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Abstract: Because of the limitations of previous studies on a fall detection system (FDS) based on
wearable and ambient devices and visible light and depth cameras, the research using thermal
cameras has recently been conducted. However, they also have the problem of deteriorating the
accuracy of FDS depending on various environmental changes. Given these facts, in this study, we
newly propose an FDS method based on the squeeze and excitation (SE) 3D convolutional neural
networks (S3D). In our method, keyframes are extracted from input thermal videos using the optical
flow vectors, and the fall detection is carried out based on the output of the proposed S3D, using the
extracted keyframes as input. Comparative experiments were carried out on three open databases
of thermal videos with different image resolutions, and our proposed method obtained F1 scores of
97.14%, 95.30%, and 98.89% in the Thermal Simulated Fall, Telerobotics and Control Lab fall detection,
and eHomeSeniors datasets, respectively (the F1 score is a harmonic mean of recall and precision; it
was confirmed that these are superior results to those obtained using the state-of-the-art methods of a
thermal camera-based FDS.

Keywords: fall detection system; thermal video; deep learning; squeeze and excitation; 3D CNN

1. Introduction

With the progress of the aging population across the globe, the number of falling
accidents is increasing, and the injury rate in the case of falling accidents has reached
20–30%. Moreover, more than half of people injured and hospitalized owing to falling
accidents are the elderly, aged over 65 [1]. The elderly cannot easily stand up by themselves
in the case of a falling accident because of deteriorating muscle function, and if they
remain on the floor for an extended period after a falling accident, they risk suffering
from dehydration or hypothermia, which can be fatal in some cases; thus, they are more
vulnerable to safety risks attributed to falling accidents [2].

A fall detection system (FDS) can be an alternative solution to mitigate the elderly’s
safety problem as aforementioned. By automatically detecting falling accidents of the
elderly and informing an appropriate organization of the dangerous situation, the FDS can
prevent the elderly from running into more severe danger due to falling accidents. In recent
years, with the advancements of basic technology, including the internet and artificial
intelligence, research on FDSs has been actively performed [3]. In the case of existing FDS
methods using wearable devices, their wide utilization is impeded by the disadvantage that
the device must be attached to the body or be carried at all times. On the contrary, ambient
device-based FDSs that operate in a sensor-embedded environment, such that the sensor
does not need to be attached to the body, are more convenient. However, systems that use
several sensors suffer from the disadvantage of sensitivity to the location or angle of the
sensors [4]. To this end, vision-based FDS studies have been conducted, and vision-based
FDSs have the advantage of less sensitivity to the location or angle of the sensor compared
with FDSs that require the accurate placement of several sensors. However, visible light
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cameras that are widely used in vision-based systems pose concerns of privacy invasion,
and in terms of depth cameras, their fall detection accuracy decreases in the presence of
other objects near the target. For these reasons, FDS studies using thermal cameras that
can identify a person’s shape even at night have been carried out in recent years. Fall
detection belongs to the action recognition field, and in this field, existing 3-dimensional
(3D) convolutional neural networks (CNNs) have shown excellent performance [5,6]. Given
these facts, in this study, we newly propose an FDS method based on the squeeze and
excitation (SE) 3D CNN (S3D), which can improve the accuracy of the fall detection by
applying a revised SE block considering 3D CNN. This study makes contributions in the
following four aspects compared with the existing studies.

• This is the first study on FDSs in which an SE block is combined with a 3D CNN. The
S3D-based FDS proposed in this study showed a higher detection performance than
the state-of-the-art methods on open datasets with various resolutions.

• Fall detection was carried out by extracting the keyframes from the input thermal video
using the magnitudes of the optical flow vectors and using the extracted keyframes as
the input of the S3D.

• The SE block previously used only in a 2-dimensional (2D) CNN was newly trans-
formed to be suitable for a 3D CNN and applied. Furthermore, the effect of the SE
block location in the 3D CNN model on the network was analyzed through gradient-
weighted class activation mapping (Grad-CAM), and it demonstrated where the SE
block should be located and how many SE blocks should be used to obtain the best
performance.

• For other researchers to compare and evaluate its performance, the S3D model used in
this study is made public through [7].

The remainder of this paper is organized as follows. In Section 2, the related works
are discussed, and in Section 3, our proposed method is explained. In Section 4, the
experimental results and discussion are provided. Finally, in Section 5, the conclusions
of this study are summarized, and the potential directions for future research direction
are discussed.

2. Related Works

The existing studies on FDSs can mainly be classified into those on wearable device-
based, ambient device-based, and vision-based systems.

2.1. Wearable Device-Based Methods

Typical wearable device-based systems use an accelerometer, possibly in combination
with a gyroscope. Because acceleration or gradient rapidly change in the case of falling
accidents, falls can be detected using the accelerometer and gyroscope attached to the
human body.

2.1.1. Accelerometer-Based

In previous research [8], a fall was recognized if the acceleration change detected by the
accelerometer exceeded a certain threshold value. Although the calculation volume is very
low, and hence, a low-specification processor can be utilized, it does not take into account
the movement direction and only considers its magnitude, leading to a high probability
of false detections when there is any dynamic movement. In an existing study [9], falls
were detected according to threshold values obtained through a decision tree and state
machine. In this method, the threshold value was determined by the decision tree; thus,
if sufficient data were provided, higher performance could be expected compared with
threshold values chosen arbitrarily by a human. However, it is difficult to detect all fall
situations using a fixed threshold value, and there is a limitation that the judgment is made
depending on the learned threshold value.
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2.1.2. Fusing Accelerometer and Gyroscope-Based

In previous studies [10,11], falls were recognized by using an accelerometer and gyro-
scope, setting the threshold values of the acceleration and angle changes, and detecting
whether these two readings exceeded the threshold values. Although there are the advan-
tages that the fall detection can be performed using very low-specification processors, and
it is more accurate compared with using only one sensor, it still considers the instantaneous
change, and thus, it may not detect slower falling movements.

Although not about the research of FDS, Pourbemany et al. proposed Breath to Pair
(B2P), a protocol for pairing and shared-key generation for wearable devices that uses the
wearer’s respiration activity to ensure that the devices become part of the same body-area
network [12]. In addition, authors surveyed context-based pairing in wearable devices
by focusing on the signals and sensors exploited, and they reviewed the steps needed
for generating a common key and provided a survey of existing techniques used in each
step [13].

2.2. Ambient Device-Based Methods

Such wearable device-based systems [8–11] are commonly preferred with respect to
privacy protection but have the shortcoming that the sensor must be directly attached to the
body or be carried at all times. As an alternative, studies using an ambient device typically
utilize radar and ultrasonic sensors.

2.2.1. Radar-Based

In a previous study [14], a radar sensor was used to detect falls through an autoencoder
and logistic regression. Although it has the advantage of fewer concerns about privacy
invasion compared with vision-based methods, it has the disadvantage of requiring an
expensive sensor.

2.2.2. Ultrasonic-Based

In the existing research, fall detection was carried out through several ultrasonic
sensors and event pattern matching. Although it is preferred that they are utilized in
bathrooms and toilets because the sensor does not need to be directly attached to the
body, and there are fewer concerns about privacy invasion of an individual compared with
cameras, it has the disadvantage of increased misclassification probability in the presence
of other moving objects, such as pets or robotic vacuums, as the sensor is installed at an
altitude close to the floor [15].

Although it is not about the research of FDS, Sanaat et al. proposed a supervised deep
neural network which was used for the approximation of the depth of interaction (DOI) and
to evaluate, through Monte Carlo (MC) simulations, the performance on a small-animal
positron emission tomography (PET) scanner [16].

2.3. Vision-Based Methods

Studies on vision-based methods are classified into those using visible light cameras,
those using depth cameras, and those using thermal cameras.

2.3.1. Visible Light Camera-Based

The previous study [17] used a visible light camera and recognized falls with the
K-nearest neighborhood algorithm (KNN) by applying foreground extraction to the video
and obtaining the optical flow vector value for the foreground area. Because the visible
light camera is employed, the system can be established at a low cost. However, the visible
light camera is extremely vulnerable to the privacy problem.

2.3.2. Depth Camera-Based

In a previous study [18], the region of interest (ROI) was detected using the depth
camera, and the fall situation was recognized based on the cases in which the changes
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of pixel positions of the ROI region were larger than a threshold value. This method has
the advantage that it can generate a system without much data, as it is not a training-
based method; however, it does not take into account the speed or direction of a human’s
movement, leading to errors in the actual environment. In another study [19], the human
outline was extracted from the video with the canny filter using the depth camera, and the
fall was recognized according to the tangential distribution of the outline pixels. Because
the depth camera is utilized, this method can identify a person even in the dark; however,
its accuracy can be reduced if there are many other objects nearby.

2.3.3. Thermal Camera-Based

Using a thermal camera, a previous study [20] recognized the fall with the support
vector machine (SVM), utilizing x-axis and y-axis histograms calculated from the image
as a feature. Although this method has fewer features used in the SVM, and thus, its
calculation speed is fast, the pixel distribution changes if the environment differs from that
in which the training data were obtained, and the accuracy cannot be guaranteed. In a
previous study [21] that employed a thermal camera, a frequency analysis was conducted
on the angle of the optical flow vector with the fast Fourier transform (FFT), and the fall
detection was performed with the SVM. This method has the advantage that the accuracy
change is not significant in different environments; however, its fall detection accuracy
is generally low. The existing studies [22,23] utilized an autoencoder, which encoded the
thermal video with the convolutional long short-term memory (ConvLSTM) and then
decoded it, and the fall detection was carried out by comparing the difference between the
original video and the reconstructed video. This method is based on a recurrent neural
network and can extract the temporal information from the continuous frames; however, in
the case of a movement pattern that was not learned with the training dataset, the risk of
misclassification increases. In a previous study [24], falls were detected with a 3D CNN by
extracting keyframes from a thermal video based on the magnitudes of the optical flow
vectors. This method is effective as it only uses the frames with the most information as
the network input, but it has the shortcoming of deteriorating accuracy under various
environmental changes.

Although not about the research of FDS, Bangtal et al. proposed a new variant of
the Bat algorithm (BA), named as the improved bat algorithm (IBA), which modifies the
standard BA by enhancing its exploitation capabilities and avoids escaping from local
minima [25]. In other research [26], the authors proposed a new initialization population
approach, termed as the enhanced version of particle swarm optimization (PSO) follow-
ing Log-logistic distribution as Log-logistic Neural Network (PSOLL-NN), to create the
initialization of the swarm. In addition, Castellano et al. proposed a crowd detection
method for drone safe landing based on the light–weight scheme of a fully convolutional
neural network which conjugates effectiveness and nimble computations [27], and it can be
considered for the faster computation of our method.

Although not about the research of FDS, in [28], the authors adapted the SE block
to 3D CNNs for the micro expression recognition of a face image. In [29], the authors
also combined the SE block and 3D CNNs for remote sensing sea ice image classification.
Although the concept of applying the SE block to a 3D CNN in [28,29] is similar to that
of our research, the structure of our final model (S3D), combining the SE block and 3D
CNN, is completely different from those of their methods [28,29]. In addition, they did
not analyze the effect of the SE block on the 3D CNN according to the location of the SE
blocks. However, we thoroughly analyzed not only the results according to the location
of SE blocks, but also why the model learned using SE blocks showed better results by
visualizing the activation intensity for each channel of SE blocks.

Given these problems, our proposed method extracts keyframes using the magnitudes
of the optical flow vectors and detects falls with the 3D CNN with a SE block applied. By
applying the SE block to one of the 3D CNN networks, namely convolutional 3D (C3D) [5],
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and considering the important spatiotemporal information, the fall detection is carried
out accurately.

3. Proposed Method
3.1. Overview of the Proposed Architecture

Figure 1 shows the overall flowchart of the proposed method. The method first
extracts keyframes based on the magnitudes of the optical flow vectors extracted from
the input thermal image sequences (steps (1) and (2) of Figure 1). The processing time
can be reduced by using the frames with the largest changes in the optical flow vector
values in two consecutive frames as keyframes, without losing important information
while not processing all the frames. Afterward, the extracted keyframes are subjected
to size normalization into the size of 112 × 112 pixels (steps (3) of Figure 1), and the
3D input of dimensions N × 112 × 112 is obtained through the depth-wise composition
with the extracted N keyframes (steps (4) of Figure 1). The obtained 3D input is passed
to the proposed network as input (step (5) of Figure 1). In this study, while using the
C3D, a 3D CNN model, as a backbone, the SE block is added to the C3D to improve
the network performance through the feature recalibration, and the newly proposed S3D
model is adopted. The SE block can improve the performance while not significantly
increasing the number of weights by using the principle of giving attention to the channel
with more important information in the feature map. Subsequently, the fall detection is
conducted based on the output values of S3D (step (6) of Figure 1). During fall detection, the
classification of two classes of fall and activities of daily living (ADL, not fall) is performed.
In the next subsections, this proposed method is explained in detail.

Figure 1. Overview of the proposed method.

3.2. Keyframe Extraction and Depth-Wise Composition of Extracted Keyframes

In this study, the keyframes of the input thermal image sequences are used as the
network input. To extract the keyframes, the optical flow vectors are calculated in two
adjacent frames, and the frames with the largest range of the optical flow vectors are used
as keyframes in the sequence. When calculating the optical flow vectors, the Lucas–Kanade–
Tomasi method [30] is utilized, in which the corner points to track are extracted through the
Shi–Tomasi corner detection [31], and then, the optical flow vectors are calculated using the
Lucas–Kanade method [32]. First, for extracting the feature points to track, the structure
tensor Z is derived in the front frame image between two adjacent frames using the Taylor
expansion [31], and the minimum of the eigenvalues of Z, namely µ1 and µ2, is used as
the corner response score V. Next, if V is larger than the threshold value, it is determined
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to be the corner to track. The V value can be calculated using the following equation [33].
In Equation (1), det represents determinant, and tr represents trace, and in this study, the
optimal k value was experimentally determined as the value that results in the best accuracy
of fall detection using the training data.

V = det(Z)− k(tr(Z))2 (1)

Using the V value, the feature points to track are determined in the front frame
between two adjacent frames, and the optical flow vectors are calculated based on these
feature points. The calculation of the optical flow vectors assumes that the pixel intensities
of an object between two adjacent frames do not change and that the adjacent pixels within
the frame have a similar motion. Therefore, the following equation is valid when a pixel,
P(x, y, t), moves by αx, αy after time αt (t represents time):

P(x, y, t) = P(x + αx, y + αy, t + αt) (2)

Subsequently, the following optical flow equation is derived after taking the Taylor
series approximation on the right side of Equation (2), canceling out the common terms,
and dividing both sides by αt [34]:

fxn + fym + ft = 0 (3)

where
fx =

β f
βx

; fy =
β f
βy

n =
αx
αt

; m =
αy
αt

In Equation (3), fx and fy signify the gradients of the image, and ft means the time
gradient, and when the number of feature points to track is N, n and m are calculated with
the following equations [34] using the Lucas–Kanade method [32]:

[
n
m

]
=


N
∑

i=1
fxi

2
N
∑

i=1
fxi fyi

N
∑

i=1
fxi fyi

N
∑

i=1
fyi

2


−1 −

N
∑

i=1
fxi fti

−
N
∑

i=1
fyi fti

 (4)

In this study, for keyframes, 16 frames with the largest sum of the magnitudes of
optical flow vectors calculated in the two adjacent frames were selected, among all frames
of the input thermal image sequences. During this process, between two adjacent frames,
the altered frame was used as a keyframe, and in this study, the optimal number of
keyframes (16) was experimentally determined as a value resulting in the best accuracy of
fall detection using the training data. The 16 extracted keyframes were subjected to size
normalization to the size of 112 × 112 pixels by bilinear interpolation, and the 3D input
of dimensions 16 × 112 × 112 were obtained using the extracted keyframes through the
depth-wise composition. The obtained 3D input was used as the input of the S3D to be
explained in the next subsection.

3.3. Structure of the Proposed S3D Model

The proposed S3D model extends the SE block [35] to 3D, focuses on the channel with
more informative features in the 3D features map, and improves the FDS performance. In
this study, the C3D model [5] was used as a 3D CNN backbone model, and the S3D model
was proposed, in which the SE block was added immediately after the last max pooling
layer of the C3D model, as presented in Figure 2. Through the ablation studies presented
in Sections 4.3.1–4.3.3, it was identified that arranging the SE block behind the last max
pooling layer of the C3D model results in the best performance.



Mathematics 2022, 10, 328 7 of 24

Figure 2. Proposed S3D model.

As presented in Figure 2, the architecture of the S3D model is composed of eight 3D
convolutional layers, five 3D max pooling layers, one SE block, and three fully connected
(FC) layers, and apart from the last FC layer, in which the sigmoid function was used,
the rectified linear unit (ReLU) [36] was used after all convolutional layers and FC layers.
According to the literature [5], 3D CNN yields the best performance when the size of the
convolutional filter is 3 × 3 × 3; hence, in this study, all 3D convolutional filters were of
dimensions 3 × 3 × 3, and the filters for the 3D max pooling were of dimensions 2 × 2 × 2.
However, to prevent early loss of temporal information of the input data, the filter with the
depth of 1, i.e., with dimensions 1 × 2 × 2, was exceptionally used in the first max pooling
layer. The SE block was used immediately after the last max pooling layer, and in the SE
block, two FC layers, the ReLU function, and the sigmoid function were utilized for the
feature recalibration. After conducting the feature recalibration through the SE block, the
final prediction was carried out using two FC layers and one sigmoid output layer. Table 1
shows the detailed architecture of the proposed model.

Table 1. S3D model architecture (the Rectified linear unit (ReLU) activation function was used behind
all 3D convolutional layers).

Layer Name
Size of Filter

(Depth × Height
×Width)

Number of
Filters

Stride
(Depth × Height
×Width)

Padding
(Depth × Height ×

Width)

Size of the Feature Map
(Depth × Height
×Width)

3D convolutional layer 3 × 3 × 3 64 1 × 1 × 1 1 × 1 × 1 16 × 112 × 112
3D pooling layer 1 × 2 × 2 - 1 × 2 × 2 - 16 × 56 × 56

3D convolutional layer 3 × 3 × 3 128 1 × 1 × 1 1 × 1 × 1 16 × 56 × 56
3D pooling layer 2 × 2 × 2 - 2 × 2 × 2 - 8 × 28 × 28

3D convolutional layer 3 × 3 × 3 256 1 × 1 × 1 1 × 1 × 1 8 × 28 × 28
3D convolutional layer 3 × 3 × 3 256 1 × 1 × 1 1 × 1 × 1 8 × 28 × 28

3D pooling layer 2 × 2 × 2 - 2 × 2 × 2 - 4 × 14 × 14

3D convolutional layer 3 × 3 × 3 512 1 × 1 × 1 1 × 1 × 1 4 × 14 × 14
3D convolutional layer 3 × 3 × 3 512 1 × 1 × 1 1 × 1 × 1 4 × 14 × 14

3D pooling layer 2 × 2 × 2 - 2 × 2 × 2 - 2 × 7 × 7

3D convolutional layer 3 × 3 × 3 512 1 × 1 × 1 1 × 1 × 1 2 × 7 × 7
3D convolutional layer 3 × 3 × 3 512 1 × 1 × 1 1 × 1 × 1 2 × 7 × 7

3D pooling layer 2 × 2 × 2 - 2 × 2 × 2 0 × 1 × 0 1 × 4 × 3

3D SE
block

FC - - - - 32
ReLU - - - - 32

FC - - - - 512
sigmoid - - - - 512

FC - - - - 4096
ReLU - - - - 4096

FC - - - - 4096
ReLU - - - - 4096

FC - - - - 1
sigmoid - - - - 1
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The SE block carries out the feature recalibration through the squeeze and excitation
operations. In the squeeze operation, to obtain the channel-wise global information statics,
the 1× 1× 1× C-sized feature map is produced while maintaining the number of channels,
C, constant through the 3D global average pooling. In other words, the squeeze operation,
in which the cth channel of the 3D feature map U, i.e., Uc, is converted to the global
information statics, sc, though the 3D global average pooling, is calculated using the
following equation (D, H, and W represent depth, height, and width, respectively, and here,
the depth refers to the frame axis.):

sc =
1

D× H ×W

D

∑
i=1

H

∑
j=1

W

∑
k=1

Uc(i, j, k) (5)

The statics value obtained through the squeeze operation, sc, can be regarded as a
result of compressing the global spatiotemporal information by channel. Next, in the
excitation operation, two FC layers, the ReLU function, and the sigmoid function are used
to identify the channel-wise dependencies. During this process, to reduce the complexity
of the model, the bottleneck is derived by decreasing the number of nodes in the first FC
layer to 1

r . It was experimentally verified in the existing study [35] that removing biases
in the FC layer is effective for analyzing channel-wise dependencies and that the r value
for the suitable balance between the model complexity and accuracy is 16. Thus, in this
study, the biases were removed from the FC layer, and the reduction ratio r was set to a
value of 16. The equation for calculating the value, b, that derives the bottleneck in the
global information statics, s, though the first FC layer is as follows (P signifies the trainable
parameters of the first FC layer, and ω signifies the ReLU operation):

b = ω


 P1,1 · · · P1,c

...
. . .

...
Pc

r ,1 · · · Pc
r ,c




s1
s2
...

sc−1
sc



 (6)

After deriving the bottleneck through the first FC layer, the data length is set to be the
same as the number of channels through the second FC layer, and the data values are set
to be between 0 and 1 through the sigmoid function. Via this process, the channel-wise
dependencies can be identified, and the value for the activation of more important channels,
i.e., e, can be obtained. The equation for this process is as follows (p means the parameters
of the second FC layer, and µ means the sigmoid operation):

e = µ




p1,1 · · · p1, c
r

...
. . .

...
pc,1 · · · pc, c

r




b1
b2
...

b c
r−1
b c

r



 (7)

Lastly, through the scale operation that multiplies e by the feature map, U, channel-
wise, the recalibrated feature map, U′, can be obtained by emphasizing the channels with
more important information. One channel of the recalibrated feature map U′, namely U′c,
can be obtained by multiplying the scalar value, sc, by the 3D vector value of one channel
of U, Uc, and the equation for this process is as follows:

U′c = scUc (8)

Figure 3 shows the squeeze, excitation, and scale operations of the SE block that
recalibrate the feature map channel-wise, depending on the importance of each channel.
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Figure 3. 3D squeeze and excitation block. Fsqueeze is the squeeze operation, Fexcitation is the excitation
operation, and Fscale is the scale operation.

Figure 4 presents a comparison between the diagrams of the 3D convolutional layer
and the 3D convolutional layer with the SE block proposed in this study. As shown in
Figure 4, the 3D convolutional layer simply utilizes 3D convolutional filters, while the
3D convolutional layer with the SE block emphasizes more important channels through
squeeze and excitation operations.

Figure 4. Comparative diagrams of (a) the 3D convolutional layer and (b) the 3D convolutional layer
with the SE block.

3.4. Differences between the Proposed S3D and Previous Methods

• In the study [35] that proposes the SE block, the feature recalibration was carried
out considering only spatial dimensions (height × width), as it was only focused on
the 2D feature map. However, in this study, the feature recalibration was conducted
considering the spatiotemporal dimensions (depth × height × width), as it is focused
on the 3D feature map.

• In the study [5] that proposes the C3D, frames in several sections were uniformly
selected and used as the model input; thus, the model was repeatedly utilized in
the inference process. However, in this study, the model was used only once in the
inference process by selecting only keyframes and using them as the model input.
Moreover, by adding the SE block into the structure of the C3D model, the S3D model
that considers the information of the more important channel was newly proposed in
this study.

• In the study [24], the 3D CNN-based fall detection was performed. However, in this
study, a suitable structure of the 3D CNN model for an FDS was sought by utilizing
the SE block, and the S3D model-based FDS that is robust to environmental changes
was newly proposed.
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4. Experiments
4.1. Datasets and Experimental Environments

For the performance verification of the proposed method, the model performance was
compared using three fall detection open datasets composed of thermal videos. The three
datasets used in this study were the Thermal Simulated Fall dataset (TSF dataset) [21], the
Telerobotics and Control Lab fall detection dataset (TCL dataset) [24], and the eHomeSenior
dataset [37]. The TSF dataset consists of a total of 44 videos, including 35 fall videos with
a 640 × 480 pixels resolution and 9 ADL videos. The TCL dataset is composed of a total
of 1252 videos, including 421 fall videos with a 640 × 480 pixels resolution and 831 ADL
videos. The eHomeSenior dataset consists of one dataset with a 1 × 8 pixels resolution
and another with a 32 × 24 pixels resolution, and we chose to use the dataset with a
32 × 24 pixels resolution. A total of 448 fall accidents are included in the eHomeSenior
dataset. Similar to existing studies, the frames corresponding to the fall were annotated
from the videos, the other parts were regarded as ADL, and finally, they were classified into
a total of 921 videos, including 448 fall videos and 473 ADL videos [22]. Sample images of
the dataset used in this study are shown in Figure 5, and the composition of the dataset is
presented in Table 2. In addition, the detailed explanations of percentages of dataset used
for training and testing are shown in Table 2. For example, in case of the eHomeSenior
dataset, 322 (157 + 165) (35%), 138 (67 + 71) (15%), and 461 (224 + 237) (50%) videos among
a total of 921 (448 + 473) videos were used for training, validation, and testing, respectively.

Figure 5. Sample images of the TSF, TCL, and eHomeSenior datasets from the left. (a) Represents the
sample images of ADL videos, and (b) represents the sample images of fall videos.

The proposed method was implemented using OpenCV version 4.5.3 [38] and Pytorch
1.7.1 [39] in the Ubuntu 18.04 operating system (OS), NVIDIA compute unified device
architecture (CUDA) version 11.0 [40], and NVIDIA CUDA® deep neural network library
(CUDNN) version 8.0 [41]. The desktop computer used for the experiments included an
Intel® Core-i7-4770 central processing unit (CPU), 16 GB random access memory (RAM),
and an NVIDIA GeForce GTX Titan X graphic processing unit (GPU) [42].
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Table 2. Detailed information on datasets used in the comparative experiments of this study.

Dataset Resolution
(Width × Height) (Unit: Pixels)

Number of Fall Videos
(Training/Validation/Testing)

Number of ADL Videos
(Training/Validation/Testing) Total

TSF 640 × 480 35
(12/5/18)

9
(3/1/5) 44

TCL 640 × 480 421
(147/63/211)

831
(290/125/416) 1252

eHomeSenior 32 × 24 448
(157/67/224)

473
(165/71/237) 921

4.2. Training

To reduce the processing time and complexity of the S3D model, the TSF and TCL
datasets were resized to the resolution of 112× 112 pixels by bilinear interpolation. In terms
of the eHomeSenior dataset, the resolution of the original video was significantly lower
than this, as presented in Table 2; hence, the 32 × 24 pixels resolution was not modified. All
experiments were carried out using two-fold cross validation. To this end, as presented in
Table 2, approximately half of the fall and ADL videos in the TSF, TCL, and eHomeSenior
datasets were used as training data in the 1st fold validation, and the remaining videos
were used as testing data. Furthermore, 30% of videos of the training data were utilized
as validation data. Afterward, in the 2nd fold validation, the training and testing data
were swapped; the training, validation, and testing were conducted once more; and the
average performance of these two tests was determined to be the final testing accuracy.
Moreover, given the open world configuration, videos of the same scene were not included
in both training and testing data. Table 3 shows the hyperparameters used for the training
of our model.

Table 3. The hyperparameters of our proposed model.

Weight
Decay Loss Kernel

Initializer
Bias

Initializer Optimizer LEARNING
RATE Beta_1 Beta_2 Epsilon Batch Size

0.5 “binary
cross-entropy loss”

“He
uniform” “zeros” “adam” 0.0001 0.9 0.999 1 × 10−8 16

As a loss function of the proposed S3D model, the binary cross entropy loss [43]
was used. The kernels of the network were initialized to ‘He uniform’ [44], and the bias
was initialized to zero. For the model learning, the batch size was set at 16, and the
adaptive moment estimation (Adam) optimizer [45] was utilized. The beta values of the
Adam optimizer are 0.9 and 0.999, respectively, and the epsilon value is 1 × 10−8. For the
model learning, the batch size was set at 16, and the adaptive moment estimation (Adam)
optimizer was utilized. The training was carried out at the learning rate of 0.0001, while at
every 16th epoch, the learning rate decayed by half, and learning was performed. Figure 6
shows the training loss and validation loss graphs of the proposed method. As shown in
Figure 6, the training loss graphs converged with an increasing number of iterations, and
based on these results, it was identified that the proposed S3D model showed sufficient
learning about the training data. Furthermore, the validation loss graphs in Figure 6 also
converged with the increase of the number of iterations, and these results indicate that the
S3D model was not overfitted to the training data.
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Figure 6. Training loss and validation loss graphs of the S3D model with the (a) TSF dataset, (b) TCL
dataset, and (c) eHomeSenior dataset.

4.3. Experimental Results

The proposed models, including state-of-the-art models, were evaluated in terms of
accuracy, F1 score, Precision, and Recall. In addition, the assessment matrices are defined
as in [46].

Accuracy =
# of (TP + TN)

# of (TP + FN + FP + TN)
(9)

Recall =
# of (TP)

# of (TP + FN)
(10)

Precision =
# of (TP)

# of (TP + FP)
(11)

F1 score =
2RecallPrecision

Recall + Precision
(12)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false
negative, respectively. In particular, TP and TN are the correctly predicted positive (fall
class) and negative (no-fall class) cases by our proposed network, whereas FP and FN are the
incorrectly predicted positive and negative cases, respectively. ‘#’ means ‘the number of’.

4.3.1. TSF Dataset
Ablation Studies

Table 4 presents the ablation study results on using keyframes as the network input in
the C3D, a 3D CNN model that is the foundation of the S3D model proposed in this study,
and adding the SE block to the network. In the case of not using keyframes, the video clips
at a fixed length were randomly extracted from the videos during the training step, and
10 video clips at a fixed length were extracted by a constant interval, and the average value
of sigmoid scores was used for the prediction in the inference step, similar to the methods
used in previous studies [6,47]. As presented in Table 4, the F1 score of the case in which
the keyframes were used as the network input in the C3D model was 95.77%, whereas
that of the case where the SE block was added to the C3D model was 95.65%. Compared
with the F1 score of the case using only the C3D model, 94.29%, these two cases resulted
in higher F1 scores. Moreover, the S3D model, which is our proposed method using both
keyframes and an SE block, showed the best performance, with an F1 score of 97.14%.

Table 5 presents the experimental results on the effective improvement of the model
performance depending on the number of SE blocks and locations of the SE blocks in the
S3D model. Based on the experimental results, the F1 score obtained when the SE block
was added before or after all pooling layers with five SE blocks ranged between 95.65%
and 95.77%, and compared with the F1 score of 95.77%, obtained without the addition of
the SE block, the model performance was not improved. Furthermore, based on the results
of comparing the performance with different locations of the SE block in each pooling layer,
the F1 score of our proposed method, in which the SE block was added immediately after
the 5th pooling layer, was 97.14%, indicating the best performance.
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Table 4. Experimental results of the effect of keyframes and the SE block in the TSF dataset (unit: %).

Method Accuracy Recall Precision F1 Score

C3D 90.91 94.29 94.29 94.29

keyframes + C3D 93.18 97.14 94.44 95.77

C3D + SE block 93.18 94.29 97.06 95.65

keyframes + C3D + SE block
(Proposed method) 95.45 97.14 97.14 97.14

Table 5. Experimental results of the effect of the SE block location on the model performance in the
TSF dataset (unit: %).

Number of
SE Blocks Location of the SE Block Accuracy Recall Precision F1 Score

0 Without SE block 93.18 97.14 94.44 95.77

5
Before every pooling layer 93.18 94.29 97.06 95.65

After every pooling layer 93.18 97.14 94.44 95.77

1

Before the 1st pooling layer 93.18 97.14 94.44 95.77

After the 1st pooling layer 93.18 94.29 97.06 95.65

Before the 2nd pooling layer 93.18 94.29 97.06 95.65

After the 2nd pooling layer 93.18 97.14 94.44 95.77

Before the 3rd pooling layer 90.91 94.29 94.74 94.51

After the 3rd pooling layer 93.18 94.29 97.06 95.65

Before the 4th pooling layer 93.18 97.14 94.44 95.77

After the 4th pooling layer 93.18 97.14 94.44 95.77

Before the 5th pooling layer 93.18 94.29 97.06 95.65

After the 5th pooling layer
(proposed method) 95.45 97.14 97.14 97.14

Table 6 presents the performance of the S3D model, depending on the number of key
frames. Based on the experimental results, the F1 score with 8 key frames was 94.44%, that
with 16 key frames was 97.14%, and that with 32 key frames was 97.06%, indicating that
the performance with 16 key frames is the best.

Table 6. Comparison of performance of the number of key frames in the TSF dataset (unit: %).

Number of Key Frames Accuracy Recall Precision F1 Score

8 93.18 97.14 91.89 94.44

16 (proposed method) 95.45 97.14 97.14 97.14

32 95.45 94.29 100.00 97.06

Comparisons with State-of-the-Art Methods

In this study, for the comparison with state-of-the-art methods, experiments were
carried out using handcrafted-based existing studies [21] and deep learning-based existing
studies [5,6,24]. Because there are not many cases of investigating FDSs using thermal
videos, the deep learning-based methods resulting in a good performance in the action
recognition field [5,6] were also utilized for the comparative experiments. As presented in
Table 7, it was identified that our proposed method shows a higher recognition performance
compared with existing state-of-the-art methods in the TSF dataset.
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Table 7. Comparison with state-of-the-art methods on the TSF dataset (unit: %).

Method Accuracy Recall Precision F1 Score

Handcrafted-based Optical flow + FFT + SVM [21] 72.73 88.57 79.49 83.78

Deep learning-based

SlowFast Networks [6] 88.64 91.43 94.12 92.76

C3D [5] 90.91 94.29 94.29 94.29

Keyframes extraction
+ 3D CNN [24] 79.55 91.43 84.21 87.67

Proposed method 95.45 97.14 97.14 97.14

4.3.2. TCL Dataset
Ablation Studies

Table 8 shows the ablation study results on using the keyframes as the network input
in the C3D, a 3D CNN model that is the foundation of the S3D model proposed in this
study, and adding the SE block to the network. As shown in Table 8, the F1 score of the
case in which the keyframes were used as the network input in the C3D model was found
to be 88.68%, and that of the case where the SE block was added to the C3D model was
80.99%. Compared with the F1 score of the case using only the C3D model, which was
79.84%, these two cases resulted in higher F1 scores. Furthermore, the S3D model, which is
our proposed method using both keyframes and an SE block, showed the best performance,
with an F1 score of 95.30%.

Table 8. Experimental results of the effect of keyframes and SE block in the TCL dataset (unit: %).

Method Accuracy Recall Precision F1 Score

C3D 84.35 92.38 70.29 79.84

keyframes + C3D 92.16 91.43 86.10 88.68

C3D + SE block 85.30 93.33 71.53 80.99

keyframes + C3D + SE block
(Proposed method) 96.89 94.06 96.59 95.30

Table 9 presents the experimental results on the effective improvement of the model
performance depending on different numbers of SE blocks and locations of the SE block
in the S3D model. Based on the experimental results, the F1 score obtained after the
addition of the SE block showed a higher F1 score at all times compared with the case
with no addition of SE block, regardless of the location of the SE block. Moreover, when
the SE block was added to the rear pooling layer rather than the front pooling layer, the
performance was more significantly improved. This can be attributed to the fact that the
feature map obtained from the rear pooling layer has better information to classify the
classes channel-wise. Furthermore, the range of the F1 score obtained after adding the SE
block was 92.95–95.30%, suggesting significantly improved performance compared to the
F1 score of 88.68% obtained with no addition of an SE block. The F1 score of our proposed
method, in which the SE block was added immediately after the last 5th pooling layer, was
found to be 95.30%, indicating the best performance.

Table 10 presents the performance of the S3D model depending on the number of key
frames. Based on the experimental results, the F1 score with 8 key frames was 92.49%, that
with 16 key frames was 95.30%, and that with 32 key frames was 94.14%, indicating that
the performance with 16 key frames is the best.
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Table 9. Experimental results of the effect of the SE block location on the model performance in the
TCL dataset (unit: %).

Number of
SE Blocks Location of the SE Block Accuracy Recall Precision F1 Score

0 Without SE block 92.16 91.43 86.10 88.68

5
Before every pooling layer 95.37 90.51 95.52 92.95

After every pooling layer 95.61 91.92 94.88 93.38

1

Before the 1st pooling layer 95.45 93.58 92.98 93.28

After the 1st pooling layer 95.69 91.69 95.32 93.47

Before the 2nd pooling layer 95.29 90.25 97.40 93.69

After the 2nd pooling layer 95.45 91.92 94.44 93.16

Before the 3rd pooling layer 95.93 90.25 97.40 93.69

After the 3rd pooling layer 95.85 92.16 95.35 93.73

Before the 4th pooling layer 96.25 92.16 96.56 94.31

After the 4th pooling layer 96.25 93.58 95.20 94.38

Before the 5th pooling layer 96.57 93.82 95.88 94.84

After the 5th pooling layer
(proposed method) 96.89 94.06 96.59 95.30

Table 10. Comparison of performance of the number of key frames in the TCL dataset (unit: %).

Number of Key Frames Accuracy Recall Precision F1 Score

8 95.01 93.33 91.67 92.49

16 (proposed method) 96.89 94.06 96.59 95.30

32 96.17 96.50 91.90 94.14

Comparisons with State-of-the-Art Methods

Table 11 presents the comparison of the performance of the S3D model proposed in this
study with that of state-of-the-art methods. As presented in Table 11, it was identified that
our proposed method showed a higher recognition performance compared with existing
state-of-the-art methods in the TCL dataset. In particular, our proposed method showed
6.65% higher accuracy, 4.06% higher recall, 14.06% higher precision, and a 9.2% higher F1
score compared to the existing state-of-the-art methods.

Table 11. Comparison with the state-of-the-art methods on the TCL dataset (unit: %).

Method Accuracy Recall Precision F1 Score

Handcrafted-based Optical flow + FFT + SVM [21] 74.44 72.86 59.77 65.67

Deep learning-based

SlowFast Networks [6] 77.64 86.19 61.99 72.11

C3D [5] 84.35 92.38 70.29 79.84

Keyframes extraction + 3D CNN [24] 90.24 90.00 82.53 86.10

Proposed method 96.89 94.06 96.59 95.30

4.3.3. eHomeSenior Dataset
Ablation Studies

Table 12 presents the ablation study results on using the keyframes as the network
input in the C3D, a 3D CNN model that is the foundation of the S3D model proposed in
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this study, and adding the SE block to the network. As shown in Table 12, the F1 score of
the case in which the keyframes were utilized as the network input in the C3D model was
96.74%, and that of the case in which the SE block was added to the C3D model was 96%.
Compared with the F1 score of the case using only the C3D model, which was found to be
95.28%, these two cases resulted in higher F1 scores. Moreover, the S3D model, which is
our proposed method using both keyframes and an SE block, showed the best performance
with an F1 score of 98.89%.

Table 12. Experimental results of the effect of keyframes and SE block in the eHomeSenior dataset
(unit: %).

Method Accuracy Recall Precision F1 Score

C3D 95.28 97.76 92.93 95.28

keyframes + C3D 96.81 96.36 97.13 96.74

C3D + SE block 95.79 97.52 94.53 96.00

keyframes + C3D + SE block
(Proposed method) 98.91 98.46 99.33 98.89

Table 13 shows the experimental results on the effective improvement of the model
performance depending on different numbers of SE blocks and locations of the SE block in
the S3D model. Based on the experimental results, the F1 score obtained after the addition
of the SE block showed a higher F1 score at all times compared with the case with no
addition of an SE block, regardless of the location of the SE block. Furthermore, the F1
score of our proposed method, in which the SE block was added immediately after the 5th
pooling layer, was found to be 98.89%, indicating the best performance.

Table 13. Experimental results of the effect of the SE block location on the model performance in the
eHomeSenior dataset (unit: %).

Number of
SE Blocks Location of the SE Block Accuracy Recall Precision F1 Score

0 Without SE block 96.81 96.36 97.13 96.74

5
Before every pooling layer 97.31 98.38 96.18 97.27

After every pooling layer 97.59 97.56 97.46 97.51

1

Before the 1st pooling layer 97.45 97.32 94.63 95.96

After the 1st pooling layer 97.59 97.45 97.66 97.55

Before the 2nd pooling layer 97.79 97.30 98.08 97.69

After the 2nd pooling layer 97.45 97.51 97.42 97.46

Before the 3rd pooling layer 97.53 96.84 98.08 97.46

After the 3rd pooling layer 97.45 98.35 96.49 97.41

Before the 4th pooling layer 96.85 96.90 96.71 96.80

After the 4th pooling layer 97.65 97.48 97.66 97.57

Before the 5th pooling layer 97.49 97.79 97.16 97.47

After the 5th pooling layer
(proposed method) 98.91 98.46 99.33 98.89

Table 14 presents the performance of the S3D model depending on the number of key
frames. Based on the experimental results, the F1 score with 8 key frames was 97.81%, that
with 16 key frames was 98.89%, and that with 32 key frames was 98.02%, indicating that
the performance with 16 key frames is the best.
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Table 14. Comparison of performance of the number of key frames in the eHomeSenior dataset
(unit: %).

Number of Key Frames Accuracy Recall Precision F1 Score

8 97.83 96.54 99.11 97.81

16 (proposed method) 98.91 98.46 99.33 98.89

32 98.05 96.96 99.11 98.02

Comparisons with State-of-the-Art Methods

Table 15 shows the comparison of the performance of the S3D model proposed in this
study with that of state-of-the-art methods. As shown in Table 15, it was identified that
our proposed method showed higher recognition performance compared with existing
state-of-the-art methods in the eHomeSenior dataset. In particular, our proposed method
showed 2.99% higher accuracy, 2.41% higher recall, 3.31% higher precision, and a 2.86%
higher F1 score compared to the existing state-of-the-art methods.

Table 15. Comparison with the state-of-the-art methods on the eHomeSenior dataset (unit: %).

Method Accuracy Recall Precision F1 Score

Handcrafted-based Optical flow + FFT + SVM [21] 76.37 75.33 75.67 75.50

Deep learning-based

SlowFast Networks [6] 94.20 95.29 93.98 94.63

C3D [5] 95.28 97.76 92.93 95.28

Keyframes extraction + 3D CNN [24] 95.92 96.05 96.02 96.03

Proposed method 98.91 98.46 99.33 98.89

4.3.4. Comparative Processing Complexities of the Proposed Method and the
State-of-the-Art Methods

In the next experiments, the comparative processing time of the proposed method and
the state-of-the-art methods were measured in the environment with a desktop computer
including an NVIDIA GeForce GTX Titan X GPU and the Jetson TX2 board (NVIDIA Corp.,
Santa Clara, CA, USA) [48] (Figure 7), as described in Section 4.1, and the results are shown
in Table 16. The NVIDIA GeForce GTX Titan X GPU has 3072 CUDA cores and 12 GB
memory, and the Jetson TX2 board has 256 CUDA cores, 8 GB 128-bit LPDDR4 memory,
and a dual-core NVIDIA Denver 2 64-bit CPU. The power consumption of the Jetson
TX2 board is less than 7.5 W. The proposed method was ported with Pytorch 1.7.1 [39]
in Ubuntu 18.04 OS. The versions of the installed framework and library include Python
3.8.5; NVIDIA CUDA® toolkit [40] and NVIDIA CUDNN [41] versions are 10.2 and 8.0,
respectively.

Figure 7. Jetson TX2 board.

The processing time per frame of the desktop computer for the TSF dataset and
TCL dataset that are inputs to the S3D model with the resolution of 112 × 112 pixels
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was 45.37 ms, and the processing time per frame of the Jetson TX2 board was 168.62 ms.
Moreover, the processing time per frame of the desktop computer for the eHomeSenior
dataset that is input to the S3D model with the resolution of 32 × 24 pixels was 6.68 ms,
and the processing time per frame of the Jetson TX2 board was 23.18 ms. Based on these,
it was identified that the method proposed in this study shows the processing speed of
22.04 (1000/45.37) frames per second (fps) to 149.7 (1000/6.68) fps on the desktop computer.
Furthermore, it was identified as having a processing speed of 5.93 (1000/168.62) fps to
43.14 (1000/23.18) fps in the Jetson TX2. The training of our algorithm was performed
on the desktop computer. Then, the trained algorithm was transferred to the Jetson TX2
embedded system, and it could only be operated on the embedded system without training.
Therefore, the processing speed was as fast as 5.93~43.14 fps on the embedded system, as
shown in Table 16. Based on these results, it was verified that the method proposed in this
study is applicable to embedded systems with limited computing resources and power. In
addition, the comparative processing time of proposed and the state-of-the-art methods
are shown in Table 16. Although the processing speed of proposed method was slightly
slower than other methods, our method shows a higher accuracy of fall detection than the
state-of-the-art methods, as shown in Tables 7, 11 and 15.

Table 16. Comparative processing time of the proposed method and the state-of-the-art methods.

Method Environment Processing Time on
TSF, TCL Dataset

Processing Time on
eHomeSenior Dataset

Optical flow + FFT + SVM [21]
Desktop 20.35 ms (49.14 fps) 9.4 ms (106.38 fps)

Jetson TX2 104.21 ms (9.60 fps) 41.63 ms (24.02 fps)

SlowFast Networks [6]
Desktop 35.82 ms (27.92 fps) 5.6 ms (178.57 fps)

Jetson TX2 136.47 ms (7.33 fps) 20.89 ms (47.87 fps)

C3D [5]
Desktop 45.09 ms (22.18 fps) 6.64 ms (150.6 fps)

Jetson TX2 167.11 ms (5.98 fps) 22.57 ms (44.31 fps)

Keyframes extraction
+ 3D CNN [24]

Desktop 30.02 ms (33.31 fps) 4.39 ms (227.79 fps)

Jetson TX2 117.38 ms (8.52 fps) 17.03 ms (58.72 fps)

Proposed method
Desktop 45.37 ms (22.04 fps) 6.68 ms (149.7 fps)

Jetson TX2 168.62 ms (5.93 fps) 23.18 ms (43.14 fps)

Table 17 presents the comparative Giga floating operations per second (GFLOPS)
required for operating our proposed method and the state-of-the-art methods in each
dataset. With the TSF and TCL datasets, which include high-resolution images, the GFLOPS
of our proposed method was 75.82, and the GFLOPS of our proposed method with the
eHomeSenior dataset, which includes low-resolution images, was 4.62, which confirms that
the computation is significantly reduced in low-resolution images. Although the GFLOPS
of the proposed method was slightly larger than other methods, our method shows a higher
accuracy of fall detection than the state-of-the-art methods, as shown in Tables 7, 11 and 15.

Table 17. Comparative GFLOPS of the proposed method and the state-of-the-art methods.

Method With TSF and TCL Datasets With eHomeSenior Dataset

Optical flow + FFT + SVM [21] 34.91 6.61

SlowFast Networks [6] 62.17 3.97

C3D [5] 75.35 4.61

Keyframes extraction + 3D CNN [24] 51.22 3.15

Proposed method 75.82 4.62
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4.4. Discussion

Figure 8 shows the case with the correct detection of a fall and ADL cases using the
method proposed in this study. As shown in this figure, it was identified that even in the
case of a fall that occurs while getting out of bed and ADL that sits down, the correctly
detected results were obtained by the proposed method.

Figure 9 presents the case with the incorrect detection of a fall and ADL cases using
the method proposed in this study. Figure 9a shows the case of incorrectly recognizing a
fall case as an ADL case, and Figure 9b shows the case of incorrectly recognizing an ADL
case as a fall case. As presented in this figure, the case of incorrectly recognizing a fall case
as an ADL case took place when a person fell in the opposite direction to the camera, and
that of incorrectly recognizing an ADL case as a fall case occurred when a person changed
his posture on the bed.

Unlike a fall, which can be defined by a few cases, such as standing and falling or
sitting and falling, ADL indicates all situations except for a fall; hence, the pattern of fall
videos is relatively simple, and the data diversity is low. Therefore, it can be expected
that if the learned model distinguishes these characteristics of a fall video, the prediction
performance will be improved. Figure 10 shows graphs of activation values by channel of
the SE block in fall and ADL videos obtained during the learning of the S3D model. As
shown in these graphs, the activation by channel of the fall video shows a small variation,
whereas the activation by channel of the ADL video shows a relatively larger variation.
Such a difference suggests that the diversity of the fall video data is relatively smaller than
that of the ADL video, and the SE block identified these characteristics of the fall video
well. It can be interpreted that the SE block differently applies the location and intensity of
the channel emphasized in fall and ADL videos and provides important information for
fall detection.

Because it is difficult to rely on and use the learned model without knowing on which
part the model draws a conclusion, in this study, a basis for fall detection of the S3D
model was analyzed by visualizing the activation maps based on the features learned using
Grad-CAM [49]. Figure 11 presents the results of the activation maps visualized using the
keyframes extracted from the image sequence samples of the TSF, TCL, and eHomeSenior
datasets alongside Grad-CAM. In the activation maps, the areas with a high feature value
have a bright pixel value close to red, and the areas with a low feature value have a dark
pixel value close to blue.

Figure 8. Correct detection of (a) fall and (b) ADL cases.

Based on the keyframes and activation maps presented in Figure 11, it was found that
the learned S3D model can accurately identify the area where a person is located and their
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movement. Because it is a key to accurately identify the information on the location and
movement of a person for fall detection, it was concluded on the basis of these results that
the S3D model was well-learned.

Figure 9. Incorrect detection of (a) fall and (b) ADL cases.

Figure 10. Activation intensity by the channel of the SE block in fall and ADL videos.

Figure 11. Example of activation maps. (a) Keyframes of the TSF dataset; (b) activation map results
of (a); (c) keyframes of the TCL dataset; (d) activation map results of (c); (e) keyframes of the
eHomeSenior dataset; (f) activation map results of (e).

As a last discussion, the theoretical comparison between the existing studies on FDSs
(explained in Section 2) and the proposed method are tabulated in Table 18.



Mathematics 2022, 10, 328 21 of 24

Table 18. Comparisons of previous and proposed methods on fall detection.

Categories Method Advantages Disadvantages

Wearable device-based
Accelerometer

Magnitude thresholding [8] It has a very low calculation volume, and hence, it
can use a low-specification processor.

As it only considers the magnitude, there is a high
probability of faulty detection in the presence of a
dynamic movement.

Decision tree + state machine [9] As it learns the thresholding value from the data,
the data characteristics are well-reflected.

It still depends on the learned fixed threshold value,
and the sensor should be attached to the body or be
worn.

Fusing accelerometer and
gyroscope

Thresholding of the changes of
acceleration and angle [10,11]

It is relatively more accurate than using a single
sensor.

- It could not detect slow falling.
- The sensor should be attached to the body or be worn.

Ambient device-based

Radar Autoencoder + Logistic Regression [14]
It detects well at both long and short distances, and
it has fewer concerns about privacy invasion
compared with cameras.

The sensor is relatively expensive.

Ultrasonic Event pattern matching [15] The sensor price is low, and there are fewer
concerns about privacy invasion.

There is a high probability of misclassification in cases
in which there exist other moving objects, such as pets
or robotic vacuums.

Vision-based

Visible light camera Foreground extraction + optical flow +
KNN [17]

The spatial information can be utilized for the
prediction. It is vulnerable to privacy problems.

Depth camera

ROI detection + thresholding of the
changes of pixel positions [18]

As it is not a training-based method, it does not
require much data for building a model. Because it does not consider the moving speed or

direction, errors could occur in the actual environment.

Outline detection + thresholding of
tangential distribution [19]

The spatial information can be well-detected, even
in the dark.

If there are many other objects nearby, the accuracy
could decrease.

Thermal
camera

Histogram + SVM [20] Because of the fewer features used, the calculation
speed is relatively fast.

The accuracy cannot be guaranteed if the environment
is different from the environment where the training
data were obtained.

Optical flow + FFT + SVM [21] The accuracy change is not significant in the
databases in different environments. The accuracy of the fall detection is low.

ConvLSTM + autoencoder [22,23] It is a network with a recurrent structure and can
extract the temporal information well.

If there is a movement pattern that was not learned
with the training dataset, the risk of misclassification
increases.

Keyframes extraction + 3D CNN [24] It is efficient because it uses only keyframes as the
network input.

- The calculation of optical flow for extracting
keyframes is slow.
- The accuracy decreases under various environmental
changes.

Keyframes extraction + 3D CNN with SE
block (Proposed)

The fall detection is conducted at a high accuracy
by considering the spatiotemporal information
through the SE block.

The calculation of optical flow for extracting keyframes
is slow.
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5. Conclusions

In this study, we newly proposed an S3D-based FDS method. In the proposed method,
keyframes are extracted using the magnitudes of the optical flow vectors in input thermal
videos, the extracted keyframes are used as the input of the 3D CNN with an SE block
applied, and fall detection is carried out based on the output values of the 3D CNN.

In this study, comparative experiments were performed using three open databases of
thermal videos with different image resolutions. Our proposed method obtained F1 scores
of 97.14%, 95.30%, and 98.89% in the TSF, TCL, and eHomeSeniors datasets, respectively,
and it was identified that these results are superior to those obtained using state-of-the-art
methods. Moreover, it was confirmed that the proposed method proposed is applicable
not only to desktop computers, but also to embedded systems with limited computing
power and resources. On the basis of an activation map analysis through Grad-CAM, it was
identified that the proposed S3D model was learned such that it could extract the features
for fall detection well.

The reason for the higher recognition accuracy in the eHomeSeniors dataset with
low resolution compared with the other two databases is that there were relatively fewer
background noise components apart from the target in the input video, owing to the low
video resolution. However, the method proposed in this study resulted in an error in the
case of falling in the opposite direction to the camera.

In future work, we would research fall detection methods robust to the various
directions of the fall based on the camera. In addition, we would research fall detection
methods in severe environments of extremely low resolution or optical and motion blurring
in the captured thermal images.
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