
����������
�������

Citation: Yuraszeck, F.; Mejía, G.;

Pereira, J.; Vilà, M. A Novel

Constraint Programming

Decomposition Approach for the

Total Flow Time Fixed Group Shop

Scheduling Problem. Mathematics

2022, 10, 329. https://doi.org/

10.3390/math10030329

Academic Editor: Ripon Kumar

Chakrabortty

Received: 20 December 2021

Accepted: 17 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Constraint Programming Decomposition Approach for
the Total Flow Time Fixed Group Shop Scheduling Problem
Francisco Yuraszeck 1,2, Gonzalo Mejía 3, Jordi Pereira 4,5 and Mariona Vilà 6,*

1 Facultad de Ingeniería, Universidad Andres Bello, Quillota 980, Viña del Mar 2531015, Chile;
francisco.yuraszeck@unab.cl

2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241,
Valparaíso 2362807, Chile

3 Facultad de Ingeniería, Universidad de La Sabana, Campus Universitario Puente del Común, Km 7 Autopista
Norte de Bogotá, Chía 250001, Colombia; gonzalo.mejia@unisabana.edu.co

4 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar 2520001,
Chile; jorge.pereira@uai.cl

5 UPF Barcelona School of Management, C. Balmes 132-134, 08008 Barcelona, Spain; jordi.pereira@bsm.upf.edu
6 Academic Department, EAE Business School, 08015 Barcelona, Spain
* Correspondence: mariona.vila.bonilla@upc.edu

Abstract: This work addresses a particular case of the group shop scheduling problem (GSSP) which
will be denoted as the fixed group shop scheduling problem (FGSSP). In a FGSSP, job operations are
divided into stages and each stage has a set of machines associated to it which are not shared with
the other stages. All jobs go through all the stages in a specific order, where the operations of the job
at each stage need to be finished before the job advances to the following stage, but operations within
a stage can be performed in any order. This setting is common in companies such as leaf spring
manufacturers and other automotive companies. To solve the problem, we propose a novel heuristic
procedure that combines a decomposition approach with a constraint programming (CP) solver
and a restart mechanism both to avoid local optima and to diversify the search. The performance
of our approach was tested on instances derived from other scheduling problems that the FGSSP
subsumes, considering both the cases with and without anticipatory sequence-dependent setup
times. The results of the proposed algorithm are compared with off-the-shelf CP and mixed integer
linear programming (MILP) methods as well as with the lower bounds derived from the study of
the problem. The experiments show that the proposed heuristic algorithm outperforms the other
methods, specially on large-size instances with improvements of over 10% on average.

Keywords: scheduling; fixed group shop; group shop; constraint programming

1. Introduction

In the academic world, traditional scheduling problems such as the flow shop schedul-
ing problem, FSSP, the job shop scheduling problem, JSSP, or the open shop scheduling
problem (OSSP) have been widely studied (see [1] for a general reference on scheduling
problems). However, these scheduling problems may not cover all the requirements for
specific manufacturing settings [2]. In this context, the group shop scheduling problem
(GSSP) emerges as a generalized shop scheduling problem that includes, among others, the
OSSP and the JSSP as special cases [3]. Due to its characteristics, the GSSP is a more flexible
model with which address the requirements of multiple challenging real-life scheduling
problems often found in the manufacturing industry.

In this paper, we consider a particular case of a GSSP that we denote as fixed group
shop scheduling problem (FGSSP) [4]. In a fixed group shop environment, the operations
of each job have been divided into stages, and the operations corresponding to each stage
share the same set of machines. All jobs must proceed through each stage and perform the

Mathematics 2022, 10, 329. https://doi.org/10.3390/math10030329 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030329
https://doi.org/10.3390/math10030329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10030329
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030329?type=check_update&version=1

Mathematics 2022, 10, 329 2 of 26

associated operations in the stage before proceeding to the next stage. Therefore, the FGSSP
generalizes both OSSP and FSSP, and contains common features from many industrial
environments in which manufacturing is organized in multiple sequential OSSP stages. By
contrast, the classical GSSP formulation contains the OSSP and the JSSP as special cases, as
each job may have a different route through the stages.

An example of a FGSSP can be found in mechanical workshops where routine car
maintenance operations are performed. The number of operations for each job (car) and
their processing times depend on different factors as the odometer count or the time
between maintenances. For each car the set of maintenance operations can be divided into
stages and the tasks to be performed on each stage must be completed before proceeding
to the next stage (i.e., change the air filter, change the motor oil, etc.) with an ordering of
stages predefined by the layout of the workshop, but there is no specific order in which
operations within a single stage are to be performed (i.e., they have no relationship between
them). Additionally, some setup operations may be required between jobs performed in a
single machine, and thus sequence-dependent setup times are to be expected.

Another example of the FGSSP can be found in the manufacturing process of leaf
springs. Each leaf requires several punching and forming operations that can be performed
in any order. Once all these operations have been performed, the leaf is transferred to the
heat treatment, sandblasting, painting, and assembly workstations. In the computational
experiments section, see Section 6, we present a case study taken from a Colombian
automotive company that falls within this specific example of application.

As in any other scheduling problems, multiple objective functions may be considered.
In this work, we consider minimizing the total flow time.

To the best of our knowledge, the FGSSP has not been studied before even if the
model has practical applications. Due to its computational complexity, it subsumes several
well-known hard-to-solve problems. This work presents a novel ad hoc heuristic approach
to solving the FGSSP with and without anticipatory sequence-dependent setup times under
the total flow time minimization objective. According to the three-field notation proposed
in [5], these problems can be denoted as the FGSSPs | Sjik | ∑j Cj and the FGSSPs || ∑j Cj,
respectively.

The proposed heuristic relies on decomposing the problem into smaller subproblems
and solving each subproblem through constraint programming (CP) [6] for a fixed amount
of time. The heuristic can be seen as a hybrid metaheuristic [7] or a matheuristic [8]
as it combines two optimization solution methods (i.e., a heuristic and an exact method
approach). To test the performance of the decomposition approach, we performed extensive
computational experiments with small, medium and large instances. We report the results
of a computational study in which we compare our approach with off-the-shelf state-of-the-
art CP and mixed integer linear programming (MILP) approaches. The results show the
validity of our decomposition approach over a traditional method providing significant
improvements over commercial solvers, specially for large instances.

The remainder of the paper is organized as follows. Section 2 reviews the literature on
problems with similar characterstics to the FGSSP. Section 3 introduces the FGSSP, provides
a problem definition, and gives an illustrative example of it. Section 4 puts forward a MILP
and a CP formulation for the problem, and provides some lower bounds on the optimal
objective value. Section 5 describes the decomposition-based procedure used to solving
the problem, including the generation of initial solutions, the local search phase, and a
shaking procedure designed to escape from local optima. Section 6 provides the results of
the computational experiments conducted to test the method, as well as an industrial case
study. Finally, Section 7 concludes and provides some possible research lines.

2. Literature Review

Scheduling corresponds to the allocation of scarce resources (i.e., machines) to perform
tasks (i.e., jobs) over time [1]. Due to its generality and broad use, scheduling has become
an important area within the operations research (OR) and operations management (OM)

Mathematics 2022, 10, 329 3 of 26

communities that focus their contributions on the development of decision-making methods
to optimize one or multiple goals.

Among the scheduling problems, we focus our attention on a family known as “shop”
problems. Among the different classifications of “shop” problems we are interested in a
classification based on (i) their routes, that is, the path that the jobs must follow on the
machines and, (ii) the sequence of operations that must be processed in each machine.
The most common models in the literature consider that jobs follow a unique route (the
FSSP), each job has its own route (the JSSP), or arbitrary routes (the OSSP)—but other cases
exist. For these cases more elaborate models are needed to cope with different scheduling
conditions.

An early example of these models can be found in [9]. In [9] the authors propose a
hybrid model denoted as the mixed shop scheduling problem (MSSP) problem in which
some jobs have their own predefined routes (i.e., as in a JSSP) and some jobs do not (i.e., as
in an OSSP). Another example of alternative route schemes is the group shop scheduling
problem (GSSP), also known as the stage shop problem [10]. The GSSP generalizes the
MSSP and considers a set of distinct machines that perform operations on the jobs. Each
stage must perform a subset of operations associated to the jobs and can perform these
operations in any order within the stage, but the stages to be must be processed in a
predetermined order. Note that the MSSP is a special case of GSSP, in which each stage has
one operation or there is only one stage that contains all operations [11].

We now proceed to review the literature on the GSSP, as well as some works that make
use of CP approaches within the scheduling literature.

The literature of the GSSP is abundant and mainly focuses on the makespan mini-
mization objective [3,12–19]; other optimization objectives for the GSSP have been less
studied. An example of other objectives can be found in [20], where the authors propose an
application of a chance-constrained version of the GSSP with a total weighted completion
time objective.

Sequence-dependent setup times, as well as transportation times have also been
studied within the GSSP literature, [13]. In [21] the authors considered the use of a robot to
transport material through the multiple processing stages in a GSSP environment.

Additionally, other publications have addressed stochastic and/or fuzzy extensions
for the GSSP [12,13,20,22,23].

Regarding solution procedures, most of the literature focuses on metaheuristic ap-
proaches. Among them, genetic algorithms [13,18], Tabu Search [11,16,18,24], artificial bee
colonies [17], iterated local search [24], Simulated Annealing [24], evolutionary algorithms
[24], multi-start multi-level evolutionary local search [15] and ant colony optimization
[3,24] are the most common. According to [24] the Tabu search showed the best results
among the compared methods (an ant colony optimization, an evolutionary algorithm, an
iterated local search, and a simulated annealing approach).

Exact methods, such as constraint programming (CP), have also been used to solve
scheduling problems but, to the best of our knowledge, they have not been used to address
the GSSP or similar problems. We review the works on exact methods for shop scheduling
problems that are relevant to the method proposed in this work.

In [25] the authors proposed a CP approach to solve the JSSP, and in [26] the authors
propose a CP approach to solve the OSSP. The approach proposed in [26] uses a new
upper bound heuristic combined with constraint propagation and a branching technique
to solve the problem. In [27] the authors proposed MILP and CP models to solve the online
printing shop scheduling problem (OPSSP). The OPSSP can be seen as a JSSP where there
are multiple units of some of the machines (hence, leading to a degree of flexibility within
the sequence of operations for each job). The numerical experiments in [26] show that the
CP method outperforms the MILP approach by a large extent. In [28], the authors used
a CP model as their benchmark to compare the performance of a variable neighborhood
search (VNS) for the OSSP with travel/setup times. Their VNS makes use of a probabilistic
learning mechanism to self-tune a parameter that balance the generation of active or non-

Mathematics 2022, 10, 329 4 of 26

delay solutions. More recently, in [29] the authors proposed four CP formulations to
tackle four complex flexible shop scheduling problems (i.e., the no-wait hybrid flow shop
scheduling problem, the hybrid flow shop scheduling problem with sequence-dependent
setup times, the flexible job shop scheduling problem with worker flexibility and the
semiconductor final testing problem). Their experimental results report that the CP models
outperform previously proposed solution methods. Authors in [30] address the distributed
flexible job shop scheduling problem (an environment with multiple factories in which
each factory is a flexible JSSP) comparing the performance of a MILP and a CP approached,
showing that the CP method outperforms the CP.

A third type of solution procedure combines exact and heuristic approaches. Such
methods are known as hybrid methods or matheuristics. In [31] the authors describe an
method that combines constraint programming with a decomposition method and use it
to solve the JSSP. Authors in [32] described a hybrid decomposition method to solve the
continuous-time scheduling problem of multipurpose batch plants where the assignment of
units to tasks is made using a MILP master problem, and CP subproblems are used to check
the feasibility of specific assignments as well as to generate cuts for the master problem.
Additionally, in [33], a hybrid method based on CP and local search is proposed in order to
solve the routing and the scheduling of feeder vessels in multi-terminal ports. The results
indicate that the the variability in solution quality provided by local search heuristics can be
decreased by combining of the local search and the CP method. In another study, authors
in [34] provided a survey of intelligent scheduling systems. The work categorizes previous
contributions according to five solution techniques: fuzzy logic, expert systems, machine
learning, stochastic local search optimization algorithms, and CP. Lastly, authors in [35]
hybridize a VNS with a CP search strategy for the OSSP with operation repetitions under a
makespan criterion, showing good performance on the tested instances.

3. The Fixed Group Shop Scheduling Problem
3.1. Problem Definition

The fixed group shop scheduling problem (FGSSP) is a variant of the group shop
scheduling problem (GSSP) in which not only jobs, but also machines are grouped into stages.

The FGSS considers a set of n jobs J = {J1, J2, . . . , Jn}, each of them consisting of a set
of non-preemtive operations oij = {Oj1, OJ2 , . . . , Ojm} that must be performed on a set of m
machines M = {M1, M2, . . . , Mm}. Each job j ∈ J must be processed by each machine and
must proceed through each stage S = {S1, S2, . . . , Ss}, wherein a subset of its operations
must be performed before advancing to the next stage. The operations of all jobs j ∈ J that
must be processed at stage S require the same set of machines.

As in the GSSP, in the FGSSP all jobs must perform an operation on each machine, and
the operations associated to a given job in a given stage can be performed in any order.
Unlike the GSSP, in the FGSSP each machine is associated to a given stage and stages are
ordered in a fixed route that all jobs perform. Consequently, when the number of machines
in each stage is 1, the GSSP becomes a job shop, while the FGSSP becomes a flow shop. The
OSSP is both a special case of the GSSP and the FGSSP in which all operations belong to a
single stage.

3.2. An Illustrative Example

Table 1 provides a small-size example with 3 jobs and 7 machines for a total of
21 operations. The table details the processing times of each operation associated to each
job in the 7 machines.

A solution to the FGSSP can be visualized through a classical disjunctive graph
representation or a Gantt chart. Figure 1a provides an arbitrary solution to the example
problem with ∑j Cj = 60, C1 = 23, C2 = 12, C3 = 24, where Cj is the completion time of job
j. The red dotted arcs in Figure 1a show the sequence at the machines and the black dotted
arcs show the groups-permutations (i.e., the route of operations for J1 at S1 is O12, O13 and

Mathematics 2022, 10, 329 5 of 26

O11 then the route within the stage is M2 −M3 −M1). A Gantt chart representation of the
solution is provided in Figure 1b.

Table 1. Processing times of the small-size instance. For every job, J1 ,J2 and J3, and machine,
M1, . . . , M7, the processing time is provided. Additionally, machines are grouped according to their
stage, S1, S2 and S3.

Stages S1 S2 S3

M1 M2 M3 M4 M5 M6 M7

J1 1 3 4 1 1 9 1
J2 2 1 3 2 2 1 1
J3 3 2 1 2 4 2 3

(a)

o
11

o
12

o
13

o
14

o
15

o
21

o
22

o
23

o
24

o
25

o
31

o
32

o
33

o
34

o
35

 J
1

 J
2

 J
3

M
1

M
2

M
3

M
4

M
5

S
1

S
2

o
16

o
17

o
26

o
36

o
27

o
37

S
3

M
6

M
7

(b)

Figure 1. Graphical representations of a solution to the example instance provided in Table 1. (a) Gantt
chart representation of an arbitrary feasible solution for the FGSSP instance presented in Table 1
with ∑j Cj = 60. (b) Disjunctive graph representation of an arbitrary feasible solution for the FGSSP
instance presented in Table 1 with ∑j Cj = 60.

The representations in Figure 1a,b show the major characteristics of a FGSSP solution.
The disjunctive graph representation visualizes the FGSSP as a sequence of serially arranged
OSSP subproblems. Once a job finishes all operations in a stage and then job can start its
operations in the subsequent stage. The Gantt chart representation also shows the FSSP
behavior among stages. While in the GSSP, a job may have different machines in any given
stage, in the FGSSP each job has the same machines in each stage. As a result, the machines
of later stages remain idle until operations in preceding stages are completed. These
differences motivate the need to separately consider resolution procedures for the FGSSP.

Mathematics 2022, 10, 329 6 of 26

4. FGSSP Formulations and Lower Bounds

This section presents an MILP and a CP formulation for the FGSS problem with
total flow time minimization objective and anticipatory sequence-dependent setup times
(FGSSs | sjik | ∑j Cj). The section also introduces three lower bounds on the value of the
optimal objective function. The extension of both formulations for the case without setup
times is straightforward, and the changes are described after providing the models with
sequence-dependent setup times.

4.1. MILP Formulation

The formulation is an adaptation of the formulation provided in [28] for the OSSPm |
Sjik | ∑j Cj. We now proceed to define the parameters, sets, indices and decision variables
of the formulation.

Parameters and Indices:

• nbJobs: Number of jobs.
• nbMchs: Number of machines.
• nbStgs: Number of stages.
• j, k: Indices for jobs, {1, . . . , nbJobs}.
• i, l: Indices for machines, {1, . . . , nbMchs}.
• s: Index for the stages, {1, . . . , nbStgs}.
• oji: Operation associated to job j at machine i.
• pji: Processing time of operation oji.
• Sjik: Setup time of job j if it is performed immediately after job k on machine i (j 6= k).
• Bis: 1 if machine i belongs to stage s; and 0 otherwise.
• Ali: 1 if machine l belongs to the stage immediately before the stage to which machine

i belongs; and 0 otherwise (i 6= l).
• M: A sufficiently large number.

Decision variables:

• Cj: Continuous variable that takes the value of the completion time of job j.
• Cji: Continuous variable that takes the value of the completion time of job j at ma-

chine i.
• f js: Continuous variable that takes the value of the completion time of job j at stage s.
• xjil : Binary variable that takes value equal to 1 if operation oji is performed after

operation ojl ; or 0 in any other case.
• yjik: Binary variable that takes value equal to 1 if operation oji is performed after

operation oki; or 0 in any other case.

Mathematics 2022, 10, 329 7 of 26

An MILP formulation follows.

min
nbJobs

∑
j=1

Cj (1)

s.t. Cji ≥ pji ∀i, j (2)

Cjl ≥ Cji + pjl −Mxjil ∀i, j, l | i 6= l (3)

Cji ≥ Cjl + pji −M
(

1− xjil

)
∀i, j, l | i 6= l (4)

Cji ≥ Cki + pji + Sjik −M
(

1− yjik

)
∀i, j, k | j 6= k (5)

Cki ≥ Cji + pji + Skij −Myjik ∀i, j, k | j 6= k (6)

Cji − pji ≥ Cjl Ali ∀i, j, l|i > l ∧ Ali = 1 (7)

f js ≥ BisCji ∀i, j, s (8)

Cj ≥ f js ∀j, s = nbStgs (9)

Cji ∈ Z≥0 ∀i, j (10)

f js ∈ Z≥0 ∀j, s (11)

xjil ∈ {0, 1} ∀i, j, l | i 6= l (12)

yjik ∈ {0, 1} ∀i, j, k | j 6= k (13)

The objective (1) minimizes the total flow time, i.e., the sum of completion times of
the jobs. Constraint set (2) imposes that the completion time of each operation must be
larger than the processing time of the job. Disjunctive constraints sets (3) and (4) ensure
that each job is not processed in two machines simultaneously. Constraints sets (5) and
(6) consider anticipatory sequence-dependent setup times and ensure that each machine
does not perform multiple jobs simultaneously. Constraint set (7) defines that the starting
time of job j at machine i must be equal to or greater than the completion time of job j at
machine l if and only if machine l belongs to the stage immediately before the stage to
which machine i belongs. Constraint set (8) calculates the completion time of a job j in a
stage s as the maximum completion time of the job j on the machines belonging to the stage.
Constraint set (9) computes the flow time of a job as the completion time in the last stage.
Finally, constraint sets (10)–(13) define the domain of the decision variables.

Note that while we do not provide a model for the case without sequence-dependent
setup times, removing, or setting to 0 the values of, Sjik in constraint sets (5) and (6)
constitutes a valid model for the case without setup times.

4.2. CP Formulation

As in the MILP case, we develop a CP formulation for the FGSSP problem with
total flow time minimization objective and anticipatory sequence-dependent setup times
(FGSSs | sjik | ∑j Cj). The formulation makes use of several constructs that are available in
many CP modeling languages. Specifically, we use interval and sequence variables as well
as specific scheduling constraints that are available in the IBM CP Optimizer solver as it is
the one used in our our experimental tests.

An interval variable is a construct defined by two variables (the start value and the end
value of the interval) as well as a known parameter, the size, that indicates the difference
between the end and the start value. A sequence variable is a construct that encodes an
ordering of variables. Here, the sequence variables provide an ordering of interval variables
corresponding to jobs and machines.

We now proceed to describe the elements of the proposed model.
Parameters and Indices:

• nbJobs: Number of jobs.
• nbMchs: Number of machines.

Mathematics 2022, 10, 329 8 of 26

• j, k: Indices for the jobs, {1, . . . , nbJobs}.
• i, l: Indices for the machines, {1, . . . , nbMchs}.
• oji: Operation associated to job j at machine i.
• pji: Processing time of operation oji.
• Ali: 1 if machine l belongs to the stage immediately before the stage to which machine

i belongs; and 0 otherwise (i 6= l).
• Ti: A transition matrix that reports the minimum delay required by any pair of jobs j,

k, to perform in machine i. The transition matrix values equal Sjik.

Decision variables:

• itvsji: Interval variables that define the start and the end of the operation of job j at
machine i. The interval variable ensures that the difference between the start and the
end value equals the processing time pji.

• jobsj: Sequence of interval variables itvsji associated to the operations of job j.
• mchsi: Sequence of interval variables itvsji associated to operations performed in

machine i.

The objective function consists of minimizing the total flow time of jobs, which is
computed using the end value of the interval variables:

min
nbJobs

∑
j=1

maxnbMchs
i=1 endO f (itvsji) (14)

where endO f () is an integer expression that reports the end of an interval variable. Con-
sequently, maxnbMchs

i=1 endO f (itvsji) reports the flowtime of job j and (14) provides the
total flowtime.

The model contains three constraint sets, (15)–(17).

noOverlap
(

jobsj
)

∀j (15)

noOverlap(mchsi, Ti) ∀i (16)

endBe f oreStart
(

itvsjl , itvsji

)
∀i, j, l | i > l ∧ Al,i = 1 (17)

Constraint set (15) ensures that each job j is processed on no more than one machine i at
any given time (i.e., since jobsj is the subset of operations associated to a job, j noOverlap()
ensures that the intersection of these intervals is empty).

Constraint set (16) ensures that each machine i does not process more than one job
j at a time. Moreover, the transition matrix Ti enforces the setup times between two
consecutive operations (the difference between the finalization of an operation and the
start of the succeeding operation must be no smaller than their corresponding values in the
transition matrix).

Finally, constraint set (17) enforces the stage condition by ensuring that the end of all
operations of any given job in a given stage must precede the start of any operation of said
job in the next stage.

As in the case of the MILP model, the proposed model can be adapted to the case
without sequence-dependent setup times by ignoring setup time values. Here, the change
applies to constraint set (16) and the transition matrix of each machine i.

4.3. Lower Bounds

We provide three lower bounds that serve as a basis for comparison of our solution
methods. Moreover, as the lower bounds relax some of the conditions of the FGSSP, the gap
between the solutions to the FGSSP and the lower bounds may help identify some sources
of complexity of the problem, see the results provided in Section 6.

Mathematics 2022, 10, 329 9 of 26

4.3.1. Lower Bound LB1

This lower bound considers that the completion time of each job must be no smaller
than the sum of its processing times at the machines. Consequently, we can obtain a lower
bound by summing the operation time of each job on each machine, see (18). We should
expect this bound to be tight when routing decisions are not important, and the stages do
not play an important role in the instances, that is, problems where it is possible to obtain
solutions without idle times.

lb1 =∑
j∈J

∑
i∈I

pji (18)

4.3.2. Lower Bounds LB2 and LB3

LB2 and LB3 both build upon the relationship of each stage of the FGSSP with the
OSSP. As each stage of the FGSSP is an OSSP instance, we can derive a general lower
bound by optimally solving (or finding a lower bound) on a OSSP instance with special
characteristics (i.e., release dates and delivery times derived from the operation times in
the remaining stages).

Consider any stage s ∈ {1, . . . , nbStgs} and divide the set of stages into three groups,
a first group with the stages {1, . . . , s− 1} that contains all stages that precede stage s, a
second group containing stage s, and a third group with stages {s + 1, . . . , snbStgs} that
correspond to the stages following stage s. Clearly, the optimal solution to the OSSP
associated to stage s is a lower bound to the objective value of the FGSSP, as it disregards
all other stages

Consequently, and to include the remaining stages into the calculation of the lower
bound, we estimate the operation times required to complete the operations associated
to these stages and associate them to the release dates and delivery times for the OSSP
problem in stage s (i.e., we estimate the minimum time unit in which the job can start their
operations in stage s and the minimum time required to finish the job once they depart
stage s).

The resulting problem corresponds to problem OSSP | rj, dj | ∑j Cj or to problem
OSSP | rj, dj, Sjik | ∑j Cj for case without or with sequence-dependent setup times
respectively, and the optimal solution, as well as any lower bound of its value is a lower
bound for the original FGSSP instance. In order to calculate the bound, we search for
a solution to the resulting OSSP model for a limited amount of time using a CP exact
solver, see Section 6, and report the optimal solution, if found, or best-known lower bound
reported by the solver when the time limit is reached.

The described method provides nbStgs different lower bounds, but we focus our
attention on two of these bounds, i.e., the bounds provided by the first and the last stage,
as they related problems are easier for the CP solver, and it is more likely that the solver
finds the optimal solution, or a better lower bound, for them.

The lower bound for the first stage, LB2, corresponds to the optimal resolution of
problem OSSP || ∑j Cj, or OSSP | Sjik | ∑j Cj for the case with sequence-dependent setup
times, plus the sum of operation times in the remaining stages, see Equations (19) and (20),
as it is easy to show that the delivery times are constant values that add to the total flow
time of the operations independently of the job they are associated to.

lb2 =lbOSSP(s=1)||∑j Cj
+ ∑

j∈J
∑

i∈I:s≥2
pji (19)

lb2 =lbOSSP(s=1)|Sjik |∑j Cj
+ ∑

j∈J
∑

i∈I:s≥2
pji (20)

The lower bound for the last stage, LB3 only contains release dates, which may play a
role on the optimal schedule of the operations as release dates change the instance where
the jobs are available. The resulting bounds correspond to Equation (21), for the case

Mathematics 2022, 10, 329 10 of 26

without sequence-dependent setup times, and (22), for the case with sequence-dependent
setup times.

lb3 =lbOSSP(s=nbStages)|rj |∑j Cj
(21)

lb3 =lbOSSP(s=nbStgs)|rj , Sjik |∑j Cj
(22)

5. Proposed Solution Method

The proposed decomposition-based approach (which we will denote as DEC) exploits
the inherent structure of the FGSSP. The structure of a fixed group sShop is similar to the
structure of a flow shop but each stage corresponds to an OSSP rather than a single machine.
This structure naturally leads to a decomposition in which each Open Shop is individually
optimized considering that the sequence of operations on preceding and succeeding stages
for each job and on each machine to be known and fixed.

While the approach does not globally optimize the problem, there are intrinsic advan-
tages of the decomposition, specifically, (1) the subproblems do not structurally differ from
the original problem and (2) the optimization of each stage allows for minor changes within
other stages (i.e., the sequence is fixed but the start time and end time of each operation
may vary to accommodate for the changes introduced within the stage under inspection).
Moreover, as the sequence of most stages is fixed, the resulting problem is smaller and,
supposedly, easier to solve through exact methods. As a result, the proposed method mixes
exact and heuristic ideas into a single procedure, a type of method usually referred to as a
matheuristic [8] within the literature.

Algorithm 1 provides an outline of the approach. The DEC algorithm creates an initial,
incumbent, solution using a constructive heuristic that solves the scheduling problem of
each stage sequentially, starting from the first stage, proceeding to the second stage and
repeating the process until all nbStgs have been solved. After the initial solution is found,
the local search phase is initialized. The local search attempts to improve the solution by
solving the subproblems associated to each stage in non-sequential order. If an improving
solution is found, the incumbent is updated and the local search is repeated. Otherwise,
the incumbent is modified in order to escape from local optimality and the local search
phase is called again.

Algorithm 1 gives an overview of the procedure. We now provide details of each step
of the DEC method, including an example of the behavior of the algorithm solving the
example introduced in Section 3.2.

Mathematics 2022, 10, 329 11 of 26

Algorithm 1: Outline of the DEC procedure.

Read instance;
incumbent← ∅;
for s ∈ {1, . . . , nbStgs} do

incumbent← incumbent ∪ solve(OSSPs | rj | ∑j Cj), or
solve(OSSPs | rj, Sij | ∑j Cj);

end
best← incumbent;
change← true;
while time limit not exceeded do

change← f alse;
pending← {1, . . . , nbStgs};
while pending 6= ∅ ∧ timelimitnotexceeded do

s← random(pending);
pending← pending \ {s};
candidate← solve(FGSSP || ∑j Cj) (or FGSSP | Sjik | ∑j Cj) with
additional constraints on stages {1, . . . , s− 1} ∪ {s + 1, . . . , nbStgs};

if obj(candidate) ≤ obj(incumbent) then
incumbent← candidate;
change← true;
if obj(candidate) ≤ obj(best) then

best← candidate;
end

end
end
if time limit not exceeded then

incumbent← shake(incumbent);
end

end
return best;

5.1. Initial Solution

In order to obtain an initial solution to the problem, see lines 1–1 from Algorithm 1,
the DEC method starts from an empty solution, and obtains a schedule for the opera-
tions of each stage by solving an open shop scheduling problem with release dates and
with/without setup times with total flow time objective for each stage (i.e., problem
OSSPm | rj | ∑j Cj or OSSPm | rj, Sij | ∑j Cj, according to [5]).

The procedure starts by obtaining a schedule for the first stage. For this stage, release
dates are set to 0. For the remaining stages, stages 2 to nbStgs, we solve an OSSP with
release dates for each job that are equal to their completion times in their previous stage,
These release dates ensure that the operations for any job in a given stage cannot start
before the operations of the job finish in previous stages.

Each subproblem is then solved using the model described in Section 4.2 considering
only one stage, the stage under consideration, and adding a constraint set, see Equation (23),
to impose release dates to the operations associated to each job.

startO f (itvsj,l) ≥rj ∀ j, l (23)

Constraint set (23) imposes the release date condition by ensuring that the start of any
operation cannot be smaller than the release date of the job. In constraint set (23), rj stands
for the release date of job j in the previous stages.

To illustrate the proposed method, let us consider the example introduced in Section 3.2.
The construction procedure would start from Stage 1, solving an OSSPm || ∑j Cj problem

Mathematics 2022, 10, 329 12 of 26

with machines M1, M2 and M3. The completion time of the jobs in the optimal schedule
correspond to 8, 6 and 6 time units for job 1, job 2 and job 3, respectively. These completion
times constitute the release dates for the problem associated with stage 2. In this case,
the optimal solution has completion times equal to 11, 10 and 13 for job 1, job 2 and job
3 respectively. Finally, we solve the problem associated to stage 3. The objective function
value of the solution provided by the method is 54, Figure 2a shows the Gantt chart of the
solution and Figure 2b its disjunctive graph representation.

As the OSSP is a computationally difficult problem by itself, the CP solver is truncated
by imposing a time limit. The time limit given to the solver to solve each stage as well
as the overall time devoted to the initialization step is controlled through an algorithmic
parameter α %, that limits the total time devoted by the algorithm to the step. The time
assigned to this step is then evenly divided into each stage to define the time limit set to
the CP solver. Note that the time required to reach and to verify the optimal solution of the
problem for any given stage may be smaller than the time limit. In this case, the remaining
time is reserved for the local search step of the algorithm.

(a)

o
11

o
12

o
13

o
14

o
15

o
21

o
22

o
23

o
24

o
25

o
31

o
32

o
33

o
34

o
35

 J
1

 J
2

 J
3

M
1

M
2

M
3

M
4

M
5

S
1

S
2

o
16

o
17

o
26

o
36

o
27

o
37

S
3

M
6

M
7

(b)

Figure 2. Graphical representation of the constructive heuristic solution of the DEC method for
the example instance provided in Table 1. (a) Gantt chart representation of the solution provided
by the constructive heuristic for the FGSSP instance presented in Table 1. (b) Disjunctive graph
representation of the solution provided by the constructive heuristic for the FGSSP instance given in
Table 1.

5.2. Neighborhood Exploration

The above constructive procedure provides a feasible solution in which greedy deci-
sions in early stages may have a negative impact on later ones. Consequently, and after an

Mathematics 2022, 10, 329 13 of 26

initial solution is available, the neighborhood procedure tries to improve the incumbent by
reoptimizing stages, taking into account the scheduling decisions from every other stage,
see lines 1–1 from Algorithm 1.

The reoptimization stage is performed as follows: first, we add all stages to a list of
pending problems. Then, we randomly select a stage from the list, say, stage s, remove it
from the list, and fix the sequence of operations for each job and for each machine in the
remaining stages, i.e., each stage q ∈ S \ {s}. The resulting model (i.e., the original model
with some fixed variables) is then solved using the CP formulation provided in Section
4.2 truncating the search with a time limit which is a parameter of the method. When the
time limit is reached or the solver returns that optimality has been verified the best-found
solution is compared to the incumbent and the best ever solution

The neighborhood exploration step ends when the list is empty and no improving
solution has been found during the last exploration step, in which case we conclude that a
local optimum has been found and proceed to restart the local search by slightly altering the
solution using the shaking procedure described in Section 5.3. Otherwise, the exploration
step is repeated, i.e., the list is initialized with all stages and an optimization problem is
solved for each stage, as described above.

To illustrate the proposed method, let us consider the example introduced in Sec-
tion 3.2, starting from the solution found in Section 5.1 and depicted in Figure 2.

The neighborhood exploration phase starts by initializing the list of pending problems
with the three stages. Then, we randomly select a stage from the list. For the sake of
this example, let us suppose that stage 2 is selected. Then, stage 2 is removed from the
list and a problem with the routes in stages 1 and 3 fixed is given for the CP solver for
resolution. Figure 3a gives a disjunctive graph representation of the problem: the routes in
stages 1 and 3 are fixed and the problem is allowed to reoptimize the scheduling decisions
for stage 2. The optimal solution to the stage 2 problem improves the incumbent as the
objective function value is decreased by two time units from 54 to 52 time units, see
Figure 3b. The solution also improves the best found solution, hence it replaces both the
incumbent, and the best found.

After updating the incumbent, the method would select another random stage among
those still in the list, either stage 1 or 3, and build and solve their respective problems. The
solutions to either problem do not provide a better solution and thus a complete iteration
of the local search ends. As the method has found an improving solution within the last
iteration, another iteration of the local search phase is performed. This second iteration
does not lead to improvements, hence we conclude that the incumbent is a local optimum
and stops the neighborhood exploration step.

Note that each problem solved in this phase is not theoretically easier than the original
problem (i.e., they are NP-hard problems). Consequently, and in order to control the total
time used within the resolution of the problems, as well as with the complete local search
phase, we control both the total time used by the local search phase, and the time allocated
to the CP solver to solve each subproblem. Section 6 gives details on the time allotted to
each of these parameters in our computational experiments.

Finally, we attempt to improve the performance of the CP solver by providing a
“warmstart” solution to it. In this case, we use the incumbent solution from the procedure
as it is a feasible solution for the problem, including the additional constraints. As a result,
the solver will never provide a worse solution than the initial one, and it will focus the
search of areas that may provide improvements over the initial one.

Mathematics 2022, 10, 329 14 of 26

o
11

o
12

o
13

o
14

o
15

o
21

o
22

o
23

o
24

o
25

o
31

o
32

o
33

o
34

o
35

 J
1

 J
2

J
3

M
1

M
2

M
3

M
4

M
5

S
1

S
2

o
16

o
17

o
26

o
36

o
27

o
37

S
3

M
6

M
7

(a)

(b)

Figure 3. Graphical representation of the neighborhood exploration phase of the DEC method for the
example instance provided in Table 1. (a) Disjunctive graph representation of the problem associated
to the stage 2. The arcs represent the fixed decisions (i.e., the decisions from stage 1 and 3). (b) Gantt
chart representation of the solution after solving the problem of stage 2. The solution improves the
problem by rearranging the order of operations of the stage.

5.3. Shake Procedure

After reaching a local optimum, i.e., the neighborhood exploration step does not
improve the incumbent, if the total time limit has not been reached we slightly perturb the
solution in order to restart the search from a different position of the solution landscape,
i.e., we perform a shake step as in a classical variable neighborhood (VNS) method [36].
Note that the term local optimum in this context is not completely correct, as the truncated
nature of our neighborhood exploration scheme may lead us to report that no improving
solution has been found when such a solution may exist.

The perturbation scheme considers two randomly-selected consecutive stages and
creates an alternative set of routes and assignments for the jobs and the machines in these
stages by solving the resulting CP model as in the neighborhood exploration step (i.e., fixing
the sequences on the stages that we do not want to modify), but stopping the search when
the solver provides a feasible solution and not including the incumbent as a warmstart
solution. These decisions help the algorithm to find a solution with enough changes in
these stages to move the complete solution away from the current local optimum while the
use of the CP model ensures that a solution is found without having to rely on specifically
tailored code to ensure feasibility conditions.

Mathematics 2022, 10, 329 15 of 26

o
11

o
12

o
13

o
14

o
15

o
21

o
22

o
23

o
24

o
25

o
31

o
32

o
33

o
34

o
35

 J
1

 J
2

 J
3

M
1

M
2

M
3

M
4

M
5

S
1

S
2

o
16

o
17

o
26

o
36

o
27

o
37

S
3

M
6

M
7

(a)

(b)

Figure 4. Graphical representation of the incumbent solution of the DEC method after the shake is
performed for the example instance provided in Table 1. (a) Disjunctive graph representation of the
incumbent solution after the shake. (b) Gantt chart representation of the incumbent solution after
the shake.

To continue with our example of the proposed method, let us continue with the
example introduced in Section 3.2 and used in this Section. After reaching a local optimum,
see Section 5.2, the incumbent depicted in Figure 2b is modified by selecting two consecutive
stages and generating a random feasible solution for these stages. For the sake of this
example, consider that stages 1 and 2 are selected. Then, we solve a problem in which the
routes of stage 3 is fixed, and stop the search when the CP solver finds a solution. This
solution becomes the incumbent and we return to the neighborhood exploration phase.
Figure 4 illustrates the new solution.

6. Computational Experiments

All computational experiments were run on an Intel i7-10750H CPU @2.60 GHz with
6 cores and 16 GB of RAM. The code was written and Java and executed in the Java
8 runtime. The IBM ILOG CP and IBM ILOG CPLEX versions 20.1 were used to solve
the CP and MILP formulations. The CP model was solved using five different strategies
provided by the solver, namely: Auto (a combined search approach automatically controlled
by the solver) CP DF (explores the search tree using a depth-first search approach) RS
(combines a depth-first search approach with a restart mechanism after a certain number of
backtracking decisions), MP (for multi-point search method, an approach that uses some of
the characteristics of a population-based metaheuristic) and ID (for iterative diving search
method, an approach that resembles a local search-based heuristic).

Mathematics 2022, 10, 329 16 of 26

Each instance was run with the proposed DEC method with a total CPU time limit
equal to nbJobs nbMchs

4 seconds, hence we allocate time proportional to the size of the in-
stances. Consequently, for the exact solvers we provide the total time to the solver, while
for the DEC approach, the total time allotted to the solution procedure is divided into an
initialization phase, that takes a maximum of α% of the total time, and the local search
phase that takes the remaining time.

During the initialization phase, the resolution of the OSSP associated to each stage is
allotted a maximum amount of time equal to 100

nbStgs % of the total time allotted to this phase
(i.e., α

nbStgs %). As the allotted time for each subproblem may not be used up (i.e., the CP
solver may report that an optimal solution has been found before the time limit has been
reached) the initialization phase may take less than the allotted time. Moreover, it is also
possible that the CP solver does not find a solution within the time limit. While this never
occurred during our experiments, the default implemented strategy allows the algorithm
to continue the search until a feasible solution is found.

During the local search phase, each subproblem is allotted a fixed amount of time
equal to λ. Parameter λ controls the trade-off between exploitation and exploration within
the local search, i.e., a large value of λ has a higher chance to reach an optimal solution for
the subproblems at the expense of considering fewer subproblems, while a smaller value of
λ leads to considering a larger number of subproblems but the CP solver may fail to reach
the optimal solution for the subproblem.

After some preliminary tests we opted for α = 0.25 and λ = 100 nbJobs nbMchs
4nbStgs(1−α)

. This
value of λ should lead to consider each stage no less than three times within the local search
phase (our preliminary tests showed that this number usually sufficed to reach the best-
found solution and reducing the time to solve each subproblem only lead to degradation in
the solution quality).

For the exact methods we impose the following run time limits: For the MILP experi-
ments, we impose a 3600 s time limit, while for the stand-alone CP solver we allocate the
same running time as our decomposition approach. Please note that the larger amount of
time devoted to the MILP formulation tries to ensure that the performance issues reported
in Section 6.2 could not be solved by allocating more computational resources, i.e., running
time, to the method.

6.1. Instance Generation

As no previous work for the FGSSP is available in the literature, we generated our
own instance set. The generation procedure follows the procedure described in [28] for the
OSSPm | Sjik | ∑j Cj, which extends the procedure described in [37]. Processing times for
instances with up to 20 jobs and 20 machines are identical to the processing times used
in [37]. For larger instances, the processing times were generated following the indications
provided in [37], i.e., they are randomly generated using a discrete uniform distribution
U [1,99].

As a result, we generated instances with 4 to 80 jobs, 4 to 80 machines and 2 to 8 stages.
In each instance, the first nbMchs −

⌊
nbMchs
nbStgs

⌋
nbStgs stages contain

⌈
nbMchs
nbStgs

⌉
machines,

while the remaining stages have
⌊

nbMchs
nbStgs

⌋
. We generate 37 groups of instances, each

containing 10 instances for a total of 370 instances.
For instances with sequence-dependent setup times we additionally generated setup

times as follows: first we generate a random two dimensional Cartesian coordinate (x, y)
for each job drawing each coordinate value from a discrete uniform distribution U [0,30].
Then, the setup time between any pair of jobs, j, k, in a given machine is computed as
the rectilinear distance between the coordinates associated to each pair of jobs, |xj − xk|+
|yj − yk|. This method ensures that setup times comply with the triangle inequality, hence
Sjik ≤ Sjiu + Suik for any triplet of jobs j, k, u and machine i. Finally, initial setup times were
set to 0, i.e., we allow the machines to start working on any job without any setup.

Mathematics 2022, 10, 329 17 of 26

As a result, a total of 740 instances were used for the reported experiments, 370 without
sequence-dependent setup times and 370 with setup times.

6.2. Results for Small Size Instances

To evaluate the quality of the solutions provided by the lower bounds and the exact
methods introduced in Section 4 we perform two sets of experiments using small instances
(those with 10 or fewer jobs and machines) both on the instances with and without sequence-
dependent setup times.

The first experiment considers the performance of the exact methods and the DEC
procedure. The DEC procedure is run ten times with different random seeds and the results
report their average performance among different runs as well as the best solution found
within the ten runs.

Tables 2 and 3 report the results. For each solution method, we report the average
relative gap rel.gap, see Equation (24), in which UB stands for the objective function value
reported by the method and UBb corresponds to the best-known objective value among
all solution approaches, and, in parentheses, the number of best-known solutions found
by the method. For the average performance of the DEC method, UB correspond to the
average obtained by the ten independent runs. We also include the results provided by the
DEC method using the MILP solver rather than the CP solver for comparison purposes.

rel.gap =100
UB−UBb

UB
(24)

Table 2. Results for small instances without sequence-dependent setup times (problem FGSSPs ||
∑j Cj). For each instance size (represented by the number of jobs, column nbJobs, machines, column
nbMchs, and stages, column nbStgs, we report the average gap to the best known solution and the
number of best known solutions (in parentheses) provided by each CP search strategy (columns
Auto, DF, RS, MP and ID), the best solution provided by all combined CP approaches (column CP),
the results from the MILP approach (column MILP) and the best and the average found among 10
independent runs of the DEC approach (columns, (best) and (av.) respectively) using both the MILP
and the CP solvers as their underlying methods to tackle the subproblems required by the approach
(columns DEC MILP and DEC CP). The results of the best performing method for each group of
instances are highlighted in boldface.

DEC MILP DEC CP
nbJobs nbMchs nbStgs Auto DF RS MP ID CP MILP (av.) (Best) (av.) (Best)

4 4 2 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

5 5 2 0.0 (10) 1.2 (0) 0.0 (10) 0.4 (4) 0.4 (5) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

7 7 2 0.3 (4) 10.3 (0) 0.8 (2) 2.4 (0) 3.7 (0) 0.1 (6) 2.1 (0) 2.7 (0) 2.3 (0) 0.4 (3) 0.3 (4)
3 0.1 (8) 13.7 (0) 0.3 (7) 1.6 (0) 2.5 (1) 0.0 (10) 0.5 (5) 2.4 (0) 1.9 (1) 2.6 (0) 2.5 (0)

10 10 2 2.2 (1) 14.7 (0) 1.7 (0) 3.7 (0) 3.7 (0) 1.3 (1) 8.9 (0) 11.1 (0) 10.4 (0) 0.5 (3) 0.1 (9)
3 1.0 (2) 15.8 (0) 1.2 (2) 2.9 (1) 3.1 (0) 0.4 (5) 6.2 (0) 7.4 (0) 7.4 (0) 0.6 (1) 0.5 (5)
4 1.0 (2) 15.7 (0) 1.1 (1) 1.6 (2) 2.5 (1) 0.4 (6) 3.4 (1) 4.9 (0) 2.9 (2) 1.9 (0) 1.4 (4)

Mathematics 2022, 10, 329 18 of 26

Table 3. Results for small instances with sequence-dependent setup times (problem FGSSPs | Sjik |
∑j Cj). For each instance size (represented by the number of jobs, column nbJobs, machines, column
nbMchs, and stages, column nbStgs, we report the average gap to the best-known solution (in
parentheses) provided by each CP search strategy (columns Auto, DF, RS, MP and ID), the best
solution provided by all combined CP approaches (column CP), the results from the MILP approach
(column MILP) and the best and the average found among 10 independent runs of the DEC approach
(columns, (best) and (av.) respectively) using both the MILP and the CP solvers as their underlying
methods to tackle the subproblems required by the approach (columns DEC MILP and DEC CP). The
results of the best performing method for each group of instances are highlighted in boldface.

DEC MILP DEC CP
nbJobs nbMchs nbStgs Auto DF RS MP ID CP MILP (av.) (Best) (av.) (Best)

4 4 2 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

5 5 2 0.0 (10) 4.1 (0) 0.0 (10) 0.5 (4) 2.2 (1) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

7 7 2 1.4 (1) 15.7 (0) 1.4 (1) 2.3 (1) 4.8 (0) 0.7 (3) 1.4 (2) 2.6 (0) 2.0 (0) 0.3 (3) 0.2 (5)
3 0.7 (6) 17.3 (0) 0.8 (3) 1.9 (2) 4.2 (0) 0.1 (8) 0.6 (5) 3.1 (0) 2.3 (0) 2.4 (1) 2.3 (1)

10 10 2 4.2 (0) 22.0 (0) 4.3 (0) 5.7 (0) 6.0 (0) 2.8 (0) 9.2 (0) 13.1 (0) 11.3 (0) 0.5 (3) 0.0 (10)
3 2.2 (3) 23.6 (0) 1.4 (4) 3.9 (1) 5.5 (0) 0.4 (8) 5.4 (0) 7.4 (0) 6.1 (0) 1.5 (0) 1.2 (2)
4 1.7 (3) 22.3 (0) 1.6 (3) 3.9 (0) 3.6 (1) 0.3 (7) 4.0 (1) 6.1 (0) 4.2 (0) 1.8 (0) 1.3 (2)

The results in Tables 2 and 3 show a similar trend, hence we discuss them together
pointing out to the differences when needed:

• If we consider the behavior of the exact methods, i.e., the CP variants as well as the
MILP, the results show that each of these methods have difficulties even for moderately
small instances with 10 jobs and 10 machines. In fact, we do not report the number of
optimal solutions found by any of these methods because they fail to verify optimality
even for instances with 7 jobs and 7 machines and up. Note that these methods solve
all instances with 4 or 5 jobs and machines to optimality, but the combined effort of all
the exact methods only verifies optimality for four additional instances.

• Among the different search strategies available in the CP solver, all methods perform
similarly except for DF. If we consider this result together with the difficulty of each
exact method to verify optimality, we are led to believe that a depth-first search
approach as conducted by the DF strategy fails to backtrack to the initial stages of the
problem, leading to suboptimal early decision never being reconsidered.

• When we compare the CP approaches and the MILP approach, the CP outperforms
the MILP method in every instance group and metric (either number of best found
or relative gap to best known). Moreover, the additional time allocated to the MILP
does not result in better solutions and the CP approaches, except for the DF strategy,
outperform the MILP. Specifically, for instances with 10 jobs and machines, the MILP
fails to find solutions of the quality provided by the CP approaches. Consequently, we
recommend the use of a CP strategy for the problem and avoid the use of the MILP
approach in larger instances.

• The CP methods do not perform as well on instances with sequence-dependent setup
times. Specifically, relative gaps increase and two search strategies, i.e., Auto and RS,
tend to provide the best solutions among the five search methods. This result may be
attributed to shortcomings of the CP approach that makes use of internal components
within its search procedure that are more efficient in problems with fewer features
to consider.

• The performance of the DEC approach using a CP solver to tackle the subproblems
for small and medium instances is similar to the exact CP methods. The same does
not hold true for the DEC method using the MILP solver, as their results are inferior
to either the CP or the DEC method using CP.

Mathematics 2022, 10, 329 19 of 26

While the DEC method finds better solutions than the CP methods, specially on
instances with fewer stages and the relative gaps are small, it does not outperform
the exact methods for these instances. Please note that for small instances, the exact
method benefits from considering the problem as a whole, unlike our method that
tackles smaller parts of the complete problem. For small sized instances, dividing
the problem into part leads to disadvantages in terms of the ability of the method to
optimize all stages simultaneously.
The similarity between the results of both methods was statistically checked using a
paired t-test for statistical significance. The paired t-test compares the best solution
found by any CP method with the best found among the ten replicates of the DEC
method using the CP solver, as well as with each of its individual runs.
The tests between the best solutions show that the results are not statistically different,
with a p-value of 0.204 for the instances without sequence dependent setup times, and
a p-value of 0.981 for the case with setup times. Note that Anderson–Darling tests
show that the differences among values are not normally distributed, and thus we
conduct Wilcoxon signed-rank non-parametric tests that confirm the results from the
parametric tests. With regards to the statistical test between individual run of the
DEC method when compared to the CP method, similar results are found. For the
cases without sequence dependent setup times, six report statistical differences for
the parametric test, but after a Bonferroni correction is run to account for multiple
comparisons, none of the p-values suffice to point to statistically significant differences.
For instances with setup times, none of the replicates report statistically significant
differences to the best CP solutions.

To conclude, the results show that the exact methods fail to verify optimal solutions
even for moderately small instances, being the CP approaches more competitive in terms
of solution quality than their MILP counterparts. While the decomposition scheme can
reach solutions of similar quality than the combined effort of all CP methods, and it even
outperforms the exact methods for instances with a small number of stages, the results
suggest that relying on exact methods is the best approach to solve small-sized instances.

To further analyze the performance of the exact methods, we conducted a second exper-
iment considering the lower bounds introduced in Section 4.3 as well as the lower bounds
reported by the CP and the MILP methods after reaching their termination condition, either
proving optimality of the incumbent or reaching the imposed time limit.

Lower bounds lb2 and lb3 require the resolution of an OSSP model which is solved
using a CP formulation for a fixed time limit equal to nbJobs nbMchs

4 seconds using the default,
i.e., Auto strategy, provided by the CP solver. If the time limit is reached without verifying
optimality, the lower bound provided by the code is used for the computation of lb2 and
lb3. Tables 4 and 5 report, respectively, the results for small size instances without and with
sequence-dependent setup times.

For each group of instances, we report the results for each lower bound described
in Section 4, columns lb1, lb2 and lb3, as well as the best lower bound reported by the
CP methods and the MILP model. For each method, we provide two metrics; namely:
the optimality gap, calculated as in (25), where ubb is the best known solution and lbx
corresponds to the lower bound provided by the method and, in parentheses, the number
of instances in which the lower bound provides the best bound among all of the methods.

opt.gap =100
ubb − lbx

ubb
(25)

Mathematics 2022, 10, 329 20 of 26

Table 4. Results for the lower bounds for small-size instances without sequence-dependent setup
times (problem FGSSPs || ∑j Cj). For each combination of instance size (represented by the number
of jobs, column nbJobs, machines, column nbMchs, and stages, column nbStgs, and solution method
(columns lb1, lb2, lb3, CP and MILP), we report the optimality gap and, in parentheses, the number
of instances (out of 10) in which the method reported the best solution. The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs lb1 lb2 lb3 CP MILP

4 4 2 21.5 (0) 3.5 (0) 5.0 (0) 0.0 (10) 0.0 (10)

5 5 2 21.4 (0) 3.6 (0) 4.9 (0) 0.0 (10) 0.0 (10)

7 7 2 20.7 (0) 15.7 (2) 12.7 (4) 35.4 (0) 12.7 (4)
3 24.2 (0) 16.7 (0) 8.9 (0) 21.1 (2) 1.6 (10)

10 10 2 22.1 (0) 17.9 (10) 19.5 (0) 46.2 (0) 40.4 (0)
3 26.1 (0) 19.3 (10) 22.4 (0) 35.5 (0) 29.3 (0)
4 28.9 (0) 16.4 (6) 19.7 (3) 32.0 (0) 22.6 (1)

Table 5. Results for the lower bounds for small-size instances with sequence-dependent setup times
(problem FGSSPs | Sjik | ∑j Cj). For each combination of instance size (represented by the number of
jobs, column nbJobs, machines, column nbMchs, and stages, column nbStgs, and solution method
(columns lb1, lb2, lb3, CP and MILP), we report the optimality gap and, in parentheses, the number
of instances (out of 10) in which the method reported the best solution. The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs lb1 lb2 lb3 CP MILP

4 4 2 28.6 (0) 4.7 (0) 7.2 (0) 0.0 (10) 0.0 (10)

5 5 2 28.6 (0) 5.1 (0) 5.3 (0) 0.0 (10) 0.0 (10)

7 7 2 28.2 (0) 22.7 (0) 20.5 (2) 41.0 (0) 13.9 (8)
3 31.4 (0) 24.7 (0) 10.9 (0) 34.2 (0) 3.2 (10)

10 10 2 30.6 (0) 26.2 (10) 27.6 (0) 51.8 (0) 44.4 (0)
3 34.5 (0) 28.3 (9) 30.8 (0) 42.7 (0) 33.9 (1)
4 36.9 (0) 25.7 (8) 30.8 (0) 39.4 (0) 27.6 (2)

The results show that large gaps are common. Specifically, for instances with 7 or
10 jobs and machines, the gap after reaching the time limit is very large, hence the inability
of the exact solution methods to verify optimality as it cannot prune the search space
through tight bounds and has to rely on enumeration to verify optimality. Moreover, the
specially tailored lower bounds outperform the general bounds provided by the off-the-
shelf solvers. but they still cannot provide tight bounds and the gaps are still large. Finally,
we would also like to discuss the differences between the results provided by lb2 and lb3.
While theoretically both bounds should report similar results (we try to optimally solve one
stage and estimate the contribution of the remaining stages) the experiments show that lb2
usually outperforms lb3. We conjecture that this result comes from the performance of the
CP solver on the problems solved using this approach. While lb2 solves a classical OSSP as
a subproblem, lb3 solves an OSSP with release dates. The differences may be attributed to a
better ability of the CP solver to solve the said subproblem.

To conclude. These results highlight the computational hardness of the problem and
the need to rely on specially tailored heuristics to solve large-size instances.

6.3. Results for Medium and Large Size Instances

In this section, we report the results for medium to large-size instances. Due to the
results found for small instances, we focus our analysis on solution methods and do not

Mathematics 2022, 10, 329 21 of 26

report lower bounds, as the large gaps found for small instances show the difficulty of
finding good lower bounds.

Tables 6 and 7 show average results for these instances grouped according to the
number of jobs, the number of machines and the number of stages. The tables compare the
results of the best-performing CP strategy, the Auto strategy of the solver, the best solution
found among the five search strategies provided by the solver the average result provided
by ten independent runs of the DEC method and the best-found solution among these ten
independent runs.

Table 6. Results for medium and large instances without sequence-dependent setup times (problem
FGSSPs || ∑j Cj). For each instance size (represented by the number of jobs, column nbJobs, machines,
column nbMchs, and stages, column nbStgs, we report the average gap to the best solution and the
number of instances where the best known solution was found (in parentheses) by the best CP search
strategy (column Auto), the best solution provided among the CP approaches (column CP), the results
from the MILP approach (column MILP) and the best and the average found among 10 independent
runs of the DEC approach (columns, DEC (best) and DEC (av.) respectively). The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs Auto CP DEC (av.) DEC (Best)

15 15 2 2.9 (0) 2.3 (0) 0.3 (0) 0.0 (10)
3 1.3 (2) 1.0 (2) 0.5 (3) 0.2 (8)
4 0.3 (5) 0.3 (7) 1.4 (0) 1.1 (3)
5 0.7 (4) 0.4 (5) 1.3 (1) 1.0 (5)

20 20 2 3.8 (0) 3.1 (0) 0.2 (3) 0.0 (10)
3 2.5 (0) 1.9 (0) 0.3 (0) 0.0 (10)
4 1.9 (2) 1.7 (2) 0.7 (0) 0.1 (8)
5 1.3 (2) 1.1 (2) 0.8 (0) 0.2 (8)
6 1.2 (3) 0.8 (4) 1.2 (0) 0.6 (6)
7 1.0 (2) 0.4 (6) 1.4 (0) 1.0 (4)

30 30 2 5.7 (0) 4.5 (0) 0.0 (5) 0.0 (10)
3 3.0 (0) 2.9 (0) 0.1 (5) 0.0 (10)
4 3.5 (0) 2.5 (0) 0.2 (3) 0.0 (10)
5 2.2 (0) 1.9 (0) 0.5 (2) 0.0 (10)
6 1.9 (1) 1.6 (1) 0.5 (1) 0.1 (9)
7 2.0 (1) 1.7 (2) 0.6 (0) 0.0 (8)

50 50 2 8.6 (0) 6.6 (0) 0.0 (2) 0.0 (10)
3 5.7 (0) 5.4 (0) 0.1 (1) 0.0 (10)
4 4.5 (0) 4.3 (0) 0.3 (0) 0.0 (10)
5 4.0 (0) 3.7 (0) 0.1 (0) 0.0 (10)
6 4.3 (0) 4.0 (0) 0.3 (0) 0.0 (10)
7 3.3 (0) 3.2 (0) 0.0 (0) 0.0 (10)
8 3.9 (0) 3.7 (0) 0.4 (0) 0.0 (10)

80 80 2 9.6 (0) 9.6 (0) 0.0 (7) 0.0 (10)
3 6.9 (0) 6.6 (0) 0.1 (1) 0.0 (10)
4 5.2 (0) 5.0 (0) 0.2 (1) 0.0 (10)
5 3.7 (0) 3.6 (0) 0.2 (0) 0.0 (10)
6 3.5 (0) 3.3 (0) 0.2 (0) 0.0 (10)
7 3.3 (0) 3.1 (0) 0.3 (0) 0.0 (10)
8 3.1 (0) 3.1 (0) 0.3 (0) 0.0 (10)

Mathematics 2022, 10, 329 22 of 26

Table 7. Results for medium and large instances without sequence-dependent setup times (problem
FGSSPs | Sjik | ∑j Cj). For each instance size (represented by the number of jobs, column nbJobs,
machines, column nbMchs, and stages, column nbStgs, we provide the average gap to the best
solution and (in parentheses) the number instances where the best CP strategy finds the best known
solution (column Auto), the best solution provided among the CP approaches (column CP), the results
from the MILP approach (column MILP) and the best and the average found among 10 independent
runs of the DEC approach (columns, DEC (best) and DEC (av.) respectively). The results of the best
performing method for each group of instances are highlighted in boldface.

nbJobs nbMchs nbStgs Auto CP DEC (av.) DEC (Best)

15 15 2 4.6 (0) 3.2 (0) 0.7 (0) 0.0 (10)
3 1.6 (1) 1.3 (2) 0.6 (0) 0.1 (8)
4 1.2 (5) 0.6 (7) 2.5 (0) 1.6 (3)
5 2.7 (2) 0.4 (6) 1.8 (0) 1.3 (4)

20 20 2 5.0 (0) 4.1 (0) 0.5 (0) 0.0 (10)
3 4.2 (0) 3.1 (2) 1.1 (0) 0.3 (8)
4 2.1 (4) 1.1 (4) 2.8 (2) 2.0 (6)
5 2.7 (1) 0.8 (6) 3.0 (2) 2.5 (4)
6 2.4 (3) 0.8 (5) 1.2 (0) 0.4 (5)
7 2.0 (0) 0.5 (4) 1.3 (0) 0.7 (6)

30 30 2 9.6 (0) 7.7 (0) 0.5 (4) 0.0 (10)
3 5.4 (0) 4.2 (0) 0.5 (0) 0.0 (10)
4 6.3 (0) 5.3 (0) 1.8 (0) 0.0 (10)
5 3.4 (1) 3.3 (1) 1.5 (0) 0.2 (9)
6 3.3 (1) 2.8 (2) 1.2 (0) 0.1 (8)
7 3.4 (1) 2.5 (1) 1.0 (0) 0.0 (9)

50 50 2 12.6 (0) 8.4 (0) 0.1 (8) 0.0 (10)
3 7.1 (0) 5.4 (0) 1.0 (0) 0.0 (10)
4 9.9 (0) 9.1 (0) 1.9 (0) 0.0 (10)
5 4.8 (0) 4.4 (1) 1.4 (0) 0.1 (9)
6 6.2 (0) 6.0 (0) 1.1 (0) 0.0 (10)
7 4.1 (0) 4.0 (0) 0.0 (0) 0.0 (10)
8 4.7 (1) 4.3 (1) 1.5 (0) 0.4 (9)

80 80 2 14.4 (1) 12.2 (2) 2.0 (2) 1.4 (8)
3 24.8 (0) 23.5 (0) 1.9 (0) 0.0 (10)
4 23.2 (0) 21.9 (0) 3.4 (0) 0.0 (10)
5 21.1 (0) 19.9 (0) 4.1 (0) 0.0 (10)
6 16.0 (0) 14.0 (1) 3.0 (0) 0.3 (9)
7 12.4 (0) 11.7 (1) 4.9 (0) 0.1 (9)
8 14.2 (0) 13.1 (0) 1.9 (0) 0.0 (10)

The results show similar trends to those found in the small instances (i.e., a deteriora-
tion on the performance of the methods when the number of jobs and machines increase).
Specifically, for large size instances, the relative gaps increase up to a 9.6% for instances
with a small number of stages, and remain above 3% for any number of stages in instances
without sequence-dependent setup times. For instances with sequence-dependent setup
times, the gaps increase, reporting average relative gaps above 10% on average for any
number of stages. These large instances highlight the advantages of the decomposition
approach, which is still able to outperform the combined effort of all CP methods in most
of the medium-sized and large-sized instances.

While the DEC decomposition approach still relies on a CP solver, the division of
the larger problem into smaller subproblems that can be more efficiently tackled in short
running times leads to clear improvements over the off-the-shelf method.

Mathematics 2022, 10, 329 23 of 26

The dissimilarity between the results from the CP and the DEC methods were statisti-
cally checked using a paired t-test. The paired t-test compares the best solution found by
each of the methods.

The test shows that the results are statistically different, with a p-value of 8.79× 10−31

for the instances without sequence dependent setup times, and a p-value of 2.05× 10−19

for the case with setup times. The Anderson–Darling test for normality showed that the
differences between the values are not normally distributed, and thus we conduct Wilcoxon
signed-rank non-parametric tests to confirm the results from the parametric test. The results
of the Wilcoxon tests confirmed the conclusions reached by the parametric tests with a
p-value of 7.18× 10−46 for instances without setup times and a p-value of 2.05× 10−43 for
instances with setup times.

6.4. An Industrial Case Study

The case study provided below is taken from a Colombian automotive company. The
company is dedicated to the manufacturing and assembling of leaf springs that are part of
the suspension systems of cars and trucks. The company has over 200 hundred customers
and exports to over ten countries. The customers are the car assemblers and the many car
and truck repair shops and dealers of the country. A leaf spring consists of “leaves” that
are metal plates that are bolted together. Each batch of springs of the same reference is
considered a master production order (MPO). In turn, each batch of plates conforming a
leaf spring is defined a single production order (SPO) derived from the MPO. Consider a
typical reference with 10 plates. If an MPO for 100 leaf springs is issued, a total of 10 SPOs
are generated, each with 100 leaf springs. The manufacturing of leaf springs consists of
seven stages: (1) plate cutting, (2) center hole drilling and stamping, (3) tempering and
quenching, (4) bending, (5) sand blasting, (6) painting and (7) assembly. The assembly
operation was not considered in this research as this stage is not really scheduled. All
stages have a single machine except stage two that has five forming operations. Stage two is
generally the bottleneck station and, for this reason, the company keeps a buffer equivalent
to 4–5 days of demand. Each SPO is transferred between workcenters by lift trucks. In
this research, jobs correspond to SPOs. The 73 jobs used in this case study correspond
to roughly the production of one week, which is the time lapse at which the schedule is
revised and updated.

The total number of machines is 16. At the time of writing, there were one cutting sta-
tion, one drilling machine, ten stamping presses, one tempering/quenching equipment, one
bending and adjustment press, one sand blasting equipment and one painting workcenter.

Although the company has and uses an MRP system, the scheduling task is made
manually. This is due to the inherent complexity of the manufacturing process and the
constant pressure exerted by the vendors of the sales department. Although the company
has implemented the Sales and Operations Planning (S and OP) methodology, frequent
changes are common on the agreed schedules. For this reason, the company wanted to
implement a scheduling system and wanted to test a prototype computer scheduler.

For the tests, we collected data of processing times and production orders from the
MRP system. The processing times ranged between 25 min and 5 h depending on the
operation. Setups are also important, but the company does not have exact records of the
setups. For this reason, we generated setup times based on the suggestions of the plant
personnel. Setups are only important in the stamping and drilling operations.

We ran all CP-based algorithms on the proposed instance. The CP DEC was run ten
times. Table 8 summarizes the results.

Mathematics 2022, 10, 329 24 of 26

Table 8. Results for case study. For each algorithm the objective value is reported.

Algorithm Objective Function Value (Minutes)

CP AUTO 263,366
CP DF 293,522
CP RS 274,561
CP MP 293,442
CP ID 264,043
CP DEC (av.) 261,532
CP DEC (best) 260,349

As expected, the CP-DEC outperformed the other algorithms showing that the method
can also performed well on realistic instances. The best performer among the CPs was the
CP AUTO. The difference in terms of the objective function between CP AUTO and CP
DEC was around 2200 min per week, which translates into an improvement of 30 min per
job (2200/73).

After analyzing the schedule resulting from the CP DEC algorithm, we validated that
the bottleneck station (as it is called by the plant personnel) was stage 2. The machine
utilizations at this stage ranged from 25% to 78% (average 47%) whereas at the other stages,
with the exception of tempering/quenching (66%), was around 30%. These figures of
utilization are expected to be higher as the machines are always loaded with jobs from the
previous week. We did not have such an information, and therefore we assumed that the
factory floor was empty for the purpose of this case. In the experience of the authors, not
only the better performance of the scheduling algorithms but also the information they
provide, justifies its use.

7. Conclusions and Future Work

In this paper, we introduce fixed group shop scheduling problem (FGSSP) with-
out/with sequence-dependent setup time. The FGSSP is a particular case of the group shop
scheduling problem (GSSP) in which the machines of a given stage are the same for all jobs.
This case can be found in different settings, as mentioned above.

We describe the characteristics of the proposed problem and provide two formu-
lations, one based on mixed integer linear programming (MILP) and one on constraint
programming (CP).

To solve the FGSSP, we developed a novel hybrid heuristic procedure based on a
decomposition approach (which we denoted as DEC). Our procedure solves sequentially
smaller scheduling problems with CP and presents a simple mechanism to escape from local
optima. Moreover, the proposed method can accommodates for additional characteristics
required in specific settings by introducing additional constraints within the formulations
without the need to modify the solution procedure itself.

To test the performance of the approach, we performed computational experiments
where we compare our method to the results provided by off-the-shelf CP and MILP solvers.
Additionally, we computed several lower bounds for the FGSSP to have a baseline comparison.

The experimental results show that the DEC and all the tested CP are very similar in
terms of performance for small and medium-sized instances, especially when the number
of stages is small. For medium and large-sized instances, the DEC outperforms the CP
methods with independence of the number of stages, finding the best solution in most of
the cases.

Future work will be devoted to studying other solution approaches for the problem,
to study the application of the proposed method to similar problems with the proposed
approach and to study issues related to Industry 4.0 technologies, such as re-scheduling in
the presence of real-time information and rework.

Author Contributions: Conceptualization, G.M., J.P. and F.Y.; methodology, G.M., J.P., M.V. and F.Y.;
software, J.P. and F.Y.; validation, M.V. and F.Y.; formal analysis, G.M. and J.P.; investigation, F.Y.;

Mathematics 2022, 10, 329 25 of 26

resources, G.M., J.P., M.V. and F.Y.; data curation, F.Y.; writing—original draft preparation, G.M., J.P.,
M.V. and F.Y.; writing—review and editing, J.P.; visualization, M.V. and F.Y.; supervision, G.M. and
J.P.; project administration, G.M.; funding acquisition, G.M., J.P. and M.V. All authors have read and
agreed to the published version of the manuscript.

Funding: J.P. acknowledges the support of ANID through the grant FONDECYT No. 1191624
“Assembly line balancing for industry 4.0”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets available at https://github.com/yuraszeck/fgssp (accessed
on 1 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pinedo, M.L. Scheduling: Theory, Algorithms and Systems, 5th ed.; Springer: New York, NY, USA, 2016.
2. Zobolas, G.I.; Tarantilis, C.D.; Ioannou, G. Exact, Heuristic and Meta-heuristic Algorithms for Solving Shop Scheduling Problems.

In Metaheuristics for Scheduling in Industrial and Manufacturing Applications. Studies in Computational Intelligence, 128; Xhafa, F.,
Abraham, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008.

3. Blum, C.; Sampels, M. An ant colony optimization algorithm for shop scheduling problems. J. Math. Model. Appl. 2004, 3, 285–308.
4. Yuraszeck, F.; Mejía, G.; Pereira, J. Modeling and Solving the Total Flow Time Fixed Group Shop Scheduling Problem. In

Proceedings of the ICPR Americas, Bahía Blanca, Argentina, 9–11 December 2020; Editorial de la Universidad Nacional del Sur:
Bahía Blanca, Argentina, 2020; pp. 2819–2822.

5. Graham, R.L.; Lawler, E.L.; Lenstra, J.K., Kan, A.H.G.R. Optimization and heuristic in deterministic sequencing and scheduling:
A survey. Ann. Discrete Math. 1979, 5, 287–326.

6. Rossi, F.; Beek, V.P.; Walsh, T. Handbook of Constraint Programming, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2006.
7. Blum, C.; Raidl, G.R. Hybrid Metaheuristics: Powerful Tools for Optimization, 1st ed.; Springer: New York, NY, USA, 2016.
8. Maniezzo, V.; Boschetti, M.A.; Stützle, T. Matheuristics: Algorithms and Implementations (EURO Advanced Tutorials on Operational

Research), 1st ed.; Springer: New York, NY, USA, 2021.
9. Masuda, T.; Ishii, H.; Nishida, T. The mixed shop scheduling problem. Discret. Appl. Math. 1985, 11, 175–186.
10. Nasiri, M.M.; Kianfar, F. A hybrid scatter search for the partial job shop scheduling problem. Int. J. Adv. Manuf. Syst. 2011, 52,

1031–1038.
11. Zubaran, T.K.; Ritt, M. An effective heuristic algorithm for the partial shop scheduling problem. Comput. Oper. Res. 2018, 93,

51–65.
12. Ahmadizar, F.; Ghazanfari, M.; Mohammad, S.; Fatemi, T. Group shops scheduling with makespan criterion subject to random

release dates and processing times. Comput. Oper. Res. 2010, 37, 152–162.
13. Ahmadizar, F.; Rabanimotlagh, A. Group shop scheduling with uncertain data and a general cost objective. Int. J. Adv. Manuf.

Technol. 2014, 70, 1313–1322.
14. Ahmadizar, F.; Shahmaleki, P. Group-shop scheduling with sequence-dependent set-up and transportation times. Appl. Math.

Model. 2014, 38, 5080–5091.
15. Kemmoé-Tchomté, S.; Féniès, P.; Lamy, D.; Tchernev, N. A Multi-start Multi-level ELS for the Group-Shop Scheduling Problem.

IFAC-PapersOnLine 2018, 51, 1299–1304.
16. Liu, S.Q.; Ong, H.L.; Ng, K.M. A fast tabu search algorithm for the group shop scheduling problem. Adv. Eng. Softw. 2005, 36,

533–539.
17. Nasiri, M.M. A modified ABC algorithm for the stage shop scheduling problem. Appl. Soft Comput. 2015, 28, 81–89.
18. Nasiri, M.M.; Kianfar, F. A GA/TS algorithm for the stage shop scheduling problem. Comput. Ind. Eng. 2011, 61, 161–170.
19. Nasiri, M.M.; Hamid, M. The stage shop scheduling problem: Lower bound and metaheuristic. Sci. Iran. 2020, 27, 862–879.
20. Ahmadizar, F.; Ghazanfari, M.; Fatemi Ghomi, S.M.T. Application of chance-constrained programming for stochastic group shop

scheduling problem. Int. J. Adv. Manuf. Syst. 2009, 42, 321–334.
21. Nie, X.D.; Chen, Y.P.; Yang, Y.J. The Cyclic Scheduling of Material Transporting Robot in Group Shop. Appl. Mech. Mater. 2012,

263–266, 634–638.
22. Ahmadizar, F.; Zarei, A. Minimizing makespan in a group shop with fuzzy release dates and processing times. Int. J. Adv. Manuf.

Syst. 2013, 66, 2063–2074.
23. Ahmadizar, F.; Rabanimotlagh, A.; Arkat, J. Stochastic group shop scheduling with fuzzy due dates. J. Intell. Fuzzy Syst. 2017, 33,

2075–2084.
24. Sampels, M.; Blum, C.; Mastrolilli, M.; Rossi-doria, O. Metaheuristics for Group Shop Scheduling. In Proceedings of the

LNCS 2439, PPSN VII, Granada, Spain, 7–11 September 2002; Merelo Guervós, J.J.; Adamidis, P; Beyer, H.-G.; Schwefel, H.-P.;
Fernández-Villacañas, J.-L. Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 631–640.

https://github.com/yuraszeck/fgssp

Mathematics 2022, 10, 329 26 of 26

25. Zhou, J. A Permutation-Based Approach for Solving the Job-Shop Problem. Constraints 1997, 2, 185–213.
26. Malapert, A.; Cambazard, H.; Guéret, C.; Jussien, N.; Langevin, A.; Rousseau, L.M. An optimal constraint programming approach

to the open-shop problem. INFORMS J. Comput. 2012, 24, 228–244.
27. Lunardi, W.T.; Birgin, E.G.; Laborie, P.; Ronconi, D.P.; Voos, H. Mixed Integer Linear Programming and Constraint Programming

Models for the Online Printing Shop Scheduling Problem. Comput. Oper. Res. 2020, 123, 105020.
28. Mejía, G.; Yuraszeck, F. A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop

scheduling problems with travel/setup times. Eur. J. Oper. Res. 2020, 285, 484–496.
29. Meng, L.; Lu, C.; Zhang, B.; Ren, Y.; Lv, C.; Sang, H.; Li, J.; Zhang, C. Constraint programing for solving four complex flexible

shop scheduling problems IET Collab. Intell. Manuf. 2021, 3, 147–160.
30. Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-integer linear programming and constraint programming formulations for

solving distributed flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 142, 106347.
31. Dorndorf, U.; Pesch, E.; Phan-Huy, T. Constraint propagation and problem decomposition: A preprocessing procedure for the job

shop problem. Ann. Oper. Res. 2002, 115, 125–145.
32. Maravelias, C.T.; Grossmann, I.E. A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipur-

pose batch plants. Comput. Chem. Eng. 2004, 28, 1921–1949.
33. Sacramento, D.; Solnon, C.; Pisinger, D. Constraint Programming and Local Search Heuristic: A Matheuristic Approach for

Routing and Scheduling Feeder Vessels in Multi-terminal Ports. SN Oper. Res. Formu 2020, 1, 32.
34. Fazel Zarandi, M.H.; Sadat Asl, A.A.; Sotudian, S.; Castillo, O. A state of the art review of intelligent scheduling. Artif. Intell. Rev.

2020, 53, 501–593.
35. de Abreu, L.R.; Guimara es Araújo, K.A.; de Athayde Prata, B.; Nagano, B.S.; Moccellin, J.V. A new variable neighbourhood

search with a constraint programming search strategy for the open shop scheduling problem with operation repetitions. Eng. Opt.
2021. In press.

36. Hansen, P.; Mladenović, N. Variable Neighborhood Search. In Handbook of Heuristics; Martí’, R., Pardalos, P.M., Resende, M.G.C.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2018.

37. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285.

	Introduction
	Literature Review
	The Fixed Group Shop Scheduling Problem
	Problem Definition
	An Illustrative Example

	FGSSP Formulations and Lower Bounds
	MILP Formulation
	CP Formulation
	Lower Bounds
	Lower Bound LB1
	Lower Bounds LB2 and LB3

	Proposed Solution Method
	Initial Solution
	Neighborhood Exploration
	Shake Procedure

	Computational Experiments
	Instance Generation
	Results for Small Size Instances
	Results for Medium and Large Size Instances
	An Industrial Case Study

	Conclusions and Future Work
	References

