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Abstract: This research considers the problem of a price-discriminating monopolist aiming at choos-
ing output and investing in product differentiation to foster consumers perceiving products as being
heterogeneous in different market segments. It then introduces bounded rationality and concen-
trates on the dynamic analysis showing the existence of several dynamic phenomena caused by the
interaction between endogenous product differentiation and gradient dynamics. Though product
differentiation can generally increase market power and profits, in this context it can generate a lack
of coordination between the managers working in each segment.
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1. Introduction

This article takes a dynamic view of a price-discriminating monopolist that invests
in differentiation effort to induce consumers to perceive products as horizontally and
vertically differentiated, i.e., the price-discriminating monopolistic industry is producing
and selling in two segments horizontally differentiated goods of different qualities [1–4],
and has bounded rational expectations (gradient dynamics). The main innovation relies
on considering and comparing different market configurations, namely a monopolistic
framework with third-degree price discrimination—occurring when the monopolist charges
a different price to different consumer groups.

Though the literature about nonlinear dynamics in markets with imperfect competition is
vast, dealing with different aims and objectives—ranging from the pioneering works of [5–7] to
some more recent works of [8–10], the contributions including product differentiation are
rarer focusing, amongst others, on quantity-setting firms with heterogeneous (bounded
rational or naïve) expectations with linear [11] or nonlinear [12] market demand.

Since the pioneering work of [1], horizontal product differentiation has proven to be a
relevant ingredient to change several paradigms in the traditional game-theoretic approach
applied to strategic competitive markets in models belonging to strategic competitive
markets. In addition, since [13], the literature has extensively focused on the study of the
emergence of complex dynamics even in the absence of interactions (nonlinear monopoly)
due to the existence of bounded rationality [14–20]. In this regard, there is also growing
attention given in the theoretical and empirical branches of the literature to defining
possible heuristics for dealing with decision-making problems under uncertainty ([21–23]
and references therein).

The present article aims at contributing to the literature on the nonlinear monopoly
by providing the mathematical properties of the corresponding dynamic systems by
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also pinpointing the role of endogenous product differentiation in a third-degree price-
discriminating monopolistic market structure. In doing so, it concentrates on the role of the
degree of product differentiation as the main parameter to be used for comparison purposes
with specific regard to the stability outcomes. There exist some important results depending
on the extent of product substitutability. Indeed, the interaction between (endogenous)
product differentiation and gradient dynamic is responsible for the existence of several
dynamic outcomes that cannot be observed when products are homogeneous.

Though product differentiation is one of the key features of monopolistic compe-
tition (several firms produce goods which are close substitutes of one another, and the
downward-sloping demand faced by each competing monopolist is more elastic than the
demand curve faced by a monopolist), and price discrimination is one of the key features
of a “pure” monopolistic market, they both represent useful approaches to marketing used
when some of the main pillars of perfect competition are violated. Under horizontal differ-
entiation, products are perceived as heterogeneous based on consumers’ tastes (individual
preferences), but consumers are not able to distinguish products based on their relative
quality. In that case, there are no differences between firms’ marginal costs. Differently,
vertical differentiation allows consumers to distinguish between products of higher or
lower quality, which are produced by firms with different marginal costs. Unlike product
differentiation, price discrimination allows a monopolistic firm to charge different prices
for the same goods to different consumers.

Our work aims at gathering (third-degree) price discrimination and (horizontal and
vertical) product differentiation in the same (dynamic) monopolistic setting to capture some
aspects of pricing behaviour when a firm has monopoly power. Indeed, the holding mo-
nopolist can invest in differentiation effort to increase the degree of product substitutability,
and then forces a customer to increase their own marginal willingness to pay. However, the
increase in profits is followed by an increase in dynamic complexity, which in turn makes
coordination between managers working in different segments more difficult.

The work is also part of an in-depth theoretical research branch focused on the study of
the evolution of decision-making processes within firms seeking to identify and disentangle
their main characteristics by using the tools of dynamic systems. Coordination actions
within firms are necessary to achieve better results. However, increasing the firm’s effort
towards product differentiation raises some concerns as it increases the degree of complexity
of the system, therefore generating coordination problems for managers in the long term.

The rest of the article is organised as follows. Section 2 presents the static monopolistic
setting with third-degree price discrimination and endogenous differentiation effort by
pinpointing the main similarities and differences with a quantity-setting (Cournot) duopoly.
Section 3 concentrates on market dynamics by assuming bounded rationality (gradient
dynamics). Conclusions are given in Section 4.

2. The Static Problem

Consider a monopolistic industry in which the monopolist faces the perspective of
charging price discrimination. As is known, there exist three types of price discrimination:
first-degree or perfect price discrimination, which is often referred to as personalised
pricing;/second-degree price discrimination (product versioning or menu pricing);/third-
degree price discrimination (group pricing). In the case of personalised pricing, the firm
can sell the product to each customer at a different price allowing it to maximise the price
that each customer is willing to pay. In second-degree price discrimination, price varies
according to the quantity demanded by the customers. Finally, the third-degree price
discrimination allows a firm with market power to charge a different price to different
consumer groups, but each consumer (belonging to the same group) pays the same price
for each unit of the good. This kind of price discrimination often arises when firms sell
differentiated products and it is then related to the consumers’ willingness and ability to pay
for a good or service. The present work concentrates on third-degree price discrimination
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by assuming that the monopolist can identify two market segments, namely segment 1 and
segment 2, and charge a different price for each of them.

Following [1], products are differentiated and the normalised linear (inverse) demands,
following quadratic preferences, for the product of variety 1 (related to segment 1) and for
the product of variety 2 (related to segment 2) are, respectively, given by

p1 = 1− q1 − dq2, (1)

and
p2 = 1− q2 − dq1, (2)

where p1 (resp. p2) denotes the price of product 1 (resp. 2) and represents the marginal
willingness to pay of consumers towards products of segment 1 (resp. 2), q1 and q2
are the quantities of the product of varieties 1 and 2 produced by the monopolist, and
d ∈ [0, 1] is the degree of product differentiation (substitutability). When d = 0, goods
are perceived as totally differentiated, when d = 1 goods are homogeneous. Parameter
d resembles and summarises in a simplified way the cases of horizontal (quantity) and
vertical (quality) differentiation. This implies that the price-discriminating monopolistic
industry is producing and selling in two segments horizontally differentiated goods of
different qualities. Market demands in (1) and (2) follow the usual specification of the
representative consumer’s utility function as in the works of [1–4,24].

Unlike almost all the related industrial economics literature and in line with [25], we
assume that product differentiation is endogenous. This in turn implies that the monopolist
may seek to foster consumers’ tastes towards product differentiation in both segments
through ad hoc investments to increase profits. The total cost of production C(Q) and
the cost of the product differentiation effort E(d) of the monopolist (which is a proxy of
advertising investments in segmented markets) are, respectively, given by the functions
C(Q) = cQ and E(d) = ω(1− d)2, where Q = q1 + q2 is the total supply, c ≥ 0 is the
marginal cost of output production (following a technology with constant returns to scale)
and ω > 0 is a parameter weighting the efficiency of the differentiation technology scaling
up/down differentiation investment total costs, eventually representing an exogenous
index of technological progress. In this sense, ω measures the appearance of new, cost-
effective technology, weighting the degree to which the available technology for product
differentiation affects investment decisions and a firm’s profits. A reduction in ω can be
interpreted as a technological advance so that investing to foster product differentiation
becomes cheaper (i.e., the efficiency of differentiation investment increases). We also
recall that the lower d, the higher product differentiation (substitutability). The expression
representing the cost of product differentiation effort reveals diminishing returns to scale
in the differentiation technology. This effort is exerted by the monopolist to achieve
the benefit of letting the product be perceived as highly differentiated by the customers
belonging to both segments. Given the expressions of market demands for segment 1 and
segment 2, this benefit enters with constant returns to scale by eventually increasing the
price customers are willing to pay.

Profits can then be written as Π(q1, q2, d) = p1q1 + p2q2 − cQ− ω(1− d), where p1
and p2 are given by (1) and (2). The monopolist aims at maximising Π(q1, q2, d) for the
control variables q1, q2 and d taking the expressions of p1 and p2 into account and knowing
that d ∈ [0, 1] must hold. Formally, the problem is equivalent to

max
q1,q2,d

Π(q1, q2, d)

s.t.
(q1, q2, d) ∈ D := D1 ∪ D2 ∪ D3

, (3)
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where

D1 : =
{
(q1, q2) ∈ <2 : 1− q1 − dq2 ≥ 0, 1− q2 − dq1 ≥ 0 q1 ≥ 0, q2 ≥ 0, 0 ≤ d ≤ 1

}
,

D2 : =
{
(q1, q2) ∈ <2 : 1− q1 − dq2 ≤ 0, 1− q2 − dq1 ≥ 0 q1 ≥ 0, q2 ≥ 0, 0 ≤ d ≤ 1

}
,

D3 : =
{
(q1, q2) ∈ <2 : 1− q1 − dq2 ≥ 0, 1− q2 − dq1 ≤ 0 q1 ≥ 0, q2 ≥ 0 0 ≤ d ≤ 1

}
.

First, we pinpoint that the objective function is continuous on D but not differentiable
along the boundaries 1− q1 − dq2 = 0 and 1− q2 − dq1 = 0. Then, we separate the study
into sub-cases by solving the optimisation problem in (3) on each region Di, i = {1, 2, 3}
and eventually consider the solution of the problem on D1 ∪ D2 ∪ D3. For analytical and
expository purposes we divided the region D into partially overlapping subsets.

Focusing on the problem defined on D1, we note that D1 is a closed and bounded
set. Then, from the extreme value theorem it follows that a solution to the maximisation
problem exists. Nonetheless, a detailed study has to be performed because the inspection
of the Hessian matrix of Π shows that the objective function is not concave on D1. By
considering the subsets 1− q1 − dq2 = 0 and 1− q2 − dq1 = 0 of D1, we have that the
objective function takes the optimum at

q1 = 0, q2 =
1− c

2
, d = 1, (4)

and
q1 =

1− c
2

, q1 = 0, d = 1, (5)

respectively. In these cases, profits are given by

Π∗p1=0 =

(
1− c

2

)2
= Π∗p2=0 =

(
1− c

2

)2
. (6)

We now introduce the Lagrangian function

L(q1, q2, d, λ1, λ2, λ3, λ4) = Π(q1, q2, d) + λ1(q1) + λ2(+q2) + λ3(d)− λ4(d− 1) +

+λ5(1− q1 − dq2) + λ6(1− q1 − dq2).

As the candidates on the sets 1− q1− dq2 = 0 and 1− q2− dq1 = 0 have already been iden-
tified from the previous study, we address the necessary optimality conditions assuming
the constraints on prices are not binding (λ5 = 0, λ6 = 0). The KKT necessary conditions
for optimality read as follows

1− 2dq2 − c + λ1 − 2q1 = 0
1− 2dq1 − c + λ2 − 2q2 = 0
−2q1q2 + 2ω(1− d)− λ4 + λ3 = 0
λ1q1 = 0, λ1 ≥ 0
λ2q1 = 0, λ2 ≥ 0
λ3d = 0, λ3 ≥ 0
λ4(1− d) = 0, λ4 ≥ 0
q1 ≥ 0
q2 ≥ 0
d ≥ 0
1− d ≥ 0
1− q1 − dq2 ≥ 0
1− q2 − dq1 ≥ 0

. (7)
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Some solutions of system (7) can be found as the solutions of the following system that also
verify the constraints on the control variables

q3
1 − 2ωq1 +

(1−c)ω
2 = 0

q2 = q1

d = 1− q2
1

ω

. (8)

Regarding the solutions of the first equation in (8), we consider the behaviour of the
following function

f (z) := z3 − 2ωz +
(1− c)ω

2
.

We have that f (0) = (1−c)ω
2 > 0 and f ′(z) = 3z2 − 2ω so at least one root exists and is

negative. For two other real solutions to exist, because f has a minimum in zmin =
√

6ω
3 and

f (zmin) = ω
(

1−c
2 −

4
√

6ω
9

)
, we pinpoint ω ≥ 27

128 (1− c)2 must hold, and in this case the
solutions are positive. By applying the Cardano’s formula and considering the constraint
ω ≥ 27

128 (1− c)2 we obtain the following expressions of the roots:

z1 := −2
√

6ω

3
cos

arctan
(

3(27(1−c)2−128ω)
1/2

9(1−c)

)
3

, (9)

z2 := −2
√

6ω

3
cos

arctan
(

3(27(1−c)2−128ω)
1/2

9(1−c)

)
3

+
π

3

, (10)

z3 := −2
√

6ω

3
cos

arctan
(

3(27(1−c)2−128ω)
1/2

−9(1−c)

)
3

+
π

3

. (11)

Simple considerations suggest that z1 < 0 and z2 < z3, with z2 <
√

ω. Direct
computation shows that the value of d associated to q1 = q2 = z2 lies in the interval (0, 1),
while the one associated to q1 = q2 = z3 lies in the interval (0, 1) if ω < 27

128 (1− c)2.
From the study of (7), we find that the only other candidate is represented by the point

(q̃1, q̃2, d̃) =
(

1− c
2

,
1− c

2
, 0
)

and Π(q̃1, q̃2, d̃) =
(1− c)2

2
−ω. (12)

The solution to the optimisation problem can be found by evaluating the objective function
at the candidates. From a direct comparison, we find that the optimal solution is represented

by (1) q1 = q2 = z2 and d = 1 − z2
2

ω for ω > 27
128 (1 − c)2, and (2) (q̃1, q̃2, d̃) for ω <

27
128 (1− c)2.

Regarding the other regions, we note that on set D2 the price of product 1 is 0. There-
fore, the optimal solution on this set is

q1 = 0, q2 =
1− c

2
, d = 1. (13)

Likewise, the solution on D3 is

q1 =
1− c

2
, q1 = 0, d = 1. (14)
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These points have already been considered in D1. So, the solutions for D1 identified so far
also solve the problem in (3).

3. The Dynamic Model

The solution of the static model is based on the assumption that the monopolist knows
the demands for both segments. Then, the firm can optimally choose the resources that
should be employed to invest in product differentiation as well as the amount of output
for both segments. In this section, we will weaken this hypothesis. Specifically, we will
consider that the decision process is not solved in a completely centralised form, but there
exists a holding company that chooses optimally the level of product differentiation and the
quantities q1 and q2 are chosen in a decentralised way by two managers. Each manager is in
charge of trying to obtain the best results in terms of the firm’s profits exclusively on their
market without any coordination between the other manager. In addition, both managers
will consider how their decisions will affect the level of d chosen by the holding. In other
words, each manager takes the level of d as given (see [26] for an analogous mechanism
applied to an oligopolistic market in which firms are involved in an advertising investment
decision problem).

It is important to pinpoint that, in the present model, we do not take into account
problems related to the possibility that a manager can be incentivised through objectives
other than profit maximisation. On the issue related to managers’ incentives, one can refer
to (1) the pioneering works of [27–29] based on a static duopolistic context, and (2) the
work of [9] in a dynamic framework, in which the two managers do not coordinate. The
lack of knowledge about production decisions of the other manager makes this stage of
decision-making on the quantity to be produced similar to a duopolistic context where a
component of the demand (the quantity produced by the rival) is generally not known.

Therefore, we assume that in a context of uncertainty the decisions about the quantity
to be produced at time t + 1 follow a naïve rule driven by the sign of the marginal profit at t.
As is usual in this literature, time is needed to complete the production process (one period
in this discrete-time model). Therefore, at time t the manager must choose the quantity to
be produced at time t + 1. If the marginal profit is positive (resp. negative), the manager
increases (resp. decreases) the quantity produced at time t + 1 [6]. Definitively, production
in segment i at time t + 1 is given by:

qi,t+1 = qi,t + qi,tk
∂Πi,t

∂qi,t
= −2kdtq1,tq2,t − 2kq2

i,t + (1 + k(1− c))qi,t, (15)

where Πi,t is the profit obtained in segment i, with i = 1, 2 and k > 0 being a parameter mea-
suring the speed at which the decisions on qi at time t+ 1 change (given dt). Substituting out
the expression of dt that can be obtained by the static problem, i.e., dt = max(0, 1− q1,tq2,t

ω ),
and using the shift operator ′ to simplify notation and refer to the unit-time advancement
of qi, i.e., the state of qi at time t + 1, we obtain the following map:{

q′1 = −2kq1 max(0,−q1q2/ω + 1)q2 − 2kq2
1 + (1 + k(1− c))q1

q′2 = −2kq1 max(0,−q1q2/ω + 1)q2 − 2kq2
2 + (1 + k(1− c))q2

, (16)

whose fixed points are

E1 = (0, 0), E2 =

(
1− c

2
, 0
)

, E3 =

(
0,

1− c
2

)
, (17)

and possibly other fixed points with positive coordinates which will be detailed later.
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The naïve mechanism adopted to build on map (16) does not help avoidance of the
non-negativity of the trajectories, thus implying the existence of economically non-feasible
paths. To fill this gap, we re-write the map in the following way (see [30]):{

q′1 = max
{

0,−2kq1 max(0,−q2q1/ω + 1)q2 − 2kq2
1 + (1 + k(1− c))q1

}
q′2 = max

{
0,−2kq1 max(0,−q2q1/ω + 1)q2 − 2kq2

2 + (1 + k(1− c))q2
} . (18)

Figure 1 shows (with different colours) the fate of the trajectories according to the
region of the plane where they start. Specifically, trajectories starting from the blue region
remain in this area for each iteration and, depending on the initial condition of the system,
they converge to one of the attractors of the map; differently, trajectories starting in the
yellow or red regions lead to the closure of one (and only one) of the two markets (qi = 0
from a given t onwards); finally, the dark-grey region describes the initial conditions leading
to the closure of both markets (q1 = q2 = 0 from a given t onwards). Though from an
economic point of view this solution can be explained by the absence of coordination
between the two managers, the scenario in which one of the markets will close is not robust
as it would be enough for the manager operating in this segment choosing to produce a
quantity (ε) slightly larger than zero to let both segments remain open. From a mathematical
point of view, this result is motivated by the fact that the attractors located on the axes are in
general weak attractors in the Milnor sense (see [31]). For the value of k selected for Figure 1,
the immediate basin of attraction of the attractors on the axes intersected by the positive
orthant is the empty set. As the parameters vary, including k, it is possible to observe much
more complex configurations of the basins. In this case, the mechanism of re-entry into the
market in one of the two segments can give rise to complex phenomena, with trajectories
involving a sequence of periods of activity/inactivity of one of the segments. This point
has been explored in depth by [32], to which we refer to for details.
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Figure 1. The blue region bounds the set of initial conditions corresponding to which the related
trajectories are characterised by strictly positive coordinates for each iterate. In the other regions, at
least one of the two coordinates becomes zero after a certain time threshold. Parameter set: c = 0.23,
ω = 0.2 and k = 2.4.

As we are considering the behaviour of a monopolist, albeit with limited knowl-
edge, we prefer to explore an alternative hypothesis in which even in the presence of a
negative marginal profit, the quantity produced at time t + 1 is always strictly positive.
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From a mathematical point of view, the dynamics of the system become governed by the
following map:

T :
{

q′1 = max
{

ε,−2k max(0,−q2q1/ω + 1)q1q2 − 2kq2
1 + (1 + k(1− c))q1

}
q′2 = max

{
ε,−2k max(0,−q2q1/ω + 1)q1q2 − 2kq2

2 + (1 + k(1− c))q2
} , (19)

defined on the set

S =
{
(q1, q2) ∈ <2 : q1 ≥ ε, q2 ≥ ε, q1 + q2 ≤ 1

}
(20)

where ε > 0 is a parameter that will be properly set henceforth. Then, the only fixed points
of the map are those with strictly positive coordinates.

Now, we first note that map T is symmetric. This means that the is invariant if variables
q1 and q2 are swapped, that is T ◦ W = W ◦ T where W : (q1, q2) → (q2, q1). Therefore,
the diagonal ∆ = {(q1, q2) : q1 = q2} is an invariant manifold so that a trajectory starting
at (q0

1, q0
2) ∈ ∆ lies on ∆ for all t > 0, namely (qt

1, qt
2) ∈ ∆ for all t > 0. Synchronised

trajectories are governed by restriction T∆ : ∆→ ∆, where

T∆ : q′ = f (q) := max
{

ε, q + kq
∂π

∂q

}
:= (21)

=

max
{

ε, q + kq(1− 2q(1− q2

ω )− c− 2q)
}

for 0 < q <
√

ω

max{ε, q + kq(1− c− 2q)} for q ≥
√

ω
.

By specifying the study of the existence of fixed points for map T to the case of the
map T∆, we have the following proposition:

Proposition 1. Let ε < z2. Map T∆ given in (21) admits the following fixed points:

If ω < 27(1−c)2

128 then q∗∗∗ = 1−c
2 is the unique fixed point of the map.

If 27(1−c)2

128 < ω < (1−c)2

4 then the map admits three fixed points q∗ = z2, q∗∗ = z3 and
q∗∗∗ = 1−c

2 .

If ω > (1−c)2

4 then q∗ = z2 is the unique fixed point of the map.

Figure 2 shows the emergence of the fixed points as ω varies. Differently, the number
of fixed points does not depend on k.

By specifying the study of the existence of �xed points for map T to the case of the map T� we

have the following proposition:

Proposition 1 Let " < z2. Map T� given in (21) admits the following �xed points:
If ! < 27(1�c)2

128 then q��� = 1�c
2 is the unique �xed point of the map.

If 27(1�c)
2

128 < ! < (1�c)2
4 then the map admits three �xed points q� = z2, q�� = z3 and q��� = 1�c

2 .

If ! > (1�c)2
4 then q� = z2 is the unique �xed point of the map.

Figure 2 shows the emergence of the �xed points as ! varies. Di¤erently, the number of �xed

points does not depend on k.

Figure 2. Stationary points as ! varies. Parameter set: c = 0:2, k = 2 and " = 0:0001; ! = 0:092
(dashdotted line), ! = 0:15 (solid line), ! = 0:292 (dotted line).

About the stability properties of the �xed points of map T�, the next result follows:

Proposition 2 Let us consider map T�. Fixed point q� is attracting for k < k� with k� = 2!
((c+8z2�1)!�8z32

>

0. Fixed point q��, when it exists, is always unstable, whereas �xed point q���, when it exists, is stable

if k < 1
1�c .

Throughout the rest of the article we consider cases in which the lower bound of the map, ", does

not play any role. In doing so, we will set a value of " su¢ ciently low. By varying the main parameters

of the model, map T� can generate several dynamic phenomena. We classify below some of the most

interesting ones.

10

Figure 2. Stationary points as ω varies. Parameter set: c = 0.2, k = 2 and ε = 0.0001; ω = 0.092
(dashdotted line), ω = 0.15 (solid line), ω = 0.292 (dotted line).



Mathematics 2022, 10, 302 9 of 15

Regarding the stability properties of the fixed points of map T∆, the next result follows:

Proposition 2. Let us consider map T∆. Fixed point q∗ is attracting for k < k∗ with k∗ =
2ω

(c+8z2−1)ω−8z3
2
> 0. Fixed point q∗∗, when it exists, is always unstable, whereas fixed point q∗∗∗,

when it exists, is stable if k < 1
1−c .

Throughout the rest of the article we consider cases in which the lower bound of
the map, ε, does not play any role. In doing so, we will set a sufficiently low value of
ε. By varying the main parameters of the model, map T∆ can generate several dynamic
phenomena. We classify below some of the most interesting ones.

• Scenario 1. For ω > (1−c)2

4 , the unique fixed point of the map is q∗. As k increases,
the fixed point undergoes a flip bifurcation through which it loses its stability. By
setting c = 0.2 and ω = 0.292, Figure 3A shows the role of the speed of adjustment
k in generating dynamics converging to cycles of increasing period and eventually
converging to a chaotic attractor. Figure 3B presents the cobweb diagram for k = 4.2
when a chaotic attractor captures all the initial conditions of map T∆.

� Scenario 1. For ! > (1�c)2
4 , the unique �xed point of the map is q�. As k increases, the

�xed point undergoes a �ip bifurcation through which it loses its stability. By setting c = 0:2

and ! = 0:292, Figure 3A shows the role of the speed of adjustment k in generating dynamics

converging to cycles of increasing period and eventually converging to a chaotic attractor. Figure

3B presents the cobweb diagram for k = 4:2 when a chaotic attractor captures all the initial

conditions of map T�.
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Figure 3. Panel A. Bifurcation diagram for k. Panel B. Cobweb diagram for k = 4:2.

� Scenario 2. For ! < 27(1�c)2
128 , the unique �xed point of the map is q���. Like the previous

case, the �xed point loses its stability through a �ip bifurcation as k increases. The bifurcation

diagram plotted in Figure 4 for c = 0:2, ! = 0:092 and " = 1 � 10�6 shows a di¤erent route to
chaos compared to the case discussed so far. Indeed, after the two-period stable cycle, the map

shows a di¤erent behaviour through the emergence of a six-period stable cycle. This phenomenon

is caused by the non-di¤erentiability of the map.
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Figure 3. Panel (A) Bifurcation diagram for k. Panel (B) Cobweb diagram for k = 4.2.

• Scenario 2. For ω < 27(1−c)2

128 , the unique fixed point of the map is q∗∗∗. Like the
previous case, the fixed point loses its stability through a flip bifurcation as k increases.
The bifurcation diagram plotted in Figure 4 for c = 0.2, ω = 0.092 and ε = 1× 10−6

shows a different route to chaos compared to the case discussed so far. Indeed, after the
two-period stable cycle, the map shows a different behaviour through the emergence
of a six-period stable cycle. This phenomenon is caused by the non-differentiability of
the map.

• Scenario 3. For (1−c)2

4 < ω < 27(1−c)2

128 , the map is characterised by three fixed points
where the intermediate one is always unstable for any value of k. Let us consider the
following parameter set: c = 0.2 and ε = 0.000001. For small values of k, there exist
two attracting fixed points. Such a parametric configuration is not presented in any
figure. An increase in k (k = 3) is responsible for the birth of a chaotic attractor around
the fixed point q∗∗∗ (Figure 5A), whereas the fixed point q∗ continues to be attracting.
For k ' 3.059, at the global maximum point of the map, q = qmax :=

√
ω, we have

that f ( f (qmax)) < z3. Then, after a possibly long transient, the dynamics of the map
are captured by the unique attractor q∗ of the system (Figure 5B). When k increases
further, it is possible to show that also the fixed point q∗ loses its stability through a
flip bifurcation (not shown in the figure).
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Going back to the study of map T , we begin by stating the following result.

Proposition 3 Let " < z2: Map T given in (19) admits the following �xed points:
If ! < 27(1�c)2

128 then
�
1�c
2 ;

1�c
2

�
is the unique �xed point of the map.

If 27(1�c)
2

128 < ! < (1�c)2
4 then the map admits three �xed points (z2; z2), (z3; z3) and

�
1�c
2 ;

1�c
2

�
.

If ! > (1�c)2
4 then (z2; z2) is the unique �xed point of the map.

From previous results, the �xed point (z3; z3) is always unstable, whereas about the �xed point�
1�c
2 ;

1�c
2

�
the following result holds.

Proposition 4 Let " < z2 and ! < (1�c)2
4 . Then, the �xed point

�
1�c
2 ;

1�c
2

�
of map T is locally

asymptotically stable if k < 1
1�c . For k =

1
1�c , both eigenvalues of the Hessian matrix at

�
1�c
2 ;

1�c
2

�
are �1.
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Figure 5. Panel (A) Cobweb for k = 3. Panel (B) Cobweb for k ' 3.059.

Proposition 3. Let ε < z2. Map T given in (19) admits the following fixed points:

If ω < 27(1−c)2

128 then
(

1−c
2 , 1−c

2

)
is the unique fixed point of the map.

If 27(1−c)2

128 < ω < (1−c)2

4 then the map admits three fixed points (z2, z2), (z3, z3) and
(

1−c
2 , 1−c

2

)
.

If ω > (1−c)2

4 then (z2, z2) is the unique fixed point of the map.

From previous results, the fixed point (z3, z3) is always unstable, whereas about the
fixed point

(
1−c

2 , 1−c
2

)
the following result holds.
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Proposition 4. Let ε < z2 and ω < (1−c)2

4 . Then, the fixed point
(

1−c
2 , 1−c

2

)
of map T is

locally asymptotically stable if k < 1
1−c . For k = 1

1−c , both eigenvalues of the Hessian matrix at(
1−c

2 , 1−c
2

)
are −1.

Due to the complexity of the expressions, we skip the analytical study of the stability
of the fixed point (z2, z2).

In what follows, we extend the study of map T∆ to the two-dimensional case where the
initial conditions are not necessarily located on the diagonal. Figure 6 shows, concerning
Scenario 1, that the dynamics on the diagonal well summarise the dynamics of the two-
dimensional system. In fact, in this case, we have that the dynamics are attracted by the
attractor located on the diagonal. The dynamics of the system are chaotic but synchronised.

Figure 6. Phase plane. Parameter set: c = 0.2, ω = 0.292, k = 4.2.

Figure 7 shows, for values of k larger than 1−c
2 , that the state plane is characterised by

two attractors, one of which is located along the diagonal (six-period cycle) and the other
one symmetrical to the diagonal (two-period cycle). Depending on initial conditions, the
dynamics can therefore be captured by two different attractors. From an economic point
of view, this is characterised by an equilibrium (fixed point) with perfectly differentiated
goods (d = 0). Therefore, at the steady-state, the firm is a pure monopolist in each sector
(i.e., there is no interaction between the two segments). However, the lack of coordination
between the managers of segment 1 and segment 2 can generate behaviours that can lead
the monopolist to reduce at least in some periods product differentiation (the dynamics on
the diagonal: one should note the coordinates of the cycles with low levels of production
of both goods). Otherwise, it is possible to observe dynamics characterised by periods in
which production in one segment is small and production in the other segment is large in
an alternating way (two-period cycle off the diagonal).
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Figure 6. Phase plane. Parameter set: c = 0:2; ! = 0:292; k = 4:2.

Figure 7. Phase plane. Parameter set: c = 0:2 ! = 0:092 and k = 2:6.

(A) (B)

14

Figure 7. Phase plane. Parameter set: c = 0.2 ω = 0.092 and k = 2.6.

Finally, Figure 8A shows a phase plane in which there are two attractive fixed points:
one characterised by low product differentiation (the equilibrium in the south-west direc-
tion), the other one characterised by complete differentiation, i.e., products are homoge-
neous (the equilibrium in the north-east direction). The low equilibrium profit dominates
the other equilibrium for the firm. Nevertheless, the dynamics starting around the subop-
timal point may be captured by this attractor. In this case, as k grows the high attractor
located on the diagonal loses transverse attractiveness and the dynamics starting in that
area of the phase plane are captured by attractors outside the diagonal (Figure 8B). Further
increases in k allow the attractor to grow and then collide with the boundary of the basin
of attraction causing eventually its disappearance. After this event, all trajectories are
captured by the low fixed point with d < 1 (Figure 8C). In this case, profits are those that
would be realised in the centralised case in which the monopolist maximises joint profits
by considering product differentiation ( 1−c

2 , 1−c
2 ).
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Figure 6. Phase plane. Parameter set: c = 0:2; ! = 0:292; k = 4:2.

Figure 7. Phase plane. Parameter set: c = 0:2 ! = 0:092 and k = 2:6.

(A) (B)

14

(C)

Figure 8. Phase plane. Parameter set: c = 0:2 ! = 0:15. Panel A: k = 2:4. Panel B: k = 2:53.
Panel C: k = 2:63.
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4. Conclusions

This work analysed a monopolistic market in which the monopolist charges third-
degree price discrimination, invests in differentiation effort to endogenously induce cus-
tomers to perceive products as heterogeneous, and then chooses the quantities to be
produced and sell in segment 1 and segment 2. It aimed at resembling different features of
different market structures, i.e., price discrimination—which is a main characteristic of a
monopolistic industry—and product differentiation (horizontal and vertical)–which is a
main characteristic of a competing monopolistic industry and/or an oligopolistic industry.
Specifically, we considered a two-stage static setting in which, in the first stage, the holding
monopolist chooses to foster product substitutability through ad hoc investments (to in-
duce customers towards product substitutability) and, in the second stage, decides on the
quantity to be sold in the two segments.
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After having characterised the solutions to the static problem, the article concentrated
on the analysis of whether results can be achieved when the decision-making system is par-
tially decentralised. It then considered the possibility that decisions on the differentiation
effort are taken by the monopolistic firm and production in each segment is delegated to
a manager belonging to it. Under bounded rationality, results showed that monopolistic
dynamics can have different fates converging towards different attractors characterised by
different degrees of product differentiation and profits.

From a policy perspective, though (endogenous) product differentiation is a device
that can be used together with price discrimination to increase profits, it may be responsible
for lack of coordination between the managers working in each market segment. This can
lead to differentiation and production decisions that change continuously and therefore do
not stabilise towards the optimum found in the static setting.

More in general, this article aimed at offering a theoretical framework in which
monopolistic dynamics can be conceptualised in a model capturing several features of
industries that violate in some sense the paradigm of perfect competition. The model can
naturally be extended to (1) a framework with monopolistic competition and/or (quantity-
setting or price-setting) strategic interaction, and (2) R&D effort along the line of [33,34].
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