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Abstract: In this paper, we study the common fixed-point problem for a pair of García-Falset mapping
and (α, β)-generalized hybrid mapping in uniformly convex Banach spaces. For this purpose, we
construct a modified three-step iteration by properly including together these two types of mappings
into its formula. Under this modified iteration, a necessary and sufficient condition for the existence
of a common fixed point as well as weak and strong convergence outcomes are phrased under some
additional conditions.
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1. Introduction

Speaking of fixed-point theory, there is no doubt that so far it has been proven to be
a rich and complex field, always generating various extensions and applicative results.
Even today, it seems that this domain is far away from reaching an end when it comes to
giving birth to new ideas or connecting the existing ones; for instance, in [1], new classes
of mappings were analyzed on modular vector spaces, or in [2], an iteration process was
extended in the same framework by iterating a modular class of nonexpansive mappings.
Overall, the important contributions related to fixed-point theory can be summarized
by the following three directions: the generalization of the working metric setting, the
definition of more and more general classes of contractive operators and the elaboration of
new iterative processes.

With regard to generalized classes of contractive operators, an intensively studied
class of mappings that exceeds that of contractions is nonexpansive mappings (for some
recent results, one might see, for example, [3,4]). Nevertheless, it did not take long for
these operators themselves to undergo various generalizations. An important step in this
direction was made by Suzuki [5] who introduced condition (C) on Banach spaces by
imposing limitations regarding the pairs of elements that satisfy nonexpansiveness. The
success of Suzuki’s formulation mainly lies on all those extensions for which it served as a
starting point: generalized α-nonexpansive mappings [6] (which includes α-nonexpansive
mappings [7]), (α, β)-Suzuki-type generalized nonexpansive mappings [8], Reich–Suzuki
type nonexpansive mappings [9], etc. A particular idea of generalizing mapping with
property (C) was advanced by García-Falset et al. [10] who defined the concept of op-
erators with property (E). This class of mappings seems to include most Suzuki-type
applications and generated active research with respect to the idea of being surpassed by
a wider condition (see, for example, Ref. [1] about condition (CDE), which is equivalent
with condition (E) on Banach spaces). An adjacent direction that went into exceeding
nonexpansiveness on Hilbert spaces was the definition of nonspreading mappings by
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Kohsaka and Takahashi [11] (more precisely, studied in connection with firmly type non-
expansive mappings). In turn, this class was covered by hybrid mappings introduced by
Takahashi [12] only for all nonexpansive, nonspreading and hybrid mappings to be later
included by Kocourek et al. [13] into the class of (α, β)-generalized hybrid mappings.
However, all these classes of operators are stronger than quasinonexpansive ones whenever
a fixed point exists.

In a parallel direction, all these generalizations required more elaborated iterative
processes to be designed as a consequence of the limitations caused by Picard iteration with
respect to fixed-point approximations. Starting with the classical ones, such as Mann [14]
or Ishikawa [15], we mention here the TTP iteration [16]—studied under nonexpansive
mappings, Suzuki mappings [17], García-Falset mappings [18], etc.—Sn-iteration [19]
initially developed for Berinde-type contractive mappings, and MCS iteration [20], con-
structed, again, for García-Falset mappings or Un-iteration [21] defined in connection to
(α, β)-generalized hybrid mappings. Moreover, these iterative processes proved to be
particularly flexible, as they showed their utility not only under the aspect of iterating
nonlinear operators for reaching fixed points, but also in reinterpreting these fixed points
as a solution for all sorts of problems: split problems [22], convex programming [23], ap-
proximating zeros of complex polynomials [21], signal processing [20,21], fractals and Julia
sets [24–26].

Having this inspiring background, in this paper, we aim to extend the problem of fixed-
point searches by developing a study regarding the approximation of the common fixed
point for a pair of two distinct mappings. We chose to form the pair of operators by joining
García-Falset and (α, β)-generalized hybrid mappings. The iterative procedure we use is
an adapted version of Un-iteration made by intertwining both the García-Falset mapping
and (α, β)-hybrid mapping into an iterative formula. By setting the general framework to a
uniformly convex Banach space, we first phrase a necessary and sufficient condition for the
existence of a common fixed point for the pair of mappings, under modified-Un iteration.
Afterwards, we give sufficient condition for weak and strong convergence of modified-
Un iteration to a common fixed point of a pair of García-Falset and (α, β)-generalized
hybrid mappings.

2. Preliminaries

Let us begin by presenting some necessary notions and results that will be needed
throughout this paper.

Definition 1 ([27]). A normed vector space X is called uniformly convex if for each ε ∈ (0, 2] there

is δ > 0 such that for x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε imply
∥∥∥∥ x + y

2

∥∥∥∥ ≤ 1− δ.

Recall that for C being a nonempty subset of a Banach space X, a mapping T : C → C
is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C. Moreover, if F(T) 6= ∅
(F(T) denotes the set of fixed points of a mapping T) and ‖Tx− p‖ ≤ ‖x− p‖, for all x ∈ C
and p ∈ F(T), T is called quasinonexpansive. It is well known that if C is a nonempty,
closed and convex subset of a Banach space X and T : C → C is quasinonexpansive, then
F(T) is closed and convex.

The following concepts refer to generalized classes of nonexpansive mappings on
Banach spaces. We begin with condition (C) of Suzuki [5]:

Definition 2 ([5]). Let C be a nonempty subset of a Banach space X and let T be a selfmap on C.
Then T is said to satisfy condition (C) if

1
2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C.
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Pant and Shukla [6] introduced the class of generalized α-nonexpansive mappings
defined as follows:

Definition 3 ([6]). Let C be a nonempty subset of a Banach space X. A mapping T : C → C is
called a generalized α-nonexpansive mapping if there exists an α ∈ [0, 1) such that

1
2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ α‖Tx− y‖+ α‖Ty− x‖+ (1− 2α)‖x− y‖, (1)

for all x, y ∈ C.

Obviously, when α = 0, a generalized α-nonexpansive mapping reduces to a mapping
satisfying condition (C), so the class of generalized α-nonexpansive mappings properly
contains the class of Suzuki-type nonexpansive mappings.

We describe next the concept of generalized nonexpansive mappings which is due to
García-Falset et al. [10], along with some properties of mappings satisfying condition (E).

Definition 4 ([10]). Let C be a nonempty subset of a Banach space X and let µ ≥ 1. A mapping
T : C → X is said to satisfy condition (Eµ) whenever the inequality

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖, (2)

holds true, for all x, y ∈ C. Moreover, we say that T satisfies condition (E) on C whenever T
satisfies condition (Eµ) for a µ ≥ 1.

Proposition 1 ([10]). Let T : C → X be a mapping which satisfies condition (E) on C. If T has
some fixed point, then T is quasinonexpansive.

By Lemma 5.2 in [6], if T : C → C is a generalized α-nonexpansive mapping, then
it satisfies condition (E) on C; see [6] for a proof. Therefore, the class of generalized α-
nonexpansive mappings is subordinated to the class of mappings satisfying condition (E).
Some important examples provided in the next section will illustrate the more general
nature of García-Falset mappings compared to generalized α-nonexpansive mappings.

The next property on mappings satisfying condition (E) requires the setting of a
Banach space endowed with Opial’s property [28].

Definition 5 ([28]). A Banach space X is said to satisfy the Opial property if for each weakly
convergent sequence {xn} in X with a weak limit x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all y ∈ X with y 6= x.

Lemma 1 ([10]). Let T : C → X be a mapping on a subset C of a Banach space X with the Opial
property. Assume that T satisfies condition (E). If {xn} converges weakly to some z ∈ C and
limn→∞‖Txn − xn‖ = 0, then Tz = z. That is, I − T is demiclosed at zero.

We move further to the concept of (α, β)-generalized hybrid self mappings intro-
duced by Kocourek et al. [13]. This class of operators is wider than the classes of nonex-
pansive mappings, nonspreading mappings [11] and hybrid mappings [12] in a Hilbert
space, but remains stronger than quasinonexpansiveness. Although in [13], the study of
(α, β)-generalized hybrid mappings was developed on Hilbert spaces, in this paper, we
will extend the concept to Banach spaces.
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Definition 6 ([13]). Let X be a Banach space and let C be a nonempty closed convex subset of X.
Then, a mapping T : C → C is called (α, β)-generalized hybrid if there exist α, β ∈ R such that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2, for all x, y ∈ C. (3)

Obviously, when (α, β) = (1, 0) in condition (3), T is nonexpansive. Moreover, a

(2, 1)-hybrid mapping is nonspreading, and for the pair of parameters (α, β) =

(
3
2

,
1
2

)
,

we obtain the class of hybrid mappings.
The following feature regarding the class of (α, β)-generalized hybrid mappings

refers to the property of demiclosedness. An outcome concerning the demiclosedness
of (α, β)-hybrid mappings was originally proved using the setting of a Hilbert space in [13],
Lemma 5.1. Nevertheless, this conclusion does not change at all when extending it to a
Banach space that, in addition, is endowed with Opial’s property. We shall present the
proof here in order to make the exposition self-contained.

Lemma 2. Let T : C → C be an (α, β)-generalized hybrid mapping on a subset C of a Banach space
X with the Opial property. If {xn} converges weakly to some z ∈ C and limn→∞‖Txn − xn‖ = 0,
then Tz = z. That is, I − T is demiclosed at zero.

Proof. We prove this statement by reductio ad absurdum. In this respect, suppose z = Tz.
Since T is (α, β)-hybrid, let us start with the corresponding condition (3) which further can
be written as

α(‖Txn − Tz‖ − ‖xn − Tz‖)(‖Txn − Tz‖+ ‖xn − Tz‖) + ‖xn − Tz‖2

≤ β(‖Txn − z‖ − ‖xn − z‖)(‖Txn − z‖+ ‖xn − z‖) + ‖xn − z‖2.
(4)

Using the properties of the norm, we have

−‖xn − Txn‖ ≤ ‖Txn − Tz‖ − ‖xn − Tz‖ ≤ ‖xn − Txn‖

and also
−‖xn − Txn‖ ≤ ‖Txn − z‖ − ‖xn − z‖ ≤ ‖xn − Txn‖.

Keeping in mind that limn→∞‖xn − Txn‖ = 0, by taking the limit of the above two
inequalities, we obtain

lim
n→∞

(‖Txn − Tz‖ − ‖xn − Tz‖) = lim
n→∞

(‖Txn − z‖ − ‖xn − z‖) = 0. (5)

Before turning back to inequality (4), we shall point out two aspects regarding the
boundedness of some terms. One one side, since X has the Opial’s property, we have
lim infn→∞‖xn − z‖ < ∞. Moreover,

0 ≤ ‖Txn − z‖+ ‖xn − z‖ ≤ ‖Txn − xn‖+ 2‖xn − z‖,

therefore
lim inf

n→∞
(‖Txn − z‖+ ‖xn − z‖) < ∞. (6)

On the other side, following a similar idea as above, we obtain

0 ≤ ‖Txn − Tz‖+ ‖xn − Tz‖ ≤ ‖Txn − xn‖+ 2‖xn − z‖+ 2‖z− Tz‖,

yielding
lim inf

n→∞
(‖Txn − Tz‖+ ‖xn − Tz‖) < ∞. (7)
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Now, applying lim infn→∞ to (4) and using the results provided by (5)–(7), we have

lim inf
n→∞

‖xn − Tz‖2 ≤ lim inf
n→∞

‖xn − z‖2,

which obviously contradicts Opial’s property. Therefore, z = Tz, implying that I − T is
demiclosed at zero.

The following condition on a pair of operators (S, T) was defined by Fukhar-ud-din
and Kahn [29]. It is worth mentioning that if S = T, the condition reduces to property (I)
of Senter and Dotson [30].

Definition 7 ([29]). Let C be a subset of normed space X. Two mappings S, T : C → C are said to
satisy condition (A′) if there exists a nondecreasing function f : [0, ∞)→ [0, ∞) with f (0) = 0 and
f (r) > 0 for all r ∈ (0, ∞), such that either ‖x− Sx‖ ≥ f (d(x, F)) or ‖x− Tx‖ ≥ f (d(x, F))
for all x ∈ C, where d(x, F) = inf{‖x− p‖ : p ∈ F = F(S) ∩ F(T)}.

Definition 8 ([31]). Let C be a nonempty subset of a Banach space X and let {xn} be a bounded
sequence in X. For x ∈ X, let

r(x, {xn}) = lim sup
n→∞

‖xn − x‖

denote the asymptotic radius of {xn} at x. The asymptotic radius of {xn} relative to C is the
real number

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}

and the asymptotic center of {xn} with respect to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

This definition is due to Edelstein [31] who also proved that for a nonempty, closed
and convex subset of a uniformly convex Banach space and for each bounded sequence
{xn}, the set A(C, {xn}) is a singleton.

Not least, we recall below a lemma which will be instrumental in the development of
our outcomes.

Lemma 3 ([32]). Suppose that X is a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1
for all n ≥ 1. Let {xn} and {yn} be two sequences of X such that lim supn→∞‖xn‖ ≤ r,
lim supn→∞‖yn‖ ≤ r and lim supn→∞‖tnxn + (1− tn)yn‖ = r hold for some r ≥ 0. Then
limn→∞‖xn − yn‖ = 0.

We now have sufficient preliminary results, so we are ready to introduce our main outcomes.

3. Examples

Before moving on to the main results section, we give below some examples of
operators belonging to the previously mentioned classes of mappings. The purpose is to
emphasize the relationships that can be established between these classes of operators.

We begin by illustrating that, indeed, García-Falset’s condition holds as a generaliza-
tion of multiple classes of Suzuki-type mappings. Due to their successful formulation, we
chose generalized α-nonexpansive mappings as the comparison class. In this regard, we
consider first a mapping on R endowed with the usual metric.
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Example 1. Let C = [0, 1] be endowed with the usual metric on R, and consider the mapping

T : C → C, Tx =


x
2

, x ∈ [0, 1)

4
5

, x = 1

Our aim is to prove that T is not a generalized α-nonexpansive mapping but it satisfies
condition (E) of García-Falset.

Proof. We first prove that T does not satisfy the generalized α-nonexpansive condition

provided by relation (1). Indeed, if we choose x =
4
5

and y = 1, by direct computation,
we obtain

1
2
|x− Tx| = 1

5
= |x− y|,

while
α|Tx− y|+ α|Ty− x|+ (1− 2α)|x− y| = 1

5
(α + 1) <

2
5
= |Tx− Ty|

so the required implication does not hold. On the other side, if we choose the admissible
parameter µ = 4, the mapping will prove to have condition (E). In this respect, we shall
analyze the following cases:

Case 1: Let x, y ∈ [0, 1], such that |x− Tx| = 1
2

x. Thus, it follows

|x− Ty| =
∣∣∣x− y

2

∣∣∣ ≤ x +
1
2

y ≤ 3
2
+

1
2
|x− y| ≤ 3|x− Tx|+ |x− y|,

so, for this case, T satisfies condition (E3).

Case 2: Let x = 1 and y ∈ [0, 1), which leads to |x− Tx| = 1
5

. Evaluating condition

(E) for this case, we find

|x− Ty| = 1− y
2
≤ µ

1
5
+ 1− y,

or, equivalently, y ≤ µ
2
5

, so here, T has (E3)-property also.

Case 3: Let x ∈ [0, 1] and y = 1 for which condition (E) becomes

|x− Ty| =
∣∣∣∣x− 4

5

∣∣∣∣ ≤ µ
x
2
+ 1− x.

If x ≥ 4
5

, then the above inequality can be equivalently written as 2x ≤ x
2

µ +
9
5

, so T

has the (E4)-property. If, however, x ≤ 4
5

, it is easy to notice that T has the (E1)-property.
Taking the maximum value of parameter µ, we conclude that, indeed, T has the

(E4)-property, so overall, García-Falset’s condition is satisfied.

For the same purpose of illustrating that condition (E) is wider than generalized
α-nonexpansiveness, we are moving toward an infinite dimensional space and define a
García-Falset mapping on the space of essentially Lebesgue measurable functions.

Example 2. Consider the Banach space X = L∞(R) of all essentially bounded Lebesgue measurable
functions, endowed with the essential supremum norm

‖ f ‖∞ = ess sup | f |R = inf{M > 0 : | f (x)| ≤ M a.e. on R}.
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Let C = { f : R→ [0, 1] : f (x) = f (0), ∀x ≤ 0 a.e.} and define

T : C → C, T f (x) =


f (x), x > 0

1
3

f (0), x ≤ 0, f (0) 6= 1

2
3

, x ≤ 0, f (0) = 1.

Again, we aim to prove that T is not generalized α-nonexpansive but it satisfies condition (E)
of García-Falset.

Proof. We have

‖ f − Tg‖∞ = max{| f (0)− Tg(0)|, ess sup (0,∞)| f (x)− Tg(x)|},

‖ f − T f ‖∞ = | f (0)− T f (0)|,

and
‖ f − g‖∞ = max{| f (0)− g(0)|, ess sup (0,∞)| f (x)− g(x)|}.

Substituting them in inequality (2), condition (E) becomes

max{| f (0)− Tg(0)|, ess sup (0,∞)| f (x)− g(x)|}
≤ µ| f (0)− T f (0)|+ max{| f (0)− g(0)|, ess sup (0,∞)| f (x)− g(x)|}. (8)

We shall split the analysis into four cases, as follows:
Case 1: Suppose

| f (0)− Tg(0)| ≥ ess sup (0,∞)| f (x)− g(x)|

and also
| f (0)− g(0)| ≥ ess sup (0,∞)| f (x)− g(x)|.

Thus, condition (E) reduces to

| f (0)− Tg(0)| ≤ µ| f (0)− T f (0)|+ | f (0)− g(0)|. (9)

(a) If f (0) ∈ [0, 1) and g(0) ∈ [0, 1), then | f (0)− T f (0)| = 2
3

f (0) and

| f (0)− T f (0)| =
∣∣∣∣ f (0)− 1

3
g(0)

∣∣∣∣ ≤ 4
3

f (0) + | f (0)− g(0)| = 2| f (0)− T f (0)|+ | f (0)− g(0)|,

so T has the (E2)-property.

(b) If f (0) = 1 and g(0) ∈ [0, 1], then | f (0)− T f (0)| = 1
3

and | f (0)− Tg(0)| = 1
1
3

g(0),

which, considering relation (9), yields g(0) ≤ 1
2

µ, so T satisfies condition (E2).

(c) Finally, if f (0) ∈ [0, 1) and g(0) = 1, then | f (0)− T f (0)| =
2
3

f (0) and

| f (0)− Tg(0)| =
∣∣∣∣ f (0)− 2

3

∣∣∣∣. It is easy to check that, for f (0) ≥ 2
3

, relation (9) implies

f (0) ≤ 1
3

µ +
5
6

, so T satisfies condition (E3), while for x ≤ 2
3

it satisfies condition (E1).

Therefore, for Case 1, condition (E) is fulfilled.
Case 2: Assume now that

ess sup (0,∞)| f (x)− g(x)| ≥ | f (0)− Tg(0)|
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and also that
ess sup 0,∞| f (x)− g(x)| ≥ | f (0)− g(0)|.

Thus, inequality (8) is further written as

ess sup (0,∞)| f (x)− g(x)| ≤ µ| f (0)− T f (0)|+ ess sup (0,∞)| f (x)− g(x)|

which is obviously true for any µ ≥ 1.
Case 3: Assume next that | f (0)− g(0)| ≤ ess sup (0,∞)| f (x)− g(x)| ≤ | f (0)− Tg(0)|.

It is actually easy to notice that this case reduces to Case 1 as previously analyzed, so the
desired result follows.

Case 4: Finally, suppose | f (0)− Tg(0)| ≤ ess sup (0,∞)| f (x)− g(x)| ≤ | f (0)− g(0)|.
This case is in fact included in Case 2, so condition (E) is again satisfied for any µ ≥ 1.

All four previously analyzed cases allow us to state that inequality (4) is overall
satisfied, and T is indeed a García-Falset mapping.

In order to prove that T is not generalized α-nonexpansive, let us consider Case 1,
with the additional assumptions that |T f (0)− Tg(0)| ≥ ess sup (0,∞)| f (x)− g(x)| and

|T f (0)− g(0)| ≥ ess sup (0,∞)| f (x)− g(x)|. If we choose f (0) =
2
3

and g(0) = 1, then it
immediately follows that

1
2
| f (0)− T f (0)| = 2

9
<

1
3
= | f (0)− g(0)|.

Turning toward the right side of (1), we find

α|T f (0)− g(0)|+ α|Tg(0)− f (0)|+ (1− 2α)| f (0)− g(0)| = 1
9

α +
1
3
<

4
9
= |T f (0)− Tg(0)|,

so the implications fails to be satisfied, which leads to the conclusion that T is not general-
ized α-nonexpansive.

We prove next that there exist mappings which satisfy condition (E) on a subset C but
fail to be (α, β) hybrids. In this respect, we analyze the following two examples.

Example 3. Consider X = R3 with the usual Euclidean norm and let

C = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

We shall consider the mapping

T : C → C, T :
(

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
(1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 0)

)
.

Then T satisfies condition (E) of García-Falset but is not (α, β) hybrid.

Proof. Clearly, ‖x− Ty‖ ≤
√

2 and ‖x− Tx‖ 6= 0, for all x, y ∈ C, so T is a García-
Falset mapping with µ =

√
2. In order to prove that T is not (α, β) hybrid, we shall

take x = (0, 0, 1) and y = (0, 0, 0). It follows that ‖Tx− Ty‖2 = 2, ‖Tx− y‖2 = 1,
‖Ty− x‖2 = 2 and ‖x− y‖2 = 1. Evaluating inequality (3) for these values obviously leads
to a contradiction, thus T is not (α, β) hybrid.

Example 4. Let C = [0, 1]2 endowed with the 1-norm on R2 and consider the mapping

T : C → C, T f (x) =


(

x1

2
,

2
3

x2

)
, (x1, x2) ∈ [0, 1)× [0, 1](

4
5

,
2
3

x2

)
, (x1, x2) ∈ {1} × [0, 1]
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We shall next verify that T satisfies condition (E) on C but it is not a (α, β)-generalized
hybrid mapping.

Proof. We begin by showing that (α, β)-generalized hybrid condition (3) fails to be satisfied

for the pair x =

(
1,

2
3

)
and y =

(
4
5

,
9
10

)
. Indeed, for this pair of points, the left side of (3)

is equal to
9
25

, while the right side equals
1
4

under the 1-norm, which yields a contradiction.
To prove that T is a García-Falset mapping, we shall analyze the following combinations.
Case 1: Let x, y ∈ [0, 1)× [0, 1]. We have

‖x− Ty‖ =

∥∥∥∥(x1, x2)−
(

1
2

y1,
2
3

y2

)∥∥∥∥
=

∣∣∣∣x1 −
1
2

y1

∣∣∣∣+ ∣∣∣∣x2 −
2
3

y2

∣∣∣∣
≤ 1

2
|x1 − y1|+

2
3
|x2 − y2|

≤ 1
2

x1 +
1
3

x2 + |x1 − y1|+ |x2 − y2|

= ‖x− Tx‖+ ‖x− y‖,

so T has the (E1)-property.
Case 2: Let x, y ∈ {1} × [0, 1]. It follows

‖x− Ty‖ =

∥∥∥∥(x1, x2)−
(

4
5

,
2
3

y2

)∥∥∥∥
=

∣∣∣∣1− 4
5

∣∣∣∣+ ∣∣∣∣x2 −
2
3

x2

∣∣∣∣
≤ 1

5
+

1
3

x2 +
2
3
|x2 − y2|

≤ 1
5
+

1
3

x2 + |x2 − y2|

= ‖x− Tx‖+ |x− y|,

so again, T has the (E1)-property.
Case 3: Let x ∈ {1} and y ∈ [0, 1)× [0, 1]. We obtain

‖x− Ty‖ =

∥∥∥∥(x1, x2)−
(

1
2

y1,
2
3

y2

)∥∥∥∥
=

∣∣∣∣1− 1
2

y1

∣∣∣∣+ ∣∣∣∣x2 −
2
3

y2

∣∣∣∣
≤ 1

2
+

1
2
|1− y1|+

1
3

x2 +
2
3
|x2 − y2|

≤ 5
2

(
1
5
+

1
3

x2

)
+ |1− y1|+ |x2 − y2|

=
5
2
‖x− Tx‖+ ‖x− y‖,

and therefore, T has the (E 5
2
)-property.
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Case 4: Let x ∈ [0, 1)× [0, 1] and y ∈ {1} × [0, 1]. Since ‖x− Tx‖ = 1
2

x1 +
1
3

x2 and

‖x− Ty‖ =
∣∣∣∣x1 −

4
5

∣∣∣∣+ ∣∣∣∣x2 −
2
3

y2

∣∣∣∣, condition (2) can be written as

∣∣∣∣x1 −
4
5

∣∣∣∣+ ∣∣∣∣x2 −
2
3

y2

∣∣∣∣ ≤ µ

(
1
2

x1 +
1
3

x2

)
+ |x1 − 1|+ |x2 − y2|.

Actually,
∣∣∣∣x2 −

2
3

∣∣∣∣ ≤ 1
3

x2 +
2
3
|x2 − y2| ≤

1
3

x2 + |x2 − y2|, so it remains to show that

∣∣∣∣x1 −
4
5

∣∣∣∣ ≤ µ
1
2

x1 + |x1 − 1|.

If x1 ≥
4
5

, then the above inequality reduces to x1 ≤ µ
1
4

x1 +
2
5

, so T satisfies

(E4)-property. Instead, if x1 ≤
4
5

, then it can be easily noticed that T has the (E2)-property.
Considering all these combinations and taking the maximum value of the admissible

parameter µ, we conclude that T has the (E4) property. Consequently, it is a García-
Falset mapping.

Regarding the converse proof (i.e., there exists a (α, β)-generalized hybrid map-
ping which is not García-Falset), we can state this is true by looking at the patterns of
conditions (2) and (3). Indeed, no subordination or equivalence relationship seems possi-
ble to be established between the two of them. Nevertheless, we leave it as an open issue to
find an example of an operator which belongs to the class of (α, β)-hybrid mappings but
does not have condition (E).

4. Convergence Theorems

Next, we provide an iterative algorithm as well as a convergence study regarding
this algorithm with respect to the common fixed point of a pair of García-Falset and
(α, β)-hybrid mappings. Throughout this section, we shall consider T as a García-Falset
mapping and S as a (α, β)-generalized hybrid mapping. We denote by p the common
fixed point of T and S, that is, Tp = p = Sp. For constructing the iteration procedure, we
start from Un iteration defined in [21] and studied only in connection with (α, β)-hybrid
mappings on uniformly convex Banach spaces.

Algorithm 1 ([21]). Let C be a nonempty convex set and S : C → C be a given operator. For an
arbitrary initial point x0 ∈ C, construct the sequence{xn} iteratively by

zn = (1− ξn)xn + ξnSxn
yn = S((1− ζn)Sxn + ζnSzn)
xn+1 = (1− ηn − δn)Sxn + ηnSyn + δnSzn,

(10)

where {ξn}, {ζn}, {ηn}, {δn} and {ηn + δn} are sequences of real numbers in (0, 1).

We adapt this algorithm for the problem of approximating common fixed points of a
pair of mappings by properly including T into its definition:

Algorithm 2 (modified-Un iteration). Let C be a nonempty convex set and S, T : C → C be two
given operators. For an arbitrary initial point x0 ∈ C, construct the sequence {xn} iteratively by

zn = (1− ξn)xn + ξnTxn
yn = S((1− ζn)Txn + ζnSzn)
xn+1 = (1− ηn − δn)Sxn + ηnSyn + δnSzn,

(11)



Mathematics 2022, 10, 318 11 of 18

where {ξn}, {ζn}, {ηn}, {δn} and {ηn + δn} are sequences of real numbers in (0, 1). Additionally,
we assume further that the parametric sequence {ξn} satisfies 0 < p ≤ ξn ≤ q < 1, and {ζn} is a
convergent sequence to some ζ ∈ (0, 1).

Henceforth, we shall call this procedure modified-Un iteration. It is worth pointing out
that, if T = S (for example, both are the same nonexpansive mapping), then modified-Un
iteration reduces to Un iteration.

We start by exposing a technical lemma concerning modified-Un iteration, which will
often accompany us in proving the rest of our results.

Lemma 4. Let C be a nonempty, closed and convex subset of a Banach space X. Let T : C → C
be a mapping satisfying condition (E) and S : C → C a (α, β)-generalized hybrid mapping
such that F(T) ∩ F(S) 6= ∅. Suppose the sequence {xn} is generated by iteration (11). Then,
limn→∞‖xn − p‖ exists for any p ∈ F(T) ∩ F(S).

Proof. Let p ∈ F(T) ∩ F(S). Since T and S have at least one fixed point, they are quasinon-
expansive. Therefore, keeping in mind our iteration scheme and the properties of the norm,
we have

‖zn − p‖ = ‖(1− ξn)xn + ξnTxn − p‖
≤ (1− ξn)‖xn − p‖+ ξn‖Txn − p‖ (12)

≤ (1− ξn)‖xn − p‖+ ξn‖xn − p‖
= ‖xn − p‖.

Proceeding in much the same way for {yn} and keeping in mind relation (12), we obtain

‖yn − p‖ = ‖S((1− ζn)Txn + ζnSzn)− p‖
≤ ‖(1− ζn)Txn + ζnSzn − p‖
≤ (1− ζn)‖Txn − p‖+ ζn‖Szn − p‖ (13)

≤ (1− ζn)‖xn − p‖+ ζn‖zn − p‖
≤ ‖xn − p‖.

Lastly, considering both inequality (12) and inequality (13), we find

‖xn+1 − p‖ = ‖(1− ηn − δn)Sxn + ηnSyn + δSzn − p‖
≤ (1− ηn − δn)‖Sxn − p‖+ ηn‖Syn − p‖+ δn‖Szn − p‖
≤ (1− ηn − δn)‖xn − p‖+ ηn‖yn − p‖+ δn‖zn − p‖ (14)

≤ (1− ηn − δn)‖xn − p‖+ ηn‖xn − p‖+ δn‖xn − p‖
= ‖xn − p‖.

This shows that the sequence {‖xn − p‖} is bounded and nonincreasing for any
p ∈ F(T) ∩ F(S); thus, limn→∞‖xn − p‖ exists.

The following theorem provides a necessary and sufficient condition for T and S to
have a common fixed point. For proving this outcome, we recall the following property of
lim sup:

Lemma 5. Let {an} and {bn} be two bounded real sequences. Then, for cn = (1− αn)an + αnbn
with αn ∈ [0, 1] convergent to a real number α ∈ [0, 1],

lim sup
n→∞

cn ≤ (1− α) lim sup
n→∞

an + α lim sup
n→∞

bn.
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Theorem 1. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X. Let
T : C → C be a mapping satisfying condition (E) and S : C → C be a (α, β)-generalized hybrid mapping.
Suppose the sequence {xn} is generated iteratively by the procedure (11). Then, F(T) ∩ F(S) 6= ∅ if and
only if {xn} is bounded and, limn→∞‖Txn − xn‖ = 0 and limn→∞‖Sxn − xn‖ = 0.

Proof. Consider first proving the direct implication. Suppose thus that F(T) ∩ F(S) 6= ∅
and let p ∈ F(T) ∩ F(S). Let us denote

r = lim
n→∞
‖xn − p‖.

We begin with inequality (12), which, by applying lim supn→∞ on its both members, implies

lim sup
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r. (15)

Again, since T is quasinonexpansive, we also have

lim sup
n→∞

‖Txn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r.

As it can be seen in (14),

‖xn+1 − p‖ ≤ (1− ηn − δn)‖xn − p‖+ ηn‖xn − p‖+ δn‖zn − p‖
= (1− δn)‖xn − p‖+ δn‖zn − p‖ (16)

= ‖xn − p‖ − δn‖xn − p‖+ δn‖zn − p‖,

which further gives that

‖xn+1 − p‖ − ‖xn − p‖
δn

≤ ‖zn − p‖ − ‖xn − p‖

or, even more,

‖xn+1 − p‖ − ‖xn − p‖ ≤ ‖xn+1 − p‖ − ‖xn − p‖
δn

≤ ‖zn − p‖ − ‖xn − p‖

leading to
‖xn+1 − p‖ ≤ ‖zn − p‖.

Further, by taking lim infn→∞, this yields

r ≤ lim inf
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ r

so
lim sup

n→∞
‖zn − p‖ = r.

This last result can also be written as

lim sup
n→∞

‖zn − p‖ = lim sup
n→∞

‖(1− ξn)(xn − p) + ξn(Txn − p)‖ = r.

All conditions of Lemma 3 are fulfilled now; thus,

lim
n→∞
‖Txn − xn‖ = 0. (17)

In order to show that limn→∞‖Sxn − xn‖ = 0, we shall start with the following inequality

‖Szn − xn‖ ≤ ‖Szn − Txn‖+ ‖Txn − xn‖. (18)
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Using again the fact that S is quasinonexpansive, we have

‖Szn − p‖ ≤ ‖zn − p‖ ≤ ‖xn − p‖

that implies
lim sup

n→∞
‖Szn − p‖ ≤ r.

Inequality (13) also gives

lim sup
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖xn − p‖ ≤ r.

Due to the recurrence of {yn} in our procedure, we can write

lim sup
n→∞

‖yn − p‖ = lim sup
n→∞

‖S((1− ζn)Txn + ζnSzn)− p‖

≤ lim sup
n→∞

‖(1− ζn)Txn + ζnSzn − p‖

= lim sup
n→∞

‖(1− ζn)(Txn − p) + ζn(Szn − p)‖ (19)

≤ (1− ζ) lim sup
n→∞

‖Txn − p‖+ ζ lim sup
n→∞

‖Szn − p‖

≤ (1− ζ) lim sup
n→∞

‖xn − p‖+ ζ lim sup
n→∞

‖zn − p‖

= r.

On the other hand, using (14), we obtain

‖xn+1 − p‖ ≤ (1− ηn − δn)‖xn − p‖+ ηn‖yn − p‖+ δn‖xn − p‖
= (1− ηn)‖xn − p‖+ ηn‖yn − p‖ (20)

= ‖xn − p‖ − ηn‖xn − p‖+ ηn‖yn − p‖,

which implies
‖xn+1 − p‖ − ‖xn − p‖

ηn
≤ ‖yn − p‖ − ‖xn − p‖

or, even more,

‖xn+1 − p‖ − ‖xn − p‖ ≤ ‖xn+1 − p‖ − ‖xn − p‖
ηn

≤ ‖yn − p‖ − ‖xn − p‖

that is
‖xn+1 − p‖ ≤ ‖yn − p‖.

By taking lim infn→∞, this implies

r ≤ lim inf
n→∞

‖yn − p‖ ≤ lim sup
n→∞

‖yn − p‖ ≤ r

so
lim sup

n→∞
‖yn − p‖ = r. (21)

From relations (19) and (21), we obtain

r ≤ lim sup
n→∞

‖(1− ζn)(Txn − p) + ζn(Szn − p)‖ ≤ r

so
lim sup

n→∞
‖(1− ζn)(Txn − p) + ζn(Szn − p)‖ = r.
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One more time, the conditions of Lemma 3 are accomplished, so

lim
n→∞
‖Txn − Szn‖ = 0. (22)

Obviously, from the same arguments we can extract that

lim
n→∞
‖xn − zn‖ = 0 (23)

holds too. Now we can handle inequality (18). Having (17) and (22), and letting n→ ∞, it
leads to

lim
n→∞
‖Szn − xn‖ = 0. (24)

Furthermore, by the properties of the norm, we have

‖Szn − zn‖ ≤ ‖Szn − xn‖+ ‖zn − xn‖,

from where, by taking the limit and using (23) and (24), it follows

lim
n→∞
‖Szn − zn‖ = 0. (25)

On the other side, by the properties of the norm, we may clearly obtain

−‖Szn − zn‖ ≤ ‖Szn − Sxn‖ − ‖Sxn − zn‖ ≤ ‖Szn − zn‖.

Letting n→ ∞ in this last inequality and using relation (25), it follows

lim
n→∞

[‖Szn − Sxn‖ − ‖Sxn − zn‖] = 0. (26)

Now, having in mind the assumption that S is a (α, β)-generalized hybrid mapping
and the iterative formula of our algorithm, we have

α‖Szn − Sxn‖2 + (1− α)‖zn − Sxn‖2 ≤ β‖Szn − xn‖2 + (1− β)‖zn − xn‖2

which can be written more conveniently as

α(‖Szn − Sxn‖ − ‖zn − Sxn‖)(‖Szn − Sxn‖+ ‖zn − Sxn‖) + ‖zn − Sxn‖2

≤ β‖Szn − xn‖2 + (1− β)‖zn − xn‖2

Taking the limit on both sides of this last inequality and using relation (26) along
with (23) and (24), we can eventually conclude that

lim
n→∞
‖zn − Sxn‖ = 0. (27)

At this point, we are able to show that limn→∞‖Sxn − xn‖ = 0. Since

‖Sxn − xn‖ ≤ ‖Sxn − zn‖+ ‖xn − zn‖ (28)

by letting n → ∞ and considering (27) together with (23), it follows lim
n→∞
‖Sxn − xn‖ = 0,

and this finishes this part of the proof.
Conversely, suppose {xn} is bounded and limn→∞‖Txn − xn‖ = 0 and

limn→∞‖Sxn − xn‖ = 0. A similar proof as for Lemma 2 can clearly lead to

lim
n→∞
‖xn − Sp‖ ≤ lim

n→∞
‖xn − p‖, (29)

for all p ∈ C.
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On the other hand, from the García-Falset condition (2), letting x = p ∈ C, y = xn and
n→ ∞, we find also

lim
n→∞
‖xn − Tp‖ ≤ lim

n→∞
‖xn − p‖. (30)

Assume p ∈ A(C, {xn}). Both from (29) and (30), we find

r(Tp, {xn}) = lim sup
n→∞

‖xn − Tp‖ ≤ lim sup
n→∞

‖xn − p‖ = r(p, {xn})

and
r(Sp, {xn}) = lim sup

n→∞
‖xn − Sp‖ ≤ lim sup

n→∞
‖xn − p‖ = r(p, {xn}),

so, Tp ∈ A(C, {xn}) and Sp ∈ A(C, {xn}). However, from Edelstein’s conclusion, the
set A(C, {xn}) must be a singleton for each bounded sequence {xn}, and thus, we obtain
p = Tp = Sp.

Considering the previously two results, we are now ready to phrase our weak and
strong convergence theorems.

Theorem 2. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X
endowed with Opial’s property, and let T, S and {xn} be as in Theorem 1. If F(T) ∩ F(S) 6= ∅,
then {xn} converges weakly to some p ∈ F(T) ∩ F(S).

Proof. An obvious consequence of Lemma 4 is that the sequence {xn} is bounded. There-
fore, it has a subsequence

{
xnj

}
which converges weakly to an element p ∈ X. Since

the set C is convex and closed, it is also weakly closed. Thus, it contains the weak lim-
its of all of its weakly convergent sequences, so p ∈ C. Moreover, Theorem 1 provides
limn→∞‖Txn − xn‖ = 0 and limn→∞‖Sxn − xn‖ = 0, so, according to Lemmas 1 and 2, we
actually have p ∈ F(T) ∩ F(S). Further, we will prove that {xn} itself converges weakly
to p. In order to do so, let us assume the contrary. Suppose there is another arbitrary
subsequence

{
xnj

}
of {xn}, which converges weakly to some element p′ ∈ X such that

p 6= p′. In the same manner as for p, it follows that p′ ∈ F(T) ∩ F(S) also. Now, keeping in
mind that the sequence {‖xn − p‖} is convergent and using Opial’s property, we have

lim
n→∞
‖xn − p‖ = lim inf

i→∞
‖xni − p‖ < lim inf

i→∞

∥∥xni − p′
∥∥ = lim

n→∞

∥∥xn − p′
∥∥

= lim inf
j→∞

∥∥∥xnj − p′
∥∥∥ < lim inf

j→∞

∥∥∥xnj − p
∥∥∥ = lim

n→∞
‖xn − p‖,

which, as expected, leads to a contradiction. Therefore, p = p′ and {xn} converges weakly
to a common fixed point of T and S considered.

An interesting corollary of the above theorem can be provided by limiting our setting X
to a Hilbert space. Before displaying this result, let us first recall some important properties
of the metric projection that will be involved in establishing our outcome.

Let C be a nonempty, closed and convex subset of a Hilbert space X. Then, for each
x ∈ X, there is a unique closest point x∗ ∈ C such that

‖x− x∗‖ = inf
y∈C
‖x− y‖.

Using this correspondence, we can define a mapping PC : X → C by PCx = x∗,
known as the metric projection of X onto C. The following are characteristics of the
projection mapping.

Lemma 6 ([33]). Let C be a nonempty closed convex subset of a Hilbert space X. Then, given
x ∈ X and q ∈ C, q = PCx if and only if 〈x− q, q− y〉 ≥ 0, for all y ∈ C.
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Lemma 7 ([33]). Let X be a Hilbert space and let C be a nonempty closed convex subset of X. Let
{xn} be a sequence in X. Suppose that, for all u ∈ C,

‖xn+1 − u‖ ≤ ‖xn − u‖, for all n ∈ N.

Then, {PCxn} converges strongly to some z ∈ C.

Corollary 1. Let C be a nonempty closed convex subset of a Hilbert space X, and let T, S and {xn}
be as in Theorem 1, F(T) ∩ F(S) 6= ∅. Suppose {xn} converges weakly to a common fixed point p
of T and S. Then, p = limn→∞ PF(T)∩F(S)xn.

Proof. Turning back to inequality (14) above, we conclude that ‖xn+1 − p‖ ≤ ‖xn − p‖, for
all p ∈ F(T) ∩ F(S). According to Lemma 7, this implies that the sequence

{
PF(T)∩F(S)xn

}
converges strongly to an element z ∈ F(T) ∩ F(S).

Further, from Lemma 6, letting q = PF(T)∩F(S)xn, we have〈
xn − PF(T)∩F(S)xn, PF(T)∩F(S) − y

〉
≥ 0,

for all y ∈ F(T) ∩ F(S). Now, keeping in mind that xn ⇀ p ∈ F(T) ∩ F(S) and that
PF(T)∩F(S)xn → z ∈ F(T) ∩ F(S), we get

〈p− z, z− y〉 ≥ 0,

for all y ∈ F(T) ∩ F(S). Substituting y with p above, it follows that z = p, thus,
limn→∞ PF(T)∩F(S)xn = p, completing the proof.

The next theorem is a strong convergence outcome with respect to a subset C, which is
additionally compact.

Theorem 3. Let C be a nonempty, compact and convex subset of a uniformly convex Banach space
X and let T, S and {xn} be as in Theorem 1. If F(T) ∩ F(S) 6= ∅, then {xn} converges strongly
to a fixed point of T.

Proof. Assume that F(T) ∩ F(S) 6= ∅. Then, Theorem 1 provides limn→∞‖Txn − xn‖ = 0
and limn→∞‖Sxn − xn‖ = 0. Keeping in mind that the subset C is compact, the se-
quence {xn} must have a subsequence {xnj} that converges to a point p ∈ C. However,
form (29) and (30),

lim
n→∞

∥∥∥Txnj − xn

∥∥∥ ≤ lim
n→∞

∥∥∥xnj − p
∥∥∥

and
lim

n→∞

∥∥∥Sxnj − xn

∥∥∥ ≤ lim
n→∞

∥∥∥xnj − p
∥∥∥,

and therefore, {xnj} converges to Tp. By the uniqueness of the limit, we have p = Tp and
p = Sp, so p = Tp = Sp. By Lemma 4, limn→∞‖xn − p‖ exists, so p is actually the strong
limit of {xn}.

Not least, we shall give below our second strong convergence result regarding the
modified-Un iteration. Essential here is condition (A′) of Fukhar-ud-din and Kahn [29].

Theorem 4. Let C be a nonempty closed convex subset of a uniformly convex Banach space X.
Let T : C → C be a mapping satisfying condition (E) and S : C → C a (α, β)-generalized hybrid
mapping such that F(T) ∩ F(S) 6= ∅. Suppose that T and S satisfy condition (A′). Then the
sequence {xn} generated by (11) converges strongly to an element p ∈ F(T) ∩ F(S).

Proof. Let us first denote F = F(T) ∩ F(S). By Lemma 4 and Theorem 1, we have
already obtained that limn→∞‖Txn − xn‖ = 0, limn→∞‖Sxn − xn‖ = 0 and also that
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limn→∞‖xn − p‖ = r exists for any p ∈ F. Therefore, limn→∞ d(xn, F) exists too. If r = 0,
then the desired result follows. Suppose it is the case when r > 0. According to the
assumptions on T and S, we have either

f (d(xn, F)) ≤ ‖Txn − xn‖

or
f (d(xn, F)) ≤ ‖Sxn − xn‖.

Taking the limit in both cases, we find limn→∞ f (d(xn, F))=0. By considering the
properties of function f provided by Definition 7, we can deduce that limn→∞ d(xn, F) = 0.

Now, we prove that {xn} is a Cauchy sequence on C. Knowing that limn→∞ d(xn, F) = 0

allows us to assert that there exists nε ∈ N such that, for all n ≥ nε, we have d(xn, F) ≤ ε

2
,

for any ε > 0.
For m, n ≥ nε and p ∈ F, we have

‖xn − xm‖ ≤ ‖xn − p‖+ ‖xm − p‖.

Keeping in mind that the sequence {‖xn − p‖} is nonincreasing, this leads to

‖xn − xm‖ ≤ 2 inf
p∈F
‖xnε − y‖ = 2d(xnε , F) ≤ ε,

which yields that, indeed, {xn} is a Cauchy sequence in C. Since C is a closed subset of X,
it follows that {xn} converges to a point p in C. However, from limn→∞ d(xn, F) = 0, we
have d(p, F) = 0. Since T and S have at least one fixed point, they are quasinonexpansive,
and thus, F ∈ C is closed. Finally, this implies that {xn} converges strongly to p ∈ F, and
the proof is complete.

5. Conclusions

In this paper, our purpose was to extend the classic approach of fixed-point searches
from [21] by taking the Un-iteration and modifying the process by properly mixing a pair of
two distinct types of operators into its structure. In other words, we brought together both
García-Falset mappings and (α, β)-generalized hybrid mappings under the same iteration
procedure. Under the resulted iteration process, we proved the existence of a common
fixed point for a pair of García-Falset and (α, β)-generalized hybrid mappings. In the end,
we proved several weak and strong convergence results to the common fixed point for the
sequence of approximations generated by modified-Un iteration. We underline that the
present subject opens new research perspectives, such as the development of an associated
ergodic theory.
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