
����������
�������

Citation: Aimi, A.; Boiardi, A.S.

IGA-Energetic BEM: An Effective

Tool for the Numerical Solution of

Wave Propagation Problems in

Space-Time Domain. Mathematics

2022, 10, 334. https://doi.org/

10.3390/math10030334

Academic Editors: Domingo Barrera,

María José Ibáñez and Sara

Remogna

Received: 29 December 2021

Accepted: 19 January 2022

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

IGA-Energetic BEM: An Effective Tool for the Numerical
Solution of Wave Propagation Problems in Space-Time Domain
Alessandra Aimi 1,* and Ariel Surya Boiardi 2

1 Department of Mathematical, Physical and Computer Sciences, Parco Area delle Scienze, 53/A,
43126 Parma, Italy

2 SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy; aboiardi@sissa.it
* Correspondence: alessandra.aimi@unipr.it; Tel.: +39-0521-906944

Abstract: The Energetic Boundary Element Method (BEM) is a recent discretization technique for
the numerical solution of wave propagation problems, inside bounded domains or outside bounded
obstacles. The differential model problem is converted into a Boundary Integral Equation (BIE) in the
time domain, which is then written into an energy-dependent weak form successively discretized by
a Galerkin-type approach. Taking into account the space-time model problem of 2D soft-scattering of
acoustic waves by obstacles described by open arcs by B-spline (or NURBS) parametrizations, the
aim of this paper is to introduce the powerful Isogeometric Analysis (IGA) approach into Energetic
BEM for what concerns discretization in space variables. The same computational benefits already
observed for IGA-BEM in the case of elliptic (ı.e., static) problems, is emphasized here because it is
gained at every step of the time-marching procedure. Numerical issues for an efficient integration of
weakly singular kernels, related to the fundamental solution of the wave operator and dependent on
the propagation wavefront, will be described. Effective numerical results will be given and discussed,
showing, from a numerical point of view, convergence and accuracy of the proposed method, as well
as the superiority of IGA-Energetic BEM compared to the standard version of the method, which
employs classical Lagrangian basis functions.
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1. Introduction

The Isogeometric Analysis (IGA) paradigm, introduced by Hughes and collaborators
in the seminal paper [1] in the context of the Finite Element Method (FEM), has become
more and more popular in the Boundary Element Method (BEM) community [2]. In fact,
from one side, BEM needs to work only on the boundary of the problem domain, hence
avoiding domain meshing, and, from the other, IGA uses the same B-spline or NURBS basis,
as adopted in CAD systems, to describe both the boundary and the approximate solution
of the problem at hand, drastically reducing the number of degrees of freedom (DoFs) and
giving surprising computational advantages with regard to the classical Lagrangian basis.
In the last 10 years, IGA-BEM has been fruitfully applied to a variety of elliptic problems
reformulated in terms of Boundary Integral Equations (BIEs), such as the Laplace equa-
tion [3–13], Helmholtz equation [9,13–16], elastostatics, and crack problems [17–21]; on
the other hand, little attention has been devoted to the numerical solution of differential
problems in time domains (see [22–24] as very recent works in this context).

In particular, for what concerns hyperbolic problems, the analysis of the propagation
or the scattering of acoustic or elastic waves is extremely important in various sciences and
application fields, from engineering to geology, and from seismic risk assessment to the
design of electronic devices [25–30]. Moreover, avoiding the frequency domain, simulations
in the time domain allow to study the phenomenon as it evolves.
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For this kind of problem, an accurate and stable space-time BEM, namely Energetic
BEM, has been recently introduced by the first author and her collaborators, and applied
to the wave equation inside bounded domains or outside bounded obstacles, with or
without damping terms, proving its robustness, accuracy and long-time stability, both from
theoretical and numerical points of view (see e.g., [31]). The differential initial-boundary
value problem is converted into a space-time BIE, which is then written into an energy-
dependent weak form successively discretized by a Galerkin-type approach.

This work takes into account the space-time model problem of 2D soft-scattering of
acoustic waves by obstacles described by open arcs with B-spline (or NURBS) parametriza-
tions. It aims at introducing the IGA paradigm into energetic BEM, for what concerns
the discretization in space variables, showing the same benefits already observed in the
context of IGA-BEM for elliptic problems [5], especially the superiority of the IGA approach
versus the standard Energetic BEM. The latter is based on the classical local Lagrangian
basis for the approximation of the problem solution. The computational gain already noted
for elliptic problems is more emphasized here, because it is obtained at every step of the
time-marching procedure.

The paper is structured as follows: at first, the model problem and its energetic
boundary integral weak formulation will be introduced, then the IGA-Energetic BEM will
be outlined. Successively, some important issues involved in the numerical evaluation of
the entries of the final discretization linear system matrix will be taken into account. In fact,
these entries are double space-time integrals involving the weakly singular fundamental
solution of the 2D wave operator, which further depends on the propagation wavefront:
hence, the related integration domain changes at every time-step and is reduced until the
wavefront completely covers it. At last, several effective numerical results will be presented
and discussed, showing, from a numerical point of view, convergence and accuracy of
IGA-Energetic BEM, as well as its optimal computational performance in terms of DoFs.
A conclusive section ends the paper.

2. Model Problem on Curved Boundary and Its Energetic Boundary Integral
Weak Formulation

Let us consider the following differential problem for the wave equation, exterior to
a smooth and open arc Γ ⊂ R2, equipped by trivial initial conditions and the Dirichlet
boundary datum, which models a soft-scattering phenomenon:

[∆u− 1
c2 utt](x, t) = 0, x ∈ R2 \ Γ, t ∈ [0, T] (1)

u(x, 0) = ut(x, 0) = 0, x ∈ R2 \ Γ, (2)

u(x, t) = g(x, t), (x, t) ∈ ΣT = Γ× [0, T] (3)

where c is the propagation velocity of a perturbation inside the domain, T is the final
time instant of analysis, and the boundary datum g(x, t) represents the time history of the
excitation field over Γ.

Let us suppose that Γ is defined as a parametric curve with no self-intersection. Thus,
Γ is the image of a regular invertible function C : [a, b] ⊂ R −→ Γ ⊂ R2, such that setting
C(s) := (C1(s), C2(s)), every point x = (x1, x2) ∈ Γ can be seen as the image of just one
value s ∈ [a, b].

In order to rewrite problem (1)–(3) as a BIE, we need to start from the single-layer
representation formula for the solutions of the Equation (1) [32]:

u(x, t) =
∫

Γ

∫ t

0
G(r, t− τ)ψ(y, τ) dτ dγy, x ∈ R2 \ Γ, t ∈ (0, T], (4)
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written in terms of the forward fundamental solution of the 2D wave operator

G(r, t− τ) =
c

2π

H(c(t− τ)− r)√
c2(t− τ)2 − r2

, (5)

where r = ‖x− y‖2 and H(·) is the Heaviside step-function, and in terms of the unknown
density function ψ(x, t), which represents the time history of the jump of the normal
derivative of u across Γ. From (4), it is clear that the differential problem solution is
recovered at any point outside the obstacle and at any time instant, provided the density
function is found.

To this aim, performing a limiting process for x tending to Γ in (4) and using the
assigned Dirichlet boundary condition (3), the weakly singular space-time BIE∫

Γ

∫ t

0
G(r, t− τ)ψ(y, τ) dτ dγy = g(x, t), x ∈ Γ, t ∈ [0, T], (6)

in the unknown ψ(x, t) can be obtained and written in the compact notation

Vψ = g , (7)

where V is the so-called single-layer space-time integral operator.
Now, considering the well-known conservation law satisfied by the (real valued)

solutions of the d’Alembert equation:

0 = ut

(
1
c2 utt − ∆u

)
=

∂

∂t

(
1

2c2 u2
t +

1
2
∇u · ∇u

)
−∇ · (ut∇u) , (8)

integrating (1) over [0, T]×
(
R2 \ Γ

)
, using integration by parts in space and taking into

account that u and ut vanish for t = 0, one obtains the energy of the solution u at the final
time of analysis T, defined by

E(u, T) :=
1
2

∫
R2\Γ

[
‖∇xu(x, T)‖2

2 +
1
c2 u2

t (x, T)
]
dγx (9)

which can be rewritten as

E(u, T) =
∫

Γ

∫ T

0
ut(x, t)

[ ∂u
∂nx

]
Γ
(x, t) dt dγx =

∫
Γ

∫ T

0
(Vψ)t(x, t)ψ(x, t) dt dγx . (10)

The quadratic form appearing in the last term of (10) leads to a natural space-time
weak formulation of the corresponding BIE (7) with robust theoretical properties, which
allow to deduce stability and convergence of the related Galerkin approximate solution [31].
Hence, projecting (7), derived with regard to time, by means of test functions φ belonging
to the same functional space of the unknown density ψ, the energetic weak problem finally
reads: find ψ ∈ L2([0, T]; H−1/2(Γ)) such that, ∀φ ∈ L2([0, T]; H−1/2(Γ)),∫

Γ

∫ T

0
(Vψ)t(x, t)φ(x, t) dt dγx =

∫
Γ

∫ T

0
gt(x, t)φ(x, t) dt dγx . (11)

Let us note that Equation (11) can be equivalently written as∫
Γ

∫ T

0
φt(x, t)Vψ(x, t) dt dγx =

∫
Γ

∫ T

0
φt(x, t) g(x, t) dt dγx . (12)

For the interested reader, the theoretical analysis of the bilinear form in the left-hand
side of (11) was carried out in the Ref. [31] where, under suitable assumptions, coercivity
was proved with some technicalities.
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Now, since Γ has a parametric representation, the energetic weak problem (12) can be
rewritten in the parameter space as

∫ b

a
J(s)

∫ T

0
φt(C(s), t)Vψ(C(s), t) dt ds =

∫ b

a
J(s)

∫ T

0
φt(C(s), t) g(C(s), t) dt ds , (13)

where J(·) is the parametric speed of the boundary Γ, that is,

J(·) := ‖C′(·)‖2 =

√(
C′1(·)

)2
+
(
C′2(·)

)2 . (14)

The left-hand side of (13) can be rewritten more extensively as

∫ b

a
J(s)

∫ T

0
φt(C(s), t)

∫ b

a
J(z)

∫ t

0
G(r, t− τ)ψ(C(z), τ) dτ dz dt ds , (15)

with r = ‖C(s)− C(z)‖2.
Further, in the IGA setting, Γ is given by a parametric representation based on B-

Splines or NURBS. In the following, we will summarize for brevity only the basic ideas of
B-Splines construction. More precisely, the definition of a B-spline basis used in the IGA
approach is briefly recalled, and the Cox-De Boor recurrence relation is then presented.
Given a partition

∆ := {a = σ0 < · · · < σn = b} (16)

of the parametrization interval [a, b] ⊂ R, it follows that [a, b] =
⋃n−1

l=0 el is made up by n
subintervals el = [σl , σl+1]; a polynomial spline space B of order k and maximal regularity
on such partition is composed by piecewise polynomial functions of degree d = k− 1 with
assigned regularity Ck−2 at the breakpoints σi, i = 1, . . . , n− 1. In this way, B is a subset of
Ck−2[a, b]. It is quite easy to verify that the dimension of such space is

dim(B) = k + n− 1 . (17)

The easiest way to define in B a B-spline basis Bi,k(t), i = 0, . . . , N, with N + 1 =
dim(B), is based on the usage of a recursion formula and can be described through
two easy steps [33]. The first step consists in associating to B an extended knot vector
Z = {ζ0, · · · , ζN+k} whose elements constitute a non-decreasing sequence of abscissas,
where {ζk−1, · · · , ζN+1} coincides with those given in (16). The remaining knots in Z,
{ζ0, · · · , ζk−2} and {ζN+2, · · · , ζN+k} form two sets of k− 1 knots called auxiliary left and
right knots which, under the standard assumption of selecting an open extended knot vector,
are defined as ζ0 = · · · = ζk−2 = ζk−1 = a and ζN+1 = ζN+2 = · · · = ζN+k= = b.

In the second step, the basis is defined by using the following recursion [33]:

Bi,1(s) :=
{

1, if ζi ≤ s < ζi+1 ,
0, otherwise.

Bi,j(s) := ωi,j(s) Bi,j−1(s) + ( 1−ωi+1,j(s) ) Bi+1,j−1(s) , 1 < j ≤ k ,

(18)

with

ωi,j(s) :=

{
s−ζi

ζi+j−1−ζi
if ζi < ζi+j−1 ,

0 otherwise
(19)

(fractions with zero denominator are considered vanishing).
Note that from the above recursive definition, it is easy to verify the nonnegativity

of B-splines and that the support of Bi,k is the subinterval [ζi , ζi+k]. From now on, if not
otherwise specified, we will suppose that the obstacle Γ is given by a B-spline parametric
representation of order k over the interval [a, b], that is,
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Γ := {x ∈ R2| x = C(s) =
N

∑
i=0

Pi Bi,k(s), s ∈ [a, b]} , (20)

where Pi, i = 0, · · · , N are suitably given control points in R2.

3. IGA-Energetic BEM Discretization

For the approximation of the unknown boundary density ψ in the space variable,
the functional background compels to fix space basis functions belonging to L2(Γ), but for
smooth obstacles, one can require at least C0(Γ) regularity. In the IGA paradigm, boundary
element basis functions will be defined by means of the B-spline basis related to the
partition ∆, as described in the previous section; that is, wj(x) := Bj,k(C−1(x)), j = 0, . . . , N.
The total number of DoFs in the space variable will be NDoF = N + 1. Note that the partition
∆ induces on the obstacle Γ a boundary mesh constituted by n non-overlapping curvilinear
elements {I0, · · · , In−1}, Il = C(el), such that

⋃n−1
i=0 Ii = Γ.

For time discretization, a uniform decomposition of the time interval [0, T] with time-
step ∆ t = T/N∆t , N∆t ∈ N+, generated by the N∆t + 1 instants tk = k ∆ t, k = 0, · · · , N∆t ,
is considered, and the time mesh is equipped by piece-wise constant shape functions. Note
that, for this particular choice which will allow for analytical double-integration in time
variables, shape functions, denoted by vk(t), k = 0, . . . , N∆t − 1, will be defined as

vk(t) = H(t− tk)− H(t− tk+1) . (21)

Hence, the approximate solution of the boundary integral problem at hand will be
expressed as

ψ(x, t) ' ψ̃(x, t) :=
N∆t−1

∑
k=0

N

∑
j=0

α
(k)
j wj(x) vk(t) . (22)

Substituting ψ̃(x, t) in (12) and considering test functions φih(x, t), for i = 0, . . . , N and
h = 0, . . . , N∆t − 1, defined as

φih(x, t) = wi(x) vh(t) , (23)

the Energetic BEM discretization coming from energetic weak formulation (12) produces
the linear system

A α = β , (24)

of order NDoF · N∆t, where matrix A has a block lower triangular Toeplitz structure, owing
respectively to the choice (21) and the fact that kernel G in (5) depends on the difference
between t and τ. Note that higher-order time basis functions would produce, instead,
a block Hessenberg type matrix structure.

If we indicate with A(`) the block obtained when ∆hk = th− tk = `∆t, ` = 0, . . . , N∆t−
1, each block has dimension NDoF and the solution is obtained by block forward substitution,
that is, at every time instant t`, one solves a reduced linear system of the type:

A(0)α(`) = β(`) − (A(1)α(`−1) + · · ·+ A(`)α(0)) , (25)

where α(`) =
(

α
(`)
j

)
and β(`) =

(
β
(`)
j

)
, j = 0, . . . , N.

Procedure (25) is a time marching technique, where the only matrix to be factorized
once and for all is the symmetric nonsingular A(0) diagonal block, while all the other blocks
are used to update the right-hand side at every time-step. Owing to this procedure, one
can construct and store only the blocks A(0), · · · , A(N∆t−1) with a considerable reduction of
computational cost and memory requirement.
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Now, remembering (15) and (21), matrix entries in blocks A(`) are expressed by the sum

a(`)ml =
1

∑
µ,ν=0

(−1)µ+ν I
(

m, l, tk+µ, th+ν

)
, (26)

with

I(m, l, tk, th) =
1

2π

∫ b

a
wl(s) J(s)

∫ b

a
wm(z) J(z)

∫ th− r
c

0

H(t− tk)√
c2(th − τ)2 − r2

dτ dz ds , (27)

where the outer time integral in (15) has already been analytically performed and the
notation wl(s) = Bl,k(s), wm(z) = Bm,k(z) has been adopted.
With a similar procedure, the generic element of the right-hand side is expressed as

1

∑
ν=0

(−1)ν
∫ b

a
wl(s) J(s) g(C(s), th+ν) ds .

After a further analytical integration in time, the matrix entries in blocks A(`) are of
the form

a(`)ml =
1

∑
µ,ν=0

(−1)µ+ν
∫ b

a
wl(s) J(s)

∫ b

a
H(c ∆h+ν,k+µ − r)V(r, th+ν, tk+µ)wm(z) J(z) dz ds, (28)

where

V(r, th, tk) =
1

2π

[
log
(

c ∆hk +
√

c2 ∆2
hk − r2

)
− log r

]
(29)

and H(c ∆hk − r) models the wavefront propagation.
Using the standard element-by-element technique, the evaluation of every double-

integral in (28) is reduced to the assembling of local contributions of the type

I(i,j)V =
∫

e(l)i

wl(s) J(s)
∫

e(m)
j

H(c ∆hk − r)V(r, th, tk)wm(z) J(z) dz ds , (30)

where e(l)i , e(m)
j belong to (or coincide with) the support of wl , wm, respectively. Further,

in order to simplify the notation, in the sequel, the upper index will be dropped from e(l)i

and e(m)
j .

Let us investigate the nature of the involved kernel. Considering (29), we can write

V(r, th, tk) =
1

2π
(V1(r, th, tk) + V2(r, th, tk) + V3(r, th, tk)) , (31)

where
V1(r, th, tk) = log

(
c ∆hk +

√
c2 ∆2

hk − ‖C(s)− C(z)‖2
2

)
, (32)

V2(r, th, tk) = −
1
2

log

(
‖C(s)− C(z)‖2

2

(s− z)2

)
, (33)

and
V3(r, th, tk) = − log |s− z| . (34)

Note that, for what concerns the logarithmic term, the above splitting has already been
adopted in the Ref. [7]. Setting

R(s, z) =
‖C(s)− C(z)‖2

2

(s− z)2 =

[
C1(s)− C1(z)

(s− z)

]2
+

[
C2(s)− C2(z)

(s− z)

]2
, (35)
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(33) is rewritten as

V2(r, th, tk) = −
1
2

log(R(s, z)) .

Note that (33) can also be defined for z = s, extending its definition by continuity,
since

lim
z→s

R(s, z) = J2(s) . (36)

The splitting of (29) is useful to separate three contributions, the first and second
coming from the geometry of Γ and the last depending only on the weakly singular nature
of the kernel. Actually, integral (30) can be evaluated as the sum of

I(i,j)V = I(i,j)V1
+ I(i,j)V2

+ I(i,j)V3
, (37)

with

I(i,j)Vδ
=
∫

ei

wl(s) J(s)
∫

ej

H(c ∆hk − r)Vδ(r, th, tk)wm(z) J(z) dz ds, δ = 1, 2, 3 . (38)

For δ = 3, weakly singular integrals can occur because of the nature of the kernel
V3. Therefore, efficient evaluation of double integrals (38) is particularly required when

ei ≡ ej or ej = ei±1, where r can vanish. Further, the square root function
√

c2 ∆2
hk − r2

in (32) gives rise to unbounded space derivatives when c ∆hk = r, lowering the efficiency of
the standard Gauss-Legendre rule, and this has to be properly managed. Hence, different
quadrature rules are needed to compute I(i,j)Vδ

, δ = 1, 2, 3. The adopted schemes will be
briefly recalled at the end of the next section. The most challenging issue, however, is
the possible reduction and splitting of the integration domain, due to the presence of the
Heaviside step-function in (38), modeling wavefront propagation, which will be taken into
account in the following section.

4. Reduction and Splitting of the Integration Domain in Space Variables

Due to the presence of Heaviside function H(c∆hk − r) in (38), a reduction of the
integration domain can occur and a careful subdivision of internal and external integration
intervals is needed. In fact, the derivative of the external integrand function in the s variable
can show step discontinuity in some points of the outer integration interval, as already
studied in the Ref. [34] for the simplest case of the rectilinear scatterer. In absence of this
careful subdivision, a very large number of quadrature nodes is needed for the outer
numerical integration, in order to achieve single-precision accuracy. Automatic detection
of possible subdivision points, both for the inner and the outer variables of integration,
therefore becomes the key point for an accurate and effective evaluation of the double
integrals (38).

While in the case of C = (Id, 0) these points are expressed in closed form [34], in the
general case, they have to be found as roots of the non-linear equation

c2 ∆2
hk − ‖C(s)− C(z)‖2

2 = 0 , (39)

either in the outer integration variable s or in the inner integration variable z.
More precisely, once intervals of outer and inner integration parametric intervals ei

and ej are fixed, one needs to find where the function

F(s, z) = (C1(s)− C1(z))
2 + (C2(s)− C2(z))

2 − c2∆2
hk s ∈ ei , z ∈ ej , (40)

related to the argument of the Heaviside function, is less than or equal to zero.
The search for subdivision points has been differently implemented depending on

the mutual position between inner and outer integration intervals, distinguishing three
different geometrical situations: coincident elements, that is, i = j, contiguous elements,
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that is, i = j + 1 and i = j− 1, or separate elements. In the next subsections, for the sake of
brevity, we will resume the first two scenarios, which are the most important due to the
appearance of kernel singularity.

Assuming the discretization of the parametric domain is fine enough and the curve
C is at least C1, we can approximate curvilinear elements Ii by an expansion of the curve
C on the corresponding parametric element ei; for the approximated elements, possible
subdivision points can be determined in closed form, as detailed in the subsequent sections.
The subdivision points determined in this way are then used as good initial guesses in a
Newton-type solver to get closer at double-precision accuracy to the actual roots of the
F(s, z) function (40).

In the following, to simplify the notation, the wave propagation speed is set as c = 1.

4.1. Double Integration over Coincident Elements

In the case where the double integrals (38) are computed on coincident elements
ei = ej, the corresponding curvilinear element Ii on the scatterer Γ is approximated by a
first-order expansion around the left endpoint σi of ei. For s, z ∈ ei, we can write

s = σi + σ, z = σi + ζ

with σ, ζ ∈ [0, li], li being the length of ei; the positions of points C(s), C(z) on Ii are then
approximated by the positions of the corresponding points on the segment tangent to Γ
at C(σi):

C(s) ' C(σi) + σC′(σi), C(z) ' C(σi) + ζC′(σi); (41)

the distance between points on the curve is then approximated by the distance along the
tangent segment, that is,

r ' r̃ = |σ− ζ|J(σi) = |s− z|J(σi), (42)

and, consequently, the nonlinear Equation (39) is approximated in this geometric setting by

|s− z|2 J(σi)
2 − ∆2

hk = 0. (43)

The double-integration domain can hence be approximated by the intersection of the
square ei × ei with the domain{

(s, z) : s− ∆hk
J(σi)

< z < s +
∆hk
J(σi)

}
(44)

where the Heaviside function is not trivial. Having set the inner integration extremes

z1(s) = max
(

σi, s− ∆hk
J(σi)

)
, z2(s) = min

(
σi+1, s +

∆hk
J(σi)

)
, (45)

the description of the integration domain with regard to the outer integration variable s
changes where the min and max in (45) switch branch, or, equivalently, where z1(s) = σi
and z2(s) = σi+1, that is, at

s1 = σi +
∆hk
J(σi)

, s2 = σi+1 −
∆hk
J(σi)

. (46)

As already explained, the outer integration interval needs to be split in correspondence
of these points, whenever they lie in the considered element ei.

Let us remark that reduction and subdivision points determined by means of (45)
and (46), respectively, are approximations of the exact roots of F(s, z) in (40) and might
need to be refined in order to get the desired accuracy.
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Hence, starting with the search of possible subdivision points in the outer integration
variable s, let s(0)∗ be the approximation of a subdivision point of the outer integration vari-
able, obtained by (46), associated to an equation of the form z∗(s) = σ∗, where z∗(s) is one
of the inner integration extremes and σ∗ is a suitable endpoint of ei (the symbol ∗ denotes
any index which makes the present notation consistent with the one employed above). In
order to test if the approximation is good enough, we compute the residual

∣∣∣F(s(0)∗ , σ∗)
∣∣∣—if

it is smaller than a fixed tolerance ε, the approximation is accepted; otherwise, the following
Newton iteration is applied:

s(k+1)
∗ = s(k)∗ −

F
(

s(k)∗ , σ∗
)

∂sF
(

s(k)∗ , σ∗
) , k = 0, . . . (47)

until the residual stopping criterion
∣∣∣F(s(k+1)

∗ , σ∗)
∣∣∣ ≤ ε is satisfied. The proposed procedure,

starting from good initial guesses, produced fast converging sequences of approximations
in all performed numerical experiments. In Table 1, for example, we report a sequence of
approximations of the outer integral splitting points for the parametric element ei = [0, 0.1]
on a semi-circular curve parametrized by C(s) = (cos(s), sin(s)), having fixed ∆hk = 0.05.

Table 1. Initial guess (k = 0) and refinements of external integration domain splitting points
along with the corresponding residual values for a semi-circular curve parametrized by C(s) =

(cos(s), sin(s)), ei = [0, 0.1], ∆hk = 0.05.

k s(k)
1 s(k)

2

∣∣∣F(s(k)
1 , σi

)∣∣∣ ∣∣∣F(s(k)
2 , σi+1

)∣∣∣
0 0.05 0.05 5.21 · 10−7 5.21 · 10−7

1 0.0500052100699161 0.049994789930084 2.71 · 10−11 2.71 · 10−11

2 0.0500052097987223 0.049994790201277 0 · 100 4.34 · 10−19

In Table 2, we see that on the parabolic curve C(s) = (s, s2) (with non-unitary speed),
using a coarser parametric element ei = [0, 0.2] and having fixed ∆hk = 0.05, the initial
approximations obtained by linearization (46) have a higher residual compared to the
previous example; nonetheless, the residual goes to zero in double-precision accuracy
within the third iteration of (47).

Table 2. Initial guess (k = 0) and refinements of external integration domain splitting points
along with the corresponding residual values for a parabolic curve parametrized by C(s) = (s, s2),
ei = [0, 0.2], ∆hk = 0.05.

k s(k)
1 s(k)

2

∣∣∣F(s(k)
1 , σi

)∣∣∣ ∣∣∣F(s(k)
2 , σi+1

)∣∣∣
0 0.05 0.15 6.25 · 10−6 3.06 · 10−4

1 0.0499378109452736 0.15277149321267 3.93 · 10−9 8.12 · 10−6

2 0.0499377718370179 0.15284906018415 1.55 · 10−15 6.38 · 10−9

3 0.0499377718370024 0.152849121234182 4.34 · 10−19 3.95 · 10−15

After all subdivision points in the s variable have been determined within the pre-
scribed accuracy, the external integration domain is decomposed into subintervals [s̄1, s̄2] ⊆
ei with s̄1 ≤ s̄2, where s̄1, s̄2 are either extremes of ei or subdivision points for the s variable.
If [s̄1, s̄2] is not empty, at each selected outer quadrature node s ∈ [s̄1, s̄2], approximated
extremes for the inner integral z(0)∗ (s) are computed from (45). For those that lie within
ei, the residual

∣∣∣F(s, z(0)∗ (s)
)∣∣∣ is computed: if it is smaller than ε, the approximation is

accepted; otherwise, the following iteration is applied:
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z(k+1)
∗ = z(k)∗ −

F
(

s, z(k)∗
)

∂zF
(

s, z(k)∗
) , k = 0, . . . (48)

until the residual stopping criterion
∣∣∣F(s, z(k+1)

∗ (s))
∣∣∣ ≤ ε is satisfied. The inner integration

endpoints z̄1(s) < z̄2(s) are hence set up after the last iteration. A sequence of approxima-
tions of the inner integration extremes is reported in Table 3, in relation to the parabolic
curve C(s) = (s, s2) and the parametric element ei = [0, 0.2] as in the previous Table,
having fixed ∆hk = 0.05 and the outer variable s = 0.1. Again, starting from an initial guess
obtained by (45), the sequence converges in double precision accuracy after three iterations
of (48).

The overall procedure allows to express the double integral (38) as the sum of contri-
butions of the form ∫ s̄2

s̄1

wl(s) J(s)
∫ z̄2(s)

z̄1(s)
Vδ(r, th, tk)wm(z) J(z) dz ds, (49)

accurately evaluated by means of quadrature schemes described in Section 4.3.

Table 3. Initial guess (k = 0) and refinements of inner integration domain extremes, related to s = 0.1,
and corresponding residual values for a parabolic curve parametrized by C(s) = (s, s2), ei = [0, 0.2],
∆hk = 0.05.

k z(k)
1 (0.1) z(k)

2 (0.1)
∣∣∣F(0.1, z(k)

1 (0.1)
)∣∣∣ ∣∣∣F(0.1, z(k)

2 (0.1)
)∣∣∣

0 0.05 0.15 5.62 · 10−5 1.56 · 10−4

1 0.0505541871921182 0.148546511627907 3.06 · 10−7 2.35 · 10−6

2 0.0505572313270522 0.148523936468889 9.22 · 10−12 5.67 · 10−10

3 0.0505572314189283 0.148523931028912 0 · 100 3.21 · 10−17

4.2. Double Integration over Contiguous Elements

When double integrals (38) are computed on contiguous element ei, ej, with j = i + 1,
we consider the same linear approximation as in Section 4.1 for the curvilinear elements
Ii, Ij ⊂ Γ, this time around the common endpoint σi+1 = σj.

Let s ∈ ei and z ∈ ej be expressed as

s = σj − σ, σ ∈ [0, li],

z = σj + ζ, ζ ∈ [0, lj],

li, lj being the lengths of ei and ej, respectively; the positions of points C(s) ∈ Ii and
C(z) ∈ Ij on Γ are then approximated by the positions of points on the common tangent
segment to Γ at C(σj), expressed by

C(s) ' C(σj)− σC′(σj), C(z) ' C(σj) + ζC′(σj); (50)

and the distance between points on the curve is then approximated by the distance along
the tangent segment, that is,

r ' r̃ = (ζ + σ)J(σj) = (z− s)J(σi). (51)

Consequently, the subset of the rectangle ei × ej where the Heaviside function is
non-zero is approximated by {

(s, z) : z < s +
∆hk
J(σj)

}
; (52)
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the inner integration upper extreme is therefore set to

z(s) = min

(
σj+1, s +

∆hk
J(σj)

)
. (53)

In the points where z(s) intersects either the lower or the upper horizontal edge of the
rectangle ei × ej, we find subdivision points for the outer integration variable

s1 = σj −
∆hk
J(σj)

, s2 = σj+1 −
∆hk
J(σj)

, (54)

respectively.
Starting from approximations of reduction and subdivision points in Equations (53)

and (54), Newton iterations are applied, similarly to the procedure described in Section 4.1,
to get closer to the exact roots of the function F(s, z) in (40).

Finally, after reduction and subdivision points have been determined within a pre-
scribed tolerance, double integrals (38) are expressed, using a notation similar to that one
employed in (49), as sums of contributions of the form

∫ s̄2

s̄1

wl(s) J(s)
∫ z̄(s)

σj

Vδ(r, th, tk)wm(z) J(z) dz ds, (55)

where s̄2, s̄1 coincide either with the endpoints of ei or with possible subdivision points for
the outer integration variable s lying within ei.

In the case where the two contiguous elements are in the opposite order, that is,
ej = ei−1, the same procedure and formulas can be used by simply swapping the indices of
both of the elements and shape functions in Equation (38).

4.3. Quadrature Schemes

We briefly explain below the different quadrature schemes adopted according to
regular and singular integrals, which are needed to numerically evaluate the double
integral (38). Once computed, if required by the Heaviside function, the appropriate
splitting of the outer and inner integration intervals, as discussed above, the integration (38),
for δ = 1, 2, 3, can be split in contributions of the type

I(i,j)Vδ
=
∫

ēi

wl(s) J(s)
∫

ēj

Vδ(r, th, tk)wm(z) J(z) dz ds , (56)

where ēi ⊆ ei, ēj ⊆ ej in relation to the possible performed decomposition.
For δ = 1, looking at (32), a numerical issue arises in relation to the integrand function

log
(

c ∆hk +
√

c2 ∆2
hk − r2

)
, even if it is not singular for r → 0. In fact, the square root

argument is always positive, but it can assume very small values, and in the limit for the
argument tending to zero, the derivative of the square root with respect to the inner variable
of integration z becomes unbounded. To overcome this difficulty, the inner integration
in (56) has been performed considering the regularization procedure in the Ref. [35], which
suitably pushes the Gaussian nodes towards the endpoints of the interval ēj and modifies
the Gaussian weights in order to regularize integrand functions with mild boundary singu-
larities (the higher certain positive integer parameters p, q, the smoother the regularization).
We will indicate nodes and weights of this quadrature rule with {zp,q

jG
, ω

p,q
jG
}NG

jG=1. The outer
integral in (56) is numerically evaluated by a classical Gauss-Legendre rule, with nodes
and weights {siG , ωiG}

NG
iG=1, finally having:

NG

∑
iG=1

ωiG wl
(
siG

)
J
(
siG

) NG

∑
jG=1

ω
p,q
jG

log
(

c ∆hk +

√
c2 ∆2

hk − ‖C
(
siG

)
− C

(
zp,q

jG

)
‖2

2

)
wm

(
zp,q

jG

)
J
(

zp,q
jG

)
. (57)
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For δ = 2, which involves the double-integration of the regular kernel (33), we operate
with the product of two Gauss-Legendre rules, yielding

NG

∑
iG=1

ωiG wl
(
siG
)

J
(
siG
) NG

∑
jG=1

ωjG log
(

R
(
siG , zjG

))
wm
(
zjG
)

J
(
zjG
)

. (58)

To conclude, for δ = 3, the numerical treatment of a weakly singular kernel in (34) on
coincident and contiguous elements has been operated through the quadrature schemes
proposed in the Ref. [36], which are widely used for weakly singular kernels in the context
of Galerkin BEM applied to elliptic problems. The adopted quadrature rule for the inner
integration is based on classical Gauss-Legendre nodes, with Gaussian weights that are
suitably modified in order to absorb the logarithmic singularity and depend on the outer
integration variable. The new weights are indicated by ω

log
jG

(s). The outer integration is
performed by the regularization technique [35], finally yielding

NG

∑
iG=1

ω
p,q
iG

wl

(
sp,q

iG

)
J
(

sp,q
iG

) NG

∑
jG=1

ω
log
jG

(
sp,q

iG

)
wm
(
zjG
)

J
(
zjG
)

. (59)

Otherwise, for the evaluation of (38) on separate elements when δ = 3, we have
operated with the product of two Gauss-Legendre rules.

5. Numerical Results

In this section, several numerical results obtained by the IGA-Energetic BEM applied
to the analysis of 2D soft-scattering problems by open arcs having B-spline or NURBS para-
metric representation are presented and discussed, showing, from a numerical point of view,
convergence and accuracy of the proposed method, as well as its optimal computational
performance in terms of DoFs.

Firstly, we consider a straight obstacle, setting C = (Id, 0), and treat the problem (1)–(3)
already studied in the Ref. [34], where the error was analyzed only with regard to the space
variable at a fixed time instant. Subsequently, we discuss the case where the obstacle is
represented by a semicircumference. Then, we consider the problem (1)–(3) with a parabola
arc as a scatterer, with the aim of testing the IGA-Energetic BEM approach when the para-
metric speed of Γ is different from 1. At last, the scatter is chosen in such a way that it
changes its concavity.

For the segment and parabola arc, we employed a B-Spline parametric representation,
while for the semi-circumference and the last obstacle, we employed a quadratic NURBS
representation. Numerical results reported below are related to simulations based on
keeping the space mesh fixed and increasing the B-splines degree, instead of refining
the space mesh keeping the B-spline order fixed, determined by Γ representation: this
choice better highlights the benefits of using an IGA instead of a standard Energetic BEM
approach, which employs the C0 Lagrangian basis functions to represent the approximate
solution, for what concerns the computational saving in terms of DoFs. In any case, it is
worth noting that the boundary curve is exactly expressed in all the simulations, because its
representation can be obtained by a standard degree elevation procedure [37].

In each simulation, we set the wave propagation velocity c = 1 and we consider
uniform decompositions of the parametrization interval [a, b], setting ∆x = li, ∀ i. This
choice, in general, does not imply a uniform decomposition on Γ, as in the case of a
parabola arc.

The numerical study of the approximate solution will be done in squared space-time
energy norm, which, remembering (10), for ψ on ΣT and in the proper functional space, is
defined by:

‖ψ‖2
E :=< (Vψ)t, ψ >L2(ΣT)

. (60)
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For the considered numerical tests, to the authors’ knowledge, there are no exact space-
time solutions in closed form. Nevertheless, by using a boundary datum which becomes
independent of time, the IGA-Energetic BEM solution stabilizes to a time-independent
function. Therefore, the transient solution ψ̃ evaluated on Γ at a fixed (large) time instant
can be compared with the analytical solution ψ∞, if available, of the BIE related to the
stationary differential problem

∆u∞(x) = 0, x ∈ R2 \ Γ (61)

u∞(x) = g∞(x), x ∈ Γ (62)

u∞(x) = O(1), ‖x‖ → ∞ , (63)

with g∞(x) = lim
t→∞

g(x, t) chosen in such a way that the Sommerfeld radiation condition (63)

is satisfied [38].

5.1. Straight Scatterer

Let us consider the model problem (1)–(3), where the obstacle Γ is described by a
B-Spline parametric representation of order 2 over the interval [−0.5, 0.5],

Γ = {x ∈ R2| x = (x, 0) =
1

∑
i=0

Pi Bi,2(x), x ∈ [−0.5, 0.5]} , (64)

where P0 = [−0.5 0]> and P1 = [0.5 0]> are the two control points, and
Z = [−0.5 − 0.5 0.5 0.5] is the extended knot vector.

We fix the Dirichlet boundary datum given by

g(x, t) = −H(t) f (t)x, where f (t) =


sin2(4πt), if 0 ≤ t ≤ 1

8

1, if t ≥ 1
8

. (65)

For an analysis on the time interval [0, T] = [0, 10], the time-step ∆t = 0.1 and a
uniform decomposition of Γ constituted by n = 10 elements (ı.e., ∆x = 0.1) equipped
by linear B-Splines, were chosen. Figure 1 presents the time history of the BIE numerical
solution ψ̃(x, t), having set x = −0.1. At the beginning of the simulation, this point of Γ is
excited until the time instant t = 1/8, owing to the nature of the Dirichlet datum; further, it
receives solicitations at t = 0.4 and t = 0.6 by the waves coming from the endpoints of Γ
and traveling with unitary speed; finally, the IGA-Energetic BEM solution stabilizes at a
constant value.

0 2 4 6 8 10

t

0

0.5

1

1.5

2

Figure 1. Approximated density ψ̃(−0.1, t).
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This is due to the fact that the boundary datum becomes independent of time, so
a convergence of the transient solution ψ on Γ to a stationary solution can be expected.
The analytical solution ψ∞ of the stationary BIE on Γ related to the limit problem (61)–(63),
with g∞(x) = −x, is known in closed form and reads

ψ∞(x) =
−2x√
1
4 − x2

. (66)

This analytical solution clearly presents mild singularities at the endpoints of Γ.
In Table 4, the relative error ‖ψ̃(·, 10) − ψ∞(·)‖

H−
1
2 (Γ)

/‖ψ∞(·)‖
H−

1
2 (Γ)

between the

approximate transient solution at time instant T = 10 and the limit stationary solution is
reported, varying the degree of the B-spline basis, together with the space DoFs. In the same
Table, the analogous results obtained by standard Energetic BEM are reported, showing
that this error behaves precisely as O(d−1) (see also [34]). This result is the same as what
has been known since the Ref. [39] for elliptic problems. The comparison between the two
error decays is reported in Figure 2 with regard to DoFs. The plot shows that the IGA
approach, despite having nearly the same speed of convergence of the standard approach
with regard to d, presents a higher rate with regard to DoFs. In fact, for the Lagrangian
basis, it holds that d ' NDoF/n, while for the B-spline basis, we have d = NDoF − n. In the
same figure, the decays O(N−1

DoF) and O((NDoF − n)−1) are also shown. This behavior
highlights and confirms the same computational benefits as observed for IGA-BEM applied
to elliptic problems in the Ref. [5].

Table 4. Relative error ‖ψ̃(·, 10)− ψ∞(·)‖
H−

1
2 (Γ)

/‖ψ∞(·)‖
H−

1
2 (Γ)

varying d.

d DoFs IGA-Energetic BEM DoFs Standard Energetic BEM

1 11 3.15 · 10−1 11 3.15 · 10−1

2 12 2.73 · 10−1 21 2.49 · 10−1

3 13 2.31 · 10−1 31 1.66 · 10−1

4 14 1.91 · 10−1 41 1.27 · 10−1

5 15 1.56 · 10−1 51 1.03 · 10−1

6 16 1.23 · 10−1 61 8.65 · 10−2
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=
1
0

std. EBEM

IgA-EBEM

O(DoFs-1)

O((DoFs-n)-1)

Figure 2. Relative error decay at T = 10 in H−
1
2 (Γ) norm.

For completeness, in Figure 3 (left), the whole time-history of the relative error in
H−1/2(Γ) norm is reported for the considered B-spline degrees: at the beginning of the
simulations, the errors are nearly the same for all the considered B-spline bases, but the
curves soon become separated and stagnate at different levels; in this case, the quality of the
approximation is bounded by the ability of the discretization space to catch the singularity
of the solution at the endpoints. Increasing the B-spline degrees, the space approximation
becomes more capable of representing the solution behavior, so better results are achieved,
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even if the relaxation to equilibrium requires more time. The same remarks can be made
for Figure 3 (right), related to the standard Energetic BEM.
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Figure 3. Time history of the relative error between transient and stationary solution in H−1/2(Γ) norm
for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform spatial
discretization of size ∆x = 0.1.
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Figure 3. Time history of the relative error between transient and stationary solutions in the H−1/2(Γ)
norm for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform
spatial discretization of size ∆x = 0.1.

In Figure 4, we show the approximate solutions ψ̃(x, 10), obtained by IGA-Energetic
BEM for different values of degrees d of the B-spline basis, at the final instant of analysis
T = 10 on Γ. Additionally, ψ∞(x) has been reported in Figure 4 and, as one can observe,
the approximate solutions ψ̃(x, 10) tend to overlap the curve related to the stationary
solution ψ∞(x), diminishing their oscillatory behavior near the endpoints of Γ for growing d.

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

−10

0

10

x

ψ̃
(x

,1
0)

d = 1
d = 2
d = 3
d = 4
d = 5
d = 6

ψ∞

Figure 4. Densities ψ̃(x, 10), for growing values of degree d of the B-spline basis, compared to the
stationary solution ψ∞(x).

Of course, the complete analysis of numerical results has to be done in the whole
space-time domain, but unfortunately, the analytical space-time solution is not known in
closed form. Nevertheless, we can proceed with the following numerical study, employing
the value of space-time energy norm of the approximated solution as a mean to assess the
convergence of the method for finer discretization, both in space, by p-refinement, and,
in time, by h-refinement.

In Table 5 the space-time energy norm squared (60) is reported for both IGA- and
standard Energetic BEM, for growing degree d of the B-spline basis and diminishing time-
step defined as ∆t = 2−d ∆x, having fixed ∆x = 0.1, together with the space DoFs. As one
can observe, these values tend to stabilize towards a limit value conceived as the space-
time energy norm of the exact solution of the BIE wave problem, but the convergence of
IGA-Energetic BEM is much faster with regard to DoFs, as already shown above for a fixed
time instant. This behavior is perfectly visible in Figure 5.
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Table 5. Space-time energy norm squared (60), varying d and fixing ∆t = 2−d ∆x.

d DoFs IGA-Energetic BEM DoFs Standard Energetic BEM

1 11 1.693902 11 1.693902
2 12 1.822089 21 1.829780
3 13 1.868444 31 1.876249
4 14 1.883456 41 1.890191
5 15 1.889218 51 1.895179
6 16 1.892229 61 1.897428
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Figure 5. Squared space-time energy norm (60) of the IGA- and standard Energetic BEM approximate
transient solutions, for increasing degree d, plotted with regard to DoFs.

The analysis of the space-time energy norm for the approximate solution given by
IGA-Energetic BEM is also reported in Figure 6, versus both increasing B-spline degrees and
refined time-steps, highlighting the contribution of these two parameters to the convergence
to the reference value. Each curve in the left plot corresponds to a fixed time-step, and
the B-splines degree is increased along each curve; moving along the vertical axis, we see
that for every fixed B-spline degree, the values of the energy accumulate around a limiting
value. Moving horizontally, we instead see that the energies of the approximated solutions
stabilize at a value which depends on the time-step. Finally, the two contributions can be
combined by extracting the diagonal sequence (black line), reported also in Table 5 and
Figure 5. The plot on the right reports the same data, where for each fixed B-spline degree,
we can observe that the values of the energy of the approximated solutions converge under
time-step refinement.
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Figure 6. Squared space-time energy norm (60) of the approximated density on the straight scatterer
versus increasing B-spline degree (left) and refined time discretization (right).
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5.2. Semi-Circular Scatterer

Let us consider the model problem (1)–(3), where the obstacle is a semi-circular arc of
unitary radius:

Γ = {x ∈ R2| x = C(α) = (cos(α), sin(α)), α ∈ [0, π]} . (67)

This curve does not admit an exact B-spline representation, but can be parametrized
using NURBS (see [40]) over the interval [0, π] as

C(α) =
∑4

i=0 PiwiBi,2(α)

∑4
j=0 wjBj,2(α)

,

where Bi,2 are the quadratic B-splines build on the extended knot vector

Z =
[
0 0 0 π

2
π
2 π π π

]
,

Pi, i = 0, . . . , 4 are the control points of the curve given by the columns of the matrix

P =

[
1 1 0 −1 −1
0 1 1 1 0

]
,

and wi the components of the corresponding weights vector

w =
[
1

√
2

2 1
√

2
2 1

]
.

The model problem is equipped by the Dirichlet boundary datum given by

g(α, t) = H(t) f (t)q(α), (68)

where f is given in (65) and

q(α) =
1

4π

(
π cos(α)− 2 sin(α) log

(
sin
(

α
2
)

sin
(

π−α
2
))). (69)

Looking at the time history of the approximated boundary density computed at α = π
8 ,

reported in Figure 7, we see again that after the initial transient phase, the approximated
solution stabilizes at a constant value, which is the value of the stationary density ψ∞ at the
same point of the boundary. The stationary solution of the BIE on the semi-circumference Γ
related to the limit problem (61)–(63) is known to be

ψ∞(α) = cos(α). (70)

Since the limiting stationary solution (70) is regular, we can expect the space depen-
dence to be easier to approximate than in the previous example, even with low-degree
shape functions and coarse meshes over Γ.
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Figure 7. Approximated boundary density ψ̃
(

π
8 , t
)

on the semi-circular scatterer. The parametric
domain was decomposed into 30 elements of size ∆α = π/30 equipped with quadratic B-splines,
and the time interval [0, T] = [0, 10] was decomposed into 100 time steps.

In fact, having fixed ∆α = π
10 , ∆t = 0.3 in Figure 8, we see that the computed density

at final time T = 1200 approximates the analytic stationary density very closely. In this
case, the stationary density ψ∞ being smooth, the approximations for degrees ≥ 2 are
all overlapped.
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d = 2
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d = 4
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Figure 8. Approximated densities ψ̃(x, T), having set T = 1200, ∆t = 0.3, for increasing degree d of
the B-spline basis functions on a grid of size ∆α = π/10 compared with the stationary solution.

Moreover, since in this example the stationary solution is defined and smooth every-
where, we can compute, at every time instant t, the relative error ‖ψ̃(·, t)− ψ∞(·)‖H0(Γ)/
‖ψ∞(·)‖H0(Γ) in the H0(Γ) norm between the approximate transient solution and the limit
stationary solution over the obstacle Γ. In Figure 9, the time history of the relative error
obtained by IGA (left) and standard (right) Energetic BEM is shown, and we observe that
at the beginning of the simulations, the errors are practically the same, meaning that in
the transient phase, the dominating error is due to the time variable. Then, low-order
shape functions stagnate first, while the curves related to shape functions of higher degree
proceed whilst packed together. At large enough time instants, the curves separate one
by one and stagnate as the time-dependent part of the error fades away, revealing the
space discretization error. In particular, in Figure 9 (left) we see that the curve related to
d = 4 is starting to stagnate at the end of the simulations, meaning that the equilibrium has



Mathematics 2022, 10, 334 19 of 30

almost been reached, while B-splines of degree 5 and 6 are still equilibrating and have the
same relative error. Using Lagrangian shape functions instead, it appears from Figure 9
(right) that the approximation of degree 4 is still improving at the end of the simulation and
would give better results on a longer time interval. Let us stress the fact that this example
is different from the previous one on the straight scatterer where the space component of
the error was almost immediately dominant.

In Table 6, the above-defined relative error at the final time-instant of analysis T = 1200
is reported, varying the degree of the B-spline basis, together with the space DoFs. In the
same Table, the analogous results obtained by standard Energetic BEM, employing C0

Lagrangian basis functions to represent the approximate solution, are reported. As one can
see, for the selected T, the errors stagnate for degrees higher than 4, even if they reach the
single precision accuracy.

To investigate the influence of the time discretization on the convergence of the
transient solution, we repeat the same simulation on [0, T] = [0, 1200] decomposed in 8000
time-steps of size ∆t = 0.15. Looking at Figure 10, we can observe, as expected, a finer
resolution, capturing more minute details in the initial transient phase, but the limit values
of the error, coming from the space discretization are, as expected, the same as in Figure 9.

To conclude, we present the numerical results related to the space-time energy norm
squared (60), reported in Table 7.
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d DOF B-spline DOF Lagrangian
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4 14 5.512299 · 10−7 41 3.101532 · 10−7

5 15 3.031702 · 10−7 51 3.110169 · 10−7

6 16 3.043934 · 10−7 61 3.150157 · 10−7

10−1 100 101 102 103
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

t

‖ψ̃
(·,

t)
−

ψ
∞

(·)
‖ H

0 (
Γ)

‖ψ
∞

(·)
‖ H

0 (
Γ)

d = 2
d = 3
d = 4
d = 5
d = 6

Figure 10. Time history of the relative error between transient and stationary solution in H0(Γ) norm
for increasing degrees of B-spline shape functions on a uniform spatial discretization of size ∆α = π/10.
The time interval [0, 1200] is decomposed in 8000 time steps.

Figure 9. Time history of the relative error between transient and stationary solutions in the H0(Γ)
norm for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform
spatial discretization of size ∆α = π/10, having fixed ∆t = 0.3.

Table 6. Relative error in H0(Γ) norm at final time T = 1200 for B-spline and standard Lagrangian
shape functions of different degrees, having a fixed space discretization step ∆α = π/10 and time-step
∆t = 0.3.

d DOF B-Spline DOF Lagrangian

2 12 1.826858 · 10−4 21 1.757965 · 10−4

3 13 8.476423 · 10−6 31 2.054547 · 10−6

4 14 5.512299 · 10−7 41 3.101532 · 10−7

5 15 3.031702 · 10−7 51 3.110169 · 10−7

6 16 3.043934 · 10−7 61 3.150157 · 10−7

Table 7. Space-time energy norm squared (60), varying d and fixing ∆t = 2−d ∆x.

d DOF B-Spline

2 12 3.813778
3 13 3.908922
4 14 3.933652
5 15 3.940264
6 16 3.942201
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Figure 10. Time history of the relative error between transient and stationary solutions in H0(Γ)
norm for increasing degrees of B-spline shape functions on a uniform spatial discretization of size
∆α = π/10. The time interval [0, 1200] is decomposed in 8000 time steps.

In Figure 11 (right) we see that the energy values of approximations obtained with finer
time-steps stabilize at a fixed value, indicating convergence by time-step refinement. We
see instead that all degrees give almost the same energy values. Similarly, in Figure 11 (left)
the main variation to the ‘diagonal’ sequence of refinements with discretization parameters

∆α =
π

30
≈ 1.04719755119659e− 001, ∆t =

0.1
2d , d = 2, . . . , 6 (71)

is given by time-step refinement. This can be explained observing that the Dirichlet
datum (68) becomes independent of time very quickly, hence the space-time energy norm
of the solution (60) only accounts for the first time-instants during the initial transient
phase. Since, at the beginning of the simulation shape functions of all degrees give almost
the same results, as visible from the previous errors plots, it is not surprising that degree
elevation has almost no effect on the space-time energy in this example.Version January 18, 2022 submitted to Mathematics 21 of 33
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Figure 11. Squared space-time energy norm (60) of the approximated density on the segment versus
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Table 7. Space-time energy norm squared (60), varying d and fixing ∆t = 2−d ∆x.

d DOF B-spline

2 12 3.813778
3 13 3.908922
4 14 3.933652
5 15 3.940264
6 16 3.942201

In fig. 11 (right) we see that the energy values of approximations obtained with finer time steps
stabilize at a fixed value, indicating convergence by time step refinement. We see instead that all
degrees give almost the same energy values. Similarly, in fig. 11 (left) the main variation to the
’diagonal’ sequence of refinements with discretization parameters

∆α = π

30
≈ 1.047 197 551 196 59× 10−1, ∆t = 0.1

2d , d = 2, . . . , 6 (71)

is given by time step refinement. This can be explained observing that the Dirichlet datum (68) becomes229

independent of time very quickly, hence the space-time energy norm of the solution (60) only accounts230

for the first time instants, during the initial transient phase; since at the beginning of the simulation231

shape functions of all degrees give almost the same results, as visible from the previous errors plots, it232

is not surprising that degree elevation has nearly no effect on the space-time energy in this example.233

5.3. Wave scattering by parabola arc234

Let us consider the model problem (1)-(3), where the obstacle Γ is described by a B-Spline parametric
representation of order 3 over the interval [−1, 1]:

Γ = {x ∈ R2| x = C(x) =
(

x, 1− x2
)

=
2

∑
i=0

Pi Bi,3(x), x ∈ [−1, 1]} , (72)

with control points Pi, i = 0, 1, 2 whose coordinates are given in the i-th column of the following matrix
P:

P =
[
−1 0 1
0 2 0

]
.

Figure 11. Squared space-time energy norm (60) of the approximated density on the segment versus
increasing B-spline degree (left) and refined time discretization (right).
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5.3. Wave Scattering by Parabola Arc

Let us consider the model problem (1)–(3), where the obstacle Γ is described by a
B-Spline parametric representation of order 3 over the interval [−1, 1]:

Γ = {x ∈ R2| x = C(x) =
(

x, 1− x2
)
=

2

∑
i=0

Pi Bi,3(x), x ∈ [−1, 1]} , (72)

with control points Pi, i = 0, 1, 2 whose coordinates are given in the i-th column of the
following matrix P:

P =

[−1 0 1
0 2 0

]
.

and where Z = [−1 , −1 , −1 , 1 , 1 , 1] is the extended knot vector. The arc is shown in
Figure 12, together with its control points.

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

Figure 12. Parabolic arc considered for experiments in Section 5.3. Control points and polygon
plotted in grey.

We fix the Dirichlet boundary datum given by

g(x, t) = H(t) f (t)q(x) , (73)

where f has already been given in (65) and

q(x) =
1

8π

(
2x2 log(1− x)

log(1 + x)
+
(

1− x2
) log

(
2− 2x + x2)

log(2 + 2x + x2)
− log

(
2− 2x− x2 + x4)

log(2 + 2x− x2 + x4)

+2x
(

arctan
(

4x2

x4 − 4

)
+ π

))
.

(74)

in such a way that the analytical solution ψ∞ of the stationary BIE on Γ was related to the
limit problem (61)–(63), with g∞(x) = q(x), it is known in closed form and reads

ψ∞(x) =
x√

1 + 4x2
. (75)

At first, we consider the time interval [0, T] = [0, 100], fixing the time-step ∆t = 0.2 and
a uniform decomposition of the parametrization interval [−1, 1] constituted by 10 elements
equipped by quadratic B-Splines. Note that the mesh lifted on Γ by the considered uniform
partition of the parametrization interval is not uniform on the scatterer.

Figure 13 presents the time history of the BIE numerical solution ψ̃(x, t), having set
x = −1, zooming in on the time interval [0, 60] to show the initial oscillations, and simi-
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larly to the previous cases, the IGA-Energetic BEM solution stabilizes at a constant value,
showing no long-time instability. Hence, convergence of the transient solution ψ̃ on Γ to
ψ∞ can be expected.

0 10 20 30 40 50 60

t

-2

-1.5

-1

-0.5

0

Figure 13. Approximated density ψ̃(−1, t) obtained for ∆x = ∆t = 0.2.

In Table 8, the relative error ‖ψ̃(·, 100)− ψ∞(·)‖H0(Γ)/‖ψ∞(·)‖H0(Γ) between the ap-
proximate transient solution at the final time instant of analysis T = 100 and the limited
stationary solution is reported, varying the degree of the B-spline basis, together with the
space DoFs. This norm is applicable due to the regularity of the solution. In the same Table,
the analogous results obtained by standard Energetic BEM, employing C0 Lagrangian
basis functions to represent the approximate solution, are reported: as one can see, for the
selected T the errors stagnate for degrees higher than 2. Nevertheless, decreasing errors
behave nearly as O(∆xd+1) but, due to the already reported different representations of d in
terms of space DoFs, IGA approach also has, in this case, a higher rate with regard to DoFs,
as shown in Figure 14. This behavior highlights and confirms the same computational
benefits, as observed for IGA-BEM applied to elliptic problems in the Ref. [5].

Table 8. Relative error ‖ψ̃(·, 100)− ψ∞(·)‖H0(Γ)/‖ψ∞(·)‖H0(Γ) varying d.

d DOF B-Spline DOF Lagrangian

2 12 7.138603 · 10−4 21 4.121676 · 10−4

3 13 3.161212 · 10−4 31 4.479172 · 10−5

4 14 1.137619 · 10−4 41 3.901426 · 10−5

5 15 1.747746 · 10−4 51 3.987965 · 10−5

6 16 4.165061 · 10−5 61 4.058496 · 10−5
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Figure 15. Time history of the relative error between transient and stationary solution in H0(Γ) norm
for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform spatial
discretization of size ∆x = 0.2. The time interval [0, 100] has been decomposed into 500 time steps of
size ∆t = 0.2.

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

x

ψ̃
(x

,T
)

d = 2
d = 3
d = 4
d = 5
d = 6

ψ∞

Figure 16. Densities ψ̃(x, 100), for growing values of degree d of the B-spline basis, and the stationary
solution ψ∞(x).

Figure 14. Relative error in H0(Γ) norm between transient and stationary solution at final time
T = 100, versus number of DoFs, having fixed space discretization step ∆x = 0.2 and time-step
∆t = 0.2.
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For completeness, in Figure 15 (left) the whole time-history of the relative error in
energy norm is reported for the considered B-spline degrees. In this example, the errors
related to all the considered B-splines bases remain nearly the same for long times, and the
curves become separated when the error in time, for growing time, becomes smaller than
the error due to the chosen B-spline degree and visible at different levels—the smaller this
space error, the longer the time needed for the separation of the curve from the others. Thus,
better results are achieved for higher degrees, even if the relaxation to equilibrium requires
more time. The same plot related to standard Energetic BEM can be seen in Figure 15 (right),
where curves related to Lagrangian basis degrees greater than 2 are not yet separated at
T = 100. This is the reason for stagnation in Table 8.
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solution ψ∞(x).

Figure 15. Time history of the relative error between transient and stationary solution in H0(Γ) norm
for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform spatial
discretization of size ∆x = 0.2. The time interval [0, 100] has been decomposed into 500 time-steps of
size ∆t = 0.2.

In Figure 16 we show the approximate solutions ψ̃(x, 100), obtained by IGA-Energetic
BEM for growing values of degree d of the B-spline basis, at the final instant of analysis,
T = 100. Additionally, ψ∞(x) has been reported in Figure 16 and, as one can observe, all the
curves related to the approximate solutions overlap the curve related to the stationary one.
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Figure 16. Densities ψ̃(x, 100), for growing values of degree d of the B-spline basis, and the stationary
solution ψ∞(x).

In the previous simulation, most of the approximated solutions did not reach equi-
librium within the final time, as prominently suggested by the error curves in Figure 15.
We therefore extend the time interval to [0, T] = [0, 300], keeping the same discretization
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parameters. Figure 17 (left) shows that by time T = 300, error curves for B-spline approxi-
mations are almost flat, meaning that the equilibrium has been reached. From this time
instant, the dominating error comes from the space discretization. Using Lagrangian shape
functions, we can see in Figure 17 (right) the separation of the curve related to d = 3 from
the pack of higher-degree shape functions; the overlap of curves related to d = 4, 5, 6 at
final time T = 300 suggests that here, the dominating contribution still comes from the
error in time, and better approximations of the stationary solution can be achieved with
even longer simulations.Version January 18, 2022 submitted to Mathematics 25 of 33
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Figure 17. Time history of the relative error between transient and stationary solution in H0(Γ) norm
for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform spatial
discretization of size ∆x = 0.2. The time interval [0, T] = [0, 300] has been decomposed into 1500 time
steps of size ∆t = 0.2.

Table 9. Relative error in H0(Γ) norm at final time T = 300 for B-spline and classical Lagrangian shape
functions of different degrees, having fixed space discretization step ∆x = 0.2 and time step ∆t = 0.2.

d DOF B-spline DOF Lagrangian

2 12 7.130517 · 10−4 21 4.101037 · 10−4

3 13 3.136792 · 10−4 31 2.457642 · 10−5

4 14 1.067189 · 10−4 41 4.602805 · 10−6

5 15 1.718673 · 10−4 51 4.421203 · 10−6

6 16 1.784365 · 10−5 61 4.492129 · 10−6
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instead see that curves for d = 4, 5, 6 still overlap at T = 300, meaning that the error from the space290

discretization will reach a lower value at equilibrium reached for longer times. Using Lagrangian291

shape functions we get very similar results, visible in fig. 18 (right). Looking at fig. 19, we see that, for292
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Figure 17. Time history of the relative error between transient and stationary solution in H0(Γ)
norm for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform
spatial discretization of size ∆x = 0.2. The time interval [0, T] = [0, 300] has been decomposed into
1500 time-steps of size ∆t = 0.2.

In Table 9, the relative error ‖ψ̃(·, 300)− ψ∞(·)‖H0(Γ)/‖ψ∞(·)‖H0(Γ) between the ap-
proximate transient solution at the final time instant of analysis T = 300 and the limit
stationary solution is reported, varying the degree of the B-spline basis, together with
the space DoFs. In the same Table, the analogous results obtained by standard Energetic
BEM, employing C0 Lagrangian basis functions to represent the approximate solution, are
reported: as one can see, now for the selected T, the errors stagnate for degrees higher than
3. As before, decreasing errors almost behave like O(∆xd+1).

Table 9. Relative error in H0(Γ) norm at final time T = 300 for B-spline and classical Lagrangian
shape functions of different degrees, having fixed space discretization step ∆x = 0.2 and time-step
∆t = 0.2.

d DOF B-Spline DOF Lagrangian

2 12 7.130517 · 10−4 21 4.101037 · 10−4

3 13 3.136792 · 10−4 31 2.457642 · 10−5

4 14 1.067189 · 10−4 41 4.602805 · 10−6

5 15 1.718673 · 10−4 51 4.421203 · 10−6

6 16 1.784365 · 10−5 61 4.492129 · 10−6

We now refine the space mesh to 20 elements of size ∆x = 0.1, keeping the time
discretization parameter fixed to ∆t = 0.2 for the time interval [0, T] = [0, 300].

B-splines built on this refined space mesh allow for a much more accurate approxima-
tion of the stationary solution; as we can see in Figure 18 (left), the equilibrium values of the
errors are significantly lower compared to those obtained on the coarse mesh. Moreover,
in Figure 17 (left) all curves are flat after T = 200, leaving no room for improvement on
longer simulations, while on the finer space mesh, we instead see that curves for d = 4, 5, 6
still overlap at T = 300, meaning that the error from the space discretization will reach a
lower value at equilibrium reached for longer times. Using Lagrangian shape functions,
we get very similar results, visible in Figure 18 (right). Looking at Figure 19, we see that,
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for the degrees that reached equilibrium within final time, the convergence rate is close to
the expected O

(
∆xd+1

)
.
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Figure 18. Time history of the relative error between transient and stationary solution in H0(Γ) norm
for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform spatial
discretization of size ∆x = 0.1. The time interval [0, T] = [0, 300] has been decomposed into 1500 time
steps of size ∆t = 0.2.
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Figure 19. Relative error between transient and stationary solution in H0(Γ) norm at final time T = 300
versus shape functions degree d, having fixed space discretization step ∆x = 0.1 and time step ∆t = 0.2.

Figure 18. Time history of the relative error between transient and stationary solution in H0(Γ)
norm for increasing degrees of B-spline (left) and Lagrangian (right) shape functions on a uniform
spatial discretization of size ∆x = 0.1. The time interval [0, T] = [0, 300] has been decomposed into
1500 time-steps of size ∆t = 0.2.

As done in the previous numerical example, we show results in the whole space-time
domain, even if, as before, the analytical space-time solution is not known in closed form.
In Table 10, the space-time energy norm squared (60) is reported for both IGA- and standard
Energetic BEM, for a growing degree d of the B-spline basis and diminishing time-step
defined as ∆t = 2−d ∆x, having fixed ∆x = 0.1, together with the space DoFs. As one can
observe, these values tend to stabilize towards a limit value conceived as the space-time
energy norm of the exact solution of the BIE wave problem, but the convergence of IGA-
Energetic BEM is much faster with regard to DoFs, as already shown above for a fixed time
instant. This behavior is perfectly visible in Figure 20.
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Figure 19. Relative error between transient and stationary solution in H0(Γ) norm at final time T = 300
versus shape functions degree d, having fixed space discretization step ∆x = 0.1 and time step ∆t = 0.2.

Figure 19. Relative error between transient and stationary solution in H0(Γ) norm at final time
T = 300 versus shape functions degree d, having fixed space discretization step ∆x = 0.1 and
time-step ∆t = 0.2.

Table 10. Space-time energy norm squared (60), varying d and fixing ∆t = 2−d ∆x.

d DOF B-Spline DOF Lagrangian

2 22 0.758996511855727 41 0.759451148706409
3 23 0.781943777136025 61 0.782380622606728
4 24 0.784836677952419 81 0.785571541381947
5 25 0.785124075190872 101 0.785830740176204
6 26 0.785019808231367 121 0.785786795248779
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To conclude, in Figure 21 (right) we can observe the expected convergence of the
space-time energy norm with regard to growing B-spline degree and time-step refinement
(right). As already noted in the previous example, degree elevation makes hardly any
difference, because for the given Dirichlet datum this type of norm takes into account the
initial transient phase of the simulation, where we already observed that the error curves
are packed together; the main variations come from time-step refinement.
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Figure 20. Squared space-time energy norm (60) of IGA-Energetic BEM (left) and standard Energetic
BEM (right) approximate solutions, for increasing degree d versus the number of DOFs.
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5.4. S-shaped scatterer308

At last, let us consider the obstacle Γ given by

C(α) =
{

(cos (α) + 1, sin (α)) , α ∈ [0, π]
(cos (3 π − α)− 1, sin (3 π − α)) , α ∈ [π, 2 π] .

This scatterer can be described by a NURBS parametric representation of order 3 over the interval
[0, 2 π], i.e.,

Γ = {x ∈ R2| x = C(α) = ∑4
i=0 Pi wi Bi,2(α)

∑4
j=0 wj Bj,2(α)

, α ∈ [0, 2 π]} , (76)

Figure 20. Squared space-time energy norm (60) of IGA-Energetic BEM and standard Energetic BEM
approximate solutions, for increasing degree d, versus the number of DOFs.
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Figure 21. Squared space-time energy norm (60) of the approximated density on the parabola arc
versus increasing B-spline degree (left) and refined time discretization (right).
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Figure 22. S-shaped obstacle of the last numerical example.

Figure 21. Squared space-time energy norm (60) of the approximated density on the parabola arc
versus increasing B-spline degree (left) and refined time discretization (right).

5.4. S-Shaped Scatterer

At last, let us consider the obstacle Γ given by

C(α) =

{
(cos(α) + 1, sin(α)), α ∈ [0, π]
(cos(3 π − α)− 1, sin(3 π − α)), α ∈ [π, 2 π]

.

This scatterer can be described by a NURBS parametric representation of order 3 over
the interval [0, 2 π], that is,

Γ = {x ∈ R2| x = C(α) =
∑4

i=0 Pi wi Bi,2(α)

∑4
j=0 wj Bj,2(α)

, α ∈ [0, 2 π]} , (76)
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where Bi,2 , i = 0, . . . , 4 are the quadratic B-spline basis functions used in the construction
of NURBS, Pi, i = 0, . . . , 4 are the control points, whose coordinates are given in the i-th
column of matrix P:

P =

[
2 2 1 0 0 0 −1 −2 −2
0 1 1 1 0 −1 −1 −1 0

]
,

w is the corresponding weights vector:

w =
[
1

√
2

2 1
√

2
2 1

√
2

2 1
√

2
2 1

]
,

and Z = [0 , 0 , 0 , π/2 , π/2 , π , π , 3π/2 , 3π/2 , 2π , 2π , 2π] is the related extended
knot vector. The scatterer is shown in Figure 22, together with its control points.

Let us consider the model problem (1)–(3), fixing Dirichlet boundary datum given by

g(α, t) = H(t) f (t)(α− π) , (77)

where f has already been given in (65).
In this case, neither the analytical space-time solution nor the limit stationary solution

in closed form, as in the previous cases, are known. In Figure 23, the Energetic BEM
approximate solution, obtained at T = 60 on Γ using quadratic B-splines and fixing
∆x = π/10 and ∆t = 0.3, is shown.
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Figure 22. S-shaped obstacle of the last numerical example.
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Figure 23. Density ψ̃(x, 60), obtained fixing quadratic B-spline basis.

Furthermore, in Table 11 the space-time energy norm squared (60) is reported for
both IGA- and standard Energetic BEM, for growing degree d of the B-spline basis and
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diminishing time-step defined as ∆t = 2−d ∆x, having fixed ∆x = π/30, together with
the space DoFs. As one can observe, these values tend to stabilize towards a limit value
representing the space-time energy norm of the exact solution of the BIE wave problem,
but the convergence of IGA-Energetic BEM is much faster with regard to DoFs. This
behavior is perfectly visible in Figure 24.

Table 11. Space-time energy norm squared (60), varying d and fixing ∆t = 2−d ∆x.

d DOF B-Spline DOF Lagrangian

2 62 403.556759934346 121 403.846503532244
3 63 413.725855127515 181 414.023218928493
4 64 416.424334158119 241 416.682922370940
5 65 417.181296994189 301 417.406868557606
6 66 417.426162814304 361 417.626134557195Version January 18, 2022 submitted to Mathematics 30 of 33
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Figure 24. Squared space-time energy norm (60) of the IGA-Energetic BEM and standard Energetic
BEM approximate transient solutions plotted w.r.t. DoFs
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Figure 25. Squared space-time energy norm (60) of the approximated density on the S-shaped scatterer
versus increasing B-spline degree (left) and refined time discretization (right).
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Figure 24. Squared space-time energy norm (60) of the IGA- and standard Energetic BEM approximate
transient solutions, for increasing degree d, plotted with regard to DoFs.

To conclude, in Figure 25 (right) we can observe the expected convergence of the
space-time energy norm with regard to growing B-spline degree and time-step refinement
(right). As already noted in the previous examples, the main variations come from time-step
refinement, due to the fact that for the given Dirichlet datum this norm takes into account
the initial transient phase of the simulations.
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Figure 24. Squared space-time energy norm (60) of the IGA-Energetic BEM and standard Energetic
BEM approximate transient solutions plotted w.r.t. DoFs
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Figure 25. Squared space-time energy norm (60) of the approximated density on the S-shaped scatterer
versus increasing B-spline degree (left) and refined time discretization (right).
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6. Conclusions

In this work, the numerical investigation of a B-spline-based IGA approach to the
so-called Energetic BEM, here applied to the numerical solution of 2D wave propagation
exterior problems equipped by a Dirichlet boundary condition (i.e., acoustic soft-scattering),
was carried out. The paper completes and enriches the preliminary work [34]. In particular,
the simulations computed on curvilinear obstacles Γ confirmed the same computational
advantages already observed in IGA-BEM for elliptic problems, with regard to standard
Energetic BEM based on Lagrangian basis functions for the representation of the approxi-
mate solution for what concerns space variables. In comparison with standard Energetic
BEM, IGA-Energetic BEM appears really competitive in reducing the number of DoFs, and
this gain is obtained at every step of the time-marching procedure. Further investigations
are needed to apply the so-called basis-function-by-basis-function approach instead of
the classical element-by-element technique, principally for what concerns the adoption of
suitable quadrature rules with nodes not on the element, but directly on the whole B-spline
support, as done in the Refs. [12,41] for IGA-BEM applied to elliptic problems. Currently,
the investigation is focused on the IGA implementation of Energetic BEM involving the
remaining double layer and hypersingular integral operators, as well as on theoretical
analysis of convergence and accuracy. Future research directions will also include the
extension of IGA-Energetic BEM to efficiently solve elastodynamics problems.
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