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Abstract: The aim of this work is to establish and generalize a relationship between fractional partial
differential equations (fPDEs) and stochastic differential equations (SDEs) to a wider class of stochastic
processes, including fractional Brownian motions {BH

t , t ≥ 0} and sub-fractional Brownian motions
{ξH

t , t ≥ 0} with Hurst parameter H ∈ ( 1
2 , 1). We start by establishing the connection between

a fPDE and SDE via the Feynman–Kac Theorem, which provides a stochastic representation of a
general Cauchy problem. In hindsight, we extend this connection by assuming SDEs with fractional-
and sub-fractional Brownian motions and prove the generalized Feynman–Kac formulas under a
(sub-)fractional Brownian motion. An application of the theorem demonstrates, as a by-product, the
solution of a fractional integral, which has relevance in probability theory.

Keywords: Cauchy problem; fractional-PDE; SDE; fractional Brownian motion; sub-fractional processes;
Feynman–Kac formula; fractional calculus

1. Introduction

Consider the Cauchy problem [1] of the following parabolic partial differential equa-
tion (PDE) on Rd

∂

∂t
u(x, t) = κ

∂2

∂x2 u(x, t) + ηBH(t), t ≥ 0, x ∈ Rd,

u(x, 0) = u0(x),
(1)

where u(x, t) ∈ C2,1, u0(x) is a bounded measurable function and BH(t) is a fractional
Brownian motion (cf. Section 2). Without loss of generality, we assume that the parameter
κ is constant. This second-order PDE has a stochastic representation for η = 0, according to
the Feynman–Kac formula [2,3]. Indeed, we obtain

u(xt, t) = Ex,t[uT(x)], (2)

if xt satisfies Equation (3) and the function σ(xt, t) is sufficiently integrable

dxt = µ(xt, t)dt + σ(xt, t)dBH
t , (3)

where BH
t is a Brownian motion (BM) if the Hurst parameter is of H = 1

2 [4–6]. Additionally,
the problem of (1) has an intimate relationship to the fractional partial differential equation
(fPDE) [7]:

∂1/2

∂t1/2 u(x, t) = − ∂

∂x
u(x, t). (4)

Note that this equation contains a fractional derivative in general or a semi-derivative
in respect of time in special [8–13].
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There is a large amount of the literature devoted to each issue of the Cauchy problem [6,14].
This research closes a gap by considering the linking relationships of (sub-)fractional
Brownian motions as well as fPDEs. The Feynman–Kac formula (2) provides a unique
weak solution to Equation (1). Different versions of the Feynman–Kac formula have been
discovered for a variety of problems [15,16]. Some generalizations of the Feynman–Kac
formula are discovered by Querdiane and Silva [17] and Hu et al. [18,19]. A Feynman–Kac
formula also exists for Lévy processes by Nualart and Schoutens [20].

Advancements in stochastic differential equations and fractional partial differential
equations to analyse complex systems are related to our research [21–24]. Furthermore,
recent developments in fractional calculus contributed to a better understanding and
further studies of the relationships between fractional PDEs and stochastic calculus [25–31].
However, we are concerned about the linkage of the Cauchy problem and the representation
by a fPDE, as well as the Feynman–Kac formula. For the Cauchy problem, we generalize
the stochastic representation of Feynman–Kac by utilizing fractional Brownian motion
(fBM) with Hurst parameter H > 1/2.

In addition, the more recent literature looks at the idea of sub-fractional Brown-
ian motion (sub-fBM). A sub-fBM is an intermediate between a Brownian motion and
fractional Brownian motion. The existence and properties, such as long-range depen-
dence, self-similarity and non-stationarity were introduced by Bojdecki et al. [32] and
Tudor et al. [33,34]. Since the sub-fractional Brownian motion is not a martingale, methods
of stochastic analysis are more sophisticated. However, several authors developed stochas-
tic calculus and integration concepts for an fBM [25] and sub-fBM [35–37]. Recently, for a
sub-fractional Brownian motion with Hurst parameters H > 1

2 , a maximal inequality was
established according to the Burkholder–Davis–Gundy inequality for fractional Brown-
ian motion [38]. It turns out that fBM and sub-fBM are adequate stochastic processes in
scientific applications [13,39].

In this paper, our purpose is to construct and prove a general link of the Cauchy
problem with the Feynman–Kac equation via Itô’s formula for fBM and sub-fBM. Conse-
quently, this paper links the solution of u(x, t) defined by Equation (1) with the stochastic
Feynman–Kac representation to a fractional Brownian motion {BH

t } and sub-fBM {ξH
t }.

We prove the result and show the properties of (sub-)fractional processes in stochastic
analysis. Note that, throughout this paper, we frequently assume 1

2 < H < 1.
The paper is organized as follows. Section 2 contains preliminaries on fractional

calculus, particularly fractional Brownian motion. Thereafter, we examine sub-fractional
stochastic processes and integration rules in Section 3. Here, we list the definitions and
assumptions for the remainder of the article. In Section 4, we link the Cauchy problem
to the Feynman–Kac formula with stochastic differential equations driven by fractional
and sub-fractional Brownian motions. We state our theorems and prove our statements.
In Section 5, we examine the Cauchy problem and the relationship to fractional partial
differential equations (fPDE). Furthermore, we find a new fractional derivative and integral
with relevance in probability theory. The conclusion is in Section 6.

2. Preliminaries

In the following section, we define preliminary concepts on fractional stochastic
processes and fractional calculus.

2.1. Fractional Calculus

Since we deal with the Hurst parameter H, we need to know fractional calculus. Let
a, b ∈ R, a < b. Let f ∈ L1(a, b) and α > 0. The left- and right-sided fractional integral of f
of order α are defined for x ∈ (a, b), respectively, as

aD−α
x f (x) = a Iα

x f (x) =
1

Γ(α)

∫ x

a
(x− u)α−1 f (u)du −∞ ≤ a ≤ x,
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and

xD−α
b f (x) = x Iα

b f (x) =
1

Γ(α)

∫ b

x
(u− x)α−1 f (u)du −∞ ≤ x ≤ b.

This is the fractional integral of Riemann–Liouville type. Similarly, the fractional left-
and right-sided derivative, for f ∈ Iα

a (Lp) and 0 < α < 1, are defined by

a I−α
x f (x) = aDα

x f (x) =
1

Γ(1− α)

(
d

dx

) ∫ x

a
(x− u)−α f (u)du (5)

and

x I−α
b f (x) = xDα

b f (x) =
−1

Γ(1− α)

(
d

dx

) ∫ b

x
(u− x)−α f (u)du, (6)

for all x ∈ (a, b) and Iα
a (Lp) is the image of Lp(a, b). It is easy to see that if f ∈ I1

a (L1),

aDα
x aD1−α

x f (x) = D f (x), bDα
x bD1−α

x f (x) = D f (x). (7)

Note Dα f (x) exists for all f ∈ Cβ([a, b]) if α < β.

2.2. Fractional Stochastic Process

Mandelbrot and van Ness defined a fractional Brownian Motion (fBM), BH
t , as a

Brownian motion, B(t), together with a Hurst parameter (or Hurst index) H ∈ (0, 1) in
1968 [8]. The new feature of fBM’s is that the increments are interdependent. The latter
property is defined as self-similarity. A self-similar process has invariance with respect to
changes in timescale (scaling-invariance). Almost all other stochastic processes, such as the
standard Brownian Motion or Lévy processes, likely have independent increments. They
create the famous class of Markov processes. Empirically, there is ubiquitous evidence in
science that fractional stochastic processes, for instance, spectral densities with a sharp
peak, are related to the phenomena of long-range interdependence over time. Indeed,
the observable presence of interdependence in many real-world applications calls for
fractional stochastic processes.

Definition 1. Let H be 0 < H < 1 and B0 an arbitrary real number. We call BH(t, ω) a fractional
Brownian Motion (fBM) with Hurst parameter H and starting value B0 at time 0, such as

(1) BH(0, ω) = B0, and;

(2) BH(t, ω)− BH(0, ω) = 1
Γ(H+ 1

2 )

[∫ 0
−∞[(t− s)H− 1

2 − (−s)H− 1
2 ]dB(s, ω) +

∫ t
0 (t− s)H− 1

2

dB(s, ω)

]
[Wyle fractional integral];

(3) [Or equivalently by the Riemann-Liouville fractional integral: BH(t, ω) − BH(0, ω) =
1

Γ(H+ 1
2 )

∫ t
0 (t− s)H− 1

2 dB(s, ω)].

We immediately obtain the corollary.

Corollary 1. For H = 1
2 and B0 = 0, we obtain a Brownian Motion B(t, ω) = B

1
2 (t, ω).

Proof. If H = 1
2 , we obtain B

1
2 (t, ω)− B

1
2 (0, ω) = 1

Γ(1)

∫ t
0 dB(s, ω) = B(t, ω).

For values of H, such as 0 < H < 1
2 or 1

2 < H < 1 the fBM BH(t, ω) has different
properties. If 0 < H < 1

2 , we say that it has the property of short memory. Indeed,
Mandelbrot and van Ness [8] shows that this range is associated with negative correlation.
If 1

2 < H < 1, then the fBM has the property of long-memory or long-range dependence
with time-persistence (Mandelbrot and van Ness [8]). Alternatively, we define a fractional
Brownian motion by
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Definition 2. A fractional Brownian Motion (fBM) is a centered Gaussian process BH(t) for t ≥ 0
with the covariance function

R f BM(t, s) = E[BH(t)BH(s)] =
1
2
[|t|2H + |s|2H − |t− s|2H ], (8)

where H ∈ (0, 1) denotes the Hurst parameter.

Remark 1. The covariance is trivially derived by starting with a standard Brownian motion and
extending it with the Hurst index H, such as

Var[B(t)− B(s)] = E[(B(t)− B(s))2] = |t− s|
⇔ Var[BH(t)− BH(s)] = E[(BH(t)− BH(s))2] = |t− s|2H ,

where, for H = 1
2 , we obtain the Brownian motion. The covariance is derived by the following steps

Cov[BH(t)BH(s)] = E[(BH(t)−E[BH(t)])(BH(s)−E[BH(s)])] = E[BH(t)BH(s)]

=
1
2

[
E[BH(t)2] +E[BH(s)2]−E[(BH(t)− BH(s))2]

]
=

1
2
[|t|2H + |s|2H − |t− s|2H ].

Corollary 2. The expectation of non-overlapping increments of an fBM is E[BH(t)− BH(s)] 6= 0
and the variance is of E[(BH(t)− BH(s))2] = |t− s|2H for all t, s ∈ R

Proof. Let t > s > 0. The first part is

E[(BH(t)− BH(s))(BH(s)− BH(0))] = E[BH(t)BH(s)]−E[BH(t)BH(0)]−
−E[(BH(s))2] +E[BH(s)BH(0)]

=
1
2
[t2H + s2H − (t− s)2H ]− s2H

=
1
2
[t2H − s2H − (t− s)2H ] 6= 0.

Thus, we can see that the expected increments are non-zero. Indeed, the increments
are interdependent, contrary to Markov processes. The second part of the variance is

E[(BH(t)− BH(s))2] = E[(BH(t)− BH(s))(BH(t)− BH(s))]

= E[(BH(t))2] +E[(BH(s))2]− 2E[BH(t)BH(s)]

= t2H + s2H − 2
[1

2
[|t|2H + |s|2H − |t− s|2H ]

]
= |t− s|2H ∀t, s ∈ R

Proposition 1. A fractional Brownian Motion (fBM) has the following properties:

(1) The fBM has stationary increments: BH
t − BH

s
dis.
= BH

u − BH
s ;

(2) The fBM is H-self-similar, such as BH(at) = aH BH(t);
(3) The fBM has dependence of increments for H 6= 1

2 .
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Proof. Part (1): For t1 < t2 < t3 < t4, the equality of the covariance function implies that
Y := BH(t2)− BH(t1) has the same distribution as X := BH(t4)− BH(t3). From above,
we know

E[(BH(t2)− BH(t1))
2] = (t2 − t1)

2H = (∆t)2H

E[(BH(t4)− BH(t3))
2] = (t4 − t3)

2H = (∆t)2H ,

where t1 < t2 and t3 < t4 with ∆t = t2 − t1 = t4 − t3. Hence, the incremental behavior at
any point in the future is the same. Thus, we say that it has stationary increments.

Part (2): We show that BH(at) = aH BH(t). We utilize the definition,

E[(BH(at))2] =
1
2
[(at)2H + (at)2H − (at− at)2H ] = (at)2H = a2Ht2H

= a2HE[(BH(t))2],

hence, we obtain (BH(at))2 = a2H(BH(t))2 and this equal to BH(at) = aH BH(t). The proof
of part (3) is already in Corollary 2.

2.3. Itô’s Formula for Fractional Brownian Motion

A fractional Brownian motion is continuous but almost certainly not differentiable [8].
Hence, it is inconvenient that an fBM does not have a derivative or integral. Furthermore,
the fBM is neither a martingale nor a semi-martinagle. Therefore, Itô calculus is not
applicable to fractional Brownian Motions if H 6= 1

2 .
However, stochastic calculus was developed with respect to fractional Brownian

motion by [40] and the stochastic integral was introduced by [25]. The theory is a fractional
extension of Itô-calculus, but limited to a Hurst index H ∈ (1/2, 1). If H > 1/2 the fBM
exhibits long-range dependence, which is a fundamental property in physics or finance.

By utilizing Wick calculus that has zero mean and explicit expressions for the second mo-
ment, we define the stochastic fractional integral, satisfying the propertyE[

∫ t
0 f (s)dBH(s)] = 0.

Suppose a filtered probability space (Ω,F ,PH), where the probability measure de-
pends on H. Note that H is fixed by H ∈ (1/2, 1). Let us define a kernel function
φ(s, t) : R+ ×R+ → R+ by

φ f BM(s, t) := φ(s, t) = H(2H − 1)|s− t|2H−2. (9)

Further, the functions f and g belong to the Hilbert space L2
φ if

| f |2φ =
∫ ∞

0

∫ ∞

0
f (s) f (t)φ(s, t)dsdt < ∞, (10)

with the inner product defined by

〈 f , g〉φ := E
[∫ ∞

0
f (s)dBH(s)

∫ ∞

0
g(t)dBH(t)

]
=
∫ ∞

0

∫ ∞

0
f (s)g(t)φ(s, t)dsdt (11)

This machinery leads to an analogue Itô formula for a fractional Brownian process.
Already, Alòs et al. [41] proved this result under certain conditions for Itô’s formula.

Theorem 1. (Alòs et al., 2001). Let f be a function of class C2(R), satisfying the growth condition

max[| f (x)|, | f ′(x)|, | f ′′(x)|] ≤ ce(λ|x|
2),

where c and λ are positive constants and λ < 1
4 T−2H . Suppose that BH = {BH

t , t ∈ [0, T]} is
a zero mean continuous Gaussian process whose covariance function R f BM(t, s) is of the form
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in Equation (8). Then, the process F′(BH
t ) belongs to a Hilbert space and, for each t ∈ [0, T],

the following Itô’s formula holds:

f (BH
T ) = f (0) +

∫ T

0
f ′(BH

s )δBH
s +

1
H

∫ T

0
f ′′(BH

s )s2H−1ds. (12)

However, we utilize a result by Duncan et al. [25], which is more convenient in our
case. Here, is the Itô-Duncan theorem for a fractional Brownian motion:

Theorem 2. (Duncan et al., 2000, Thm 4.1, p. 596). If f : R → R is a twice continuously
differentiable function with bounded derivatives to order two, i.e., f ∈ C2, then

f (BH
T )− f (BH

0 ) =
∫ T

0
f ′(BH

s )dBH
s + H

∫ T

0
s2H−1 f ′′(BH

s )ds a.s.

Remark 2. If H = 1
2 , we obtain, from Theorem 2, the usual Itô formula for a Brownian motion

f (B
1
2 (T)) = f (BT) =

∫ T

0
f ′(B

1
2 (s))dB

1
2 (s) +

1
2

∫ T

0
s0 f ′′(B

1
2 (s))ds

=
∫ T

0
f ′(Bs)dBs +

1
2

∫ T

0
f ′′(Bs)ds

or in differential form

d f (BT) = f ′(Bs)dBs +
1
2

f ′′(Bs)ds. (13)

Similarly, for a function with two parameters f (t, BH
t ), a generalized rule exists ac-

cording to Duncan et al. [25].

Theorem 3. (Duncan et al., 2000, Thm 4.3, p. 596). Let ηt =
∫ t

0 FudBH
u for t ∈ [0, T] and

(Fu, 0 ≤ u ≤ T) is a stochastic process in L(0, T). Let f : R+ × R → R be a function
having the first continuous derivative in its first variable and the second continuous derivative
in its second variable. Assume that these derivatives are bounded. Moreover, it is assumed that
E
∫ T

0 |FsDφ
s ηs|ds < ∞ and ( f ′(s, ηs)Fs, s ∈ [0, T]) is in L(0, T). Then, for 0 ≤ t ≤ T,

f (t, ηt) = f (0, 0) +
∫ t

0

∂ f (s, ηs)

∂s
ds +

∫ t

0

∂ f (s, ηs)

∂x
FsdBH

s

+
∫ t

0

∂2 f (s, ηs)

∂x2 FsDφ
s ηsds a.s.

this is equal to

d f (t, ηt) =
∂ f (t, ηt)

∂t
+

∂ f (t, ηt)

∂x
FtdBH

t +
∂2 f (t, ηt)

∂x2 FtD
φ
t ηtdt,

where Dφ
s ηt =

∫ t
0 Dφ

s FudBH
u +

∫ t
0 Fuφ(s, u)du a.s.

For the proof, we refer to Duncan et al. [25]. If F(s) = a(s) is a deterministic function;
then, the rule simplifies. Let ηt =

∫ t
0 audBH

u , where a ∈ L2
φ; then, we obtain

f (t, ηt) = f (0, 0) +
∫ t

0

∂ f (s, ηs)

∂s
ds +

∫ t

0

∂ f (s, ηs)

∂x
a(s)dBH

s

+
∫ t

0

∂2 f (s, ηs)

∂x2

∫ s

0
φ(s, v)a(v)dvds a.s.

(14)

If as ≡ 1, then we obtain Itô’s formula, such as in Theorem 2 and in Equation (13).
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3. Sub-Fractional Stochastic Process

A sub-fractional Brownian motion (sub-fBM) is an intermediate between a Brownian
motion and fractional Brownian motion. It is a more general, self-similar Gaussian process
or a generalization of a fBM. The sub-fBM has the property of H-self-similarity and long-
range dependence, such as the fBM, yet it does not have stationary increments [32].

It is well-established that a stochastic process is uniquely determined by its covariance
function Cov(ξH

t , ξH
s ). Thus, we define:

Definition 3. A sub-fractional Brownian motion of Hurst parameter H is a centered mean zero
Gaussian process ξH = {ξH

t , t ≥ 0} with covariance function

Rs f BM(t, s) := E[ξH
t ξH

s ] = s2H + t2H − 1
2
[(s + t)2H + |s− t|2H ], (15)

where ξH
0 = 0 and E[ξH

t ] = 0.

If H = 1
2 , it coincides with a Brownian motion on R+ with covariance Cov(ξH

t , ξH
s ) =

s ∧ t := min[s, t]. The process ξH
t has the following integral representation for H > 1

2
(see [41]):

ξH
t =

∫ t

0
KH(t, s)dWs, (16)

KH(t, s) = cH

(
H − 1

2

)
s1/2−H

∫ t

s
(u− s)H−3/2uH−1/2du. (17)

Hence, the sub-fractional Brownian motion has a kernel of

φs f BM(s, t) =
∂2Cov(ξH

t , ξH
s )

∂s∂t
= H(2H − 1)

[
|s− t|2H−2 − (s + t)2H−2

]
. (18)

Note that the kernel has similarities to the fBM, as in Equation (9). Next, we discuss
the main properties of a sub-fBM:

Lemma 1. Let ξH
t be a sub-fBM for all t. It has the following properties:

(1) E[(ξH
t )2] = (2− 22H−1)t2H .

(2) E[(ξH
t − ξH

s )2] = −22H−1(t2H + s2H) + (t + s)2H + (t− s)2H .

(3) If H 6= 1
2 , then ξH

t − ξH
s

dis.
6= ξH

u − ξH
s , i.e., the increments are non-stationary.

Proof. Part 1. Let t = s in the covariance function Cov(ξH
t , ξH

s ). We obtain Cov(ξH
t , ξH

t ) =
E[ξ2H

t ] − (E[ξH
t ])2 = Var(ξH

t ) and further we have Var(ξH
t ) = E[(ξH

t )2] because ξH
t is

Gaussian with mean zero. Thus, using the covariance function in Definition 3, we obtain

E[(ξH
t )2] = 2t2H − 1

2
(2t)2H = 2t2H − 1

2
(2t)2H = (2− 22H−1)t2H .

Part 2. Given property 1, one immediately obtains

E[(ξH
t − ξH

s )2] = (2− 22H−1)t2H + (2− 22H−1)s2H

= −22H−1(t2H + s2H) + (t + s)2H + (t− s)2H .

Part 3. Let s = 0 and t = h > 0, then E[(ξH
h − ξH

0 )2] = E[(ξH
h )2] = (2− 22H−1)h2H

and we obtain
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E[(ξH
t+h − ξH

s+h)
2] = E[(ξH

2h − ξH
h )2]

= E[ξ2H
2h ]− 2E[ξH

2h]E[ξ
H
h ] +E[ξ2H

h ]

= (2− 22H−1)(2h)2H + (2− 22H−1)h2H =

= [2− 22H−1](22H + 1)h2H .

The difference in both increments is

∆(H) = [2− 22H−1]− [2− 22H−1](22H + 1) = −22H [2− 22H−1],

where ∆(H) := E[(ξH
h )2] − E[(ξH

t+h − ξH
s+h)

2]. For ∆(0) = − 3
2 and ∆( 1

2 ) = −2 and
∆(1) = 0. This implies that E[(ξH

2h − ξH
h )2] > E[(ξH

t )2] for all H ∈ (0, 1). Thus, the in-

crements are non-stationary, such as ξH
t − ξH

s
dis.
6= ξH

u − ξH
s .

Finally, we prove two differences of fBM and sub-fBM.

Proposition 2. Let BH
t be a fractional Brownian motion and ξH

t be a sub-fractional Brownian
motion. For H ∈ ( 1

2 , 1) the following holds:

(1) E[(ξH
t )2] < E[(BH

t )2];
(2) RξH

t
(s, t) ≤ RBH

t
(s, t).

Proof. Part 1. For an fBM, we have Var[BH
t ] = |t|2H , and for the sub-fBM, we have

Var[ξH
t ] = (2− 22H−1)|t|2H . Hence, we obtain 0 < (2H − 1) ln 2 for H > 1

2 . For part 2, we
show, under s, t > 0, that

s2H + t2H − 1
2
[(s + t)2H + |t− s|2H ] ≤ 1

2
[|t|2H + |s|2H − |t− s|2H ]

s2H + t2H ≤ (s + t)2H ,

where, only for s = t = 0 or s = 0, t 6= 0, we obtain equality.

Itô’s Formula for Sub-Fractional Brownian Motion

For a Hurst parameter H > 1
2 , the stochastic integral of a sub-fBM

∫ T
0 f (t)dξH

t exists.
The following theorem holds and is proven by [42]:

Theorem 4. Let ξH
t be a sub-fBM defined in Definition 3 with H > 1

2 and a function f ∈
L([0, T]2, φs f BMdλ2), where λ2 is a Lebesgue measure on [0, T]2, where φs f BM(s, t) and (s, t) ∈
[0, T]2. Then, there exists a constant CH > 0 such that

E
[∫ T

0
f (t)dξH

t

]2

≤ CH‖ f ‖2
L1/H([0,T],λ1)

. (19)

According to Yan et al. ([36], Theorem 3.2 on p. 139) Itô’s formula under a sub-fBM
can be computed as follows:

Theorem 5. (Yan et al., 2011) Let f ∈ C2(R) and H ∈ ( 1
2 , 1). Then, we have

f (ξH
t ) = f (0) +

∫ T

0
f ′(ξH

s )dξH
s + H(2− 22H−1)

∫ T

0
f ′′(ξH

s )s2H−1ds. (20)

Details of the proof are given in ([36], pp. 139–140). The authors even extend Itô’s
formula to d−dimensional sub-fBM and convex functions f : ξH

t → R.
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4. Linking Cauchy via Feynman–Kac to SDEs with fBM and Sub-fBM

Next, we derive the link between the Cauchy problem (1) and the stochastic represen-
tation according to Feynman–Kac by Equation (2). Consider a stochastic process xs on the
time interval [t, T] as the solution to the SDE in Equation (3). Next, use the Dynkin operator
or Fokker-Planck operator A defined by

A = µ(x, s)
∂

∂x
+

1
2

σ(x, s)
∂2

∂x2 . (21)

We may write the Cauchy problem (1) as

∂u(x, s)
∂s

+Au(x, s) =0,

u(x, T) =uT(x).
(22)

Cauchy Problem and Feynman–Kac

Applying Itô’s lemma to u(x, s). We obtain

∫ T

t
du(xs, s)ds =

∫ T

t

[
∂u(xs, s)

∂s
+Au(xs, s)

]
ds +

∫ T

t
σ(xs, s)

∂u(xs, s)
∂xs

dBs. (23)

After integration, we obtain

u(xT , T)− u(xt, t) =
∫ T

t

[
∂u(xs, s)

∂s
+Au(xs, s)

]
ds +

∫ T

t
σ(xs, s)

∂u(xs, s)
∂xs

dBs. (24)

Since, by assumption u(x, t) satisfies Equation (22), the time integral ds in the last line of
Equation (23) will vanish. Furthermore, if the process σ(xs, s) ∂u(xs ,s)

∂xs
is sufficiently integrable,

and after taking the expectation, the stochastic integral will vanish. Finally, considering the ini-
tial and boundary condition, such as u(x, T) = uT(x), we obtain the stochastic representation
of the Cauchy problem (1) using the Feynman–Kac Formula (2) [2,3]:

u(xt, t) = Ex,t[uT(x)]. (25)

Theorem 6. The stochastic representation of the Cauchy problem (1) under a generalized fractional
Brownian Motion, BH

t , with H ∈ ( 1
2 , 1), under the assumptions above, follows

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H f ′′(BH

v )v2H−1dv
]

ds
]

, (26)

and this simplifies under the conditions in Equation (14) to

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H(2H − 1)|t− v|2H−2a(v)dv

]
ds
]

, (27)

if xt ∈ C2 and σ(xt, s) is independent of xt. Note, for H = 1
2 , we obtain (2).

Proof. Consider u(xt, t) as solution of the Cauchy problem (1) under a generalized frac-
tional Brownian Motion, BH

t , with H ∈ ( 1
2 , 1). Applying Theorem 2 on u(x, s), we obtain

∫ T

t
du(xs, s)ds =

∫ T

t

[
∂u(xs, s)

∂s
+Au(xs, s)

]
ds +

∫ T

t
σ(xs, s)

∂u(xs, s)
∂xs

dBs+

+
∫ T

t

∂2 f (xs, s)
∂x2

s

[∫ t

0
H(2H − 1)|t− v|2H−2a(v)dv

]
ds
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After integration and under the assumption that u(x, t) satisfies Equation (22). The time
integrals will vanish. Given xt ∈ C2 and a deterministic σ, we obtain, after taking the expec-
tation and the property that the stochastic integral vanishes, the stochastic representation
as follows:

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H(2H − 1)|t− v|2H−2a(v)dv

]
ds
]

. (28)

If H = 1
2 , the stochastic representation simplifies to the well-known Feynman–Kac formula

u(xt, t) = Ex,t[uT(x)].

Next, we state the Feynman–Kac formula for our Cauchy problem (1), given a sub-
fractional Brownian motion.

Theorem 7. The stochastic representation of the Cauchy problem (1) under a sub-fractional Brown-
ian Motion, ξH

t , with H ∈ ( 1
2 , 1) is

u(xt, t) = Ex,t

[
uT(x)−

∫ T

t

∂2u(xt, t)
∂x2

t

[∫ t

0
H(2− 22H−1) f ′′(ξH

v )v2H−1dv
]

ds
]

, (29)

if xt ∈ C2. Note, for H = 1
2 , we obtain the same as in Theorem 6.

The proof follows an equal argument as above in the proof of Theorem 6.

5. Cauchy Problem and Fractional-PDE

Next, we demonstrate the direct linkage for the Cauchy-problem (1) to the fPDE in
Equation (4). In step one, we compute the Laplace transform of the right-hand side of the
heat equation:

L[ut(x, t)] = L

[
∂u(x, t)

∂t

]
=
∫ ∞

0
e−st ∂u(x, t)

∂t
dt

= −u0(x) + sū(x, t)

= sū(x, t),

where ū(x, t) := L[u(x, t)]. Thus, we obtain

L

[
∂

∂x2 u(x, t)
]
= sū(x, t)

∂

∂x2L[u(x, t)] = sū(x, t)

∂

∂x2 ū(x, t) = sū(x, t).

This is a second-order ordinary differential equation in the x−variable. The solution is
ū(x, t) = c ∗ e−

√
sx for some constant c. Determining the constant by the second-derivative

ūxx = c ∗ se−
√

sx shows that c = 1. In step two, we compute the first-derivative of
the solution

∂

∂x
ū(x, t) = −

√
se−
√

sx

∂

∂x
ū(x, t) = −

√
sū(x, t).
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This is a first-order partial differential equation of the Laplace-transform ū(x, t). Fi-
nally, compute the inverse Laplace transform and obtain the fPDE in Equation (4) by

∂

∂x
u(x, t) = − ∂

1
2

∂t
1
2

u(x, t). (30)

Indeed, the inverse Laplace transform of the semi-derivative on the right-hand side is
as follows:

−L
[

∂
1
2

∂t
1
2

u(x, t)
]
= u0(x)− s

1
2 ū(x, t) = −s

1
2 ū(x, t) = −

√
sū(x, t).

From the fractional representation of the Cauchy problem (1), we find the following
fractional derivatives and integrals in relation to the normal distribution:

Proposition 3. Consider that the solution of the Cauchy problem (1) is of u(x, t) = 1√
2πt

e−
x2
2t ,

which represents the normal probability density function N′(x) for a constant t. Thus, the solution
of the fPDE (4) implies the following fractional derivative and integral:

(a) ∂
1
2

∂t
1
2

u(x, t) = D
1
2
t u(x, t) = 1√

2πt
x
t e−

x2
2t .

(b) For α = 1
2 , we find Iαu(x, t) = 1

Γ(α)

∫ x
−∞(x− t)α−1u(x, t)dt = N′(x), where N′(x) is the

density of the normal probability distribution in regard to x, or N′(x) = n(x) = 1√
2πt

e−
x2
2t .

Proof. Part (a): given u(x, t), it follows from Equation (30) that the semi-derivative with
respect to time t is equal to ∂

∂x u(x, t). Computing the partial derivative of u(x, t) with

respect to x is ux(x, t) = ∂u(x,t)
∂x = 1√

2πt
x
t e−

x2
2t .

Part (b): In order to explicitly evaluate the fractional derivative, we utilize the linearity
of both operators. Using operator calculus, we see that

D
1
2
t u(x, t) = D1

t D−
1
2

t u(x, t) = D1
t I

1
2
t u(x, t).

Thus, the first-derivative of the semi-integral of I
1
2
t u(x, t) with respect to t must be

equal to ux(x, t). Hence, the semi-integral

I
1
2
t u(x, t) =

1
Γ( 1

2 )

∫ x

−∞
(x− t)α−1u(x, t)dt = N′(x) =

1√
2πt

e−
x2
2t ,

consequently, the first-derivative of N′(x) is of dN′(x)
dx = N′′(x) = 1√

2πt
x
t e−

x2
2t . The final

term solves the fPDE in Equation (30). Thus, the fractional integral for α = 1
2 must be equal

to the probability density function N′(x) in order to satisfy the fPDE in Equation (30).

6. Conclusions

This article studies the relationships of the Cauchy problem (1) and relates them to
fractional partial-differential equations, as well as to the stochastic representations by the
Feynman–Kac formula with a generalized fractional and sub-fractional Brownian motion
with Hurst parameter H > 1/2. In addition, we find fractional derivatives and integrals
in relation to the Gaussian probability function by utilizing the novel insight into the
linkage of the Cauchy problem and fPDE. This vantage point is of importance in probability
theory, fractional calculus and stochastic theory. In future research, we intend to extend
our theorems to Hurst parameters H < 1/2 and the stochastic Cauchy problem under
a sub-fBM.
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