17
α15β1 exp(−α17t) (53)

+
1

−(α14 + α15 + α1) + α17
α15β1 exp(−(α14 + α15 + α1)t)

dR1

dt
= α8β2 exp(−α16t) + α9β3 exp(−α17t)− α1R1

R1 = c11 exp(−α1t) +
1

−α16 + α1
α8β2 exp(−α16t) +

1
−α17 + α1

α9β3 exp(−α17t)

Applying initial condition

R(0) = 0

c11 +
1

−α16 + α1
α8β2 +

1
−α17 + α1

α9β3 = 0

R1 =

[
− 1
−α16 + α1

α8β2 −
1

−α17 + α1
α9β3

]
exp(−α1t) (54)

+
1

−α16 + α1
α8β2 exp(−α16t) +

1
−α17 + α1

α9β3 exp(−α17t)

dM1

dt
= α10β2 exp(−α16t) + α11β3 exp(−α17t)− α1M1

M1 = c12 exp(−α1t) +
1

−α16 + α1
α10β2 exp(−α16t) +

1
−α17 + α1

α11β3 exp(−α17t) (55)

Applying initial condition

M(0) = 0

c12 +
1

−α16 + α1
α10β2 +

1
−α17 + α1

α11β3 = 0

M1 =

[
− 1
−α16 + α1

α10β2 −
1

−α17 + α1
α11β3

]
exp(−α1t) (56)

+
1

−α16 + α1
α10β2 exp(−α16t) +

1
−α17 + α1

α11β3 exp(−α17t)

6. Numerical Analysis

This section plays very big role in modeling. It is the validation of the system of
equations from real life data. The initial values and parameters are calculated from data as
per government reconsigned websites.

After substitution for all parameters, we got the 8th order approximation and error
estimation. Therefore, analytical solutions are verified from comparative study of numerical
experiments with the help of software. The numerical solutions are possible to get all types
of nonlinear ODE. We consider the parameter values as follows [41–44]:
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N = 6,757,131, S0 = 6,757,131, E0 = 20,000, I0 = 104,591, Ia0 = 200,

R0 = 5,744,693, M0 = 907,883, α0 = 50, α1 =
1

76.79× 365
= 0.0000356, α2 = 0.05,

α3 = 0.02, α4 = 0.000001231, α5 = 0.1243, α6 = 0.00047876, α7 = 0.005,

α8 = 0.09871, α9 = 0.854302, α10 = 0.000398, α11 = 0.001,

α12 = 0.01, α14 = (1− α5)α6 = 0.000419, α15 = α5

α7 = 0.000622, α16 = α8 + α1 = 0.098745678, α17 = α9 + α1 = 0.85433768

Let us use Mathematica 12 software to obtain 8th order approximation: S(t), E(t),. . . . . .
M(t).

S(t) = 9,065,518 + 6,151,989ht + 2,648,092h2t + 451,983h3t + 66,467h4t
+ 6258h5t + 878 h6t + 71h7t + 65h8t + 55h2t2 + 53h3t2

+ 43h4t2 + 39h5t2 + 27h6t2 +22h7t2 +17h8t2+ ...,

E(t) = 300,000 + 480,795ht + 371,138h2t + 77,144h3t + 18,273h4t
+ 2853h5t + 355h6t + 36h7t + 33h8t + 30h2t2 + 26h3t2

+ 22h4t2 + 19h5t2 + 17h6t2 +15h7t2 +9h8t2+ ...,

I(t) = 280 + 115ht + 110h2t + 99h3t + 83h4t
+ 79h5t + 76h6t + 75h7t + 71h8t + 67h2t2 +63 h3t2

+ 59h4t2 + 44h5t2 + 39h6t2 +33h7t2 +21h8t2+ ...,

Ia(t) = 199 + 190ht + 173h2t + 151h3t + 143h4t
+ 137h5t + 129h6t + 119h7t + 115h8t + 101h2t2 + 91h3t2

+ 83h4t2 + 77h5t2 + 65h6t2 +52h7t2 +41h8t2+ ...,

R(t) = 197 + 190ht + 167h2t + 150h3t + 143h4t
+ 133h5t + 123h6t + 111h7t + 109h8t + 99h2t2 + 87h3t2

+ 85h4t2 + 77h5t2 + 64h6t2 +53h7t2 +41h8t2+ ...,

M(t) = 60,000 + 190ht + 183h2t + 177h3t + 165 h4t
+ 157h5t + 147h6t + 133h7t + 129h8t + 119h2t2 + 107h3t2

+ 96h4t2 + 88h5t2 + 71h6t2 +67h7t2 +55h8t2+ ...,

7. Error Analysis

In this section, it is an important role in series solutions with numerical calculations
and an error analysis is produced to obtain the optimal values of parameters. Table 2 shows
the h value ranges for each compartment. It controls the series solution approximations
at all system of equations and optimal solutions of each compartment in Table 3. Hence,
it is to find the estimated h∗ values in all compartments and also calculated the residual
errors for ER1, ER2, ER3ER4, ER5 and ER6 in Table 4 at time period 0 to 1. The another
case is square residual error with each derivative is zero, the we calculated the h∗ values.
The following error residuals are organized as follows:
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ER1(S; h1) =
dϕS(t, h1)

dt
= α0 − α1s(t, h1)− αs

B(t, h1)(I(t, h1) + Ia(t, h1)α3)

− α4S(t, h1)M(t, h1)

ER2(E; h2) =
dφE(t, h2)

dt
= α13S(t, h2)(I(t, h2) + Ia(t, h2)α3)

+ α4S(t, h2)M(t, h2)− α14E(t, h2)− α13E(t, h2)− α1(t, h2)

ER3(I; h3) =
dφI(t, h3)

dt
= α14E(t, h3)− α16 I(t, h3)

ER4(Ia; h4) =
dφIa(t, h4)

dt
= α15E(t, h4)− α17 Ia(t, h4)

ER5(R; h5) =
dφR(t, h5)

dt
= α8 I(t, h5) + α9 Ia(t, h5)− α1R(t, h5)

ER6(M; h6) =
dφM(t, h6)

dt
= α10 I(t, h6) + α11 Ia(t, h6)− α12M(t, h6)

Table 2. The h values range of Compartments.

S(t) −1.1 ≤ h ≤ −0.4
E(t) −1.3 ≤ h ≤ −0.8
I(t) −1.4 ≤ h ≤−0.7
Ia(t) −1.5 ≤ h ≤ −0.4
R(t) −1.7 ≤ h ≤ −0.2
M(t) −1.8 ≤ h ≤ −0.1

Table 3. The optimal solutions of S(h1∗), E(h2∗), I(h3∗), Ia(h4∗), R(h5∗), M(h6∗).

h* Optimum Solution of Compartment

S(h1) −1.1 2 × 10−4

E(h2) −1.2 3 × 10−6

I(h3) −1.3 4 × 10−8

Ia(h4) −1.4 5 × 10−10

R(h5) −1.5 6 × 10−12

M(h6) −1.6 7 × 10−14

Table 4. The residual errors for ER1, ER2, ER3ER4, ER5 and ER6 for t ∈ (0, 1).

t ER1 ER2 ER3 ER4 ER5 ER6

0.0 3.4 × 10−1 2.3 × 10−1 1.1 × 10−1 1.8 × 10−1 3.1 × 10−1 1.9 × 10−1

0.1 1.2 × 10−2 4.7 × 10−2 6.8 × 10−2 2.5 × 10−2 4.5 × 10−2 3.6 × 10−2

0.2 4.5 × 10−3 9.9 × 10−3 4.2 × 10−3 9.2 × 10−3 9.2 × 10−3 4.9 × 10−3

0.3 1.1 × 10−4 6.7 × 10−4 3.3 × 10−4 8.3 × 10−4 6.3 × 10−4 9.2 × 10−4

0.4 6.1 × 10−5 3.5 × 10−5 2.1 × 10−5 7.5 × 10−5 5.5 × 10−5 8.7 × 10−5

0.5 7.3 × 10−6 1.9 × 10−6 5.9 × 10−6 1.6 × 10−6 4.9 × 10−6 5.4 × 10−6

0.6 5.6 × 10−7 2.7 × 10−7 6.3 × 10−7 1.5 × 10−7 3.7 × 10−7 9.1 × 10−7

0.7 2.8 × 10−8 4.4 × 10−8 7.5 × 10−8 3.8 × 10−8 2.9 × 10−8 2.6 × 10−8

0.8 3.7 × 10−9 6.1 × 10−9 2.2 × 10−9 4.9 × 10−9 1.6 × 10−9 3.9 × 10−9

0.9 4.9 × 10−10 7.8 × 10−10 3.9 × 10−10 5.6 × 10−10 2.9 × 10−10 4.1 × 10−10

1 5.1 × 10−11 9.1 × 10−11 4.9 × 10−11 9.2 × 10−11 8.4 × 10−11 8.8 × 10−11

Let us consider the square residual error for 8th order approximation:



Mathematics 2022, 10, 343 16 of 27

S(h1) =
∫ 1

0
(ER1(S, E, I, Ia, R, M; h1))

2dt,

E(h2) =
∫ 1

0
(ER2(S, E, I, Ia, R, M; h2))

2dt,

I(h3) =
∫ 1

0
(ER3(S, E, I, Ia, R, M; h3))

2dt,

Ia(h1) =
∫ 1

0
(ER4(S, E, I, Ia, R, M; h4))

2dt,

R(h5) =
∫ 1

0
(ER5(S, E, I, Ia, R, M; h5))

2dt,

M(h6) =
∫ 1

0
(ER6(S, E, I, Ia, R, M; h6))

2dt,

The minimal values of RX(h1), RY(h2), RV(h3) and RZ(h4) are shown:

dS(h1∗)
dh1

= 0,
dE(h2∗)

dh2
= 0,

dI(h3∗)
dh3

= 0,
dIa(h4∗)

dh4
= 0.

dR(h5∗)
dh5

= 0.
dM(h6∗)

dh6
= 0.

We consider the optimal values of h1∗, h2∗, h3∗, h4∗, h5∗ and h6∗ for all of the cases are

h1 ∗ = −1.1, h2 ∗ = −1.2, h3 ∗ = −1.3, h4 ∗ = −1.4, h5 ∗ = −1.5, h6 ∗ = −1.6.

There are three types of errors that are calculated from the numerical experiment. It is
very useful for accuracy of exact solutions and numerical simulations. The residual error
of 8th order approximation is defined for ER1, ER2, ER3, ER4, ER5 and ER6 in Figure 2.
The absolute error of 8th order approximation is defined for ER1, ER2, ER3, ER4, ER5 and
ER6 in Figure 3. The h curves initial derivatives of 7th and 8th order approximation is
calculated from HPM in Figure 4. The square residual error of 8th order approximation
is derived in Figure 5. Numerical simulation of ranges of reproduction numbers are
R0 = 2.0317; 1.2922; 1.4809; 1.5972; 0.9844; 0.8454. in Figure 6. It gives the fluctuations of the
overall model validation.
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Fig. 2 The residual error of 8th order approximation for ER1, ER2, ER3, ER4, ER5 and
ER6

Figure 2. The residual error of 8th order approximation for ER1, ER2, ER3, ER4, ER5 and ER6.
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Figure 6. The basic reproduction number calculated from number of cases on real life data, (a) number
of cases 80% increased, (b) number of cases 20% increased, (b) number of cases 10% increased,
(d) number of cases 60% increased, (e) number of cases 40% increased, (f) number of cases 20%
increased, (g) number of cases 60% increased, (h) number of cases 5% increased.
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8. End of Second Wave Validity Checking

In this section, we discussed five affected states (Maharashtra, Kerala, Karnataka, Tamil
Nadu, Andra Pradesh) in India. The four important parameter values (confirmed, active,
recovered, deceased) are given in Table 5. Table 6 shows an initial values of the parameters
in the states of Maharashtra, Kerala, Karnataka, Tamil Nadu and Andhra Pradesh. We
have discussed the Omicron number of cases and initial values (See Tables 7 and 8). We
mainly discussed one parameter for active cases in Maharashtra, Kerala, Karnataka, Tamil
Nadu and Andhra Pradesh. We have drawn a diagram for all states at active cases (see
Figures 7–11). It has given guidelines for international arrivals from January 2022. It is
mandatory for self declaration form and RT-PCR test. This approach is given by algorithmic
model [45]. If it is negative, home quarantine for one week. If suppose positive, we can
send for genomic test and provide isolation facility. It used for proposed model validation
from real life data and this case approximately equal to the proposed mathematical model.
So this model helps for our future prediction from current data.

We have verified real life data for five highly affected states with other states in India.
There are several authors published research articles based on the COVID-19 data details
taken from their own countries. It is important to say that still there is no common COVID-
19 equation to be utilized in Indian pandemic and to eradicate this disease. Right now,
there is no common COVID-19 equation in Indian pandemic. Therefore, we propose a
Common Indian COVID-19 Equation which can predict the infection rate and give the
control strategies of spread. The aim of the paper is to find out a new model that is
common to the Indian COVID-19 pandemic. This model remains the same in India but
the parameter values and data will be different based on the present COVID-19 pandemic
reports. The required data of COVID-19 will be collected from the WHO (World Health
Organization) & Ministry of Health and Family Welfare (MoHFW) up to till date. The
nonlinear least square algorithm will be used for getting values to calculate all parameters
of the developing model. In our model there is no assumed data. When the data collection
and parameter estimation is completed, we have to analyze the stability analysis, analytical
solutions, numerical solutions, error analysis and statistical approach. Finally, the statistical
approach is compared to real life data to check the validity of the theoretical outcome of
new COVID-19 equations. As per the proposed plan, it is assumed that the infection rate of
COVID-19 will be decreased very soon, based on government control policy. The proposed
model is very useful for the current Indian pandemic to predict the future spread and
control strategies with great impact. In the current situation, the infected cases of COVID-19
get changed daily. Our model is valid only for the fixed population. We fix the required
time in days. Parameter estimation is done by collecting the data up to date. There are two
important cases to find the new parameter values for their own countries. The first case is
existence of unique solution of all parameters or important parameters. Another case is
the individual’s rate of values in unknown parameters. In particular, COVID-19 equations
have lot of parameters in current pandemic situation. Few parameter values are exactly and
others may be in approximate solutions. It is very difficult to get the unique solutions for
all parameters. Dynamic models have to be developed on related identification property.
In this paper, our aim is to find out the common model. We believe that this model works
well and will be useful for the Indian people. Based on the data, the model will be changed
the susceptible cases, exposed cases, Infective cases, Recovery cases, etc., (SIR, SEIR, SEIRS,
etc.). Finally, our model compares to COVID-19 data and validates the outcome system.
The proposed model helps the Indian government and other researchers with COVID-19.
In the third wave, it sweeps positive surges to 15%. The spread of the third wave is fast
and be careful to this current situation.
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Table 5. Number of COVID-19 cases across Indian states and union territories as of 25 October 2021.

Parameters Maharashtra Kerala Karnataka Tamil Nadu Andra Pradesh References

confirmed 6,602,961 4,915,331 2,985,986 2,695,216 2,063,577 [41–44]
Active 27,506 77,964 8740 13,034 5102 [41–44]

Recovered 6,435,439 4,808,775 2,939,239 2,646,163 2,044,132 [41–44]
Deceased 140,016 28,592 38,007 36,019 14,343 [41–44]

Table 6. Initial Values of parameters in the states of Maharashtra,Kerala, Karnataka, Tamil Nadu and
Andhra Pradesh.

Initial Values Maharashtra Kerala Karnataka Tamil Nadu Andra Pradesh References

S(0) 3,301,480 2,515,300 1,590,900 1,390,300 1,070,600 [41–44]
E(0) 13,500 35,800 4700 680,150 5,060,300 Calculated
I(0) 70,016 17,599 2800 6040 5000 [41–44]
Ia(0) 3500 9000 1400 3200 2500 [41–44]
R(0) 3,234,400 2,408,700 1,540,300 1,340,170 1,040,100 [41–44]
M(0) 1,630,500 14,600 19,008 730,169 7400 Calculated

Table 7. Number of Omicron cases across Indian states and union territories as of 30 December 2021.

Parameters Maharashtra Kerala Delhi Gujarat Rajasthan References

confirmed 141 57 142 49 43 [41–44]
Active 90 40 110 30 32 [41–44]

Recovered 50 30 15 9 8 [41–44]
Deceased 1 2 2 4 2 [41–44]

Table 8. Initial Values of parameters in the states of Maharashtra,Kerala, Delhi, Gujarat and Rajasthan.

Initial Values Maharashtra Kerala Delhi Gujarat Rajasthan References

S(0) 0.5 0.5 0.5 0.5 0.5 [41–44]
E(0) 0.3 0.2 0.1 0.3 0.2 [41–44]
I(0) 0.1 0.1 0.1 0.2 0.2 [41–44]
Ia(0) 0.1 0.2 0.1 0.2 0.1 [41–44]
R(0) 0.2 0.2 0.2 0.1 0.1 [41–44]
M(0) 0.2 0.1 0.1 0.2 0.2 [41–44]
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Figure 8. Active cases of Kerala from real life data.
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9. Conclusions

This article plays the dynamics in second wave COVID-19 and newly infected cases
for Omicron which have emerged recently in India. The homotopy perturbation method
was used to solve the analytical solutions of the dynamics model of second wave COVID-
19 with the given initial conditions is effectively analyzed. This method is simple, easy
to apply and it provides most approximate analytical expressions. HPM provides an
explicit solution which is very useful to analyze the epidemic model based COVID-19
by understanding the parameters. In numerical simulation part, we used Mathematica
12 software for up to 8th order approximation with error analysis which calculated from
residual error, absolute error and square error respectively. The growth of the dangerous
corona virus and Omicron deadly disease in the current pandemic yields the death of
millions of people still date. The basic reproduction number R0 ranges calculated between
0.8454 and 2.0317 from numerical simulation, derived from analytical approach, it helps
to identify the spread of the disease. Finally, our proposed model is verified from the real
life data of second wave COVID-19 and Omicron variant, it obtained the validity of the
system of equations, the same model is defined to fit all future data. Now Omicron variant
is slowly increasing all over world and it is possible to implement lock down for mid of
2022 (June) in India and we conclude that the third wave may be either high spread or less
at the end of May 2022.
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