
����������
�������

Citation: Paul, A.; Bandyopadhyay,

R.; Yoon, J.H.; Geem, Z.W.; Sarkar, R.

SinLU: Sinu-Sigmoidal Linear Unit.

Mathematics 2022, 10, 337. https://

doi.org/10.3390/math10030337

Academic Editor: Bo-Hao Chen

Received: 2 December 2021

Accepted: 20 January 2022

Published: 23 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

SinLU: Sinu-Sigmoidal Linear Unit
Ashis Paul 1 , Rajarshi Bandyopadhyay 1 , Jin Hee Yoon 2 , Zong Woo Geem 3,* and Ram Sarkar 1

1 Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India;
paulashis0013@gmail.com (A.P.); rajarshibanerjee03@gmail.com (R.B.);
ram.sarkar@jadavpuruniversity.in (R.S.)

2 School of Mathematics and Statistics, Sejong University, Seoul 05006, Korea; jin9135@sejong.ac.kr
3 College of IT Convergence, Gachon University, Seongnam 13120, Korea
* Correspondence: geem@gachon.ac.kr

Abstract: Non-linear activation functions are integral parts of deep neural architectures. Given the
large and complex dataset of a neural network, its computational complexity and approximation
capability can differ significantly based on what activation function is used. Parameterizing an acti-
vation function with the introduction of learnable parameters generally improves the performance.
Herein, a novel activation function called Sinu-sigmoidal Linear Unit (or SinLU) is proposed. SinLU
is formulated as SinLU(x) = (x + a sin bx) · σ(x), where σ(x) is the sigmoid function. The proposed
function incorporates the sine wave, allowing new functionalities over traditional linear unit activa-
tions. Two trainable parameters of this function control the participation of the sinusoidal nature in
the function, and help to achieve an easily trainable, and fast converging function. The performance
of the proposed SinLU is compared against widely used activation functions, such as ReLU, GELU
and SiLU. We showed the robustness of the proposed activation function by conducting experiments
in a wide array of domains, using multiple types of neural network-based models on some standard
datasets. The use of sine wave with trainable parameters results in a better performance of SinLU
than commonly used activation functions.

Keywords: activation function; trainable parameter; sinusoidal curve; sigmoid function; CNN;
deep learning

1. Introduction

In the data-driven realm of deep learning, neural networks (NNs) along with non-
linear activation functions have revolutionized multiple domains from images, videos, and
natural languages. The non-linearity of activation functions allows NNs to understand the
complex nature of the data by creating deeper connections among the nodes of NNs. The
state-of-the-art architectures, whether it is the classic convolutional neural network (CNN)
or the recent transformer [1], all have evolved from connected layers of artificial neurons.
Moreover, all of these heavy architectures have activation functions associated with their
components. Binary threshold units [2] were used as activations in early architecture of
NNs. Later, these hard thresholds were replaced by smoother sigmoid functions. Though
the non-linearity of the sigmoid is good enough for simpler problems, as architectures go
deeper, they fail to retain the complete gradient flow. The rectified linear unit (or ReLU) [3]
has become a popular activation function for deeper models, making hard gating decisions
based on whether the input is positive or negative. Instead of overcoming the vanishing
gradient problem [4] faced by sigmoid, ReLU suffers from the bias shift problem due to
its non-zero mean [5,6] . Maintaining the core idea of ReLU, some recent developments
have been made, such as the exponential linear unit (ELU) [7] and Gaussian error linear
unit (GELU) [8], to address the shortcomings of ReLU.

In regard to defining new activation functions , one promising approach is by approxi-
mating better activation, by learning. One such way is to introduce learnable parameters

Mathematics 2022, 10, 337. https://doi.org/10.3390/math10030337 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030337
https://doi.org/10.3390/math10030337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8522-0322
https://orcid.org/0000-0003-1379-4738
https://orcid.org/0000-0002-1437-1350
https://orcid.org/0000-0002-0370-5562
https://orcid.org/0000-0001-8813-4086
https://doi.org/10.3390/math10030337
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030337?type=check_update&version=2


Mathematics 2022, 10, 337 2 of 14

to an activation function, which can be trained individually or together with the model
through backpropagation. This idea aids the activation function to overcome some con-
straints, which, in turn, might help enhancing the performance of the model. Although
trainable activation functions have been studied thoroughly in recent times [9], periodic
functions have largely been ignored throughout the development of activation functions. A
periodic or sinusoidal activation function is generally hard to train, but with proper wight
initialization methods, it might result in faster convergence.

Keeping the above facts in mind, in this paper, we propose a new non-linear trainable
activation function, called Sinu-sigmoidal Linear Unit (SinLU). Here, we explored the
sinusoidal properties in an activation function while maintaining a ReLU-like structure.
SinLU is a continuous function with a buffer zone on the negative side of the x-axis
similar to GELU and SiLU. Furthermore, SinLU is trainable, which means it includes
some parameters that get trained during the model training, which alters its shape. We
demonstrated its efficiency and robustness, and found that any deep learning model
with this novel activation function outperforms the models with other popular activation
functions across domains, such as image classification and sequential data classification.

The paper is structured as follows: Section 2 provides a quick review of the past
methods related to the research topic under consideration. In Section 3, we discuss the
proposed approach. Section 4 presents the results followed by a brief discussion. We end
with concluding remarks, outlining some future research plans in Section 5.

2. Related Work

Several developments pertaining to activation functions can be found in the literature
from the past decade. One of the key features of an activation function is its non-linearity,
which allows the NNs to be built deep. This non-linearity of the functions has also been
claimed by the authors in [10,11], where it was also shown that activation functions should
be non-constant and bounded. Moreover, the functions should be continuous and mono-
tonically increase for the network to maintain its universal approximation property. An
activation function is defined as a function f : R −→ R as reported in [12]. Thus, the
definition states that an activation function is a mapping from a subset of real numbers to
a subset of real numbers, given that the network’s universal approximation property is
not violated.

Studies point to the fact that bounded activation functions (such as identity function,
step function, bipolar function, sigmoid function) yield impressive results, but only where
the architecture of the is NN used shallow [13,14]. When deep networks are trained using
such activation functions, unfortunately, the networks fail to learn due to the vanishing
gradient problems [15]. In [16,17], it was shown that networks that use unbounded, non-
polynomial activation functions (such as ReLU [3]) act as universal approximators. Such
functions also help to lessen the vanishing gradient problems that are prevalent among the
bounded activation functions, such as sigmoid function and identity function.

Myriad activation functions have been proposed throughout the years, many of which
have been motivated by ReLU [13] and, hence, they bear resemblance to it. Some minor
changes have been introduced into the variants with respect to ReLU. The original ReLU
function was defined as ReLU(x) = max(0, x). Apart from dealing with the vanishing
gradient problem, it also enhances sparse coding [18,19], which ensures that the percentage
of neurons that are active at any particular instant of time is usually less than 50%. However,
one drawback of this activation function is the dying ReLU problem [20], which is the
non-differentiability of the function at x = 0. One of the first such activation functions
that is based on the original ReLU function is leaky ReLU (LReLU) [20]. The LReLU
activation function introduces a small gradient to the function when the unit is not active
and saturated (when x ≤ 0, x being the independent variable). However, it does not
improve the performance of the network significantly and it has been seen to exhibit a
performance that is nearly identical to the standard rectifiers. A randomized version of it,



Mathematics 2022, 10, 337 3 of 14

called randomized Leaky ReLU, was proposed in [21], where the weight value for x, the
independent variable, was sampled by a uniform distribution U (l, u) where, 0 ≤ l < u < 1.

Another variant of ReLU is Sigmoid-weighted Linear Unit (SiLU), as proposed by the
Elfwing et al. [22]. It is a sigmoid function that is weighted by the input, SiLU(x) = xσ(x),
where σ denotes the sigmoid function. Moreover, the authors proposed the derivative of
this SiLU as an activation function; dSiLU(x) = σ(x)(1 + x(1− σ(x))). These functions
yield very good results on reinforcement learning tasks.

Hendrycks et al. [8] proposed the GELU, which is another activation function that
enhances the performance of the neural network. The definition of the GELU activation
function is given by GELU(x) = xφ(x), where φ denotes the standard Gaussian cumu-
lative distribution function. An empirical evaluation of the GELU function was done by
the authors against the RELU and other activation functions, and the enhancement in
performance was clearly demonstrated in a myriad of domains; thus, making it a viable
alternative to the previous nonlinearities.

Kiselak et al. [23] proposed the scaled polynomial constant unit activation function
(SPOCU) and it has been shown to yield satisfactory results on a wide range of problems.
The authors also illustrated that SPOCU exceeds the performance of the existing activation
functions, such as ReLU, on generic problems. One of the interesting properties of this
activation function is its genuine normalization of the output layers. It has been tested on
various datasets, and the results are compared with ReLU and scaled exponential linear
unit (SELU) activation functions.

In a recent study by Liu et al. [24], the authors proposed the Tanh exponential activation
function (TanhExp), which improves the performance of lightweight or mobile neural
networks used for real-time computer vision tasks, and contains fewer parameters than
usual. It enhances the performance of these networks on image classification. TanhExp is
defined as f (x) = x tanh(ex) . It has a lower bound approximately equal to −0.3532 and
there is no upper bound (unbounded above). TanhExp has been shown to outperform
the other activation functions in terms of both convergence speed and accuracy for image
classification with lightweight networks.

In [25], the authors proposed the average biased ReLU (AB-ReLU). Popular CNNs, such
as AlexNet and VGGNet, have been used as discriminative feature descriptors in computer
vision. It was found that the ReLU discards some information, so as to introduce non-linearity.
Using the AB-ReLU function at the last few layers enhances the discriminative ability of deep
image representation with the trained model. It does so by exploiting some discriminative
information not considered by the ReLU and, discarding the irrelevant information used by
ReLU. When this approach was tested over various unconstrained and robust face datasets,
such as labeled faces in the wild (LFW) [26] and PubFig [27], among others, the performance
of AB-ReLU is quite better than that of ReLU. Liu et al. [28] proposed a new methodology to
tackle the vanishing as well as the exploding gradient problems, and the saddle point issue by
operating the gradient activation function on the gradient. This function limits the higher val-
ues of the gradients and magnifies very small values of the gradients. Wang et al. [6] proposed
a new activation function, called rectified linear Tanh, which ameliorates the performance of
the Tanh function. It helps mitigate the vanishing gradient issue by using a linear function to
replace the saturated regions of Tanh. Nag et al. [29] proposed an activation function, called
Serf, which is non-monotonic as well as self-regularized, and it addresses issues, such as the
Dying ReLU problem. Zhu et al. [30] proposed an activation function, named Logish, which
is non-monotonic in nature. A logarithmic operation was performed to lessen the range of the
sigmoid function and a variable was employed to introduce a strong regularization effect into
the output. Maniatopoulos et al. [31] proposed an activation function incorporating a myriad
of features from several activation functions of the ReLU family that give good performances,
and it introduces a learnable parameter to adapt better to the data.



Mathematics 2022, 10, 337 4 of 14

3. Proposed Approach

In this section, we discuss the proposed activation function Sinu-sigmoidal Linear
Unit (or SinLU), which is defined by Equation (1).

SinLU(x) = (x + a sin bx) · σ(x) (1)

Here σ is a sigmoid function and a and b are the trainable parameters.

σ(x) =
1

1 + e−x (2)

3.1. Formulation of SinLU

The proposed activation function is inspired by the properties of trainable parameters,
sinusoid and ReLU-like activation functions. In the ReLU activation function, the output
of a neuron is multiplied by 1 or 0. This hard gating property often leads to some minor
information loss. Introducing the cumulative distribution function (CDF) of the standard
normal distribution to the ReLU helps in smoothing the output near x = 0. The CDF
of the logistic distribution, σ(x) can also be used, and it is known as SiLU x · σ(x). We
introduce sinusoidal periodicity at this stage. Multiplying σ(x) with x + sin x instead of x
adds a wiggle in SiLU, resulting in a modified loss landscape. We define this function as
SinLUbasic, which is formulated in Equation (3).

SinLUbasic = (x + sin x) · σ(x) (3)

A more useful shape of the activation function can be devised by the introduction
of some trainable parameters. We propose two such parameters, a and b, as shown in
Equation (1). The parameter a denotes the amplitude of the sine function, which basically
determines the participation of the sinusoid in the activation function. A very high value
of a may lead to a shape that is nowhere close to a ReLU-like function. The parameter b
determines the frequency of the sine wave. Figure 1 gives an idea about how the parameters
shape the SinLU curve. This can be very easily avoided by proper initialization and
hyperparameter-controlled training. We start with value 1 for both a and b and train these
parameters with the same learning rate as used for the rest of the network.

Figure 1. The plot of the SinLU activation function for different values of its parameters. The subplot
(a) refers to a SinLU curve with a = 1.0, b = 1.0; (b) refers to a SinLU curve with a = 5.0, b = 1.0;
(c) refers to a SinLU curve with a = 1.0, b = 5.0.

3.2. Properties of SinLU

SinLU maintains a sparsity of its outputs, which means, for a randomly initialized
network, not all of the neurons will be activated. As x tends to negative infinity, SinLU(x)
approaches 0, which ensures the sparsity. Figure 2 shows that SinLU has a buffer region left to
the origin similar to GELU and SinLU. In this region, the minima of SinLU resides. The func-
tion SinLUbasic reaches its minimum value near x = −1.083 and the value is approximately



Mathematics 2022, 10, 337 5 of 14

−0.497. With the trainable parameters of SinLU, this buffer zone is modifiable. The value of
a is proportional to the magnitude of the minimum value. If the value of b is increased, the
minimum value point moves closer to the y-axis. The steeper gradient near x is 0.

Figure 2. Graph depicting the SinLU activation function along with other activation functions—ReLU,
SiLU, and GELU.

The recent activation functions based on ReLU attempt to modify the negative part of
the ReLU, keeping the positive part intact. However, in our work, the sine function has its
effect mainly in the positive part of the function. We also modify the self-gated properties,
which is followed by GELU and SiLU. The self-gated property refers to functions having the
form f (x) = xg(x) but the proposed function has the form of f (x) = (x + h(x))g(x). These
non-conventional properties allow the proposed activation function to act differently than
the ReLU-family and pave the path for some future functions that follow these properties.

4. Experimental Results and Discussion

In this section, we performed multitudes of experiments to test the effectiveness of the
proposed activation function. We compare the performance of the proposed SinLU against
ReLU, GELU, and SiLU. These specific functions were chosen based on their heavy usage
and similarity in shape with the proposed function. The experiments were performed on
some standard datasets and multiple types of models were used.

4.1. MNIST

The MNIST dataset is an image classification dataset for handwritten digit classifica-
tion. It contains 60,000 train images and 10,000 test images belonging to a total of 10 classes.
A number of experiments were performed on this dataset to show how the proposed
activation function, SinLU, works in comparison to other similar activation functions.

4.1.1. Lightweight Neural Networks

We used different NN based architectures to experiment with the proposed activation
function. For the first set of experiments, we used NNs with no convolution. The experi-
ments were conducted for single layer feed-forward networks (SLFN) as well as deeper
networks with more than one layer. The values of the hyperparameters used in these
experiments are mentioned in Table 1. For the hyperparameter optimization, grid search
method was used. Figure 3 shows the accuracy on the MNIST dataset with a SLFN utilizing
SinLU. It can be observed that, for higher and lower values of the learning rate, as well as



Mathematics 2022, 10, 337 6 of 14

batch size, we obtained a lower accuracy value. For the training, we used the Adam opti-
mizer and the learning rate decreased after every two steps by an exponential learning rate
scheduler. This particular setup was also used for the experiments in Sections 4.1.2–4.1.4.

Table 1. Hyperparameters used for the experiments with SLFN, DNN, and CNN models.

Hyperparameter Value

Learning rate 3× 10−4

Batch size 32
Number of epochs 10

Scheduler step 2

Figure 3. Effect of the learning rate on the accuracy of SLFN for different batch sizes.

The SLFN consists of a hidden layer of size 512. Figure 4 shows the convergence
graph for different activation functions. We compared the proposed SinLU activation
function against ReLU, GELU, and SiLU activation functions. The SLFN utilizing SinLU
gave us a training accuracy of 97.33% and test accuracy of 97.11%. Figure 4 shows the
convergence of the networks with different activation functions. It can be clearly observed
that, in the case of lightweight neural networks, such as SLFN, SinLU converges faster
than the other activation functions. Table 2 can be referred to for an understanding of how
the proposed activation function works in terms of accuracy, in comparison with other
activation functions.

Table 2. Training and test accuracies on the MNIST dataset with SLFN.

Activation Function Training Acc. (%) Test Acc. (%)

ReLU 96.13 95.79
GELU 97.20 96.67
SiLU 96.12 95.75

SinLU 97.33 97.11



Mathematics 2022, 10, 337 7 of 14

Figure 4. Plot of the loss for an SLFN with different activation functions—ReLU, GELU, SiLU,
and SinLU.

4.1.2. Performance over Noise

To show the robustness of the proposed activation function, we conducted experiments
involving multiplicative Gaussian noise at each layer, which is also known as Gaussian
dropout. The idea of the dropout is to multiply hidden activation with random variables
that follow the normal distribution. Equation (4) shows the relationship between the
standard deviation of the Gaussian distribution and dropout rate. For these experiments,
the value of the dropout rate was taken as 0.25.

Stddev =
rate

1− rate
(4)

Two lightweight NN architectures were chosen for this set of experiments. One was the
SLFN, as described above, and the other was an NN with two hidden layers. Let us call this
deeper network DNN. The hidden layers of this DNN are also of size 512. Gaussian dropout
was implemented after all of the hidden layers for both SLFN and DNN. Figures 5 and 6
show the performances of different activation functions on SLFN and DNN, respectively.
For both networks, it can be observed that SinLU was the least affected by the introduction
of the Gaussian noise. Activation functions, such as ReLU, performed very poorly in SLFN.
Although other activation functions improved their performances by small amounts in the
DNN, we can observe that SinLU outperformed all other activation functions.

We also measured the performances of the said activation functions with salt and
pepper noise. This noise was applied to all of the layers with a probability of 0.05 (the
probability that a data point in the output tensor of a layer would be affected by noise
was 0.05) and with a salt to pepper ratio of 0.5. Experimentation was conducted for
both SLFN and DNN, as defined above. Table 3 shows the test accuracy achieved by the
models for different activation functions. It can be easily observed that, in this case, SinLU
outperformed other activation functions.

Table 3. Test accuracy achieved by different activation functions on SLFN and DNN networks with
introduction to salt and pepper noise.

Activation Function SLFN Acc. (%) DNN Acc. (%)

ReLU 94.47 94.09
GELU 95.57 95.83
SiLU 95.33 94.95

SinLU 96.47 95.83



Mathematics 2022, 10, 337 8 of 14

Figure 5. Plot of the test accuracy over epochs for a SLFN with Gaussian dropout for the activation
functions—ReLU, GELU, SiLU, and SinLU.

Figure 6. Plot of the test accuracy over epochs for a DNN with Gaussian dropout for the activation
functions—ReLU, GELU, SiLU, SinLU.

4.1.3. Deeper Models Overfitting

Adding more layers to an NN often results in better learning, as more information
is retained in a larger number of neurons. However, with deeper networks, the risk of
overfitting increases. With a very large number of layers, the model learns the training data
too well and is unable to perform on unseen data.

We performed the experiment to show how SinLU performs with an increasing number
of layers in an NN. The size of all of the hidden layers was 512. Figure 7 shows the test
accuracy on the MNIST dataset for NN models with the increasing number of hidden layers.
It can be observed that the models utilizing ReLU and GELU began to overfit heavily as
soon as the number of hidden layers reached 15. All of the activation functions, except
SinLU, performed poorly with models getting deeper. It can be observed that, even if the
NN model got deeper, the proposed activation function performed almost the same. There
was not even a small amount of reduction in test accuracy for SinLU as the number hidden



Mathematics 2022, 10, 337 9 of 14

layers became 20. It is very likely that this high resistance to overfitting comes from the
better gradient flow of SinLU during backpropagation. It was already mentioned that
the shape of SinLU helps in overcoming the gradient-related problems, such as vanishing
gradient, and dying ReLU problems, and this property helps the parameters of the deeper
NNs to learn better.

Figure 7. Plot of the test accuracy over increasing number of hidden layers for each of the activation
functions—ReLU, GELU, SiLU, SinLU.

4.1.4. CNN on MNIST-like Datasets

All experiments up to this subsection were performed with only vanilla NNs, having
only fully connected layers (no convolutions). We used CNNs with the proposed acti-
vation function to classify the images of the MNIST dataset. We also tested on datasets
similar to MNIST to gain a better understanding of the performance of the proposed
activation function.

The CNN consisted of seven convolution layers and two maxpool layers. Each con-
volution layer was followed by batch normalization and the activation function under
observation. The feature map obtained from the final convolution layer was of dimension
256 × 7 × 7. An adaptive average pooling was performed with output size 2 × 2 and
flattening was done, resulting in a 1024 dimensional vector. This further passed through a
fully connected network with a hidden layer size of 512.

The QMNIST dataset is just an extension to the MNIST dataset, with 50,000 more
generated images. Fashion MNIST is a image classification dataset consisting of clothing
items. The images of this dataset belong to 10 different classes, which are T-shirt, shirt,
pullover, dress, coat, trouser, sandal, sneaker, bag, and ankle boot. The KMNIST or
Kuzushiji-MNIST dataset is an image classification dataset of 10 Hiragana characters used
in the Japanese writing system. All four datasets contain gray scale images of sizes 28× 28
and no further resize operations have been done before the experiments. Though fashion
MNIST and KMNIST have the same dataset sizes as MNIST, the complexity and diverse
distributions of images make the task more difficult than MNIST.

Table 4 shows the test accuracy obtained in the mentioned datasets with CNN utiliz-
ing different activation functions. As CNNs are very effective models when it comes to
image classification, the test accuracies obtained in MNIST and QMNIST are very high,
irrespective of the activation functions. Though SinLU produces the best accuracy score on
MNIST, with the dataset QMNIST, GELU outperforms SinLU, but by a small margin. In
the case of fashion MNIST and KMNIST, as the classification task is difficult, we observe
that SinLU outperforms other activation functions by a larger margin. This proves the
robustness of the proposed activation function over different datasets.



Mathematics 2022, 10, 337 10 of 14

Table 4. Test accuracy (in %) obtained by CNN with different activation functions on various datasets.
Bold value suggests the best accuracy score in the row.

Dataset ReLU GELU SiLU SinLU

MNIST 99.5 99.52 99.4 99.6
Fashion-MNIST 92.57 92.75 92.66 93.5

KMNIST 97.87 97.42 97.82 98.05
QMNIST 99.43 99.52 99.44 99.49

4.2. CIFAR

We further investigated the ability of the proposed activation function in the domain
of image classification with more difficult datasets. In this set of experiments, we used
both CIFAR-10 and CIFAR-100 datasets. CIFAR-10 is a 10-class image dataset, where each
class has 5000 training images and 1000 test images. CIFAR-100 is a 100-class dataset where
each class has 500 training images and 100 test images, making it a more complex dataset.
Images in CIFAR-10 and CIFAR-100 datasets are 32× 32 three-channel (RGB) images.

4.2.1. Transfer Learning

In this set of experiments, we used transfer learning to create the classification models.
In transfer learning, weights from pre-trained models (which are generally trained on bigger
datasets, such as the ImageNet dataset) were fine-tuned on a target dataset to achieve the
desired classifier model. The pre-trained models used in this set of experiments were
MobileNetV2, ResNet50, VGG16, AlexNet, and ShuffleNet, with their activation functions
replaced as required. Table 5 shows the accuracy achieved by various transfer learning
models with different activation functions on the CIFAR-10 dataset. We can observe that
the proposed SinLU activation function produced the best results for all of the pre-trained
models except for AlexNet. If we discard SinLU, it can be observed that no single activation
function performs the best for all of the models. In that aspect, we can infer that SinLU
performs better than the other activation functions overall. Table 6 shows the similar
result for CIFAR-100 dataset. Here, we can observe that for MobileNetV2, AlexNet, and
ShuffleNet, the proposed SinLU produces the best results. Even for ResNet, the accuracy
score is 0.7% less than the best accuracy.

Table 5. Test accuracy (in %) obtained by transfer learning models with different activation functions
on CIFAR10. Bold value suggests the best accuracy score in the row.

Model ReLU GELU SiLU SinLU

MobileNetV2 81.4 81.31 79.71 81.55
VGG16 88.84 89.77 89.87 89.91

ResNet50 83.08 82.76 80.23 83.6
AlexNet 91.94 91.88 91.48 91.34

ShuffleNet 75.02 77.51 76.71 77.71

Table 6. Test accuracy (in %) obtained by transfer learning models with different activation functions
on CIFAR100. Bold value suggests the best accuracy score in the row.

Model ReLU GELU SiLU SinLU

MobileNetV2 54.04 54.73 51.61 54.73
VGG16 62.59 63.31 63.28 60.84

ResNet50 60.75 56.88 52.49 60.05
AlexNet 51.32 50.37 51.41 51.77

ShuffleNet 43.61 46.37 46.94 48.80

4.2.2. With Gradient Activation Function

While training deep neural networks with a backpropagation algorithm, the gradient
flows through the layers of the network. A gradient activation function (GAF) [28] improves



Mathematics 2022, 10, 337 11 of 14

upon the tiny and large gradients, resulting in a better gradient flow. For this set of
experiments, we used a CNN consisting of three blocks where each block was made up
of two convolution layers and a maxpool layer. For the first block, the convolution layers
had 32 and 64 output channels, respectively. For the second block, both of the Conv layers
had an output depth of 128; for the third block, it was 256. The feature maps of dimensions
25,644, obtained from the final block, were flattened before passing through the FC layer.
This network was trained with SGD and Adam optimizer with a learning rate of 3× 10−4

for 10 epochs. GAF was utilized for both of these optimizers and the arctan GAF function
was used. The hyperparameters for arctan GAF were taken as α = 0.1 and β = 20. The test
accuracy obtained on each of the trained models is shown in Table 7. From the results, it
can easily be seen that SinLU produces the best accuracy among other activation functions.
The GAF helps the network to converge faster, and if we observe the results with SGD, it
can be seen that the network with SinLU converges much faster than the other networks.
Though for Adam, all networks perform very similar, the network with SinLU achieves the
highest accuracy along with ReLU.

Table 7. Test accuracy (in %) obtained by CNN with different activation functions on the CIFAR10
dataset for two different optimizers, SGD and Adam with arctan GAF [28]. The bold value suggests
the best accuracy score in the row.

Activation Function SGD Arctan Adam Arctan

ReLU 47.1200 81.9867
GELU 39.2667 81.8667
SiLU 33.9600 81.8933

SinLU 68.7867 81.9867

4.3. Sequential Data

From the UCI machine learning repository, the heterogeneity human activity recog-
nition (HHAR) [32] dataset was used to test the efficiency of the new activation function
proposed here, while being deployed by recurrent neural networks (RNNs). Recorded from
smartphones and smartwatches, the HHAR dataset was designed to portray the noticeable
heterogeneities in real-time implementations. Myriad device models and use-scenarios
have aided in constituting the dataset. The dataset was used to yardstick human activity
recognition algorithms. . The activities involve: ‘biking’, ‘sitting’, ‘standing’, ‘walking’,
‘stair up’ and ‘stair down’; hence, there are six output classes.

Of the 10,299 examples present, 7352 were used for training the models and the rest,
2947, were used to test on the dataset.

Long short-term memory (LSTM) networks are a sort of RNN—a competent of learning
and doing well-gauged predictions in models of sequence prediction. LSTMs are of great
help in modeling univariate time series forecasting problems, which are generally made
of a set of observations; we designed the prototype or model to learn from the past set of
readings to forecast the next value that will follow this sequence of readings. We used five
different LSTM models to conduct the predictions on the UCI HHAR dataset. They are:
vanilla LSTM [33], stacked LSTM [34], bidirectional LSTM [35], residual LSTM [36], and
bidirectional residual LSTM [37]. In LSTM, the network runs the input from the past to the
future, while, in the bidirectional ones, it runs the input in two ways. The first way is from
the past to the future and the second way is from the future to the past, thus preserving
information from both the past as well as the future. The vanilla LSTM model comprises a
single hidden layer of LSTM, along with an output layer that is used to make a prediction.
The stacked LSTM model consists of multiple hidden LSTM layers that are stacked on
top of each other. In residual LSTM, there is a spatial shortcut path from the lower layers
that augment the efficiency while training of the deep networks that comprise a myriad
of LSTM layers. This functionality is not present in the other LSTM models mentioned
earlier. The third model incorporates the traits of both these models and, thus, delivers
better performance among the three.



Mathematics 2022, 10, 337 12 of 14

The values of the hyperparameters that were obtained after the LSTM network were
trained and are recorded in Table 8. The number of classes is 6. The number of hidden
layers is set to 32 for each of the models, except the vanilla LSTM model that has a single
hidden LSTM layer. The number of residual layers is 2 and the number of highway layers
is 2 for the residual LSTM model and the bidirectional residual LSTM model. The number
of highway layers is 1 in the bidirectional LSTM model.

Table 8. Hyperparameters used to train the LSTM network.

Attribute Value

batch_size 64
num_epochs 120

drop_probabililty 0.5
num_epochs_hold 100

num_layers 2
learning rate 0.0015

weight_decay 0.001

In Table 9, the test accuracy of each of the activation functions was tabulated for the
three different LSTMs that were chosen. It is clearly evident that the SinLU activation
function works as well as any of the others. In the bidirectional residual LSTM model, as
well as the vanilla LSTM model, it gives us the best performance, while in the other two, its
performance does not lag behind the best one by a huge margin. Its good performance is
also held up in Tables 10 and 11. The former table shows the model loss on the test set and
the latter shows the F1 score achieved. The results obtained from SinLU are superior if we
look at the good performances delivered by it in the bidirectional residual LSTM model
and the vanilla LSTM model. Moreover, the results obtained if the SinLU were used as the
activation function in the bidirectional LSTM model; the residual LSTM model and the
stacked LSTM model were comparable to the other activation functions. The accuracy and
F1-score are towards the higher side and the loss is towards the lower side, as expected.

Table 9. Testing accuracy obtained on the UCI HHAR dataset when various models were trained
using different activation functions. The bold value suggests the best accuracy score in the column.

Act Fn Vanilla LSTM Stacked LSTM Bidir LSTM Res LSTM BidirRes LSTM

SinLU 0.7035 0.8534 0.8747 0.8879 0.8979
ReLU 0.7024 0.8621 0.8734 0.8965 0.8802
GELU 0.7034 0.8439 0.8761 0.8493 0.8602
SiLU 0.7025 0.8386 0.8961 0.7085 0.8935

Table 10. Testing loss observed on the UCI HHAR dataset when various models were trained using
different activation functions. The bold value suggests the least testing loss in the column.

Act Fn Vanilla LSTM Stacked LSTM Bidir LSTM Res LSTM BidirRes LSTM

SinLU 1.3212 1.1923 1.1689 1.1573 1.1457
ReLU 1.3341 1.1808 1.1705 1.1468 1.1632
GELU 1.3233 1.2212 1.1671 1.1944 1.1835
SiLU 1.3489 1.2451 1.1471 1.3213 1.1501

Table 11. F1-Score obtained on the UCI HHAR dataset when various models were trained using
different activation functions. The bold value suggests the best F1-score in the column.

Act Fn Vanilla LSTM Stacked LSTM Bidir LSTM Res LSTM BidirRes LSTM

SinLU 0.6998 0.8512 0.8745 0.8878 0.8975
ReLU 0.6825 0.8618 0.8751 0.8973 0.8797
GELU 0.6963 0.8444 0.8752 0.8512 0.8604
SiLU 0.6861 0.8372 0.8964 0.6454 0.8944



Mathematics 2022, 10, 337 13 of 14

5. Conclusions

In this work, we proposed a novel activation function, which is named as SinLU. The
addition of the sinusoidal periodicity into the sigmoidal linear unit aids in preventing
the information loss and, thus, a better loss landscape. To define a proper shape of the
activation function, we used two parameters, which are trainable. The defined activation
function proves its competence by delivering results that are comparable to the other
standard activation functions, and in a myriad of occasions, outperforms them. One of
the limitations of the proposed activation function involves the computational complexity.
The calculation of the activation using the Equation (1), as well as its gradient, will take a
slightly longer time than other ReLU-like functions.

The proposed activation function is yet to be tested on other domains, such as rein-
forcement learning; hence, future work can focus on this. Moreover, we can also test how
the function performs on transformer-based models, such as GPT-3, vision transformer, etc.

The source code of this present work is available at LINK.

Author Contributions: A.P. and R.B. carried out the experiments; A.P., R.B. and R.S. analyzed the
experimental results; A.P. and R.B. wrote the manuscript with support from J.H.Y., Z.W.G. and R.S.;
A.P. conceived the original idea; R.S., J.H.Y. and Z.W.G. supervised the project; J.H.Y. and Z.W.G.
provided the funding acquisition. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (2020R1A2C1A01011131).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets are used in this work.

Acknowledgments: The authors would like to thank the Centre for Microprocessor Applications for
Training, Education, and Research (CMATER) research laboratory of the Computer Science and Engi-
neering Department, Jadavpur University, Kolkata, India, for providing the infrastructural support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.

arXiv 2017, arXiv:1706.03762.
2. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558. [CrossRef] [PubMed]
3. Nair, V.; Hinton, G. Rectified Linear Units Improve Restricted Boltzmann Machines; ICML: Haifa, Israel, 2010; pp. 807–814.
4. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006.
5. Liu, Y.; Zhang, J.; Gao, C.; Qu, J.; Ji, L. Natural-Logarithm-Rectified Activation Function in Convolutional Neural Networks.

In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9
December 2019; pp. 2000–2008.

6. Wang, X.; Qin, Y.; Wang, Y.; Xiang, S.; Chen, H. ReLTanh: An activation function with vanishing gradient resistance for SAE-based
DNNs and its application to rotating machinery fault diagnosis. Neurocomputing 2019, 363, 88–98. [CrossRef]

7. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv
2015, arXiv:1511.07289.

8. Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415.
9. Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A survey on modern trainable activation functions. Neural Netw. 2021, 138,

14–32. [CrossRef] [PubMed]
10. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
11. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [CrossRef]
12. Eldan, R.; Shamir, O. The power of depth for feedforward neural networks. In Proceedings of the Conference on Learning Theory,

New York, NY, USA, 23–26 June 2016; pp. 907–940.
13. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.

https://github.com/ashis0013/SinLU
http://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
http://dx.doi.org/10.1016/j.neucom.2019.07.017
http://dx.doi.org/10.1016/j.neunet.2021.01.026
http://www.ncbi.nlm.nih.gov/pubmed/33611065
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1007/BF02551274


Mathematics 2022, 10, 337 14 of 14

14. Pedamonti, D. Comparison of non-linear activation functions for deep neural networks on MNIST classification task. arXiv 2018,
arXiv:1804.02763.

15. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef]

16. Pinkus, A. Approximation theory of the MLP model. In Acta Numerica; Cambridge University Press: Cambridge, UK, 1999;
Volume 8, pp. 143–195.

17. Sonoda, S.; Murata, N. Neural network with unbounded activation functions is universal approximator. Appl. Comput. Harmon.
Anal. 2017, 43, 233–268. [CrossRef]

18. Montalto, A.; Tessitore, G.; Prevete, R. A linear approach for sparse coding by a two-layer neural network. Neurocomputing 2015,
149, 1315–1323. [CrossRef]

19. Tessitore, G.; Prevete, R. Designing structured sparse dictionaries for sparse representation modeling. In Computer Recognition
Systems 4; Springer: Berlin, Germany, 2011; pp. 157–166.

20. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models; CiteSeer: Princeton, NJ, USA,
2013; Volume 30, p. 3.

21. Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015,
arXiv:1505.00853.

22. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-weighted linear units for neural network function approximation in reinforcement
learning. Neural Netw. 2018, 107, 3–11. [CrossRef] [PubMed]

23. Kisel’ák, J.; Lu, Y.; Švihra, J.; Szépe, P.; Stehlik, M. “SPOCU”: scaled polynomial constant unit activation function. Neural Comput.
Appl. 2021, 33, 3385–3401. [CrossRef]

24. Liu, X.; Di, X. TanhExp: A smooth activation function with high convergence speed for lightweight neural networks. IET Comput.
Vis. 2021, 15, 136–150. [CrossRef]

25. Dubey, S.R.; Chakraborty, S. Average biased ReLU based CNN descriptor for improved face retrieval. Multimed. Tools Appl. 2021,
80, 23181–23206. [CrossRef]

26. Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled faces in the wild: A database forstudying face recognition in
unconstrained environments. In Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition; HAL: Lyon, France, 2008.

27. Kumar, N.; Berg, A.C.; Belhumeur, P.N.; Nayar, S.K. Attribute and simile classifiers for face verification. In Proceedings of the
2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009; pp. 365–372.

28. Liu, M.; Chen, L.; Du, X.; Jin, L.; Shang, M. Activated gradients for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst.
2021, 1–13. [CrossRef]

29. Nag, S.; Bhattacharyya, M. SERF: Towards better training of deep neural networks using log-Softplus ERror activation Function.
arXiv 2021, arXiv:2108.09598.

30. Zhu, H.; Zeng, H.; Liu, J.; Zhang, X. Logish: A new nonlinear nonmonotonic activation function for convolutional neural network.
Neurocomputing 2021, 458, 490–499. [CrossRef]

31. Maniatopoulos, A.; Mitianoudis, N. Learnable Leaky ReLU (LeLeLU): An Alternative Accuracy-Optimized Activation Function.
Information 2021, 12, 513. [CrossRef]

32. Stisen, A.; Blunck, H.; Bhattacharya, S.; Prentow, T.S.; Kjærgaard, M.B.; Dey, A.; Sonne, T.; Jensen, M.M. Smart Devices are
Different. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, Seoul, Korea, 1–4 November
2015. [CrossRef]

33. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw.
Learn. Syst. 2016, 28, 2222–2232. [CrossRef] [PubMed]

34. Du, X.; Zhang, H.; Van Nguyen, H.; Han, Z. Stacked LSTM deep learning model for traffic prediction in vehicle-to-vehicle
communication. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27
September 2017; pp. 1–5.

35. Hernández, F.; Suárez, L.F.; Villamizar, J.; Altuve, M. Human activity recognition on smartphones using a bidirectional LSTM
network. In Proceedings of the 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), Bucaramanga,
Colombia, 24–26 April 2019; pp. 1–5.

36. Kim, J.; El-Khamy, M.; Lee, J. Residual LSTM: Design of a deep recurrent architecture for distant speech recognition. arXiv 2017,
arXiv:1701.03360.

37. Zhao, Y.; Yang, R.; Chevalier, G.; Xu, X.; Zhang, Z. Deep residual bidir-LSTM for human activity recognition using wearable
sensors. Math. Probl. Eng. 2018, 2018, 1–13. [CrossRef]

http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1016/j.acha.2015.12.005
http://dx.doi.org/10.1016/j.neucom.2014.08.066
http://dx.doi.org/10.1016/j.neunet.2017.12.012
http://www.ncbi.nlm.nih.gov/pubmed/29395652
http://dx.doi.org/10.1007/s00521-020-05182-1
http://dx.doi.org/10.1049/cvi2.12020
http://dx.doi.org/10.1007/s11042-020-10269-x
http://dx.doi.org/10.1109/TNNLS.2021.3106044
http://dx.doi.org/10.1016/j.neucom.2021.06.067
http://dx.doi.org/10.3390/info12120513
http://dx.doi.org/10.1145/2809695.2809718
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1155/2018/7316954

	Introduction
	Related Work
	Proposed Approach
	Formulation of SinLU
	Properties of SinLU

	Experimental Results and Discussion
	MNIST
	Lightweight Neural Networks
	Performance over Noise
	Deeper Models Overfitting
	CNN on MNIST-like Datasets

	CIFAR
	Transfer Learning
	With Gradient Activation Function

	Sequential Data

	Conclusions
	References

