
����������
�������

Citation: Xu, B.; Li, B.

Event-Triggered State Estimation for

Fractional-Order Neural Networks.

Mathematics 2022, 10, 325. https://

doi.org/10.3390/math10030325

Academic Editor: Dimplekumar

N. Chalishajar

Received: 16 December 2021

Accepted: 18 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Event-Triggered State Estimation for Fractional-Order
Neural Networks

Bingrui Xu and Bing Li *

School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China;
631610010402@mails.cqjtu.edu.cn
* Correspondence: bingli@cqjtu.edu.cn

Abstract: This paper is concerned with the problem of event-triggered state estimation for a class of
fractional-order neural networks. An event-triggering strategy is proposed to reduce the transmis-
sion frequency of the output measurement signals with guaranteed state estimation performance
requirements. Based on the Lyapunov method and properties of fractional-order calculus, a suffi-
cient criterion is established for deriving the Mittag–Leffler stability of the estimation error system.
By making full use of the properties of Caputo operator and Mittag–Leffler function, the evolution
dynamics of measured error is analyzed so as to exclude the unexpected Zeno phenomenon in the
event-triggering strategy. Finally, two numerical examples and simulations are provided to show the
effectiveness of the theoretical results.

Keywords: fractional-order neural networks; state estimation; Mittag–Leffler stability; event-triggered
mechanism; zeno phenomenon

1. Introduction

Last decades have witnessed the rapid development of the theory of the neural net-
work (NN) because of its wide applications in pattern recognition, signal processing, global
optimization, associative memory, parallel computation, classification, and optimization.
For NNs, each neuron is usually considered a node which can receive inputs from other
nodes or from outside sources. Different outputs are generated by different activation
functions for fitting a certain target [1–4]. In such practical applications, the state informa-
tion of neurons is necessary for analyzing the dynamical behaviors of networks, including
stability, boundedness or synchronization and carrying out the control design with state
feedback [5–12]. Unfortunately, it is often difficult, even impossible, to fully acquire the in-
formation of neuron state due to some constraints from equipment, resources or techniques.
In fact, only partial information (such as the output of the neural network) can be measured
and utilized. As such, the problem of state estimation has received much research attention
and played a critical role in neural network analysis and design. Until now, more and more
efforts have been devoted to the state estimation for NNs, and a large number of research
papers have been published to address this topic (see [13–15]).

It is well known that fractional calculus can be regarded as an extension from integer
calculus to arbitrary calculus. Compared with the classical integer-order systems, fractional-
order systems have already shown distinguished superiority in characterizing infinite
memory and hereditary properties of systems. Over the past few years, fractional-order
systems have found wide applications in many fields, such as signal processing, chaotic
systems, electrical circuits, robotics and mechanical systems bioengineering, and fluid
mechanics [16]. Since the fractional-order derivative provides neurons with a fundamental
and general computational ability, which contributes to efficient information processing
and frequency independent phase shifts in oscillatory neuronal firings, scholars have
introduced fractional-order calculus into neural networks to establish the fractional-order
neural network (FONN) [17–19]. Until now, a great number of research papers have been
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published to address the stability, synchronization, chaos and other dynamical behaviors
for FONNs by using frequency domain methods, linear matrix inequality methods and
conversion methods [20]. Recently, the state estimation problem for FONNs has also
aroused some initial research interest [21–23].

Meanwhile, owing to the obvious advantages and great significance in reducing
the communication burden and energy consumption, the event-triggering mechanism
has attracted increasing research attention for dealing with remote estimation. Different
from the classical time-triggered mechanism, the event-triggering mechanism performs
the updating and transmission of information between the sensors and the estimator
when a presetting event happens. Due to the characteristics of aperiodic transmission,
ETM has been proved to be an effective methodology to reduce the updating frequency
while guaranteeing the desired estimation performance for error systems [24–28]. Over
the past years, the ETM has stirred up a lot of research enthusiasm and was introduced
to address the stabilization, consensus, synchronization and state estimations [29–32].
Recently, several initial efforts were devoted to the problem of event-triggered control for
fractional-order systems [33,34]. However, to the best of authors’ knowledge, the event-
triggered state estimation (ETSE) for FONN has not been fully discussed yet, despite its
important practical significance.

Based on the above discussion, this paper aims to investigate the ETSE for FONNs.
Generally speaking, there are two technical challenges in this research. The first one is
how to design a state estimator to asymptotically track the real information of the state
for the fractional-order neural network. The second one is how to design an effective
event-triggering mechanism for reducing the updating frequency while maintaining the
desired estimation performance. The main contributions are highlighted as follows:

1. The ETSE problem is, for the first time, investigated for a class of FONNs with the
Caputo fractional derivative. A sufficient criterion is established to ensure the global
Mittag–Leffler stability of the estimation error system.

2. The even-triggering mechanism is designed by taking the continuous output measure-
ment as the triggering threshold. The Zeno phenomenon is excluded by combining
the properties of the fractional-order derivative and Gamma function.

3. An algorithm for deriving the gain matrix is proposed in the form of LMIs, which is
readily conducted by using Matlab Toolbox.

The rest of this paper is organized as follows: Section 2 proposes a class of fractional-
order nonlinear neural networks and some preliminaries. In Section 3, three main results are
obtained, with the first one ensuring the Mittag–Leffler stability for error system based on
the Lyapunov method, the second one giving a algorithm for designing the corresponding
estimator gain and event-triggering parameters by solving a set of matrix inequalities,
and the third one excluding the Zeno behavior of ETM by resorting to the positive lower
of triggering instant interval. In Section 4, two numerical examples and simulations are
provided to illustrate the effectiveness of the theoretical results. Finally, some conclusions
are drawn in Section 5.

Notations: Rn is the set of n−dimensional real vectors. For a given vector x ∈ Rn, ‖x‖
denotes the Euclidean norm, which is defined by ‖x‖ =

(
∑n

i=1 x2
i
) 1

2 . Rn×n denotes the set
of all n× n real matrices. For X ∈ Rn×n, XT and X−1 stand for the transpose and inverse of
X, respectively. ‖X‖ denotes its spectral norm, which is defined by ‖X‖ =

√
λmax(XTX).

λmax(X) and λmin(X) represent the maximum and minimum eigenvalues of X, respectively.
diag{· · · } denotes the block-diagonal matrix. For a given symmetric matrix X ∈ Rn×n,
X > 0 (X < 0) means that X is positive definite (negative definite).

2. Model Description and Preliminaries

Generally speaking, there are three common fractional derivatives, including the
Grünwald–Letnikov fractional derivative, Riemann–Liouville fractional derivative as well
as the Caputo fractional derivative, which have been widely used in practical applications.
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In our paper, the Caputo fractional derivative is adopted due mainly to its significant
physical interpretation of the initial conditions.

Definition 1 ([35]). For an integrable function f : [t0,+∞) → R, the Riemann–Liouville
fractional integral with order α > 0 is defined by

C
t0

D−α
t f (t) =

1
Γ(α)

∫ t

t0

f (τ)

(t− τ)1−α
dτ, (1)

where Γ(z) =
∫ ∞

0 e−ttz−1dt, (Re(z) > 0) is the Gamma function and Re(z) is the real part of
complex number z.

Definition 2 ([35]). For a function f (t) ∈ Cn([t0,+∞],R), the α-order Caputo’s fractional
derivative is defined as

C
t0

Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)1−α−n dτ (2)

for t > t0, n ∈ N+ and α ∈ (n− 1, n). Particularly, when α ∈ (0, 1), we derive

C
t0

Dα
t f (t) =

1
Γ(1− α)

∫ t

t0

f
′
(τ)

(t− τ)α dτ. (3)

The following properties of Caputo operators are employed in later discussion.

Property 1 ([16]). For any real numbers a, b and differentiable functions f (t), g(t), it holds that

C
t0

Dα
t [a f (t) + b g(t)] = a C

t0
Dα

t f (t) + b C
t0

Dα
t g(t). (4)

Property 2 ([16]). For 0 < α < 1, if we take the fractional integral of order α to C
t0

Dα
t f (t), then

C
t0

D−α
t

(
C
t0

Dα
t f (t)

)
= f (t)− f (t0). (5)

Lemma 1 ([36]). Let x(t) ∈ Rn be a vector of differentiable functions. Then, for any time instant
t > t0, the following relationship holds

1
2

C
t0

Dα
t (xT(t)Px(t)) 6 xT(t) P C

t0
Dα

t x(t), ∀α ∈ (0, 1], (6)

where P ∈ Rn×n is a symmetric and positive definite matrix.

Lemma 2 ([37]). Let X, Y ∈ Rn, ε > 0, then one has

XTY + YTX 6 εXTX + ε−1YTY. (7)

Lemma 3 (Schur Complement, [38]). The matrix

Q =

[
Q11 Q12
QT

12 Q22

]
< 0, (8)

if and only if conditions (a) or (b) holds

(a) Q22 < 0, Q11 −Q12Q−1
22 QT

12 < 0,
(b) Q11 < 0, Q22 −QT

12Q−1
11 Q12 < 0.

(9)
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In what follows, we give a definition of the Mittag–Leffler function which is frequently
used in the dynamic analysis for solutions of fractional order systems. Let α > 0, β > 0, z ∈ C.
The two-parameter Mittag–Leffler function is defined to be

Eα,β(z) =
+∞

∑
j=0

zj

Γ(αj + β)
, (10)

in which Γ(·) is the Gamma function. Specially, when β = 1, the one-parameter Mittag–
Leffler function is obtained as

Eα,1(z) =
+∞

∑
j=0

zj

Γ(αj + 1)
, (11)

which is denoted by Eα(z) in the next discussion for the convenience of notations.
Consider an n−dimensional fractional-order system with α-order Caputo derivative

as follows {
C
t0

Dα
t x(t) = h(t, x(t)), t>t0,

x(t0) = xt0 ,
(12)

where α ∈ (0, 1), x = (x1, x2, . . . , xn)
T ∈ Rn and h : [t0,+∞) × Rn → Rn is piecewise

continuous on t and satisfies the locally Lipschitz condition with respect to x. Here, we
suppose x̄ = 0 is the equilibrium point of (12), namely, h(t, 0) = 0.

Definition 3 ([20]). The equilibrium point x̄ = 0 of fractional-order system (12) is said to be
globally stable if, for any initial values xt0 ∈ Rn, there exists ε > 0 such that any solution x(t)
of (12) satisfies ‖x(t)‖ < ε, for all t > t0. The zero solution is said to be asymptotically stable if, in
addition to being stable, ‖x(t)‖ → 0 as t→ +∞.

Definition 4 (Mittag-Leffler Stability, [39]). The equilibrium point x̄ = 0 of fractional-order
system (12) is said to be Mittag–Leffler stable if

‖x(t)‖ 6
[
m(xt0)Eα

(
−λ(t− t0)

α)]b, (13)

where α ∈ (0, 1), λ > 0, b > 0, m(0) = 0, and m(x) > 0 satisfies the local Lipschitz condition on
x ∈ Rn with Lipschitz constant m0.

Lemma 4 ([40]). If there exist positive constants αi (i = 1, 2, 3), a, b and vector-valued function
V(t, x) : [t0, ∞)×Rn → R satisfying

α1‖x‖a 6 V(t, x(t)) 6 α2‖x‖ab, (14)

C
t0

Dα
t V(t, x(t)) 6 −α3‖x‖ab (15)

for t > t0, x ∈ Rn, then x̄ = 0 is globally Mittag–Leffler stable.

For the simplicity of notations, we denote C
t0

Dα
t x(t) by Dαx(t) if no confusion occurs.

Consider the following fractional-order neural network:{
Dαx(t) = Ax(t) + B f̃ (x(t)), t ≥ 0,

y(t) = Cx(t),
(16)

where 0 < α 6 1. x = [x1, x2, · · · , xn]
T is the state variable of neurons. y = [y1, y2, · · · , yn]

T

stands for the measurement output of neural network. f̃ (x) =
[

f̃1(x1), f̃2(x2), · · · , f̃n(xn)
]T

represent the nonlinear activation functions of neurons. A = diag{a1, a2, · · · , an} > 0
represents the self-feedback connection weight. B ∈ Rn×n stands for the connection weight
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matrix for nonlinear activation functions. C ∈ Rn×n is for the known matrix associated
with the measurement output.

Without loss of generality, we give the following assumption on the nonlinear activa-
tion functions in model (16).

Hypothesis 1. There are constants s−i , s+i (i = 1, 2, · · · , n) such that neuron activation functions
f̃i(·) satisfy

s−i 6
f̃i(x1)− f̃i(x2)

x1 − x2
6 s+i

for any x1, x2 ∈ R and x1 6= x2. Especially, f̃i(0) = 0 for i = 1, 2, · · · , n.

For computational convenience, we use the following notations throughout this paper.

L1 = diag{s−1 s+1 , s−2 s+2 , · · · , s−n s+n }, L2 = diag

{
s−1 + s+1

2
,

s−2 + s+2
2

, · · · ,
s−n + s+n

2

}
.

In order to obtain the accurate estimation of the neuron state, we design a state
estimator as follows{

Dα x̂(t) = Ax̂(t) + B f̃ (x̂(t)) + K(ŷ(t)− y(tk)), t ≥ 0,

ŷ(t) = Cx̂(t)
(17)

in which x̂(t) ∈ Rn denotes the estimation of real state vector x(t) for neurons. ŷ(t) ∈ Rn

represents the output of the state estimator. K ∈ Rn×n stands for the gain matrix of the
estimator, which is designed later.

Within the limited communication resources, we introduce the event-triggered mecha-
nism (between the output measurement sensors and the estimator) so as to save the band-
width of communication network and energy of the sensors. Denote by {tk|k = 1, 2, · · · }
the sequence of event-triggering instants which are determined as

tk+1 = inf{t > tk | ‖y(t)− y(tk)‖ > γ ‖y(tk)‖ }, (18)

where y(tk) is the latest sampled measurement output signal, and γ > 0 denotes the
event-triggering threshold constant to be designed.

Remark 1. In the whole estimation scheme, the event-generator needs to monitor the output
measurement continuously, which could be implemented by a hard-ware event detector with the
custom analog integrated circuits or floating point gate array processors. This mechanism ensures
higher robustness since the system is monitored continuously.

Denote by e(t) = x(t)− x̂(t) the estimation error vector (between the real state x(t)
and its estimation x̂(t)) and let δ(t) = x(t)− x(tk). By following from (16), (17) and (18),
the compact form of estimation error system is concluded as

Dαe(t) = (A− KC)e(t) + B f (e(t)) + KCδ(t), t ∈ [tk, tk+1), (19)

where f (e(t)) = f̃ (x(t))− f̃ (x̂(t)).

3. Main Results

Theorem 1. Suppose that (H1) holds and two positive constants ε1, ε2, and matrix K are given.
The error system (19) is Mittag–Leffler stable, if there exist a symmetric and positive definite
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matrix P ∈ Rn×n, and a positive semidefinite matrix R ∈ Rn×n such that the following matrix
inequality holds:

Π =

 Π11 RL1 + RL2 0
0 1

ε1
BT B− R 0

0 0 − 1
ε2

I

 < 0, (20)

in which

Π11 = PA + AT P− PKC− CTKT P− L1RL2 + ε1PP + ε2PKCCTKT P. (21)

Proof. Consider the Lyapunov function as follows

V(t, e(t)) = eT(t)Pe(t).

Firstly, it is easy to derive that

λmin(P) ‖e(t)‖2 6 V(t, e(t)) 6 λmax(P) ‖e(t)‖2, (22)

which means that condition (14) holds with α1 = λmin(P), α2 = λmax(P), a = 2, and b = 1.
By taking the α-order Caputo derivative of V(t, e(t)) along the solution of (19) and

combining with Lemma 1, we conclude that

DαV(t, e(t)) = Dα
(

eT(t)Pe(t)
)

6 eT(t)P(Dαe(t)) + (Dαe(t))T Pe(t)

6 eT(t)P[(A− KC)e(t) + B f (e(t)) + KCδ(t)]

+ [(A− KC)e(t) + B f (e(t)) + KCδ(t)]T Pe(t)

6 eT(t)
[

PA + AT P− PKC− CTKT P
]
e(t)

+ eT(t)PB f (e(t)) + f T(e(t))BT Pe(t)

+ eT(t)PKCδ(t) + δT(t)CTKT Pe(t).

(23)

It follows from condition (H1) that there exists a positive semidefinite matrix R ∈ Rn

such that

eT(t)L1RL2e(t)− eT(t)R(L1 + L2) f (e(t)) + f T(e(t))R f (e(t)) 6 0. (24)

By applying Lemma 2, one obtains that for any given positive constants ε1 and ε2

eT(t)PB f (e(t)) + f T(x(t))BT Px(t) 6 ε1eT(t)PPe(t) +
1
ε1

f T(x(t))BT B f (x(t)),

eT(t)PKCδ(t) + δT(t)CTKT Pe(t) 6 ε2eT(t)PKCCTKT Pe(t) +
1
ε2

δT(t)δ(t).
(25)
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Substituting (24) and (25) into (23) gives us

DαV(t, e(t)) 6 eT(t)
[

PA + AT P− PKC− CTKT P
]
e(t)

+ eT(t)PB f (e(t)) + f T(e(t))BT Pe(t)

+ eT(t)PKCδ(t) + δT(t)CTKT Pe(t)

− eT(t)L1RL2e(t) + eT(t)R(L1 + L2) f (e(t))− f T(e(t))R f (e(t))

6 eT(t)
[

PA + AT P− PKC− CTKT P− L1RL2 + ε1PP + ε2PKCCTKT P
]
e(t)

+ eT(t)[RL1 + RL2] f (e(t)) + f T(e(t))
[

1
ε1

BT B− R
]

f (e(t))

+
1
ε2

δT(t)δ(t)

6 ηT(t)Πη(t),

(26)

where
η(t) =

[
eT(t), f T(e(t)), δT(t)

]T
,

Π =

 Π11 RL1 + RL2 0
0 1

ε1
BT B− R 0

0 0 − 1
ε2

I

, (27)

Π11 = PA + AT P− PKC− CTKT P− L1RL2 + ε1PP + ε2PKCCTKT P.

Recalling that Π is negative definite, there exists a positive scalar β such that Π +
diag{ βI, 0, 0} < 0. Thus, we obtain

DαV(t, e(t)) 6 −β‖e(t)‖2, (28)

which implies that all conditions in Lemma 4 hold. Therefore, the error system (19) is
globally Mittag–Leffler stable. This completes the proof.

Theorem 2. Suppose that (H1) holds and two positive constants ε1, ε2 are given. The error
system (19) is globally Mittag–Leffler stable, if there exist a symmetric and positive definite matrix
P ∈ Rn×n, a positive semidefinite matrix R ∈ Rn×n, and a matrix Y ∈ Rn×n such that the
following linear matrix inequality (LMI) holds:

Ψ =


Ψ11 RL1 + RL2 0 P YC

0 1
ε1

BT B− R 0 0 0
0 0 − 1

ε2
I 0 0

PT 0 0 −ε1 I 0
CTYT 0 0 0 −ε2 I

 < 0, (29)

where
Ψ11 = PA + AT P−YC− CTY− L1RL2.

Moreover, the gain matrix K for estimator (17) can be designed as K = P−1Y.

Proof. According to Lemma 3 (Schur complement), the matrix Ψ in Theorem 1 can be
rewritten as

Ψ =


Ψ11 RL1 + RL2 0 P PKC

0 1
ε1

BT B− R 0 0 0
0 0 − 1

ε2
I 0 0

PT 0 0 −ε1 I 0
CTKT P 0 0 0 −ε2 I

, (30)
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where ε1, ε2 are any positive constants and

Ψ11 = PA + AT P− PKC− CTKT P− L1RL2.

It should be pointed out that both K and P are unknown matrices. That is, the term
PKC is nonlinear, which implies that (30) cannot be solved by directly using the MATLAB
LMI toolbox. By letting PK = Y, it is obtained from (30) that

Ψ =


Ψ11 RL1 + RL2 0 P YC

0 1
ε1

BT B− R 0 0 0
0 0 − 1

ε2
I 0 0

PT 0 0 −ε1 I 0
CTYT 0 0 0 −ε2 I

, (31)

where
Ψ11 = PA + AT P−YC− CTY− L1RL2.

Hence, the gain matrix of estimator is designed to be K = P−1Y to satisfy condition (31).
Bearing in mind that Ψ is negative definite, and taking a similar line to the proof of

Theorem 1, one concludes that there exists a positive scalar β̄ such that Ψ+diag{ β̄I, 0, 0, 0, 0}
< 0. Then, we have

DαV(t, e(t)) 6 −β̄‖e(t)‖2, (32)

which means the error system (19) is globally Mittag–Leffler stable. This completes
the proof.

Remark 2. It is readily observed that the event-triggering frequency may be affected by the parame-
ters ε1 and ε2 given in advance. A larger sampling period can be derived by solving the LMI (29)
with the optimization condition of minimizing the convergency rate of error system (19). It should
be pointed out that the gain matrix of the estimator and the parameter for the event-triggering
mechanism are co-designed simultaneously by solving a LMI with three variables, which implies
that our result has lower computation complexity and higher efficiency in implementation.

Theorem 3. For the estimation error system (19), there exists a positive constant

θ =

(
γΓ(α + 1)
µ((γ + 1)

) 1
α

> 0 (33)

such that tk+1 − tk > θ for all k = 0, 1, 2, · · · , which indicates that the inter-event interval defined
by the triggering condition (18) has a positive lower bound, and then the sequence of event-triggering
instants {tk} has no Zeno phenomenon.

Proof. By following condition (H1), it is readily observed that

‖ f (x(t))‖ 6 m0‖x(t)‖,

where m0 = max
i=1,2,··· ,n

{|s+i |, |s
−
i |}.
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For any t ∈ [tk, tk+1) with k = 0, 1, 2, · · · , it follows δ(t) = x(t)− x(tk) that Dαδ(t) =
Dαx(t). Thus, calculating the α-order Caputo derivative of ‖δ(t)‖ yields

Dα‖δ(t)‖ 6 ‖Ax(t) + B f (x(t))‖
6 ‖Ax(t)‖+ ‖B f (x(t))‖
6 ‖A‖ ‖x(t)‖+ m0‖B‖ ‖x(t)‖
6 (‖A‖ + m0‖B‖ )‖x(t)‖
6 (‖A‖ + m0‖B‖ )‖x(tk) + δ(t)‖
6 (‖A‖ + m0‖B‖ )‖x(tk)‖+ (‖A‖ + m0‖B‖ )‖δ(t)‖
6 µ(‖x(tk)‖+ ‖δ(t)‖),

(34)

where µ = ‖A‖ + m0‖B‖.
By taking the fractional integral D−α from tk to t for both sides of (34) and combining

with Property 2 of the α-order fractional integral, one has

‖δ(t)‖ − ‖δ(tk)‖ 6
1

Γ(α)

∫ t

tk

µ‖x(tk)‖(t− τ)α−1dτ +
1

Γ(α)

∫ t

tk

µ‖δ(τ)‖(t− τ)α−1dτ

6
µ‖x(tk)‖
Γ(α + 1)

(t− tk)
α +

1
Γ(α)

∫ t

tk

µ‖δ(τ)‖(t− τ)α−1dτ.
(35)

By recalling the event-triggering mechanism (18), it is concluded that ‖δ(tk)‖ = 0 and
‖δ(t)‖ 6 ‖δ(t−k+1)‖ = lim

t→t−k+1

‖δ(t)‖ for all t ∈ [tk, tk+1). Hence, we derive that

‖δ(t)‖ 6 µ‖x(tk)‖
Γ(α + 1)

(t− tk)
α +

1
Γ(α)

∫ t

tk

µ‖δ(t−k+1)‖(t− τ)α−1dτ

6
µ‖x(tk)‖+ µ‖δ(t−k+1)‖

Γ(α + 1)
(t− tk)

α.

(36)

By letting t→ t−k+1 on both sides of (36), one obtains

‖δ(t−1
k+1)‖ 6

µ‖x(tk)‖+ µ‖δ(t−1
k+1)‖

Γ(α + 1)
(tk+1 − tk)

α, (37)

which deduces that

‖δ(t−1
k+1)‖ 6

µ‖x(tk)‖(tk+1 − tk)
α

Γ(α + 1)− µ(tk+1 − tk)
α . (38)

Noting that the event-triggering condition (18) means that lim
t→t−k+1

‖δ(t)‖ = γ‖x(tk)‖,

we derive

(tk+1 − tk)
α >

γΓ(α + 1)
µ(γ + 1)

> 0. (39)

By denoting θ = e
1
α ln

(
γΓ(α+1)
µ(γ+1)

)
and taking use of the properties of the Caputo fractional

derivative, it is obtained that
tk+1 − tk > θ > 0. (40)

The conclusion in (40) illustrates that the time interval between two consecutive events
has a positive lower bound, which implies that the sequence of event-triggering instants
{tk} defined by (18) excludes the Zeno phenomenon. We complete the proof.

4. Numerical Examples and Simulations

In this section, two numerical examples and simulations are provided to illustrate the
effectiveness of the theoretical results proposed in this paper.
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Example 1. Consider two-neurons FONNs as follows{
Dαx(t) = Ax(t) + B f (x(t)),

y(t) = Cx(t),

where x(t) = [x1, x2]
T , y(t) = [y1, y2]

T . The parameter matrices are chosen to be

A =

[
−2 0
0 −1

]
, B =

[
−1 2
2 −3

]
, C =

[
3 0
0 1

]
.

The activation functions for two neurons are selected to be f (x) = [0.2 cos(x1),
0.3 cos(x2)]

T . By choosing ε1 = ε2 = 1, it is concluded that there exist

L1 =

[
0.2 0
0 0.1

]
, L2 =

[
−0.1 0

0 0

]
,

such that assumption (H1) holds.
By taking α = 0.96 for the order of the Caputo fractional-order derivative and em-

ploying the MATLAB LMI toolbox, we obtain a set of feasible solutions for (29) to be
γ = 0.418 and

P =

[
0.5814 0.0390
0.0390 0.3593

]
, Y =

[
0.0555 0.0078
0.0078 −0.1799

]
, R =

[
0.7782 12.7137
5.8530 −6.4755

]
.

Furthermore, on the basis of K = P−1Y, we derive that the gain matrix of estimator

K =

[
0.0948 0.0473
0.0114 −0.5059

]
.

For the convenience of simulation, we take the initial values of the FONN and its
estimator as x(0) = [4.5, −3.8]T and x̂(0) = [0, 0]T , respectively. With the help of MATLAB
software, the simulation results for estimation error, the event-triggering instants, and the
sampled output measurement are provided in Figures 1–3. Specifically, Figure 1 shows that
the estimation error system is globally Mittag–Leffler stable, which further indicates that
the designed estimator can successfully track the real state information of the FONN. The
instants of event triggering are presented in Figure 2 from which we see that the updating
frequency of the output measurement is significantly reduced, while the desired estimation
performance is maintained. Figure 3 depicts the sampled output measurement y(tk) and
the real information of measurement output y(t). It is observed that the sampled signals of
the output measurement would not be updated until the next triggering instant.
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Figure 1. The evolution of estimation error state e(t).
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Figure 2. The sequence of event-triggered instants tk.
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Figure 3. The sampled output measurement y(tk) and the measurement output y(t).

Example 2. Consider the tumor-immune system with fractional-order derivative, which is borrowed
from [41]. The two-dimensional dynamical model is described as follows

Dαx(t) = Ax(t) + f (x(t)),

where α = 0.9, x(t) = [x1(t), x2(t)]T . The nonlinear function

f (x) = [0.1184x1(t)x2(t) + 0.1211,−0.00327x2
2(t)− x1(t)x2(t)]T

and the parameter matrix is selected as

A =

[
−0.3746 0

0 1.635

]
.

By choosing ε1 = ε2 = 1, it is concluded that there exist

L1 =

[
0.2 0
0 0.1

]
, L2 =

[
−0.1 0

0 0

]
,

such that (H1) holds.
By taking the parameter matrix for measurement output as

C =

[
3 0
0 −1

]
and using the MATLAB LMI toolbox to calculate a set of feasible solutions for (29), one gets
γ = 0.08518 for the threshold parameter of the event-triggered mechanism and

P =

[
0.2250 −0.0275
−0.0275 0.0243

]
, Y =

[
0.0775 0.0206
0.0206 −0.1182

]
, R =

[
0.4482 9.2276
2.0183 9.0474

]
.

It follows from K = P−1Y that

K =

[
0.5262 −0.5894
1.4408 −5.5254

]
.
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For the aim of simulations, we take the initial values of the fractional-order tumor-
immune system and its estimator to be x(0) = [2.5, 3.8]T and x̂(0) = [0, 0]T , respectively.
By utilizing MATLAB software, the simulation results for the estimation error system and
the event-triggering instants are presented in Figures 4 and 5. In detail, Figure 4 shows that
the estimation error system is globally Mittag–Leffler stable, which implies that the real
state information of the fractional-order tumor-immune system can be estimated ultimately.
Figure 5 illustrates that the instants of event triggering are dramatically reduced without
loss of the final convergence property of the estimation error system.
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Time t/s
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0

2
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Figure 4. The evolution of estimation error state e(t).
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Figure 5. The sequence of event-triggered instants tk.
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5. Conclusions

In this paper, we considered the problem of event-triggered state estimation for a
class of FONNs. For saving communication resources, an event-triggering strategy was
adopted to reduce the frequency of data transmission between the output sensor and the
estimator. Based on the Lyapunov method and properties of fractional-order calculus, the
global Mittag-Leffler stability was investigated for estimation error system, and several
sufficient criteria were proposed in the form of LMIs. Furthermore, the Zeno phenomenon
in the event-triggering strategy was excluded via analyzing the evolution dynamics of
measured error. The effectiveness of the proposed theoretical results was verified through
two numerical examples and simulations. It is worth noting that the methodology used in
this paper is also applicable to coupled networks and multi-agent systems with fractional-
order derivative. In near future, we will focus on the event-triggered state estimation of
fractional-order neural networks with time delay. Moreover, the dynamical event-triggered
scheme will also be our next work.
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