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1. Introduction

During the past more than 20 years, extending and characterizing definitions/properties
of generalized convexity from the real-valued to the multi-valued mappings had been
investigated by many scholars; the readers are referred to Benoist and Popovici [1,2],
Jabarootian and Zafarani [3], Oveisiha and Zafarani [4], Sach and Yen [5], Yang [6] and
the references cited therein. In particular, Sach and Yen [5] provided certain necessity and
sufficiency terms for a multi-valued F to be K-convex by using a contingent derivative
of the epigraphical multifunction of F w.r.t. an ordering cone K. Subsequently, Yang [6]
introduced Dini direction derivative for multifunctions and it was used to derive certain
properties of K-convexity mappings.

Set-valued vector optimization problems received great attention from many authors,
who considered and studied them via various kinds of methods and approaches; see, for
example, Chen and Jahn [7], Chinaie and Zafarani [8,9], Chinchuluun and Pardalos [10],
Durea and Strugariu [11], Floudas and Pardalos [12], Ha [13], Mohan and Neogy [14] and
Mordukhovich [15,16]. Super efficiency was first put forth by Borwein and Zhuang [17]
in linear normed space and then explored in a few papers: Bao and Mordukhovich [18],
Huang [19], Rong and Wu [20], Zaffaroni [21], Zheng et al. [22]. Such a concept extracts
and puries the notion of efficiency and other types of proper efficiency. So, Rong and
Wu [20] gave certain characterizations of super efficiency by virtue of super duality with
cone-convexlike conditions, Lagrange multipliers and scalarizing procedure. Zaffaroni [21]
applied various scalarizing functions to present some characterizations of super minimizers
and other different solutions of vector optimization issues. Bao and Mordukhovich [18]
derived some necessity terms of super efficiency in constrained issues of multiobjective
optimization by advanced techniques of variational analysis; also, see [23,24]. In 2013,
Oveisiha and Zafarani [25] obtained a characterization of K-preinvexity mappings by virtue
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of the normal subdifferential notion and marginal functions. Meanwhile, two sufficiency
conditions for which super minimal points exist were deduced using the K-preinvexity
hypothesis. Certain necessity optimality conditions for a general type of super efficiency
were also obtained. For the concepts of generalized invexity and invariant monotonicity
w.r.t. a function, the reader is referred to: Jabarootian and Zafarani [26], Soleimani and
Damaneh [27], Weir and Mond [28], Yang et al. [29,30], and the references cited therein. In
addition, by virtue of the scalarizing technique, Oveisiha and Zafarani investigated Stam-
pacchia variational-like inequalities by using a normal subdifferential for multifunctions
and built their relations with set-valued vector optimization issues. Besides, they attained
certain characterizations of the solution sets of pseudoinvexity extremum issues. Subse-
quently, motivated by Oveisiha and Zafarani [31], Ceng and Latif [32] considered Stampac-
chia equilibrium-like problems by virtue of a normal subdifferential for multifunctions,
established their relations with set-valued vector optimization issues, and attained certain
characterizations of a solution set of a set-valued generalized K-pseudoinvexity program.
Very recently, Atarzadeh et al. [33] considered the nonsmooth composite minimization
problem (NCMP) with inequality constraints and obtained some equivalent conditions for
the Karush–Kuhn–Tucker (KKT) optimality condition of the NCMP. Atarzadeh et al. [34]
studied Fritz John (FJ) and KKT multiplier rules of orders one and two for a set-valued vec-
tor optimization problem with inequality constraints and established sufficient conditions
for the equivalence between the disjunction and multiplier rules in various cases.

In this paper, inspired by the above research works, we first deduce some properties
for K-preinvex set-valued maps using their marginal functions, equilibrium-like function
and normal subdifferential concept. Secondly, in terms of this equilibrium-like function
we establish some sufficient conditions for the existence of super minimal points of a
K-preinvex set-valued map, that is, super efficient solutions of a set-valued vector optimiza-
tion problem, and also attain necessity optimality conditions for a general type of super
efficiency. The structure of this paper is assigned below: Some concepts and basic tools
are contained in Section 2. Certain properties of K-preinvexity mappings are obtained by
virtue of a normal subdifferential and an equilibrium-like function in Section 3. Certain
necessity and sufficiency optimality conditions are established for efficiency and a general
type of super efficiency in Section 4.

2. Concepts and Basic Tools

Suppose that X∗ is the topological dual space of a Banach space X. We denote by the
same notation ‖ · ‖ the norms in X and X∗. Let the 〈·, ·〉, [υ, ω] and (υ, ω) represent the
duality pairing between X∗ and X, the line segment for υ, ω ∈ X and the interior of [υ, ω],
respectively. Recall now certain notions of coderivatives and subdifferentials below.

Assume that X is a normed linear space and ∅ 6= Ξ ⊂ X. Let ε > 0 and υ ∈ Ξ. Define
the set of ε-normals to Ξ at υ by

N̂ε(υ; Ξ) := {υ∗ ∈ X∗ : lim sup
u Ξ→υ

〈υ∗, u− υ〉
‖u− υ‖ ≤ ε},

where u Ξ→ υ indicates u → υ along u ∈ Ξ. Whenever ε = 0, the above set is written as
N̂(υ; Ξ) and known as regular normal cone to Ξ at υ. In case ῡ ∈ Ξ, the basic normal cone
to Ξ at ῡ is:

N(ῡ; Ξ) := lim sup
υ→ῡ,ε↓0

N̂ε(υ; Ξ).

Suppose that φ : X → R takes the finite-valued at ῡ ∈ X. The basic (limiting) subdif-
ferential and regular (Fréchet) subdifferential (due to [15]) of φ at ῡ are formulated below

∂φ(ῡ) := {υ∗ ∈ X∗ : (υ∗,−1) ∈ N(ῡ, φ(ῡ); epiφ)},

∂̂φ(ῡ) := {υ∗ ∈ X∗ : (υ∗,−1) ∈ N̂((ῡ, φ(ῡ)); epiφ)},
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respectively. In case X is an Asplund space, that is, each continuous convex function on X
is of Fréchet differentiability on a dense set of points, the following holds,

∂φ(ῡ) = lim sup
υ

φ→ῡ

∂̂φ(υ),

where υ
φ→ ῡ means that υ → ῡ with φ(υ) → φ(ῡ). According to [16], we know that the

following conclusions hold:
(i) if X is an Asplund space, φ1 is Lipschitz-continuous around ῡ and φ2 is of l.s.c. prop-

erty around this point, then ∂(φ1 + φ2)(ῡ) ⊂ ∂φ1(ῡ) + ∂φ2(ῡ) for the limiting subdifferentials;
(ii) if X is a Banach space, φ1, φ2 are arbitrary extended-real-valued functions that are

finite at ῡ and ∂̂+φ2(ῡ) := −∂̂(−φ2)(ῡ) is nonempty, then ∂̂(φ1 + φ2)(ῡ) ⊂
⋂

υ∗∈∂̂+φ2(ῡ)
[υ∗+

∂̂φ1(ῡ)].
It is well-known that mean-value theorems play an important role in nonsmooth

analysis. We here recall a mean-value theorem for limiting subdifferentials.

Theorem 1 ([16]). Suppose that X is an Asplund space and φ is Lipschitz continuous on an open
set containing [a, b] in X. Then, ∃c ∈ [a, b) and ∃υ∗ ∈ ∂φ(c) s.t. 〈υ∗, b− a〉 ≥ φ(b)− φ(a).

Let ∅ 6= Ξ ⊂ X, and η : Ξ× Ξ→ X be a map. Then η is referred to as being skew if
η(υ, ω) + η(ω, υ) = 0 ∀υ, ω ∈ Ξ. According to [28], the set Ξ is referred to as being invex
w.r.t. η if υ + tη(ω, υ) ∈ Ξ ∀υ, ω ∈ Ξ, t ∈ [0, 1].

Next, we always suppose that Ξ ⊂ X is an invex subset w.r.t. η : Ξ × Ξ → X.
Motivated by Theorem 1, we define a mean-value condition for limiting subdifferential ∂φ
w.r.t. ψ.

Definition 1. Suppose that the space X is Asplund one, and ψ : X∗ × Ξ × Ξ → R. Given
υ, ω ∈ Ξ and Lipschitz-continuous φ : Ξ→ R on some open subset containing [υ, ω]. Then φ is
referred to as satisfying mean-value condition for limiting subdifferential ∂φ w.r.t. ψ iff ∃u ∈ [υ, ω)
and ∃ξ∗ ∈ ∂φ(u) s.t. ψ(ξ∗, υ, ω) ≥ φ(ω)− φ(υ).

Given a multi-valued map Γ : X → 2Y with Y being partially ordered by a convex and
closed cone K 6= ∅. We denote by “≤K” the ordering relation on Y, that is,

υ1 ≤K υ2 ⇔ υ2 − υ1 ∈ K.

Define domΓ := {υ ∈ X : Γ(υ) 6= ∅}, grΓ := {(υ, ω) : υ ∈ domΓ, ω ∈ Γ(υ)} and
epiΓ := {(υ, ω) : υ ∈ X, ω ∈ Γ(υ) + K}. In what follows, we recall some definitions and
results involving coderivatives and subdifferentials of set-valued mappings.

Suppose that Γ : X → 2Y is a set-valued mapping between Banach spaces and
(ῡ, ω̄) ∈ grΓ. Then the Fréchet coderivative of Γ at (ῡ, ω̄) (see [16]) is the set-valued
mapping D̂∗Γ(ῡ, ω̄) : Y∗ → 2X∗ formulated by

D̂∗Γ(ῡ, ω̄)(ω∗) := {υ∗ ∈ X∗ : (υ∗,−ω∗) ∈ N̂((ῡ, ω̄); grΓ)},

and the normal coderivative of Γ at (ῡ, ω̄) (see [16]) is the set-valued mapping D∗N Γ(ῡ, ω̄) :
Y∗ → 2X∗ formulated by

D∗N Γ(ῡ, ω̄)(ω∗) := {υ∗ ∈ X∗ : (υ∗,−ω∗) ∈ N((ῡ, ω̄); grΓ)}.

If Γ = φ : X → Y is single-pointed, then D∗Nφ(ῡ) and D̂∗φ(ῡ) stand for its normal and
Fréchet coderivatives at (ῡ, φ(ῡ)), respectively.

On basis of the coderivative of epigraphical multifunction, Bao and Mordukhovich [23]
formulated the mild extensions of subdifferential concept from extended-real-valued func-
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tions to vector-valued and multi-valued mappings with values in partially ordered spaces,
and provided certain applications to multiobjective optimization issues in [18,24].

Given a multi-valued map Γ : X → 2Y. We formulate epigraphical multifunction
EΓ : X → 2Y (see [1]) below

EΓ(υ) := {ω ∈ Y : ω ∈ Γ(υ) + K}.

The Fréchet subdifferential and normal subdifferential of Γ at (ῡ, ω̄) ∈ epiΓ in the
direction ω∗ ∈ Y∗ (see [1]) are formulated, respectively, by

∂̂Γ(ῡ, ω̄)(ω∗) := D̂∗EΓ(ῡ, ω̄)(ω∗),

∂Γ(ῡ, ω̄)(ω∗) := D∗NEΓ(ῡ, ω̄)(ω∗).

The normal subdifferential and Fréchet subdifferential of Γ at (ῡ, ω̄) ∈ epiΓ are
written, successively, as

∂Γ(ῡ, ω̄) := {υ∗ ∈ X∗ : υ∗ ∈ D∗NEΓ(ῡ, ω̄)(ω∗),−ω∗ ∈ N(0; K), ‖ω∗‖ = 1},

∂̂Γ(ῡ, ω̄) := {υ∗ ∈ X∗ : υ∗ ∈ D̂∗EΓ(ῡ, ω̄)(ω∗),−ω∗ ∈ N̂(0; K), ‖ω∗‖ = 1}.

It is worth noting (see [23]) that if K = R+ and Γ = φ : X → R, then normal subd-
ifferential and Fréchet subdifferential for multifunctions, successively, revert to limiting
subdifferential and Fréchet subdifferential formulated as above.

Suppose that Γ : Ξ ⊂ X → 2Y with domΓ 6= ∅ and BY is the closed unit ball of Y.
Recall that F is referred to as being (see [16]):

(i) Lipschitz around ῡ ∈ domΓ if ∃ (neighborhood) U at ῡ and ∃` ≥ 0 s.t.

Γ(υ) ⊂ Γ(u) + `‖υ− u‖BY, ∀υ, u ∈ Ξ ∩U;

(ii) epi-Lipschitz around ῡ ∈ domΓ if EΓ is Lipschitz around this point;
(iii) Lipschitz-like around (ῡ, ω̄) ∈ grΓ if ∃ (neighborhood) U at ῡ, ∃ (neighborhood)

V at ω̄ and ∃` ≥ 0 s.t.

Γ(υ) ∩V ⊂ Γ(u) + `‖υ− u‖BY, ∀υ, u ∈ Ω ∩U;

(iv) epi-Lipschitz-like around (ῡ, ω̄) ∈ epiΓ if EΓ is Lipschitz-like around this point.
Suppose that Γ : X → 2Y and ∅ 6= Ξ ⊂ X. The set-valued map ΓΞ : X → 2Y

associated with Ξ and Γ, is formulated below

ΓΞ(υ) =

{
Γ(υ) if υ ∈ Ξ,
∅ if υ 6∈ Ξ.

The relationship between Γ and normal coderivatives of ΓΞ is formulated in [16]
(Proposition 3.12).

Proposition 1 ([16]). Suppose that the spaces Y, X are Asplund ones, the closed set Ξ ⊂ X and the
local closedness map Γ : X → 2Y is Lipschitz-like around (ῡ, ω̄) ∈ grΓ. Then for each ω∗ ∈ Y∗

the inclusion holds below:

D∗N ΓΞ(ῡ, ω̄)(ω∗) ⊂ D∗N Γ(ῡ, ω̄)(ω∗) + N(ῡ; Ξ).

Suppose that K is a pointed convex closed cone in Y enjoying K+ := {y∗ ∈ Y∗ :
y∗(u) ≥ 0 ∀u ∈ K}. Next, we aim to marginal functions associated with Γ. Associated with
Γ and ω∗ ∈ Y∗, the marginal function and minimum set are formulated, successively, as

φω∗(υ) := inf{ω∗(ω) : ω ∈ Γ(υ)},
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Mω∗(υ) := {ω ∈ Γ(υ) : φω∗(υ) = ω∗(ω)}.

In what follows, we give the proposition below for certain properties of φω∗ and Mω∗ .
Because the demonstration is simple, we omit it.

Proposition 2 ([25]). Assume ῡ ∈ domΓ. In case Γ(ῡ) is of weak compactness, one has
Mω∗(ῡ) 6= ∅ for any ω∗ ∈ Y∗. Moreover, in case Mω∗(υ) is nonempty around ῡ and multi-valued
Γ is u.s.c., the real-valued φω∗ is l.s.c. at this point.

Next, we always assume that grΓ is of closedness and Mω∗(υ) 6= ∅ ∀υ ∈ domΓ, ω∗ ∈
K+.

Theorem 2 ([13]). Assume that Γ : X → 2Y is u.s.c. and its graph is of both convexity and
closedness. Then for each υ ∈ X, ω∗ ∈ Y∗ and ω ∈ Mω∗(υ), the following holds:

∂φω∗(υ) = D∗N Γ(υ, ω)(ω∗).

Oveisiha and Zafarani [25] obtained the property of basic normal cone for invexity set.
Its demonstration is analogous to the ones of Propositions 1.5 and 1.3 in [16].

Lemma 1 ([25]). Suppose that ∅ 6= Ξ ⊂ X, Ξ is of both closedness and invexity w.r.t. η s.t. η is
of continuity in the 2nd variable and ῡ ∈ Ξ. Then for each υ∗ ∈ N(ῡ; Ξ), one has

〈υ∗, η(υ, ῡ)〉 ≤ 0 ∀υ ∈ Ξ.

Let ψ : X∗×Ξ×Ξ→ R be a function. Then ψ is referred to as an equilibrium function
if the following holds:

ψ(ξ, υ, ω) + ψ(ξ, ω, υ) = 0 ∀(ξ, υ, ω) ∈ X∗ × Ξ× Ξ.

Inspired by Lemma 1, we present the following definition concerning the basic normal
cone w.r.t. η and ψ.

Condition B. Suppose that X is a Banach space and Ξ ⊂ X is a closed and invex set
w.r.t. η s.t. η is continuous in the second variable. Let ῡ ∈ Ξ and ψ : X∗ × Ξ× Ξ → R.
Then for any υ∗ ∈ N(ῡ; Ξ), one has

ψ(υ∗, ῡ, υ) ≤ 0 ∀υ ∈ Ξ.

Definition 2. Suppose that Ξ is an invex set w.r.t. η. Let ψ : X∗ × Ξ× Ξ→ R and φ : Ξ→ R.
Then φ is referred to as being

(i) preinvex w.r.t. η on Ξ if for any ∀υ1, υ2 ∈ Ξ and λ ∈ [0, 1], one has

φ(υ2 + λη(υ1, υ2)) ≤ λφ(υ1) + (1− λ)φ(υ2);

(ii) invex w.r.t. ψ on Ξ if for any υ1, υ2 ∈ Ξ and ξ ∈ ∂φ(υ2), one has

ψ(ξ, υ2, υ1) ≤ φ(υ1)− φ(υ2);

(iii) weakly invex w.r.t. ψ on Ξ if ∀υ1, υ2 ∈ Ξ, ∃ξ ∈ ∂φ(υ2), s.t.

ψ(ξ, υ2, υ1) ≤ φ(υ1)− φ(υ2).

In addition, ∂Mφ is referred to as being invariant monotone on Ξ w.r.t. ψ if for any
υi ∈ Ξ and ξi ∈ ∂φ(υi), (i = 1, 2), one has

ψ(ξ1, υ1, υ2) + ψ(ξ2, υ2, υ1) ≤ 0.
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Remark 1. If we set ψ(ξ, υ, ω) = 〈ξ, η(ω, υ)〉 ∀(ξ, υ, ω) ∈ X∗ × Ξ × Ξ, then Condition B
and Definition 2 reduce to Lemma 2.12 and Definition 2.13 in [25], respectively. Moreover, for
the concepts of generalized invexity and invariant monotonicity w.r.t. η, the reader is referred
to [26,27,29] and the references cited therein.

Suppose that Ξ ⊂ X is an invex set w.r.t. η and Γ : Ξ ⊂ X → 2Y is a multi-valued
function. Γ is referred to as being K-preinvex w.r.t. η on Ω (see [3] if

λΓ(υ1) + (1− λ)Γ(υ2) ⊂ Γ(υ2 + λη(υ1, υ2)) + K ∀υ1, υ2 ∈ Ξ, λ ∈ [0, 1].

In addition, a single-valued Γ = φ : Ξ→ Y is known as being of K-preinvexity w.r.t. η
on Ξ iff

φ(υ2 + λη(υ1, υ2)) ≤K λφ(υ1) + (1− λ)φ(υ2) ∀υ1, υ2 ∈ Ξ, λ ∈ [0, 1].

Remark 2. In the case when η(υ1, υ2) = υ1 − υ2, we obtain the concept of K-convexity in [6].

The following conditions will be used in the proof of our main results later on.

Condition A (see [3]). A mapping Γ : Ξ → 2Y from an invex set Ξ w.r.t. η to an
ordered Banach space is referred to as enjoying Condition A if

Γ(υ1) ⊂ Γ(υ2 + η(υ1, υ2)) + K ∀υ1, υ2 ∈ Ξ.

It should be noted that in case K = R+ and Γ = φ : Ξ→ R, we attain Condition A for
real-valued functions of [29]:

φ(υ2 + η(υ1, υ2)) ≤ φ(υ1) ∀υ1, υ2 ∈ Ξ.

It is clear that in Γ : Ξ → 2Y suits to Condition A, for each ω∗ ∈ K+, φω∗ suits to
Condition A for real-valued functions.

Motivated by the Condition C of [14], we put forth the novel one below.

Condition C. Suppose that ∅ 6= Ξ ⊂ X and Ξ is of invexity w.r.t. η. Then η is referred
to as satisfying Condition C w.r.t. ψ iff for any υ, ω ∈ Ξ and t ∈ [0, 1],

(a) η(υ, υ + tη(ω, υ)) = −tη(ω, υ) and

ψ(ξ, υ + tη(ω, υ), υ) = −tψ(ξ, υ, ω) ∀ξ ∈ X∗;

(b) η(ω, υ + tη(ω, υ)) = (1− t)η(ω, υ) and

ψ(ξ, υ + tη(ω, υ), ω) = (1− t)ψ(ξ, υ, ω) ∀ξ ∈ X∗.

Let us note that if we set η(ω, υ) = ω − υ and ψ(ξ, υ, ω) = 〈ξ, η(ω, υ)〉 for all
(ξ, υ, ω) ∈ X∗ × Ξ × Ξ, then η suits to condition C w.r.t. ψ, with 〈·, ·〉 indicating the
duality pairing between X∗ and X. Yang et al. [30] had shown that

η(υ + tη(ω, υ), υ) = tη(ω, υ) ∀υ, ω ∈ Ξ, t ∈ [0, 1].

Suppose thatH is a Hausdorff metric on the family CB(X) of all bounded, closed and
nonempty sets in X, derived by the d(u, v) = ‖u− v‖, that is written as

H(U, V) = max{sup
u∈U

inf
v∈V
‖u− v‖, sup

v∈V
inf

u∈U
‖u− v‖} ∀U, V ∈ CB(X).

According to [35], in case U and V are of compactness in X, we know that ∀u ∈ U,
∃v ∈ V s.t. ‖u− v‖ ≤ H(U, V).
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Definition 3. Suppose that ∅ 6= Ξ ⊂ X and Ξ is of invexity w.r.t. η. A compact-valued
T : Ξ → 2L(X,Y) is referred to as being of H-hemicontinuity iff the map t 7→ T(υ + tη(ω, υ))
is continuous at 0+, where L(X, Y) is the family of all linear bounded mappings of X into Y and
CB(L(X, Y)) is endowed with the metric topology derived byH.

For unspecified terms, we are referred to [16].

3. K-Preinvexity Mappings

Using a normal subdifferential, we first put forth the notions of K-invexity w.r.t. φ,
weak K-invexity w.r.t. φ and invariant K-monotonicity w.r.t. φ for set-valued maps, and
then establish the relations between them and K-preinvex maps.

Definition 4. Let ∅ 6= Ξ ⊂ X, Γ : Ξ ⊂ X → 2Y and ψ : X∗ × Ξ× Ξ→ R.
(i) Γ is referred to as being K-invex w.r.t. ψ on Ξ if for any ω∗ ∈ K+, υi ∈ Ξ, ωi ∈

Mω∗(υi), (i = 1, 2) and ξ ∈ ∂Γ(υ1, ω1)(ω
∗), one has

ψ(ξ, υ1, υ2) ≤ ω∗(ω2)−ω∗(ω1).

(ii) Γ is referred to as being weakly K-invex w.r.t. ψ on Ξ if for any ω∗ ∈ K+, υi ∈ Ξ, ωi ∈
Mυ∗(υi), (i = 1, 2), there exists ξ ∈ ∂Γ(υ1, ω1)(ω

∗), such that

ψ(ξ, υ1, υ2) ≤ ω∗(ω2)−ω∗(ω1).

(iii) The set-valued map ∂Γ : X×Y×Y∗ → 2X∗ is referred to as being invariant K-monotone
w.r.t. ψ on Ξ if for any ω∗ ∈ K+, υi ∈ Ξ, ωi ∈ Mω∗(υi) and ξi ∈ ∂Γ(υ1, ω1)(ω

∗), (i = 1, 2),
one has

ψ(ξ1, υ1, υ2) + ψ(ξ2, υ2, υ1) ≤ 0.

Note that in case Ξ ⊂ X is an invex set w.r.t. η and

ψ(ξ, υ, ω) = 〈ξ, η(ω, υ)〉 ∀(ξ, υ, ω) ∈ X∗ × Ξ× Ξ,

Definition 4 reduces to [25] (Definition 3.1). In addition, in case the function Γ =
φ : X → R is real-valued, the last concept reverts to [25] (Definition 2.13) involving the
invexity, weak invexity and invariant monotonicity for real-valued ones.

Lemma 2 ([25]). Assume that ∅ 6= Ξ ⊂ X and Γ : Ξ→ 2Y is multi-valued and ῡ ∈ domΓ. In
case Γ is epi-Lipschitz around ῡ and ω∗ ∈ K+, the real-valued φω∗ is locally Lipschitz at ῡ.

Lemma 3 ([25]). Let Γ : X → 2Y and 0 6= ω∗ ∈ K+. Assume that ῡ ∈ domΓ and ω̄ ∈ Mω∗(ῡ).
Then

∂̂φω∗(ῡ) ⊂ ∂̂Γ(ῡ, ω̄)(ω∗) ⊂ D̂∗Γ(ῡ, ω̄)(ω∗).

Next, let us recall the relationship between limiting subdifferential of marginal func-
tions for Γ and its normal coderivative.

Theorem 3 ([25]). Let Γ : X → 2Y and ω∗ ∈ K+ where X and Y both are Asplund spaces.
Assume that ῡ ∈ domΓ, ω̄ ∈ Mω∗(ῡ) and Γ is Lipschitz around ῡ. Then

∂φω∗(ῡ) ⊂ D∗N Γ(ῡ, ω̄)(ω∗).

Proof. It is enough to use Theorem 3.38 in [16].

Applying the last theorem for EΓ, we obtain the conclusion below.
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Corollary 1. Let Γ : X → 2Y and ω∗ ∈ K+ where X and Y both are Asplund spaces. Assume
that ῡ ∈ domΓ, ω̄ ∈ Mω∗(ῡ) and Γ is epi-Lipschitz around ῡ. Then

∂φω∗(ῡ) ⊂ ∂Γ(ῡ, ω̄)(ω∗).

Lemma 4 ([25]). Let Γ : X → 2Y be K-preinvex w.r.t. η. Then, for each ω∗ ∈ K+, φω∗ is of
preinvexity w.r.t. η.

Proof. Via certain mild corrections in the demonstration of [1] (Lemma 1.1 and Proposition 2.1),
we can obtain the desired conclusion.

Lemma 5. Let Γ : X → 2Y be K-invex w.r.t. ψ. Then ∂Γ is invariant K-monotone w.r.t. ψ.

Proof. The conclusion follows directly from Definition 4.

Theorem 4. Let Γ : X → 2Y be a locally epi-Lipschitz map satisfying Condition A, where X and Y
both are Asplund spaces. Assume that for any ω∗ ∈ K+ \ {0}, φω∗ suits to mean-value condition
for limiting subdifferential ∂φω∗ w.r.t. ψ. If η satisfies Condition C w.r.t. ψ and ∂Γ is invariant
K-monotone w.r.t. ψ, then Γ is K-invex w.r.t. ψ.

Proof. Let ∂Γ be invariant K-monotone w.r.t. ψ and υ1, υ2 ∈ X. Let $ = υ2 +
1
2 η(υ1, υ2) and

fix ω∗ ∈ K+ arbitrarily. By Lemma 2, φω∗ is locally Lipschitz. Now, note that η satisfies
Condition C w.r.t. ψ and φω∗ suits to mean-value condition for ∂φω∗ w.r.t. ψ. So, ∃λ1, λ2 s.t.
0 < λ2 ≤ 1

2 < λ1 ≤ 1, ∃ξ1 ∈ ∂φω∗(u1) and ∃ξ2 ∈ ∂φω∗(u2) s.t.

φω∗(υ2 + η(υ1, υ2))− φω∗($) ≥
1
2

ψ(ξ1, υ2, υ1), (1)

and
φω∗($)− φω∗(υ2) ≥

1
2

ψ(ξ2, υ2, υ1), (2)

where u1 = υ2 + λ1η(υ1, υ2) and u2 = υ2 + λ2η(υ1, υ2). By using Corollary 1, ξi ∈
∂φω∗(ui) ⊂ ∂Γ(ui, $i)(ω

∗) that $i ∈ Mω∗(ui), (i = 1, 2). Since ∂Γ is invariant K-monotone
w.r.t. ψ, we have

ψ(ξ1, u1, υ2) + ψ(w, υ2, u1) ≤ 0, (3)

for all ω2 ∈ Mω∗(υ2) and w ∈ ∂Γ(υ2, ω2)(ω
∗). Now, by Condition C, we get

ψ(ξ1, u1, x2) = −λ1ψ(ξ1, υ2, υ1) and ψ(w, υ2, u1) = ψ(w, υ2, υ1).

If we replace these relations in (3), we obtain:

ψ(ξ1, υ2, υ1) ≥ ψ(w, υ2, υ1).

Now, from (1) we have:

φω∗(υ2 + η(υ1, υ2))− φω∗($) ≥
1
2

ψ(w, υ2, υ1).

In a similar way, we can derive:

φω∗($)− φω∗(υ2) ≥
1
2

ψ(w, υ2, υ1).

By adding these two inequalities, we obtain:

φω∗(υ2 + η(υ1, υ2))− φω∗(υ2) ≥ ψ(w, υ2, υ1).
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Since it is clear that φω∗ is the real-valued which suits to Condition A, one gets

φω∗(υ1)− φω∗(υ2) ≥ ψ(w, υ2, υ1),

for all ωi ∈ Mω∗(υi), (i = 1, 2) and w ∈ ∂Γ(υ2, ω2)(ω
∗). Consequently,

ω∗(ω1)−ω∗(ω2) ≥ ψ(w, υ2, υ1).

This completes the proof.

Observe that if ψ(ξ, υ, ω) = 〈ξ, η(ω, υ)〉, then it is easy to see that Theorem 4 reduces
to [25] ( Theorem 3.8).

Theorem 5. Suppose that Γ : X → 2Y is a locally epi-Lipschitz set-valued map satisfying
Condition A. Let EΓ be closed convex-valued for every υ, and η satisfy Condition C w.r.t. ψ. If Γ is
K-invex w.r.t. ψ, then Γ is K-preinvex w.r.t. η.

Proof. Suppose that Γ is K-invex w.r.t. ψ. Then we can easily see that φω∗ is invex w.r.t. ψ
for all ω∗ ∈ K+. We claim that φω∗ is preinvex w.r.t. η for all ω∗ ∈ K+. As a matter of fact,
for any υ, ω ∈ X and λ ∈ (0, 1), we set ῡ = ω + λη(υ, ω). By the invexity of φω∗ w.r.t. ψ,
we have

φω∗(υ)− φω∗(ῡ) ≥ ψ(ζ, ῡ, υ) ∀ζ ∈ ∂φω∗(ῡ). (4)

Similarly, the invexity condition of φω∗ w.r.t. ψ applied to the pair ω, ῡ yields

φω∗(ω)− φω∗(ῡ) ≥ ψ(ζ, ῡ, ω) ∀ζ ∈ ∂φω∗(ῡ). (5)

We note that by Condition C,

ψ(ζ, ῡ, υ) = (1− λ)ψ(ζ, ω, υ) and ψ(ζ, ῡ, ω) = −λψ(ζ, ω, υ).

Now, multiplying (4) with λ and (5) with (1− λ) and making the sum of them, one
obtains that

λφω∗(υ) + (1− λ)φω∗(ω)− φω∗(ῡ)
≥ λψ(ζ, ῡ, υ) + (1− λ)ψ(ζ, ῡ, ω)
= λ(1− λ)ψ(ζ, ω, υ)− (1− λ)λψ(ζ, ω, υ) = 0.

This means that φω∗ is preinvex w.r.t. η for each ω∗ ∈ K+. Now, from Theorem 3.1
in [3], we can deduce that Γ is K-preinvex w.r.t. η.

Theorem 6. Suppose that Γ : X → 2Y is a locally epi-Lipschitz map, where X and Y both are
Asplund spaces. Let η : X × X → X be of continuity in the 2nd variable s.t. the Condition C
w.r.t. ψ is valid. For any ω∗ ∈ K+ and ω ∈ X we assume that

(i) ψ(·, ·, ω) : X∗ × X → R is continuous;
(ii) ∂φω∗(·) : X → 2X∗ isH-hemicontinuous with compact values;
(iii) φω∗ satisfies the mean-value condition for limiting subdifferential ∂φω∗ w.r.t. ψ.

If Γ is K-preinvex w.r.t. η, then Γ is weakly K-invex w.r.t. ψ.

Proof. Using Lemmas 2 and 4, for each ω∗ ∈ K+, φω∗ is a function with locallLipschitz
continuity and preinvexity. Take two points υ, ω ∈ X arbitrarily. Now we choose sequences
{υn} ⊂ X and {tn} ⊂ (0, 1) such that υn → υ and tn → 0+. By the mean-value condition
of φω∗ for ∂φω∗ w.r.t. ψ, from Condition C one obtains that, ∀tn ∈ (0, 1), ∃t′n ∈ (0, tn] and
∃ξ∗n ∈ ∂φω∗(υn + t′nη(ω, υn)) s.t.

tnψ(ξ∗n, υn, ω) = ψ(ξ∗n, υn, υn + tnη(ω, υn)) ≤ φω∗(υn + tnη(ω, υn))− φω∗(υn). (6)



Mathematics 2022, 10, 316 10 of 14

By Nadler’s result [35], there also exists ζn ∈ ∂φω∗(υ) such that

‖ξ∗n − ζn‖ ≤ H(∂φω∗(υn + t′nη(ω, υn)), ∂φω∗(υ)).

Since η : X × X → X is continuous in the second variable and ∂φω∗(·) : X → 2X∗ is
H-hemicontinuous with nonempty compact values, we know that

‖υn + t′nη(ω, υn)− υ‖ ≤ ‖υn − υ‖+ t′n‖η(ω, υn)‖ → 0 (n→ ∞),

and hence

‖ξ∗n − ζn‖ ≤ H(∂φω∗(υn + t′nη(ω, υn)), ∂φω∗(υ))→ 0 (n→ ∞). (7)

Thanks to the fact that ∂φω∗(υ) is compact, we might suppose that ζn → ζ∗ ∈ ∂φω∗(υ).
So, from (7) it follows that ξ∗n → ζ∗ as n→ ∞. Also, since Γ : X → 2Y is K-preinvex w.r.t. η,
by Lemma 4 we deduce that for every ω∗ ∈ K+, φω∗ is preinvex w.r.t. η. Consequently,
from (6) and the preinvexity of φω∗ w.r.t. η, we get

ψ(ξ∗n, υn, ω) ≤ φω∗(ω)− φω∗(υn). (8)

We note that for each ω ∈ X, ψ(·, ·, ω) : X∗ × X → R is continuous. Since υn → υ and
ξ∗n → ζ∗ as n→ ∞, from (8) we have

ψ(ζ∗, υ, ω) ≤ φω∗(ω)− φω∗(υ).

This means that φω∗ is weakly invex w.r.t. ψ. Hence, Corollary 1 implies that Γ is
weakly K-invex w.r.t. ψ.

Theorem 7. Suppose that the set-valued map Γ : X → 2Y is K-preinvex w.r.t. η. Let Z := X×Y,
Ξ̄ := epiΓ, η̄ : Z ×Z → Z be defined as η̄((υ1, ω1), (υ2, ω2)) := (η(υ1, υ2), ω1 −ω2) and ψ̄ :
Z∗× Ξ̄× Ξ̄→ R be defined as ψ̄((υ∗, ω∗), (υ1, ω1), (υ2, ω2)) = ψ(υ∗, υ1, υ2)+ 〈ω∗, ω2−ω1〉.
Assume that Condition B holds forZ , η̄, ψ̄ and Ξ̄(= epiΓ). If η is continuous in the second variable,
then for any υi ∈ X, ωi ∈ Γ(υi), (i = 1, 2), ω∗ ∈ Y∗, and υ∗ ∈ ∂Γ(υ1, ω1)(ω

∗), one has

ψ(υ∗, υ1, υ2) ≤ ω∗(ω2)−ω∗(ω1).

(Hence, ∂Γ is invariant K-monotone w.r.t. ψ.)

Proof. Since Γ is K-preinvex w.r.t. η, we can deduce that epiΓ is an invex set w.r.t. η̄. Since
υ∗ ∈ ∂Γ(υ1, ω1)(ω

∗), we get (υ∗,−ω∗) ∈ N((υ1, ω1); epiΓ). Hence, by Condition B for
Z , η̄, ψ̄ and Ξ̄(= epiΓ), we obtain

ψ̄((υ∗,−ω∗), (υ1, ω1), (υ2, ω2)) = ψ(υ∗, υ1, υ2)− 〈ω∗, ω2 −ω1〉 ≤ 0.

Therefore, for any υi ∈ X, ωi ∈ Γ(υi), (i = 1, 2), ω∗ ∈ Y∗, and υ∗ ∈ ∂Γ(υ1, ω1)(ω
∗),

we have
ψ(υ∗, υ1, υ2) ≤ ω∗(ω2)−ω∗(ω1).

Remark 3. The above theorems extend the previous earlier results from real-valued cases to set-
valued ones associated with ψ. From Theorems 4 and 5, we obtain that for a K-preinvexity mapping
w.r.t. η, invariant K-monotonicity of its normal subdifferential w.r.t. ψ is a sufficient condition for
K-preinvexity w.r.t. η. Moreover, from Theorem 7, we can deduce that invariant K-monotonicity
of a normal subdifferential w.r.t. ψ is a necessary condition for K-preinvexity w.r.t. η. In the
case of K-convex set-valued maps and ψ(ξ, υ, ω) = 〈ξ, ω − υ〉, the Conditions A, B and C are
trivially valid.
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4. Super Efficient Solutions

In this section, we aim to establish sufficiency terms for the existence of super mini-
mizers to set-valued vector optimization issues. Moreover, we put forth an extension of
super minimizers and obtain certain necessity optimality terms for it.

For a set-valued map Γ : X → 2Y, we consider the set-valued vector optimization
issue below:

minimize Γ(υ), subject to υ ∈ Ξ ⊂ X. (9)

For recent research on set-valued vector optimization problems, the reader is referred
to [25,31,32] and the references cited therein.

Borwein and Zhuang [17] put forward the concept of super minimal points to any set
of partially ordered space. Let the Banach space Y be ordered by a convex and closed cone
K ⊂ Y. Given a set A ⊂ Y , ā ∈ A is said to be a super minimal point of A (ā ∈ SE(A, K))
iff ∃M > 0 s.t.

cl[cone(A− ā)] ∩ (BY − K) ⊂ MBY,

with the closed unit ball BY ⊂ Y. Given (ῡ, ω̄) ∈ grΓ with ῡ ∈ Ξ. Then (ῡ, ω̄) is said to be a
local super minimizer to problem (9) iff, ∃ (neighborhood) U at ῡ s.t. ω̄ ∈ SE(Γ(Ξ ∩U); K).

Recall a necessity term for super minimizers that had been demonstrated in [18]
(Theorem 3.8).

Theorem 8 ([18]). Suppose that the spaces X, Y are Asplund ones and Γ be Lipschitz-like around
(ῡ, ω̄). Let Ξ and grΓ be locally closed around ῡ and (ῡ, ω̄), respectively, K 6= {0} and intK+ 6= ∅.
Assume that (ῡ, ω̄) is a local super minimizer to problem (9). Then ∃ω∗ ∈ intK+ with ‖ω∗‖ = 1
s.t.

0 ∈ D∗N Γ(ῡ, ω̄)(ω∗) + N(ῡ; Ξ).

We also recall that K has a bounded base if and only if intK+ 6= ∅. By this relation, we prove
a lemma that we need in the sequel.

Lemma 6 ([25]). Let K be an ordering pointed convex cone in Y, Ξ be invex and Γ be K-preinvexity
mapping w.r.t. η. Assume that ∃ω∗ ∈ intK+ and ∃ω̄ ∈ Γ(ῡ) s.t.

ω∗(ω̄) ≤ ω∗(ω) ∀υ ∈ Ξ, ω ∈ Γ(υ),

Then problem (9) has the local super minimal point (ῡ, ω̄).

Proof. Via mild corrections in the demonstration of [3] (Theorem 6.1 and Remark 6.1), we
can derive the desired conclusion.

Remark 4. Rong and Wu [20] had shown that, in case there is a bounded closed base in a pointed
convex cone K, one has SE(A; K) = SE(A+K; K) for all nonempty sets A ⊂ Y. By this hypothesis
and conditions of Theorem 8, we can obtain that

0 ∈ ∂Γ(ῡ, ω̄)(ω∗) + N(ῡ; Ξ) (10)

is a necessity optimality term for super minimal points. Recently, it was proven in [18] that the
relationship (10) is true under the normality property of the ordering cone K.

Next, under the K-preinvexity of Γ w.r.t. η, we demonstrate that the converse of
Theorem 8 in the presence of (10) is true.

Theorem 9. Suppose that the closed set Ξ ⊂ X which is invex w.r.t. η and the ordering cone
K ⊂ Y, which is pointed, convex and closed. Let the map Γ : Ξ → 2Y be K-preinvex w.r.t. η
which is of continuity in the 2nd variable. Let Z := X × Y, Ξ̄ := epiΓ, η̄ : Z × Z → Z be
defined as η̄((υ1, ω1), (υ2, ω2)) := (η(υ1, υ2), ω1 − ω2) and ψ̄ : Z∗ × Ξ̄× Ξ̄ → R be defined
as ψ̄((υ∗, ω∗), (υ1, ω1), (υ2, ω2)) = ψ(υ∗, υ1, υ2) + 〈ω∗, ω2 − ω1〉. Assume that Condition B
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holds for Z , η̄, ψ̄ and Ξ̄(= epiΓ) and for X, η, ψ and Ξ, respectively. Suppose that (ῡ, ω̄) ∈ grΓ
and there is a ω∗ ∈ intK+ such that

0 ∈ ∂Γ(ῡ, ω̄)(ω∗) + N(ῡ; Ξ). (11)

Then problem (9) has the local super minimizer (ῡ, ω̄).

Proof. Utilizing the relationship (11), we know that, ∃υ∗1 ∈ ∂F(x̄, ȳ)(y∗) and ∃x∗2 ∈ N(x̄; Ω)
s.t. x∗1 + x∗2 = 0. Since grEF = epiΓ, we obtain

(υ∗1 ,−ω∗) ∈ N((ῡ, ω̄); grEΓ) = N((ῡ, ω̄); epiΓ).

From the K-preinvexity of Γ w.r.t. η, we can conclude that epiΓ is an invex set w.r.t. η̄,
where η̄((υ1, ω1), (υ2, ω2)) := (η(υ1, ω2), ω1 − ω2). Now, by Condition B for Z , η̄, ψ̄ and
Ξ̄, we get

ψ̄((υ∗1 ,−ω∗), (ῡ, ω̄), (υ, ω)) = φ(υ∗1 , ῡ, υ)− 〈ω∗, ω− ω̄〉 ≤ 0 (12)

for any υ ∈ Ξ and ω ∈ Γ(υ). Since Ξ is invex w.r.t. η, and −υ∗1 = υ∗2 ∈ N(ῡ; Ξ), by
Condition B for X, η, ψ and Ξ, we deduce that

ψ(υ∗1 , ῡ, υ) ≥ 0 ∀υ ∈ Ξ. (13)

By (12) and (13), we obtain:

〈ω∗, ω− ω̄〉 ≥ 0 ∀υ ∈ Ξ, y ∈ Γ(υ). (14)

From (14) and Lemma 6, we conclude that problem (9) has the local super minimal
point (ῡ, ω̄).

Remark 5. The following hypotheses exhibit crucial roles in Theorem 9:
(i) there exists an η such that Γ is K-preinvex w.r.t. η;
(ii) the Condition B holds for Z , η̄, ψ̄ and Ξ̄(= epiΓ) and for X, η, ψ and Ξ, respectively.

In particular, if ψ(ξ, υ, ω) = 〈ξ, η(ω, υ)〉, then Theorem 9 reduces to [16] (Theorem 4.3). Moreover,
whenever η(ω, υ) = ω − υ and ψ(ξ, υ, ω) = 〈ξ, ω − υ〉, Theorem 9 is an existence theorem for
K-convexity.

Example 1. Assume that X = Ξ = R2, Y = R, K = [0,+∞), (ῡ, ω̄) = ((0, 0), 0) and Γ :

X → 2Y given by Γ(υ1, υ2) = [
√

υ2
1 + υ2

2,+∞). Let η(ω, υ) = ω− υ and ψ(ξ, υ, ω) = 〈ξ, ω−
υ〉. By some computation one deduces that Γ is a K-preinvex map w.r.t. η and ∂Γ((0, 0), 0)(1) =
{(υ1, υ2) : υ2

1 + υ2
2 ≤ 1}. Hence, 0 ∈ ∂Γ(ῡ, ω̄)(1) + N(ῡ; Ξ) and all the assumptions of

Theorem 9 are examined. In this case, (ῡ, ω̄) is a local super minimizer to problem (9).

Example 2. Let X = Ξ = R2, Y = R, K = [0,+∞) and (ῡ, ω̄) = ((0, 0), 0). Define

Γ : X → 2Y by Γ(υ1, υ2) := [
√
( 2

3 υ1 +
1
3 υ2)2 + ( 1

3 υ1 +
2
3 υ2)2,+∞). Let η(ω, υ) = ω − υ

and ψ(ξ, υ, ω) = 〈ξ, ω − υ〉. Via certain calculation one obtains that Γ is a K-preinvex map
w.r.t. η and ∂Γ((0, 0), 0)(1) = {(υ1, υ2) : ( 2

3 υ1 +
1
3 υ2)

2 + ( 1
3 υ1 +

2
3 υ2)

2 ≤ 1}. Thus, 0 ∈
∂Γ(ῡ, ω̄)(1) + N(ῡ; Ξ) and all the conditions of Theorem 9 are fulfilled. In this case, (ῡ, ω̄) is a
local super minimizer to problem (9).

Example 3. Support that X = Ξ = R2, Y = R, K = [0,+∞) and (ῡ, ω̄) = ((0, 0), 0). Define
Γ : X → 2Y by Γ(υ1, υ2) := [|υ1|+ |υ2|,+∞). Let η(ω, υ) = ω− υ and ψ(ξ, υ, ω) = 〈ξ, ω−
υ〉. By certain computation one has that Γ is a K-preinvex map w.r.t. η and ∂Γ((0, 0), 0)(1) =
{(υ1, υ2) : |υ1|+ |υ2| ≤ 1}. Thus, 0 ∈ ∂Γ(ῡ, ω̄)(1) + N(ῡ; Ξ) and all the conditions of Theorem
9 are satisfied. In this case, (ῡ, ω̄) is a local super minimizer to problem (9).
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Example 4. Assume that X = Ξ = R2, Y = R, K = [0,+∞) and (ῡ, ω̄) = ((0, 0), 0).
Define Γ : X → 2Y by Γ(υ1, υ2) := [max{|υ1|, |υ2|},+∞). Let η(ω, υ) = ω − υ and
ψ(ξ, υ, ω) = 〈ξ, ω− υ〉. Using certain calculation one infers that Γ is a K-preinvex map w.r.t. η
and ∂Γ((0, 0), 0)(1) = {(υ1, υ2) : max{|υ1|, |υ2|} ≤ 1}. Hence, 0 ∈ ∂Γ(ῡ, ω̄)(1) + N(ῡ; Ξ)
and all the hypotheses of Theorem 9 are verified. In this case, problem (9) has the local super
minimizer (ῡ, ω̄).

Theorem 10. Suppose that the closed set Ξ ⊂ X, which is invex w.r.t. η and the u.s.c. map
Γ : Ξ ⊂ X → 2Y is K-preinvex w.r.t. η where η is of continuity in the 2nd variable. Let ῡ ∈ Ξ and
assume that ∃ω̄∗ ∈ intK+ s.t.

0 ∈ ∂φω̄∗(ῡ) + N(ῡ; Ξ). (15)

Let Z := X × Y, Ξ̄ := epiφω∗ , η̄ : Z × Z → Z be defined as η̄((υ1, ω1), (υ2, ω2)) :=
(η(υ1, υ2), ω1 −ω2) and ψ̄ : Z∗ × Ξ̄× Ξ̄→ R be defined as ψ̄((υ∗, ω∗), (υ1, ω1), (υ2, ω2)) =
ψ(υ∗, υ1, υ2) + 〈ω∗, ω2 −ω1〉. Assume that Condition B holds for Z , η̄, ψ̄ and Ξ̄(= epiφω∗) and
for X, η, ψ and Ξ, respectively. Then, for all ω̄ ∈ Mω∗(ῡ), (ῡ, ω̄) is a local super minimizer to
problem (9).

Proof. Note that ῡ ∈ Ξ and there is a ω∗ ∈ intK+ such that (15) holds. By Lemma 4 we
know that φω∗ is preinvex w.r.t. η. Utilizing a similar inference to that of Theorem 9, we
can derive the desired conclusion.

It is worth emphasizing that, if ψ(ξ, υ, ω) = 〈ξ, η(ω, υ)〉, then it is clear that Condition
B holds for Z , η̄, ψ̄ and Ξ̄(= epiφω∗) and for X, η, ψ and Ξ, respectively. So, Theorem 10
reduces to [25] ( Theorem 4.5). In addition, if η(ω, υ) = ω− υ and ψ(ξ, υ, ω) = 〈ξ, ω− υ〉,
then, under the K-convexity condition, the similar theorem for Gäteaux differentiable vector-
valued functions was proven in [36]. Hence, this theorem generalizes [36] (Theorem 5.14)
to u.s.c. K-preinvex set-valued maps.
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