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Abstract: A rapidly convergent series, based on Taylor expansion of the imaginary part of the
complex error function, is presented for highly accurate approximation of the Voigt/complex error
function with small imaginary argument y≤ 0.1. Error analysis and run-time tests in double-precision
arithmetic reveals that in the real and imaginary parts, the proposed algorithm provides an average
accuracy exceeding 10−15 and 10−16, respectively, and the calculation speed is as fast as that reported
in recent publications. An optimized MATLAB code providing rapid computation with high accuracy
is presented.

Keywords: Voigt function; complex error function; high-accuracy approximation; Taylor expansion

1. Introduction

The complex error function, also known as the Faddeeva function, is given by: [1,2]

w(z) = e−z2
erfc(−iz)

= e−z2
(1 + 2i√

π

∫ z
0 e−t2

dt),
(1)

where z = x + iy is the complex argument and y ≥ 0. Using the Fourier transforms, the real
and imaginary parts of the complex error function (1) can be represented as [3]:

K(x, y) =
1√
π

∫ +∞

0
exp(−1

4
t2) exp(−yt) cos(xt)dt, (2)

and
L(x, y) =

1√
π

∫ +∞

0
exp(−1

4
t2) exp(−yt) sin(xt)dt, (3)

respectively. The real part of the complex error function K(x, y) also known as the Voigt
function, occurs in great diversity in astrophysical spectroscopy, space science, neutron
physics, plasma physics and statistical communication theory, as well as in some areas
in mathematical physics and engineering associated with multi-dimensional analysis of
spectral harmonics [4–16]. For example, the Voigt function is a fundamental component
of the line-by-line (LBL) radiative transfer modeling for the analysis of planetary atmo-
spheres [5–7].

Since there is no closed-form solution for the integrals above, many modern “state-of-
the art” algorithms for evaluating the Voigt/complex error function utilizing sophisticated
numerical techniques have been discussed in numerous papers. Several highly accurate
algorithms [17–19] or arbitrary precision algorithms [20,21] have been proposed to give the
benchmark value. Unfortunately, these algorithms are not suitable for large-scale comput-
ing applications such as high resolution LBL radiative transfer modeling [22], given their
disadvantage of high computational cost. Therefore, pseudo-Voigt approximation [23–25],
using a linear combination of a Gaussian function and a Lorentzian function instead of
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their convolution, is often used for calculations of experimental spectral line shapes, due to
its high computational efficiency. As is evident, this approximation algorithm is fast but
has a reduced accuracy. Moreover, the accuracy of pseudo-Voigt approximation, to the best
of the authors’ knowledge, is typically between 1% and 0.1%.

The rational approximation method is particularly attractive and is used in many algo-
rithms, because they can be implemented efficiently and allow for high accuracy [26]. The
rational approximations algorithms “cpf12” [27] and “w4” [28] proposed by Humlicek ap-
pear to belong to the most popular complex error function algorithms and several modified
algorithms [29–31] based on Humlicek’s algorithms have been further developed to im-
prove the calculation accuracy or expand the scope of application. Humlicek’s algorithms
and its modified algorithms provide accuracy chosen between 10−2 and 10−6 for almost
the entire complex plane, except for very small imaginary values of the argument. Recently,
several high-accuracy algorithms, i.e., “fexp” [32,33], “voigtf” [34] and “fadsamp” [35],
proposed by Abrarov and his collaborators were developed to achieve highly accurate
and simultaneously rapid computation of Voigt/complex error function. The accuracy
of the “fexp” algorithm based on Fourier expansion of the exponential multiplier for the
real and imaginary parts of the complex error function are 10−9 and 10−8, respectively,
in Humlicek regions 3 and 4. The accuracy of the “voigtf” algorithm with 16 summation
terms of rational fraction for the Voigt function is better than 10−8 in the domain of y >
10−6. However, the accuracy of both “fexp” algorithm and “voigtf” algorithm deteriorate
significantly with decreasing y. Compared with the former two algorithms, the “fadsamp”
algorithm based on incomplete cosine expansion of the sinc function sustains high accuracy
(~10−13) in computation at smaller values of the parameter y that is commonly considered
difficult for computation of the Voigt/complex error function. However, the “fadsamp”
algorithm needs at least 24 terms to achieve the accuracy of 10−13, which is not conducive
to fast calculation.

According to the above analysis, almost all algorithms will face the challenge of
accurate calculation of Voigt/complex error function with small y. Recently, Abrarov and
Quine [36] proposed an efficient algorithm (the accuracy is better than 10−12 while y < 10−6)
based on the Maclaurin expansion of the exponential function to overcome its notorious
difficulty. Although this approximation is sufficient for the most practical tasks, the more
accurate yet efficient approximation for the Voigt and complex error function may also be
required in modern precision spectroscopy [37].

In this work we propose a new algorithm for highly accurate evaluation of the
Voigt/complex error function with small imaginary argument (y ≤ 0.1) based on the
Taylor expansion method. By adding a finite term, this algorithm can be easily extended to
arbitrary precision. We applied MATLAB R2019a supporting array programming features
to implement the numerical verification of this algorithm, and a typical desktop computer
Intel (R) Quad CPU with RAM 8.00 GB was utilized. The rest of the paper is organized as
follows: Section 2 details the theory and methods of the proposed approximation scheme.
Algorithmic implementation and results discussion are carried out to validate the proposed
approximation scheme in Sections 3 and 4, respectively. The paper is finally summarized in
Section 5.

2. Theory and Methods
2.1. Evaluation for the Imaginary Part L(x, y)

The n-order partial derivatives of L(x, y) with respect to y can be written as follows

∂n L(x,y)
∂yn = 1√

π

∫ +∞
0 exp(− 1

4 t2)
dn exp(−yt)

dyn sin(xt)dt

= (−1)n
√

π

∫ +∞
0 tn exp(− 1

4 t2 − yt) sin(xt)dt.
(4)
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By substituting y = 0 into the integral above, the n-order partial derivatives along the
x axis yields:

∂nL(x, 0)
∂yn =

(−1)n
√

π

∫ +∞

0
tn exp(−1

4
t2) sin(xt)dt. (5)

While n is an odd number, the integral (5) has an analytic solution as follows [38]:

∂nL(x, 0)
∂yn = (−1)(n+1)/2 exp(−x2)Hn(x) for n odd, (6)

where Hn(x) represents the n-order Hermite polynomials of real argument x:

Hn(x) = hn,0x + hn,1x3 + . . . + hn,(n−1)/2xn =
(n−1)/2

∑
k=0

hn,kx2k+1, (7)

where the coefficients are:

hn,k = (−1)
n−1

2 −k n!
((n− 1)/2− k)!(2k + 1)!

22k+1. (8)

There is no closed-form solution for the integral (5), while n is an even number,
however, we have proved that the even-order partial derivatives can be expressed in terms
of the Dawson’s integral D(x) of real argument x as follows (Appendix A):

∂nL(x, 0)
∂yn =

1√
π
(Pn/2(x)D(x) + Qn/2(x)) for n even, (9)

where the Dawson’s integral D(x) is defined as:

D(x) =
1
2

∫ +∞

0
exp(−1

4
t2) sin(xt)dt, (10)

and Pn/2(x), Qn/2(x) are polynomials of real argument x:

Pn/2(x) = pn/2,0 + pn/2,1x2 + . . . + pn/2,n/2xn =
n/2

∑
k=0

pn/2,kx2k, (11)

and

Qn/2(x) = qn/2,0x + qn/2,1x3 + . . . + qn/2,n/2−1xn−1 =
n/2−1

∑
k=0

qn/2,kx2k+1, (12)

where the coefficients pn/2,k and qn/2,k can be derived from the following recurrence relations

Pm(x) =


2

4− 8x2

(8m− 6− 4x2)Pm−1(x)− 8(m− 1)(2m− 3)Pm−2(x)

m = 0
m = 1
m ≥ 2 ,

(13)

and

Qm(x) =


0

4x
(8m− 6− 4x2)Qm−1(x)− 8(m− 1)(2m− 3)Qm−2(x)

m = 0
m = 1
m ≥ 2 ,

(14)

respectively. It should be noted that the calculation of the Dawson’s integral D(x) is not
difficult and several efficient approximations that can provide rapid and highly accurate
computation are reported in the literature [39–42]. In this work, a finite continued fraction
is used for the efficient calculation of Dawson’s integral [39]:
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D(x) ≈ F(x, ND) =
x

1 + 2x2 −
4x2

3 + 2x2 −
8x2

5 + 2x2 −
12x2

7 + 2x2 − . . . −
4NDx2

2ND + 1 + 2x2 , (15)

where ND is the number of terms considered in the continued fraction above. Consequently,
the imaginary part L(x, y) of the complex error function can be represented as the following
Taylor expansion series near y = 0:

L(x, y) =
∞
∑

n=0

1
n!

∂n L(x,0)
∂yn yn

=
∞
∑

n=0
[ 1
(2n)!

√
π
(Pn(x)F(x, M) + Qn(x))y2n+ (−1)n+1

(2n+1)! e−x2
H2n+1(x)y2n+1].

(16)

By calculating the first N + 1 terms of Equation (16) and extracting the common factors
D(x) and exp(−x2), which is the “slowest” array for computation, outside the formula, an
efficient approximation for the imaginary part L(x, y) is yielded as follows:

L(x, y) ≈ 1√
π

F(x, ND)
N

∑
n=0

αnx2n + xe−x2
N

∑
n=0

βnx2n +
1√
π

x
N−1

∑
n=0

γnx2n, (17)

where the coefficients are:

αn =
N
∑

m=n

1
(2m)! pm,ny2m,

βn =
N
∑

m=n

(−1)m+1

(2m+1)! h2m+1,ny2m+1,

γn =
N
∑

m=n+1

1
(2m)! qm,ny2m.

(18)

2.2. Evaluation for the Real Part K(x, y)

The 1-order partial derivatives of L(x, y) with respect to y can be written as follows:

∂L(x,y)
∂y = −1√

π

∫ +∞
0 t exp(− 1

4 t2 − yt) sin(xt)dt.

= 2y√
π

∫ ∞
0 exp(− t2

4 ) exp(−yt) sin(xt)dt− 2x√
π

∫ ∞
0 exp(− t2

4 ) exp(−yt) cos(xt)dt
= 2yL(x, y)− 2xK(x, y).

(19)

Thus the real part K(x, y) of complex error function can be represented as:

K(x, y) =
y
x

L(x, y)− 1
2x

∂L(x, y)
∂y

. (20)

Consequently, an efficient approximation for K(x, y) is obtained by substituting Equa-
tion (17) into Equation (20):

K(x, y) ≈


1√
π

1
x F(x, ND)

N
∑

n=0
α′nx2n + e−x2 N

∑
n=0

β′nx2n + 1√
π

N−1
∑

n=0
γ′nx2n

1√
π

α′0 + e−x2
β′0 +

1√
π

γ′0

for
for

x > 0
x = 0 ,

(21)
where the coefficients α′n,β′n and γ′n are:

α′n = yαn − 1
2

N
∑

m=n

sign(m)
(2m−sign(m))! pm,ny2m−1,

β′n = yβn − 1
2

N
∑

m=n

(−1)m+1

(2m)! h2m+1,ny2m,

γ′n = yγn − 1
2

N
∑

m=n+1

1
(2m−1)! qm,ny2m−1.

(22)
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3. Algorithmic Implementation
3.1. Evaluation Scheme

Many previous studies have claimed that for z with large absolute value, the truncation
of the Laplace continued fraction (LCF) [17,18]:

w(z) ≈ C(z, NC) =
i/
√

π

z −
1/2

z −
1
z −

3/2
z − . . . −

NC/2
z

, (23)

where NC is the number of terms considered in the LCF, can be effectively used for high-
accuracy and rapid computation of the complex error function w(z).

However, we note that when y is quite small, the convergence speed of LCF is signifi-
cantly reduced, even if |z| is large enough, which require a lot of calculation, leading to
a serious decline in computational efficiency. For example, the approximation accuracy
of Equation (23) with y = 1 × 10−20 at different NC is as shown in Figure 1a, in which the
relative errors of Equation (23) are defined as follows:

∆C(|z|, NC) = max
{
|Re[C(z, NC)]− Re[wref.(z)]|

Re[wref.(z)]
,
|Im[C(z, NC)]− Im[wref.(z)]|

Im[wref.(z)]

}
, (24)

where the highly accurate reference values of wref.(z) can be obtained according to Equation (1)
by using the MATLAB that supports the error function of a complex argument.

Figure 1. (a) The approximation accuracy of Equation (23) with y = 1 × 10−20 at different NC and
(b) the efficient computing boundary zε(y) with different selected accuracy.

As we can see from Figure 1a, the relative errors at |z| = 8 are still greater than
1 × 10−6, even if NC is increased to 1000. Fortunately, the approximation accuracy of
Equation (23) with y = 1 × 10−20 increases significantly with increasing |z|, i.e., only the
first 100 terms need to be taken, and the truncation of the LCF can reach the approximation
accuracy of 10−100 when |z|> 16.8. Therefore, it is important to determine the efficient
computing boundary of the LCF approximations, especially when y is small. The numerical
calculation results illustrate that if it is desired to achieve the selected precision ε efficiently,
the absolute value of argument z needs to be greater than a certain boundary zε(y) which is
determined by y and ε together and can be written as follow

zε(y) = min{ |z||∆C(|z|, NC) ≤ ε}. (25)

Figure 1b shows the zε(y) curves with selected accuracy of ε = 10−16, 10−20, 10−40,
10−60, 10−80 and 10−100, respectively, and the efficient computing boundary in the domain
y ≤ 0.1 can be approximately calculated with the following formulas in Table 1. Thus, in
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order to improve the calculation efficiency, we use the following scheme to calculate the
Voigt/complex error function with small imaginary argument:

w(x, y ≤ 0.1) ≈
{

Equations (17) and (21)
Equation (23)

for
for

|x + iy|< zε(y)
|x + iy|≥ zε(y)

,
.

(26)

Table 1. Approximation formulas for zε(y) (y ≤ 0.1).

ε zε(y)

10−16 6.4908 − 6.9856 × 10−2 × lny − 1.8237 × 10−4 × ln2y − 3.0026 × 10−7 × ln3y
10−20 7.1461 − 6.5589 × 10−2 × lny − 1.6308 × 10−4 × ln2y − 2.6500 × 10−7 × ln3y
10−40 9.8625 − 5.0156 × 10−2 × lny − 9.3640 × 10−5 × ln2y − 1.3861 × 10−7 × ln3y
10−60 11.9611 − 4.2288 × 10−2 × lny − 6.5582 × 10−5 × ln2y − 9.4912 × 10−8 × ln3y
10−80 13.7687 − 3.6042 × 10−2 × lny − 3.6111 × 10−5 × ln2y − 3.1788 × 10−8 × ln3y
10−100 15.3784 − 3.1655 × 10−2 × lny − 1.9984 × 10−5 × ln2y − 2.0282 × 10−9 × ln3y

In addition, Figure 1b demonstrates that when only the calculation of the complex
error function in the domain of 10−100 ≤ y≤ 0.1 is considered, and the selected accuracy ε is
no less than 10−100, the following simplified version of calculation scheme can be adopted:

w(x, 10−100 ≤ y ≤ 0.1) ≈
{

Equations (17) and (21)
Equation (23)

for
for

|x + iy|< 22
|x + iy|≥ 22

,
.

(27)

3.2. Parameters Optimization

In general, the accuracy of the evaluation scheme (26) or (27) will be improved with
the increase in parameters N, ND and NC. The numerical calculations, as seen in Figure 2a,
show that the significant number of Dawson’s integral calculated by Equation (15) increases
linearly with increasing ND, which indicates that the Dawson’s integral can efficiently
perform arbitrary precision calculations. Moreover, we note that the evaluation scheme
(26) or (27) has a limit accuracy related to y, even if the error caused by Dawson’s integral
is ignored (see Figure 2b). Taking y = 10−4 as an example, the significant number of the
Voigt/complex error function increases linearly with increasing N when N is less than 12.
In contrast, when N is greater than 12, the calculation efficiency is significantly reduced.
Numerical calculations suggest that greater N, ND and NC are unnecessary in some cases,
we may select the optimal parameters to minimize the number of terms in the evaluation
scheme (26) or (27) in order to gain computational acceleration. In this work, the optimal
parameters under different accuracy levels ∆=1× 10−100 and ∆=1× 10−16 of the evaluation
scheme (27) are shown in Tables 2 and 3, respectively.

Figure 2. (a) The maximum relative error ∆D of Dawson’s integral calculated by Equation (15) in the
domain 0 ≤ x < 22 under different ND and (b) the maximum relative error ∆w of Voigt/complex error
function calculated by Equation (27) in the domain |x + iy| < 22 and 10−100 ≤ y ≤ 0.1 under different
N and y with the error caused by the Dawson’s integral is ignored (ND = 1000).
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Table 2. The optimal parameters N, ND, and NC with accuracy levels ∆ = 1 × 10−100.

y N ND NC ∆

1 × 10−100 ≤ y < 6.3096 × 10−49 1 344 65 <1 × 10−100

6.3096 × 10−49 ≤ y < 1.5849 × 10−24 2 344 65 <1 × 10−100

1.5849 × 10−24 ≤ y < 1.5849 × 10−16 3 344 65 <1 × 10−100

1.5849 × 10−16 ≤ y < 1.5849 × 10−12 4 344 65 <1 × 10−100

1.5849 × 10−12 ≤ y < 3.9811 × 10−10 5 344 65 <1 × 10−100

3.9811 × 10−10 ≤ y < 1.5849 × 10−8 6 344 65 <1 × 10−100

1.5849 × 10−8 ≤ y < 1.5849 × 10−7 7 344 65 <1 × 10−100

1.5849 × 10−7 ≤ y < 1.5849 × 10−6 8 344 65 <1 × 10−100

1.5849 × 10−6 ≤ y < 6.3096 × 10−6 9 344 65 <1 × 10−100

6.3096 × 10−6 ≤ y < 2.5119 × 10−5 10 344 65 <1 × 10−100

2.5119 × 10−5 ≤ y < 6.3096 × 10−5 11 344 65 <1 × 10−100

6.3096 × 10−5 ≤ y < 1.5849 × 10−4 12 344 65 <1 × 10−100

1.5849 × 10−4 ≤ y < 3.9811 × 10−3 13 254 43 * 7.7625 × 10−74

3.9811 × 10−3 ≤ y < 0.025119 14 197 30 * 4.8978 × 10−57

0.025119 ≤ y < 0.063096 15 169 25 * 1.2023 × 10−48

0.063096 ≤ y ≤ 0.1 16 154 22 * 1.9055 × 10−44

* Represents the limit accuracy that can be achieved.

Table 3. The optimal parameters N, ND, and NC with accuracy levels ∆ = 1 × 10−16.

y N ND NC ∆

1 × 10−100 ≤ y < 1 × 10−7 1 61 6 <1 × 10−16

1 × 10−7 ≤ y < 2.5119 × 10−4 2 61 6 <1 × 10−16

2.5119 × 10−4 ≤ y < 3.9811 × 10−3 3 61 6 <1 × 10−16

3.9811 × 10−3 ≤ y < 0.015849 4 61 6 <1 × 10−16

0.015849 ≤ y < 0.039811 5 61 6 <1 × 10−16

0.039811 ≤ y < 0.063096 6 61 6 <1 × 10−16

0.063096 ≤ y ≤ 0.1 7 61 6 <1 × 10−16

4. Results and Discussion
4.1. Error Analysis in Multi-Precision Arithmetic

Table 1 shows that the accuracy of evaluation scheme (27) can reach 1.9055 × 10−44

when 1 × 10−100 ≤ y ≤ 0.1, and the limit accuracy is better than 1 × 10−100 when
1 × 10−100 ≤ y < 1.5849 × 10−4, which indicates that this evaluation scheme can provide
highly accurate values of Voigt/complex error function with small imaginary argument,
against which the accuracy achieved by fast algorithms maybe benchmarked. By contrast,
Boyer and Lynas-Gray [20] used the multi-precision algorithm to calculate the high preci-
sion benchmark value of Voigt/complex error function with a maximum absolute error in
both Re [w(z)] and Im [w(z)] of 10−100 for |z| ≤ 40. What is unfortunate is that Boyer and
Lynas-Gray’s algorithm requires a high number of calculation bits (2000 bits) to reduce the
cancellation and smearing errors, since the first 5000 terms of a series need to be calculated.

4.2. Error Analysis in Double-Precision Arithmetic

Since double-precision floating-point arithmetic is commonly used in many science
computing and engineering applications, the error analysis and run-time tests of evaluation
scheme (26) in double-precision arithmetic is needed. In order to quantify the accuracy
of evaluation scheme (26), it is convenient to define the relative error of Re [w(z)] and Im
[w(z)] as

∆Re(z) =
∣∣∣Re[w(z)]−Re[wref.(z)]

Re[wref.(z)]

∣∣∣,
∆Im(z) =

∣∣∣ Im[w(z)]−Im[wref.(z)]
Im[wref.(z)]

∣∣∣. (28)

Since the significant figure of double-precision calculation is 16 bits, the efficient
computing boundary for ε = 10−16 in Table 1 is selected to distinguish the internal and



Mathematics 2022, 10, 308 8 of 13

external calculation domain (see Figure 3a). The parameters N and ND in the internal
calculation domain are shown in Table 3 and the parameter NC for truncation of the Laplace
continued fraction in the external calculation domain is shown in Figure 3b.

Figure 3. (a) The evaluation scheme for Voigt/complex error function in double-precision arith-
metic and (b) the parameter NC for truncation of the Laplace continued fraction in the external
calculation domain.

Figure 4 shows log10∆Re for the real part of the complex error function computed over
the domain 0≤ x≤40,000 ∩ 10−100 ≤ y≤ 0.1. As we can see from this figure, the evaluation
scheme (26) provides accuracy better than 10−15 (green color) over the most of this domain.
Although accuracy deteriorates in the neighborhood of the efficient computing boundary
(see Figure 4a), it remains better than 10−13 (red color).

Figure 4. The logarithm of the relative error log10∆Re for the real part of the evaluation scheme
(26) over the domain (a) 0 ≤ x ≤20 ∩ 10−100 ≤ y ≤ 0.1 and (b) 20 ≤ x ≤40,000 ∩ 10−100 ≤ y ≤ 0.1,
respectively.

Figure 5 illustrates log10∆Im for the imaginary part of the complex error function also
computed over the domain 0 ≤ x ≤40,000 ∩ 10−100 ≤ y ≤ 0.1. As we can see from this
figure, the evaluation scheme (26) provides accuracy better than 10−16 (blue color) over
the most domain. Unlike the approximation for the real part, the evaluation scheme (26),
also highly accurate in the neighborhood of the efficient computing boundary and the
computational test, reveals that the worst accuracy is better than 10−15 (green color). One
can see that the accuracy of the imaginary part is at least one order of magnitude better
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than the real part, which can be explained from the fact that Equation (21) is derived from
Equation (17) and derivative operation enlarges calculation error.

Figure 5. The logarithm of the relative error log10∆Im for the imaginary part of the evaluation scheme
(26) over the domain (a) 0 ≤ x ≤20 ∩ 10−100 ≤ y ≤ 0.1 and (b) 20 ≤ x ≤ 40,000 ∩ 10−100 ≤ y ≤ 0.1,
respectively.

In Figure 6a, we compare the maximum relative error eRe(y) = max{∆Re(x+iy) | 0 ≤
x ≤ 4000} as a function of y for the real part of the complex error function. Obviously,
the calculation accuracy of “fexp” algorithm deteriorates further with decreasing y and
the maximum relative error even reaches 100% when y < 10−14. The calculation accuracy
of “voigtf” algorithm is better than 10−9 when y > 10−5, however, similar to “fexp” algo-
rithm, the calculation error increases rapidly with the decrease in y when y < 10−5. When
y > 10−12, “fadsamp” algorithm can achieve 10−13 calculation accuracy, however, when
y < 10−12, the accuracy of this algorithm also fails. It can be seen that these algorithms
have their own advantages and disadvantages; it has the benefit of a specific scope, but
also needs further improvement. The common point of these algorithms is that they are
not suitable for the high precision evaluation of the real part of the complex error function
with small imaginary argument. Compared with to the “fexp”, “voigtf” and “fadsamp”
algorithms, our new algorithm, based on evaluation scheme (26), has been significantly
improved. The calculation error of the proposed algorithm in this work increases slightly
with the decrease in y and the maximum relative error eRe(y) in the domain 10−100 ≤ y ≤ 0.1
is better than 2.93 × 10−13.

Figure 6. The maximum relative error for the (a) real part and (b) imaginary part of complex
error function.
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In Figure 6b we compare the maximum relative error eIm(y) = max{∆Im(x+iy) | 0
≤ x ≤ 4000} as a function of y for the imaginary part of the complex error function.
Fortunately, the “fexp” algorithm and “fadsamp” algorithm, as well as the proposed
algorithm in this work, can achieve high-precision calculation for the imaginary part of the
complex error function. Compared with the existing algorithms, the proposed algorithm has
higher accuracy and the average value of the maximum relative error eIm(y) in the domain
10−100 ≤ y ≤ 0.1 is 4.91 × 10−16.

4.3. Preliminary Run-Time Tests with MATLAB

To obtain a first impression about the performance of the various approximations,
we have used MATLAB’s built-in function “tic/toc” to evaluate the calculation speed of
these algorithms. Figure 7 summarizes the results of these numerical experiments. A
computational test reveals that with 1 million random numbers in different y within the
internal domain |z| < 22, our algorithm is faster than “fexp” and “fadsamp” by a factor of
1.91 and 2.21, respectively (the average computing time of these algorithms is 0.33 s, 0.63 s
and 0.73 s, respectively) and the “voigtf” algorithm (0.22 s) is the fastest. In the external
domain 22 ≤ |z| ≤ 4000, the proposed algorithm has the highest computational efficiency,
and the calculation speed is faster than “fexp”, “fadsamp” and “voigtf” algorithm by a
factor of 1.44, 1.44 and 1.22, respectively (the average computing time of these algorithms
is 0.18 s, 0.26 s, 0.26 s and 0.22 s, respectively). The preliminary run-time tests show that
our algorithm, is as fast as those reported in recent publications.

Figure 7. Execution time (s) per algorithm evaluation with 1 million random numbers in different y
within the (a) internal domain |z| < 22 and (b) external domain 22 ≤ |z| ≤ 4000, respectively. The
tests have been performed on a typical desktop computer Intel(R) Quad CPU with RAM 8.00 GB.
(Since the “voigtf” algorithm can only calculate the real part of the complex error function, the
calculation time is doubled here to compare the calculation speed with other algorithms).

5. Conclusions

In this work we present an efficient approximation for the Voigt/complex error func-
tion that can be used for computation at small y ≤ 0.1. Error analysis and run-time tests
in double-precision arithmetic reveal that in the real and imaginary parts of the proposed
algorithm provide an average accuracy exceeding 10−15 and 10−16, respectively, and the
calculation speed is as fast as that of reported in recent publications. Since the evaluation
scheme (26) or (27) is a general expression, the desired accuracy can be easily achieved
by choosing reasonable parameters. In particular, the optimal parameters under different
accuracy levels ∆ = 1 × 10−100 and ∆ = 1 × 10−16 of evaluation scheme (27) are shown
in Tables 2 and 3, respectively, in order to gain computational acceleration. An opti-
mized MATLAB code base on this work can be downloaded from the MATLAB Central
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website: https://www.mathworks.com/matlabcentral/fileexchange/75134-computing-
of-voigt-complex-error-function-with-small-y (accessed on 7 January 2022).
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Appendix A

The 0-order and 2-order partial derivatives of L(x, y) with respect to y are expressed in
terms of the Dawson’s integral D(x) of real argument x as follows:

L(x, 0) =
2√
π

D(x), (A1)

∂2L(x, 0)
∂y2 =

1√
π
((4− 8x2)D(x) + 4x). (A2)

We note that the even-order partial derivatives of L(x, y) with respect to y satisfies the
following recurrence relation:

∂2mL(x, 0)
∂y2m = (8m− 6− 4x2)

∂2m−2L(x, 0)
∂y2m−1 − 8(m− 1)(2m− 3)

∂2m−4L(x, 0)
∂y2m−4 , m ≥ 2. (A3)

Thus Equations (9)–(14) can be easily derived from the above equation. It should be
noted that the coefficients pn/2,k have the following simple expression:

pn/2,k =
(−1)kn!2k+1

(n/2− k)!k!(2k− sign(k))!!
. (A4)

However, we did not find a simple expression for the coefficients qn/2,k. Instead, the
coefficients qn/2,k (N ≤ 7) is given as shown in the following Table A1 according to the
recurrence relation.

Table A1. The coefficients qn/2,k (N ≤ 7).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n/2 = 0 0 0 0 0 0 0 0
n/2 = 1 4 0 0 0 0 0 0
n/2 = 2 40 −16 0 0 0 0 0
n/2 = 3 528 −448 64 0 0 0 0
n/2 = 4 8928 −11,840 3456 −256 0 0 0
n/2 = 5 185,280 −337,920 150,528 −22,528 1024 0 0
n/2 = 6 4,567,680 −10,671,360 6,429,696 −1,456,128 133,120 −4096 0
n/2 = 7 130,556,160 −373,416,960 284,691,456 −86,630,400 11,939,840 −737,280 16,384

https://www.mathworks.com/matlabcentral/fileexchange/75134-computing-of-voigt-complex-error-function-with-small-y
https://www.mathworks.com/matlabcentral/fileexchange/75134-computing-of-voigt-complex-error-function-with-small-y
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