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Abstract: The quantification of corneal endothelial cell (CEC) morphology using manual and semi-
automatic software enables an objective assessment of corneal endothelial pathology. However, the
procedure is tedious, subjective, and not widely applied in clinical practice. We have developed the
CellsDeepNet system to automatically segment and analyse the CEC morphology. The CellsDeepNet
system uses Contrast-Limited Adaptive Histogram Equalization (CLAHE) to improve the contrast
of the CEC images and reduce the effects of non-uniform image illumination, 2D Double-Density
Dual-Tree Complex Wavelet Transform (2DDD-TCWT) to reduce noise, Butterworth Bandpass filter
to enhance the CEC edges, and moving average filter to adjust for brightness level. An improved
version of U-Net was used to detect the boundaries of the CECs, regardless of the CEC size. CEC
morphology was measured as mean cell density (MCD, cell/mm2), mean cell area (MCA, µm2), mean
cell perimeter (MCP, µm), polymegathism (coefficient of CEC size variation), and pleomorphism
(percentage of hexagonality coefficient). The CellsDeepNet system correlated highly significantly
with the manual estimations for MCD (r = 0.94), MCA (r = 0.99), MCP (r = 0.99), polymegathism
(r = 0.92), and pleomorphism (r = 0.86), with p < 0.0001 for all the extracted clinical features. The
Bland–Altman plots showed excellent agreement. The percentage difference between the manual and
automated estimations was superior for the CellsDeepNet system compared to the CEAS system and
other state-of-the-art CEC segmentation systems on three large and challenging corneal endothelium
image datasets captured using two different ophthalmic devices.

Keywords: corneal confocal microscopy; corneal endothelial cells; Complex Wavelet Transform; deep
learning; Convolutional Neural Network; U-Net architecture

1. Introduction

In Vivo Confocal Microscopy (IVCM) is a rapid non-invasive imaging method used to
capture high-resolution images from all corneal layers [1]. The images acquired are useful
to extract important clinical information and quantify morphological alterations in the
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human cornea to provide insights into a wide range of corneal endothelial cells’ pathologies
and infections. The corneal endothelium is a monolayer of hexagonal corneal endothelial
cells (CECs) that line the posterior surface of the cornea [2]. These CECs are vital for corneal
transparency by maintaining an optimal state of corneal stromal hydration [3–5]. The
corneal endothelial layer is comprised of 2300 to 2500 (cells/mm2), which are fixed-sized
with uniform hexagonal forms and a honeycomb appearance [6]. The density, size, and
shape of the CEC can be affected by ageing and a range of ocular and systemic pathologies
as well as intraocular surgery [2]. CEC density and morphology can be used to define the
functional ability of donor cornea before corneal transplantation [7,8].

Ideally, several morphological features define the health status of the corneal endothe-
lium, including the Mean Cell Density (MCD) (cell/mm2), Mean Cell Area (MCA) (µm2),
Mean Cell Perimeter (MCP), polymegathism, and pleomorphism. However, it has not
been previously possible to accurately quantify these features [9]. Ophthalmologists and
researchers have relied on the manual annotation to quantify endothelial cell density alone,
which is very time-consuming and highly subjective [10]. It has also relied on assessing a
particular Region of Interest (ROI) containing 20–30 cells and extrapolating to the whole
cornea [7]. Therefore, the availability of an automatic image analysis system for accurate
detection of the CEC boundaries and rapid geometric analysis of CEC morphology is
essential to enable CEC pathology assessment in clinical settings [11]. Given the increasing
clinical burden of diseases of the corneal endothelium, there is a need for rapid automated
CEC quantification.

Designing and implementing a segmentation system for CECs has proven difficult
due to poor image quality of the corneal endothelium [12]. Most of the early approaches
applied simple methods (e.g., thresholding, Gaussian filtering, shape-dependent filters,
and morphological operations) [13–16]. However, these approaches were limited due to
the low contrast and uneven lighting of the input images, and relatively good results could
only be obtained using high-quality images. Ruggeri et al. [7] proposed an automated
estimation algorithm by applying a 2D-Discrete Fourier Transform (2D-DFT) for extracting
the spatial frequencies embedded in 100 corneal endothelium images captured by an
Inverse Phase Contrast Microscope (IPCM). The overall difference between the manual
and automatic analysis of the endothelial cell density (ECD) was 14 (cells/mm2) with an
execution time of 1 to 2 s per image. In 2015, Scarpa and Ruggeri [17] developed a CEC
segmentation procedure using a genetic algorithm that they tested on a small database
of 15 images acquired using specular microscopy and demonstrated a mean difference in
ECD between manual and automated estimations of 4% with a maximum difference of
less than 7%. Sharif et al. [18] developed a new model for detecting the CEC boundaries
depending on Snake and Particle Swarm Optimization (S-PSO) by initially applying an
image enhancement algorithm using 2D-DFT and Bandpass filter to improve the quality
and decrease the noise presented in 11 corneal endothelium images and showed a mean
difference between the manual and automated ECD of 5%. The automatic segmentation
of CEC boundaries using the watershed approach and its variants is an applied solution.
A market-driven watershed segmentation algorithm by Vincent and Masters [19] applied
the watershed algorithm on the distance map [20] generated from the input image to
generate a seeded stochastic watershed algorithm was developed by Selig et al. [21]. A
slightly different algorithm was presented by Al-Fahdawi et al. [2] using a combination of
the watershed algorithm and the Voronoi tessellations approaches to precisely trace the
endothelial cell boundaries. However, the watershed approach and its variants are still
prone to either under- or over-segmentation, especially in poor-quality images containing
large endothelial cells.

Recently, several machine learning and deep learning approaches have been employed
for the precise segmentation of corneal endothelial cell boundaries. Fabijanska [12] de-
veloped an effective endothelium cell segmentation system using a Feed-Forward Neural
Network (F-FNN), trained to classify the image pixels into two classes (e.g., cell body or cell
boundary). Nurzynska [22] proposed to train the Convolutional Neural Network (CNN)
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to precisely distinguish between three different regions: cell body, cell boundary, and cell
centre. The performance of this approach was assessed on the “Alizarine” dataset [23], and
a precision of 93%, a DICE of 0.94, and a Hausdorff distance of 0.14 pixel distance were
achieved. Fabijanska [24] employed the U-Net on a dataset of 30 CEC images captured
using specular microscopy to produce an edge probability map that was binarized and
skeletonized to produce one-pixel wide borders. Relatively good results were obtained with
a DICE of 0.85, AUROC of 0.92, and difference errors in ECD, CV, and HEC of 5.2%, 11.9%,
and 6.2%, respectively. However, most of the existing approaches require user intervention
to manually remove the incorrect borders or connect the discontinuous ones. Furthermore,
a major limitation of most of the existing works is the use of small datasets, which cannot
reveal how the trained network generalizes to a larger dataset of real-world CEC images
unseen in the training set. Finally, a key concern of deep learning segmentation methods
(e.g., CNN) is the extensive time needed to train a model to precisely trace the endothelial
cell boundaries.

Segmentation systems can be utilized via a desktop or web application. Generally,
desktop applications have limitations, especially for use in the clinic in relation to hardware
requirements, the need for a specific operating system, and regular individual updates.
Alternatively, web applications are more flexible and suitable for image segmentation
systems, as the image processing and output are implemented on the server-side, and all
users can easily access the web application. This paper provides a novel web application
for the fully automated segmentation of CECs using a deep learning approach based on
an improved version of U-Net architecture that correctly and accurately distinguishes cell
boundaries and achieves precise segmentation. The main contributions of the current work
are summarized below:

i. Development of CellsDeepNet, a novel, fully automated, and real-time web applica-
tion for objective quantification of CEC morphology for CEC pathology assessment.

ii. A new pre-processing procedure for reducing the noise and enhancing image quality
is proposed to make cell boundaries more visible. Firstly, the contrast of the corneal
endothelium image is improved by transforming the values using CLAHE. Secondly,
novel image denoising and smoothing algorithms are proposed based on 2DDD-
TCWT and Butterworth Bandpass filter to minimize the noise and enhance the edges
of the corneal endothelial cell boundaries. This is followed by applying the brightness
level adjustment step using the moving average filter and the CLAHE to reduce the
effects of non-uniform illumination.

iii. An improved version of U-Net architecture was applied to precisely identify all CEC
boundaries in the enhanced image regardless of the endothelial cell size. An effec-
tive training methodology supported with some well-appointed training techniques
(e.g., data augmentation, dropout technique, etc.) is utilized to assess different U-
Net structures (e.g., the number of layers, the number of filters per layer, etc.) to
prevent the overfitting issues and enhance the generalization capability of the final
trained model.

iv. The performance and generalization capability of the proposed CellsDeepNet sys-
tem was verified in corneal endothelium images captured using corneal confocal
microscopy (CCM) by the Heidelberg Retina Tomograph 3 with the Rostock Cornea
Module (HRT 3 RCM) and a specular microscope. The results demonstrated that
the measurement of the CEC morphology by the CellsDeepNet system highly corre-
lates to the manual annotation and outperforms current state-of-the-art automated
approaches on precise endothelial cell segmentation.

The remainder of this paper is structured as follows: Section 2 includes descriptions of
the proposed CellsDeepNet system. The experimental results are presented in Section 3.
Section 4 presents the conclusions and future research directions.
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2. The Proposed CellsDeepNet System

The CellsDeepNet system is an entirely automatic system that needs no user interaction
to precisely identify the CEC boundaries. As demonstrated in Figure 1, the CellsDeepNet
system is comprised of the client-side and server-side. On the client-side, images of human
CECs are acquired using CCM from patients. Then, the user/ophthalmologist goes to the
CellsDeepNet login page to log in with their account. The CellsDeepNet web application
allows the ophthalmologist to create a unique record for each patient that can be edited,
viewed, and removed at any time. Once the patient’s record is created, all images are
uploaded and sent to the server-side, where the core CellsDeepNet system produces the
final segmented images and extracts useful endothelial cell parameters. On the server side,
the proposed CellsDeepNet system comprises two stages: (a) CEC segmentation stage and
(b) Clinical features quantification stage. The CEC segmentation stage is composed of (i)
a ore-processing step to improve the CEC image quality and decrease the noise level and
(ii) a cell boundaries detection step to precisely identify the CEC borders. In the clinical
features quantification stage, a set of valuable clinical features are extracted as described
previously [2].

Figure 1. The block diagram of the proposed CellsDeepNet web application: (a) client-side and
(b) server-side.

2.1. Pre-Processing Step

The reliable calculation of the CEC parameters needs an accurate detection of the CEC
boundaries in a large number of cells. However, CCM images suffer from various artefacts
including blurriness, noise, non-uniform illumination, and low contrast (Figure 2) caused
by: (i) saccadic eye movement causing a motion, blurring, or displacement effect; (ii) the
spherical form of the cornea layer that can result in a non-uniform light distribution in
various regions with darker areas in the periphery making the borders of cells unclear;
and (iii) variation in the pressure level applied between the surface of the cornea and the
CCM Tomocap.

In this study, an effective and reliable pre-processing procedure is developed to address
the problems mentioned above, as shown in Figure 3. The main steps of the proposed
image preprocessing procedure can be summarized as follows:
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Figure 2. Examples of corneal endothelium images: (a) a healthy subject, (b) an obese patient, and
(c) a diabetic patient displaying a high difference in the size and shape of CECs.

Figure 3. The main steps of the proposed CEC image enhancement procedure.

Step 1 (Contrast Enhancement): an adaptive contrast enhancement method is applied
using the CLAHE method to improve the contrast of the CEC image [25]. The CLAHE
method is based on Adaptive Histogram Equalization (AHE) that works on enhancing the
contrast in small data regions, called tiles rather than the whole image, and neighboring
tiles are fused using bilinear interpolation to reduce artificially induced borders. Herein,
an optimized bilinear interpolation function is employed as in [26]. The main steps of the
applied the CLAHE method can be outlined as follows:

(1) Divide the input image of size (M × M) pixels into non-overlapping tiles of size
(8 × 8) pixels.

(2) Estimate the histogram of each tile in the input image.
(3) Compute the clipping threshold value to redistribute pixels of each tile.
(4) The histogram equalization is estimated for each tile of redistributed pixels.
(5) The center pixel is computed of each tile, and then all pixels within a tile are produced

using an optimized bilinear interpolation function to eliminate boundary artefacts.

In this work, the optimal value of the clip limit is set to 0.9. The contrast in the
homogeneous regions can be restricted to avoid the over-enhancement of noise and decrease
the edge-shadowing influence in the output image, as shown in Figure 4b.
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Figure 4. The outputs of the CellsDeepNet system: (a) the original corneal image, (b) output of
the CLAHE approach, (c) output of the 2DDD-TCWT approach, (d) output of the Butterworth
Bandpass filter, (e) applying the brightness level adjustment step, (f) final endothelial cells segmented
image, (g) labelling of endothelial cells, and (h) imposed traced endothelial cells boundaries on the
original image.

Step 2 (Image Denoising): the 2DDD-TCWT approach is applied as a powerful im-
age denoising technique to reduce noise and avoid destroying fine details (e.g., edges
and curves) in the enhanced endothelial cell image, as displayed in Figure 4c. For the
TCWT based denoising, we employed the ‘db4’ family wavelets. Many image denoising
algorithms based on the wavelet framework have been proposed, but they suffer from
weaknesses such as a lack of directionality, shift variance, oscillations, and aliasing [27]. In
this work, to overcome these drawbacks, an efficient and robust image denoising approach
using the 2DDD-TCWT and shrinkage operation is proposed to reduce the noise and
recover the fine details in the endothelial cell image. In the wavelet domain, the coefficients
having large absolute values correspond to the important information in the image, while
commonly noise and very fine feature representations of the image are encoded by the
coefficients having small absolute values. Hence, eliminating the coefficients with small
absolute values and then rebuilding the image will produce an image with a lesser amount
of noise. As described in [28], the major steps of image denoising based on the wavelet
coefficients shrinkage approach can be summarized as follows:

(1) The forward 2DDD-TCWT is applied to the input CEC image to determine the wavelet
sub-bands coefficients.

(2) The level of the noise variance in the input image is evaluated.
(3) The non-linear shrinkage function is applied to compute the threshold value.
(4) The soft thresholding technique is adopted based of the thresholding value computed

in step 3.
(5) Finally, the denoised image is obtained by applying the inverse 2DDD-TCWT.
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In this work, the soft thresholding function (T = 11) is applied in step 3, as described
in [29].

Step 3 (Image Smoothing): the denoised image is then smoothed using the Butterworth
Bandpass filter to reduce enhance the edges and curves in the endothelial cell image, as
shown in Figure 4d. The Butterworth Bandpass filter is computed mathematically by
multiplying the transfer functions of a low and high pass filter where the low pass filter
has the higher cut-off frequency [30].

HLP (u, v) =
1

1 + [D(u, v)/DL]
2n (1)

HHP (u, v) = 1 − 1

1 + [D(u, v)/DH]
2n (2)

HBP (u, v) = HLP (u, v)× HHP (u, v) (3)

where DL and DH are the cut frequencies of the low and high pass filters and set to be 22
and 40, respectively; n = 3 is the filter order, and is D(u, v) the distance from the origin.

Step 4 (Brightness Adjustment): the brightness level adjustment step using the moving
average filter, and the CLAHE method is applied as described in step 1 (Contrast Ena-
hancement) to reduce the effects of the non-uniform illumination of the image resulting
from the previous step, as shown in Figure 4e. In this study, the moving average filter
replaces each pixel with a weighted average of pixel values in a square of size (5 × 5)
pixels centred at that pixel instead of forming a simple average. Let fi.j, for i, j = 1, 2, . . . , n,
indicate the pixel values in the image and gi.j denote the output image. A linear filter
of size (2m + 1)× (2m + 1), with identified weights Wk,l, for k, l = −m, . . . , m, can be
computed as follows:

gi.j =
m

∑
k=−m

m

∑
l=−m

Wk,l × fi+k.j+l, for i, j = (m + 1), . . . , (n − m) (4)

2.2. Endothelial Cell Boundary Detection Step

Once the enhanced image is obtained, an effective segmentation algorithm using an
improved version of the U-Net is applied to classify the pixels of the input image accurately
and automatically into either the endothelial cell body or cell boundary. In the next sub-
sections, the network architecture of the improved version of U-Net along with the followed
training methodology are explained in detail.

2.2.1. Network Architecture

Many perspectives concerning the U-Net architecture along with the possible out-
put generalization were investigated. The U-Net is mainly based on CNN, which was
established to be used for biomedical image segmentation tasks. The main structure of
the standard U-Net is composed of two main paths: a contracting path (called encoder)
and an expanding path (called decoder). The encoder is a typical CNN and consists of the
iterative application of convolutional layers, each followed by a rectified linear unit (ReLU)
function and a max-pooling procedure. Through this contracting path, the size of the
spatial data is reduced while more discriminative features are produced. On the other hand,
the decoder integrates features and spatial data through a sequence of up-convolutional
layers and concatenations with high-resolution and discriminative features obtained from
the encoder path. Thus, the U-Net can efficiently produce the pixel-wise probability map
of an image instead of classifying it as a whole. Compared to a typical CNN, the main
structure of the U-Net was designed to work with fewer training images and to yield more
precise segmentation.

The architecture of the proposed U-Net employed for detecting the boundaries of the
CECs is depicted in Figure 5. It was derived from the original U-Net described in [31].
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Unlike the original U-Net architecture, a set of modifications and enhancements were
applied to produce precise endothelial cell segmentation. Firstly, the depth of the original U-
Net was reduced by eliminating one layer from each path (e.g., contracting and expanding
path) with the corresponding convolutions operations. Secondly, the filter size was changed
to be (5 × 5) pixels instead of (3 × 3) pixels with a zero-padding of 2 pixels implemented
at each layer to avoid a quick decrease in the amount of spatial data though moving
toward the deepest layers. Thirdly, the number of trainable filters (feature maps) were
changed to minimize the complexity of the last trained model and prevent the overfitting
issues. Therefore, the number of trainable filters varies from 32 filters in the input layer to
128 filters in the deepest resolution layer. Finally, the dropout method as a regularization
technique newly proposed by Srivastava et al. [32] was applied in between each two
consecutive convolutional layers in the same level to avoid overfitting the training set and
decreasing the complex co-adaptations of neurons by avoiding the inter-dependencies
between them. In this work, the dropout is applied in each iteration of the training process
by totally neglecting neurons with a probability of 0.5. At each path of the proposed
network architecture, there are eight repeated applications of (5 × 5) convolutional filters,
each followed by implementing a ReLU function.

Figure 5. The architecture of the proposed U-Net model developed for the segmentation of the CECs.

The convolutional layers in the odd sequence are followed by applying the dropout
method with a 0.5 parameter value to prevent the overfitting problem and learn more
discriminative features. Furthermore, in the contacting path, a (2 × 2) max-pooling process
with a stride of 2 pixels is implemented for down-sampling after each convolutional layer
in the even sequence, in which the number of trainable filters was doubled. The main
structure of the layers in the decoder path is identical to that in the encoder path, except
that the max-pooling procedures were replaced with up-sampling procedures of the feature
maps by a factor of 2. At decoder path, the total number of trainable filters was also
halved, and the generated feature representations were merged with the analogous feature
representations from the encoder path. A loss function based on cross-entropy along with
Softmax activation was employed over the last convolutional layer in the decoder path
to produce the probability distribution of two classes (e.g., cell body and cell boundary).
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Specifically, the loss function (https://en.wikipedia.org/wiki/Cross_entropy) (accessed on
10 December 2021) was defined as follows:

C(l, s) = wli

B

∑
i=0

li log(si) + (1 − li) log(1 − si) (5)

where s is the assigned pixel score, l the reference pixel label, B the total number of samples
in one batch, and wli the pixel weight. The coss entropy is one of the most commonly used
loss functions to measure how good DNNs perform. The value of the loss is computed
as a numeric value between 0 and 1, with 0 being an optimal model. Thus, the main
aim is to obtain a DNN model with a loss value as close to 0 as possible. To obtain the
final segmented image, the edge probability map produced by the CellsDeepNet model
was binarized and skeletonized to generate the one-pixel wide borders of the endothelial
cells. In this step, the Hysteresis thresholding method was utilized to generate the binary
image from the obtained edge probability map [33]. Using the Hysteresis thresholding
method, all pixels with intensity value above the upper threshold

(
Tup

)
are defined as

cell boundary pixels. Furthermore, all the nearby pixels to these boundary pixels with
intensity values higher than a lower threshold (Tlow) are defined as the cell’s boundary
pixels as well. Herein, 8-connectivity was employed to detect the connected areas to each
boundary point. Finally, the skeletonized image (e.g., one-pixel wide borders) was obtained
by iteratively applying a thinning operation using the binary image produced from the
Hysteresis thresholding method.

2.2.2. The Training Methodology

The corneal endothelium images and their corresponding manually segmented images
(gold standard) were utilized to train the adopted model with the Stochastic Gradient
Descent (SGD) technique for learning rate adaptability. Herein, all of the experiments
were conducted by employing 60% randomly chosen images for the training set, while
the remaining 40% was separated equally between the validation and testing sets. As
described in [34], the suggested training methodology begins with training a specific
network architecture using the training set and using the validation set to assess the
generalization capability of the network through the learning process and store the weights
of the model that performs best on it with a smallest validation error rate, as displayed in
Figure 6. The proposed CellsDeepNet model was trained for 100 epochs with an initial
learning rate of 0.01, a high momentum value (0.99), a weight decay parameter value
(0.0005), and a mini-batch size of 100. In this study, the early stopping procedure was
adopted during the learning process to determine the number of epochs where the learning
process is stopped directly when the validation accuracy rate starts to decline due to the
model starting to overfit the training data. On the other hand, the values of the most
commonly used hyper-parameters (e.g., learning rate, mini-batch size, etc.) in the literature
were employed. The major steps of the suggested training methodology can be outlined
as follows:

(1) Divide the dataset into 3 different sets: training set, validation set, and test set.
(2) Choose an initial network architecture and a combination of training parameters.
(3) Train the selected network architecture in step 2 using the training set.
(4) Use the validation set to assess the performance of the selected network architecture

through the training progression.
(5) Repeat steps 3 through 4 by employing N = 100 epochs.
(6) Choose the best-trained model with the smallest validation error.
(7) Report the performance of the best model using the testing set.

https://en.wikipedia.org/wiki/Cross_entropy
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Figure 6. An illustration of the suggested training methodology to obtain the best network architecture.

In this work, the training and prediction procedures were implemented in the image-
to-image sitting instead of the image-to-patch sitting employed in the original U-Net to
reduce the system complexity, increase its throughput, and reduce the data redundancy due
to overlapping patches. Figure 7 displays the loss and accuracy plots during the training
process on the training and validation set of the MCCM and ECA dataset.

Figure 7. The loss and accuracy plots during the training process on training and validation set:
(a) the MCCM dataset and (b) the ECA dataset.



Mathematics 2022, 10, 320 11 of 26

The data augmentation procedure is fundamental for the learning process associated
with deep learning networks to prevent overfitting issues and enhance the generalization
capability of the DNN. Given the nature of the corneal endothelium images, only eight
random image patches of the same size were cropped from each corneal endothelium image
and set to the size of the original image. Besides, the horizontal and vertical flipped versions
were also obtained. Thus, ten images were generated from each corneal endothelium
image. Figure 8 shows the ten image patches produced from a single CEC image using
the employed data augementation procedure. In this work, other elastic deformations
and transformations (e.g., rotation) were avoided for two reasons. Firstly, applying image
rotation can produce new noise types, which do not exist in the CEC images. Secondly, the
rotation process leads to losing the corners of the CEC image, which require to be filled
either by reflecting the image or coloured the missing regions in black.

Figure 8. The data augmentation procedure: (a) the original CEC image, (b) horizontal flipped image,
(c) vertical flipped image, and (d) the eight random image patches.

2.3. Clinical Features Quantification Stage

Five morphological measures are computed automatically from the final segmented
CEC image, including mean cell density (MCD, cell/mm2), mean cell area (MCA, µm2),
mean cell perimeter (MCP, µm), polymegathism, and pleomorphism. Using our web
application, all these computed morphological measures can be reported in a PDF file that
also contains coloured figures, patients’ information, and a table listing all the extracted
features and a histogram distribution of the cell pleomorphism. The ophthalmologist can
crop the selected ROI from the segmented CEC image, and the following morphological
measures are computed as in [2].

• MCD is computed by dividing the number of CECs (Cnumber) in the selected ROI
(otherwise entire segmented image) on the total size (S) of the selected ROI (otherwise
entire segmented image) as follows:

MCD =
Cnumber

S
(6)

Herein, to accurately estimate the MCD, only the cells on the two adjacent borders of
the selected ROI are included, discarding them on other borders.
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• Polymegathism also called Coefficient of Variation (CV), is utilized to define the
difference in the endothelial cell’s area. Increasing the standard deviation (STD) value
of the MCA can result in an imprecise estimate for the MCD. Therefore, increased
polymegathism results in an imprecise estimation of MCA [6]. Polymegathism is
computed as follows:

Polymegathism =
STDcell area

MCA
× 100 (7)

where SDcell area is the STD of the cell area divided by the MCA.
• Pleomorphism, also called Hexagonality Coefficient (HC), is computed by divid-

ing the number of CECs with a roughly hexagonal form (neighbouring with 6 cells)
Chexagonal on the overall number of CECs in the selected ROI (otherwise entire seg-
mented image) Cimage as follows:

Pleomorphism =
Chexagonal

Cimage
× 100 (8)

Some of the generated figures are displayed in Figure 9. Figure 9a shows a colour-
coded map of the endothelial cells pleomorphism, where all CECs that neighbour the same
number of cells are coded with the same colour. The CECs coloured orange correspond to
six-sided cells. Figure 9b shows the histogram distribution plot of the pleomorphism parameter.

Figure 9. Examples of the generated figures in the clinical features quantification stage: (a) Colour-
coded cell pleomorphism map where the orange colour is referring to six neighbours’ cells and (b) the
histogram distribution plot of the pleomorphism parameter.

3. Experimental Results

In this work, several comprehensive experiments are carried out to measure the
performance of the CellsDeepNet system in both detecting the endothelial cell boundaries
and extracting useful clinical features. Firstly, the corneal endothelium image datasets
employed in the conducted experiments are briefly described. This is followed by a
comprehensive assessment and a comparison with the most current highly developed
methods are presented. In this work, the partial correlation was employed to measure the
strength of a relationship between the manual and automatic calculations of five clinical
features. The cut-off of p-values was set to (p < 0.0001). Furthermore, the Bland–Altman
plots were also used to confirm the agreement between manual and automatic endothelial
cell parameters using the proposed CellsDeepNet system. A Bland–Altman plot comprises
of a plot of the difference between paired evaluations of two parameters (e.g., the manual
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and automated estimations) over the average of these two estimations, with ±2 SD lines
(agreements outlines) parallel to the mean difference line.

3.1. Datasets Description

The performance of the developed CellsDeepNet system was assessed using two dif-
ferent challenging datasets, termed the Manchester Corneal Confocal Microscopy (MCCM)
dataset [35] and Endothelial Cell Alizarine (ECA) dataset [23].

1. Manchester Corneal Confocal Microscopy Dataset: The MCCM dataset contains a total
of 1010 images of CECs acquired using the Heidelberg Retinal Tomograph III Rostock
Cornea Module (Heidelberg Engineering GmbH, Heidelberg, Germany). This device
uses a 670 nm red wavelength diode laser, which is a class I laser and therefore does
not pose any ocular safety hazard. A 63× objective lens with a numerical aperture
of 0.9 and a working distance relative to the applanating cap (TomoCap, Heidelberg
Engineering GmbH, Heidelberg, Germany) of 0.0 to 3.0 mm was used. The images
produced using this lens are (400 µm × 400 µm) with a (15◦×15◦) field of view and
10 µm/pixel transverse optical resolution. The cornea was locally anaesthetized by
instilling 1 drop of 0.4% benoxinate hydrochloride (Chauvin Pharmaceuticals, Chefaro,
UK), and Viscotears (Carbomer 980, 0.2%, Novartis, UK) was used as the coupling
agent between the cornea and the TomoCap as well as between the TomoCap and
the objective lens. The patients were asked to place their chin on the chin rest and
press their forehead against the forehead support. They were asked also to fixate
with the eye not being examined on an outer fixation light to enable examination of
the central cornea. Images of the endothelial cells were captured using the “section”
mode. Multiple images were taken from the endothelium immediately posterior to
the posterior stroma. On CCM, endothelial cells are identified as a polygonal shape
with bright cell bodies and dark borders. During image acquisition, 2–3 representative
sharp images were selected by filtering out blurred images, pressure lines, or dark
shadows caused by the pressure applied between the TomoCap and cornea or out
of focus images. Some samples of unprocessed corneal endothelium images are
presented in Figure 2. It is worth noting that the corneal endothelium images used in
this dataset are very challenging poor-quality images compared to those used in the
previous works. A major challenge for carrying out this research using this dataset
was the unavailability of ground-truth images and the reference value measurements
for all five clinical parameters. To obtain a manual version from this database, a
freely available application, named GNU Image Manipulation Program (GIMP) was
utilized by an expert ophthalmologist from the University of Manchester to manually
detect endothelial cell boundaries and then generate a binary image from particular
ROIs to serve as a ground-truth image in the segmentation evaluation and a manual
estimation of the reference values of the clinical parameters, as shown in Figure 10.

2. Endothelial Cell Alizarine Dataset: This dataset is composed of 30 corneal endothe-
lium images captured by an IPCM (CK 40, Chroma Technology Corp, Windham, VT,
USA) at (200 × magnification) and an analogue camera (SSC-DC50AP, Sony, Tokyo,
Japan) [23]. These images were taken from 30 porcine eyes stained with alizarine
and stored in the JPEG format of resolution (576 × 768) pixels. The ground truth
images representing the borders of the endothelial cells traced manually by an expert
ophthalmologist are also provided. Each image contains approximately 232 detected
cells on average (ranging from 188 to 388 cells), along with an average cell area of
272.76 pixels. This dataset is freely available at http://bioimlab.dei.unipd.it, accessed
on 10 December 2021.

http://bioimlab.dei.unipd.it
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Figure 10. The GIMP software yields: (a) The input image, (b) a typical sample of manually detected
CEC boundaries, (c) a produced binarized image employed as a ground-truth segmented image.

3.2. Experiments on MCCM Dataset

Using the MCCM dataset, several experiments were carried out to measure the perfor-
mance of the CellsDeepNet system. Firstly, the performance of the CellsDeepNet system
was validated against the gold standard images (e.g., binary images) produced from the
GIMP software, as shown in Figure 10c. In this assessment procedure, seven quantitative
performance measurements were computed, including: Probabilistic Rand Index (PRI) [36],
Gradient Magnitude Similarity Deviation (GMSD) [37], Structural SIMilarity (SSIM) In-
dex [38], Variation of Information (VoI) [39], Normalized Absolute Error (NAE), Mean
Square Error (MSE) [40], and Global Consistency Error (GCE) [41]. These employed seven
quantitative metrics are commonly used in the previous works for measuring the effec-
tiveness and reliability of segmentation algorithms. In this work, the performance of the
developed CellsDeepNet system was compared with our previous fully-automated Corneal
Endothelium Analysis System (CEAS) described in [2] as well as with the original U-Net
structure described in [31]. Initially, the impact of the image enhancement procedure was
assessed by training the improved U-Net from scratch on top of enhanced CEC images
instead of the direct usage of the raw CEC images to guide the learning process by enforcing
the U-Net to learn only discriminating features. As shown in Table 1, we demonstrate that
the developed CellsDeepNet system can accurately identify the boundaries of the CECs
regardless of endothelial cell size.

Table 1. Performance comparison study of the proposed CellsDeepNet system with and without
applying the image pre-processing step.

Quantitative
Measures

MCCM Dataset ECA Dataset

With Image
Pre-Processing

Without Image
Pre-Processing

With Image
Pre-Processing

Without Image
Pre-Processing

PRI 0.9993 0.4956 0.9837 0.5053
SSIM 0.9998 0.4102 0.9768 0.4312
VoI 0.0516 0.7231 0.1032 0.8901

GMSD 0.0862 0.8231 0.0105 0.9212
MSE 0.0566 0.5342 0.0337 0.5231
GCE 0.0003 0.5223 0.0006 0.4345
NAE 0.0444 0.4532 0.0769 0.5301

The total average of the employed seven quantitative metrics was significantly in-
creased in comparison with the direct usage of the raw CEC images. Moreover, the time
required to obtain the final trained model was about 20 min compared to approximately one
hour and 45 min using the raw CEC images. The overall average of these seven quantitative
metrics was calculated for all the CCM images in the MCCM dataset and compared in
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Figure 11. Of note, better results were obtained from both CellsDeepNet and CEAS systems
compared to the original U-Net in terms of all seven quantitative measurements.

Figure 11. Comparison of the segmentation performance between the original U-Net, CellsDeepNet,
and CEAS system using the MCCM dataset. The performance is better with higher values of SSIM
and PRI and lower values of VoI, GMSD, GCE, MSE, and NAE.

Although the CEAS system has got a superior result of GMSD measurement (0.0212)
compared to 0.0862 produced from the proposed CellsDeepNet system, it produced lower
results in terms of the other six quantitative measures. There were no substantial differences
found between the automated segmented images using the developed CellsDeepNet system
and the manual images. In the second experiment, the effectiveness and robustness of the
CellsDeepNet system were assessed by comparing the automatic estimations of the five
clinical parameters with reference values computed by applying the definition of these
clinical features on the binary image produced from the GIMP software. Initially, the
outputs using both the CellsDeepNet and CEAS system were obtained from all corneal
endothelium images in the MCCM dataset. Then, the identical ROI with the biggest region
of visible CECs was chosen for that image and used to automatically compute the values of
the five clinical parameters. Next, the automatic estimations of the clinical parameters were
compared with the reference values.

Table 2 shows the total average, STD, MAX, and MIN of each clinical feature for
both manual and automatic segmented CEC images, in addition to the difference and
the percentage difference between them. Although the CEAS system achieved good
agreement with reference values, a higher agreement was achieved with the proposed
CellsDeepNet system. The average percentage variations between manual and automated
estimates computed using the CEAS and CellsDeepNet system were 1.56% vs. 0.66%,
2.52% vs. 0.003%, 6.5% vs. 2.4%, 5.6% vs. 2.9%, and 6.8% vs. 1.7% for MCD, MCA, MCP,
polymegathism, and pleomorphism, respectively. There were highly significant correlations
between the manual and automated estimates for MCD (r = 0.94), MCA (r = 0.99), MCP
(r = 0.99), polymegathism (r = 0.92), and pleomorphism (r = 0.86), with p < 0.0001 for all
the extracted clinical features, as shown in Figure 12. As shown in Figure 13, one can
see that MCD is located between 966 to 2925 (cell/mm2), MCA is located between 266 to
1328 (µm2), MCP is located between 60 to 137 (µm), polymegathism is located between
31 to 85%, and pleomorphism is located between 18 to 53%.
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Table 2. Measures of the CEC morphology generated by manual assessment, CEAS, and CellsDeep-
Net system from the MCCM dataset. The differences (Diff) between the manual and automated
estimates are listed along with a percentage (Diff %).

Manual Auto. CEAS System Auto. CellsDeepNet System

MCD (Cells/mm2) MCD (Cells/mm2) Diff Diff % MCD (Cells/mm2) Diff Diff %

Av. 1898.08 1967.04 31.04 1.56 1984.88 13.2 0.66
STD 765.21 755.55 9.66 1.27 763.17 2.04 0.26
Max 3125 3226 −101 −3.18 2937 188 6.20
Min 1232 1280 −48 −3.82 1230 2 0.16

MCA (µm2) MCA (µm2) Diff Diff % MCA (µm2) Diff Diff %

Av. 292.28 285 7.28 2.52 292.27 0.01 0.003
STD 41.77 44.45 −2.68 −6.21 41.76 0.01 0.02
Max 395 390 5 1.27 395 0 0
Min 229 233 −4 −1.73 229 0 0

MCP (µm) MCP (µm) Diff Diff % MCP (µm) Diff Diff %

Av. 79.04 74.06 4.98 6.50 77.16 1.88 2.40
STD 20.55 21.67 −1.12 −5.30 20.93 −0.38 −1.83
Max 138 140 −2 −1.43 136 2 1.45
Min 61 63 −2 −3.22 59 2 3.33

Polymegathism % Polymegathism % Diff Diff % Polymegathism % Diff Diff %

Av. 45.44 42.95 2.49 5.6 44.14 1.3 2.90
STD 11.14 12.68 −1.54 −12.93 10.48 0.66 6.10
Max 83 79 4 4.93 86 −3 −3.55
Min 30 34 −4 −12.5 32 −2 −6.45

Pleomorphism % Pleomorphism % Diff Diff % Pleomorphism % Diff Diff %

Av. 34.78 32.5 2.28 6.77 34.19 0.59 1.71
STD 6.14 3.63 2.51 51.38 5.98 0.16 2.64
Max 53 56 −3 −5.50 53 0 0
Min 14 17 −3 −19.35 16 −2 −13.33

Figure 12. Correlation plots between manual and automated endothelial cell parameters for the
MCCM dataset. (a) MCD, (b) MCA, (c) MCP, (d) polymegathism, and (e) pleomorphism.
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Figure 13. Bland-Altman plots present the difference against the mean for each pair of manual
compared to automated endothelial cell parameters. (a) MCD, (b) MCA, (c) MCP, (d) polymegathism,
and (e) pleomorphism from the MCCM dataset. The dashed lines refer to the (95%) lines of agreement,
and solid lines represent the mean differences.

3.3. Experiments on ECA Dataset

To prove the generalization capability of the developed CellsDeepNet system, seven
quantitative performance measurements from both the automated segmented images and
ground-truth images were applied to the ECA dataset. The performance comparison
between three different segmentation systems (U-Net, CellsDeepNet, and CEAS system)
on the ECA dataset was tested using seven quantitative metrics (Figure 14). Even though
the performance of the original U-Net improved slightly on the ECA dataset, it was inferior
to both the CellsDeepNet and CEAS systems. The results obtained by the CellsDeepNet
system compared to the CEAS system were better for all seven quantitative measurements.
The automated estimation of all five CEC parameters were compared to the reference values
from the same ROI (Table 3). The average percentage differences between manual and
automatic estimations calculated using the CEAS and CellsDeepNet system were 0.91%
vs. 0.85%, 1.84% vs. 0.73%, 1.66% vs. 2.24%, 4.07% vs. 0.50%, and 8.52% vs. 0.39% for
MCD, MCA, MCP, polymegathism, and pleomorphism, respectively. There were highly
remarkable correlations between the manual and automated estimations for MCD (r = 0.98),
MCA (r = 0.98), MCP (r = 0.86), polymegathism (r = 0.91), and pleomorphism (r = 0.76)
with the cut-off of p-values set to (p < 0.0001), as shown in Figure 15.
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Figure 14. Comparison of the segmentation performance between the original U-Net, CellsDeepNet,
and CEAS systems using the ECA dataset. The performance is better with higher values of SSIM and
PRI, and lower values of VoI, GMSD, GCE, MSE, and NAE.

Table 3. Performance comparison between the manual and automatic estimates of five clinical
parameters from the ECA dataset.

Manual Auto. CEAS System Auto. CellsDeepNet System

MCD (Cells/mm2) MCD (Cells/mm2) Diff Diff % MCD (Cells/mm2) Diff Diff %

Av. 2952 2925 27 0.91 2927 25 0.85
STD 161 157 4 2.51 158 3 1.88
Max 3194 3177 17 0.53 3181 13 0.40
Min 2662 2605 57 2.16 2612 50 1.89

MCA (µm2) MCA (µm2) Diff Diff % MCA (µm2) Diff Diff %

Av. 274 269 5 1.84 272 2 0.73
STD 16.08 15.65 0.43 2.71 16.01 0.07 0.43
Max 305 300 5 1.65 306 −1 −0.32
Min 251 246 5 2.01 247 4 1.60

MCP (µm) MCP (µm) Diff Diff % MCP (µm) Diff Diff %

Av. 66.68 65.58 1.1 1.66 65.20 1.48 2.24
STD 2.76 1.67 1.09 49.20 2.82 −0.06 −2.15
Max 92 90 2 2.19 87 5 5.58
Min 56 58 −2 −3.50 59 −3 −5.21

Polymegathism % Polymegathism % Diff Diff % Polymegathism % Diff Diff %

Av. 31.81 30.54 1.27 4.07 31.65 0.16 0.50
STD 2.85 2.68 0.17 6.14 2.83 0.02 0.70
Max 38 42 −4 −10 38 0 0
Min 26 29 −3 −10.9 26 0 0

Pleomorphism % Pleomorphism % Diff Diff % Pleomorphism % Diff Diff %

Av. 40.84 37.5 3.34 8.52 40.68 0.16 0.39
STD 1.73 2.52 −0.79 −37.17 1.95 −0.22 −11.95
Max 46 44 2 4.44 47 −1 −2.15
Min 36 33 3 8.69 36 0 0
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Figure 15. Correlation plots of the manual and automated CEC parameters from the ECA dataset.
(a) MCD, (b) MCA, (c) MCP, (d) polymegathism, and (e) pleomorphism.

The Bland–Altman plots confirm the excellent agreement between manual and auto-
matic endothelial cell parameters using the CellsDeepNet system. As shown in Figure 16,
one can see that the MCD is located between 2637 and 3185 (cell/mm2); MCA is located
between 250 and 306 (µm2); MCP is located between 58 and 90 (µm); polymegathism is
located between 27 and 38%; and pleomorphism is located between 36 and 46%.

Figure 16. Bland–Altman plots present the difference against the mean for each pair of manual
compared to automated endothelial cell parameters. (a) MCD, (b) MCA, (c) MCP, (d) polymegathism,
and (e) pleomorphism from ECA dataset. The dashed lines refer to the (95%) lines of agreement, and
solid lines represent the mean differences.
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Figure 17 shows the overlap segmented image of the manual and automated outputs
to visually demonstrate the endothelial cell segmentation truthfulness of the proposed
CellsDeepNet system. In this figure, the yellow lines refer to the ground-truth segmented
image, and the purple lines refer to the automatic output of the CellsDeepNet system,
whereas the white lines describe the common borders of the endothelial cells.

Figure 17. Differences between the manual and CellsDeepNet system segmentation: (a) ground-truth
manual segmented image, (b) CellsDeepNet system segmented image, and (c) overlapped CEC
borders that the manual and CellsDeepNet system had.

3.4. Comparison Study

In this section, the performance of the developed CellsDeepNet system was compared
against six present state-of-the-art CEC segmentation systems using the EAC dataset, as
illustrated in Table 4. The first system was established by Ruggeri et al. [23], in which the
luminosity correction and contrast enhancement of the corneal endothelium image was
enhanced using a parabolic correction and a sigmoid point transformation, respectively. The
boundaries of the endothelial cells were detected by training a multi-layer F-FNN to classify
each pixel in the input image either as a cell body or cell boundary. The second system
proposed by Scarpa and Ruggeri [17] used a genetic algorithm combining information
about the shape of the CECs and the intensity of the pixels to detect the endothelial cell
boundaries. The third one developed by Poletti and Ruggeri [42] uses three different
kernels specially designed to compute three endothelial cell signatures (e.g., vertex, side,
or body). These extracted signatures were utilized as feature vectors to train a SVM
classifier to correctly detect the boundaries of the CECs. In this comparison study, MCD,
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polymegathism, and pleomorphism were compared due to the limitation of these systems
to compute the other CEC parameters. Compared to the method of Ruggeri et al. [23], the
CellsDeepNet system achieved a slightly worse Diff % for MCD (0.28 v 0.85), but it was
better for polymegathism (3.02% v 0.50%) and pleomorphism (1.03% v 0.39%). Compared
to the Poletti and Ruggeri system [42], CellsDeepNet system achieved a slightly worse
Diff % for MCD (0.82% v 0.85%), but it was better for polymegathism (3.95% v 0.50%) and
pleomorphism (3.13% v 0.39%). Compared to the method of Scarpa and Ruggeri [17] the
CellsDeepNet system achieved better outcomes for MCD (3.11% v 0.85%), but it was better
for polymegathism (14.78% v 0.50%) and pleomorphism (7.32% v 0.39%).

Table 4. Performance comparison between the CellsDeepNet system and the existing CEC segmenta-
tion systems using three clinical parameters.

Scarpa and Ruggeri [17] Ruggeri et al. [23] Poletti and Ruggeri [42] CellsDeepNet System

M
C

D
(c

el
ls

/m
m

2 ) Diff Diff % Diff Diff % Diff Diff % Diff Diff %

Av. 17.73 0.82 −12 0.28 96.35 3.11 25 0.85
STD 16.31 1.08 −10 3.1 58.83 2.29 3 1.88
Max 0 0 −7 0.18 18 0.57 13 0.40
Min 3.80 6.24 35 0.72 245 10.37 50 1.89

Po
ly

m
eg

at
hi

sm
% Diff Diff % Diff Diff % Diff Diff % Diff Diff %

Av. 1.45 3.95 0.7 3.02 5.72 14.78 0.16 0.50
STD 0.79 1.93 0.2 6.89 2.56 5.90 0.02 0.70
Max 0 0 1.1 6.41 1.10 2.20 0 0
Min 2.80 6.86 −0.1 0.35 12.20 24.30 0 0

Diff Diff % Diff Diff % Diff Diff % Diff Diff %

Pl
eo

m
-

or
ph

is
m

% Av. 1.83 3.13 −0.5 1.03 4.21 7.32 0.16 0.39
STD 1.33 2.27 −0.9 23.37 2.72 4.57 −0.22 −11.95
Max 0 0 2.2 5.62 0 0 −1 −2.15
Min 3.80 6.24 −4.2 7.47 11.80 16.21 0 0

The performance of the CellsDeepNet system was also compared with some of the
state-of-the-art deep learning-based CEC segmentation systems (e.g., Fabija’nska [24],
Zhang et al. [43], Nurzynska [22], and U-Net [31]) by the conduction of several compre-
hensive experiments using the same dataset. In these experiments, six measures were
computed, such as Dice Coefficient (DI), Jaccard coefficient (JA), F1 Score (F1), Specificity
(SP), Sensitivity (SE), and Modified Hausdorff Distance (MHD) as evaluation metrics. The
first three measures are more related to reveal the overall level between the manual and
automatic segmentation. As shown in Table 5, the proposed CellsDeepNet system has
achieved the best overall performance on the EAC dataset in term of the six adopted
evaluation metrics. It is worth mentioning that the CEC segmentation system developed
by Fabija’nska [24] achieved a proportional difference of 5.2% for MCD, 6.2% for pleo-
morphism, and 11.93% for polymegathism, while no clinical feature with a proportional
difference (>2.5%) has been achieved using the proposed CellsDeepNet system.

Table 5. Performance comparison between the proposed CellsDeepNet system with other existing
deep learning CEC segmentation systems using the EAC dataset.

Models
Measures

DI JA F1 SP SE MHD

Fabija’nska [24] 0.86 - - - - -
Zhang et al. [43] 0.78 - 0.82 0.94 0.87 -
Nurzynska [22] 0.94 0.94 - - - 0.14
Orig. U-Net [31] 0.77 0.79 0.81 0.96 0.81 0.22

CellsDeepNet 0.97 0.98 0.89 0.98 0.90 0.08
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Further experiments were carried out by testing the performance of the developed
CellsDeepNet system on the dataset provided by Selig et al. [21]. This dataset composed
of 52 CEC images acquired from 23 patients using in vivo confocal corneal microscopy.
Using the automated cell segmentation results provided by Selig et al. [21], the seven
adopted quantitative performance measurements were computed and compared with
the proposed CellsDeepNet system, as shown in Figure 18. The results obtained by the
proposed CellsDeepNet system compared to the Selig et al. [21] system were better for all
seven quantitative measurements.

Figure 18. Comparison of the segmentation performance between CellsDeepNet and Selig et al. [21]
using the ECA dataset. The performance is better with higher values of SSIM and PRI and lower
values of VoI, GMSD, GCE, MSE, and NAE.

Figure 19 displays a comparison between the automatically segmented CEC images
produced by the developed CellsDeepNet system and Selig et al. [21] system. It is clear
that the Selig et al. [21] system suffers from the over-segmentation problem, especially in
detecting the endothelial cells with large sizes. The incorrectly segmented endothelial cell
boundaries are filled with the red colour.

Figure 19. Comparison between the automated segmentation outputs: (a) original image,
(b) Selig et al. [21] system, (c) the proposed CellsDeepNet system.

3.5. Discussion

The study has shown a quantitatively better performance using the proposed Cells-
DeepNet system compared to U-Net and the SEAS system on two large and challenging
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corneal endothelium image datasets captured using two different devices. For instance,
using the MCCM dataset, the mean difference between manual and automated estimates
was lower than 1%, 0.05%, 2.5%, 3%, and 2% for MCD, MCA, MCP, polymegathism, and
pleomorphism, respectively, with no clinical feature with a proportional difference (>3%)
between the manual and automated estimates. The proposed CellsDeepNet system pro-
vides an accurate estimation for all the five clinical features of the detected CECs, with
higher than (95%) of the information falling between ±2 SD lines, as shown in Figure 13.
In this experiment, one can see that MCD is located between 966 and 2925 (cell/mm2);
MCA is located between 266 and 1328 (µm2); MCP is located between 60 and 137 (µm);
polymegathism is located between 31 and 85%; and pleomorphism is located between
18 and 53%.

Using the ECA dataset derived from a specular microscope, which is most commonly
used in most ophthalmology clinics, the mean differences between manual and automated
estimates were less than 1%, 1%, 2.5%, 0.5%, and 0.5% for MCD, MCA, MCP, polymegath-
ism, and pleomorphism, respectively, with no clinical feature with a proportional difference
(>2.5%) between the manual and automated estimates. Better results were obtained us-
ing all the employed systems on the ECA dataset, as the images were of higher quality
compared to the images obtained for the MCCM dataset which used a CCM.

Furthermore, the developed CellsDeepNet system based on the modified U-Net
architecture significantly reduced the time necessary to obtain the last trained model to
20 min compared with the original U-Net model, which takes approximately one hour
and 45 min. The proposed CellsDeepNet web application has a number of advantages.
It is more flexible and suitable for researchers or ophthalmologists, as they do not need
specific hardware, given that the processing to produce the final segmented image and
quantitative output is implemented on the server-side. In addition, clinicians can create
a unique record for each patient that can be edited, viewed, and removed at any time.
The selection of an ROI from the final segmented image allows for the inspection of the
segmentation results to automatically extract more accurate and useful clinical parameters
from the clearest ROI in the segmented image. The results obtained using the CellsDeepNet
system are encouraging, especially as they have been obtained from two large image data
sets of corneal endothelial cells from two different microscopes. However, there are some
limitations, including over-segmentation, especially when poor quality images containing
large CEC’s are fed into the CellsDeepNet system. The accuracy of the CellsDeepNet system
may be enhanced by extending the training set using a larger and more heterogeneous
dataset of corneal endothelial images.

4. Conclusions and Future Work

We have developed the CellsDeepNet system, an improved, fully automated, and fast
corneal endothelial cell analysis system. It requires no user intervention for segmenting and
extracting different corneal endothelial cell parameters. Two different datasets of corneal
endothelium images acquired using a specular microscope and corneal confocal microscope
along with their manually traced ground-truth images were employed to validate the per-
formance of the developed CellsDeepNet system. An efficient and reliable pre-processing
procedure was deployed to eliminate the noise, improve the image quality, and make the
boundaries of CECs more visible, and an improved version of the U-Net architecture was
used to produce a binary segmented image of the endothelial cell boundaries to enhance
the quantification of clinically useful parameters. Our results demonstrate the effectiveness,
reliability, and superior outcomes of the CellsDeepNet system compared to the current
highly developed approaches in terms of segmentation precision and the extraction of
clinically useful endothelial cell parameters. This markedly increases the clinical utility
of this image analysis system, especially as it is web-based to allow rapid (<3 s/image)
corneal endothelial cell quantification to identify pathology and assess disease progression
over time. We are not presenting the final word in accurately detecting the endothelial
cell boundaries and extracting useful clinical features. We are currently in the process
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of testing the accuracy of the proposed CellsDeepNet system using a larger and more
challenging dataset, in which the corneal endothelium images are captured using different
microscope devices.
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