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Abstract: Beta regressions describe the relationship between a response that assumes values in the
zero-one range and covariates. These regressions are used for modeling rates, ratios, and proportions.
We study computational aspects related to parameter estimation of a class of beta regressions for
the mean with fixed precision by maximizing the log-likelihood function with heuristics and other
optimization methods. Through Monte Carlo simulations, we analyze the behavior of ten algorithms,
where four of them present satisfactory results. These are the differential evolutionary, simulated
annealing, stochastic ranking evolutionary, and controlled random search algorithms, with the latter
one having the best performance. Using the four algorithms and the optim function of R, we study
sets of parameters that are hard to be estimated. We detect that this function fails in most cases, but
when it is successful, it is more accurate and faster than the others. The annealing algorithm obtains
satisfactory estimates in viable time with few failures so that we recommend its use when the optim
function fails.

Keywords: computational statistics; heuristic; likelihood function; Monte Carlo method; R software

1. Introduction

Modeling of limited-range continuous data is considered in diverse areas when
describing indexes, proportions, rates, and ratios, such as in economics and finance [1–5],
biology [6], business [7], medicine [8], mining [9], education and psychology [10–13],
and politics [14]. It is worth noting that a package developed in the R software (http:
//www.r-project.org accessed on 6 January 2022) allows the beta regression to be applied [15].
This is the betareg package, whose details can be found in [16].

Beta regressions are widely used for modeling the relationship between a response
variable that takes values in the continuous range (0, 1) and independent variables or
covariates. The beta regression was proposed in [15] as a helpful model for describing
limited-range continuous data. This modeling is based on the beta distribution, which is
widely flexible and covers diverse shapes (symmetric, asymmetric, unimodal, bimodal),
for different values of its parameters. The beta distribution may be parameterized to model
the mean and precision parameters in terms of covariates and regression parameters. Works
focusing on maximum likelihood (ML) estimation for the parameters that index the beta
regression and extensions were conducted in [17–19], among others.

The objective of this work is to continue the research that has been developed for
beta regression models based on ML estimation. More specifically, our main objective
is to evaluate the most efficient computational algorithms based on heuristic methods
for maximizing the likelihood function of beta regression models. These algorithms are
the controlled random search, differential evolutionary, DIRECT, DIRECT_L, evolutionary,
genetic, memetic, particle swarm, self-adapted evolutionary, and simulated annealing
methods. The performance of these algorithms is evaluated by using the Monte Carlo

Mathematics 2022, 10, 299. https://doi.org/10.3390/math10030299 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030299
https://doi.org/10.3390/math10030299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4022-6165
https://orcid.org/0000-0002-9884-9090
https://orcid.org/0000-0002-3092-1412
https://orcid.org/0000-0003-4755-3270
https://orcid.org/0000-0002-2152-3199
http://www.r-project.org
http://www.r-project.org
https://doi.org/10.3390/math10030299
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030299?type=check_update&version=1


Mathematics 2022, 10, 299 2 of 17

simulation method with the R software [20], considering the quality and computational
time of the solutions found and analyzing the behavior in different scenarios. The codes and
simulation results are available in the following repository: https://github.com/Raydonal/
MLE-BetaRegression-Optimization (accessed on 6 January 2022).

The rest of this paper is structured as follows. In Section 2, we provide background on
the beta distribution and its regression. In this section, we also summarize the algorithms
analyzed in the present study. In Section 3, two Monte Carlo simulations are conducted.
First, we evaluate the computational performance of the mentioned algorithms and then
we assess the optim function of the betareg package of R for these algorithms. We present
the conclusions of our study in Section 4.

2. Methodology
2.1. Beta Models

In the beta regression models, one assume that the response variable Y follows beta
distribution with probability density function (PDF) given by

f (y; p, q) =
Γ(p + q)
Γ(p)Γ(q)

yp−1(1− y)q−1, 0 < y < 1, (1)

where p > 0, q > 0, and Γ is the gamma function. The mean and variance of Y are stated as:

E(Y) =
p

p + q
, Var(Y) =

pq
(p + q)2(p + q + 1)

. (2)

As proposed in [15], a parameterization different from that used in (1) can be established
in terms of location and precision parameters, µ and φ namely, where µ = E(Y) is defined
in (2) and φ = p + q, so that Var(Y) = V(µ)/(1 + φ), where V(µ) = µ(1− µ). Therefore, µ
is the mean of the response variable and φ is a precision parameter, since for fixed µ, as φ
increases, the variance of Y decreases. Thus, the PDF of the response variable Y can be
written as:

f (y;µ,φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1, (3)

where 0 < µ < 1 and φ > 0. Note that, as mentioned, the PDF formulated in (3) has
several different shapes (symmetric, asymmetric -left or right skewness-, uniform, as well
as “J” and inverted “J” -unimodal-, and bimodal) depending on the values assumed by
the parameters µ and φ. The flexibility of the beta PDF is illustrated in Figure 1 for several
different parameter combinations. In this investigation, we consider a fixed φ parameter.
However, there are cases where it is convenient to take a varying φt parameter and to assign
a regression structure to log(φt). A study of this variant is out of the objective of our work,
but this can be included in future studies as mentioned at the final section.
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Figure 1. Beta probability density function for µ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}with φ = 5 (left) and
φ = 100 (right).
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The analyzed model is defined assuming that the random variable Yt follows a beta
distribution with PDF established as in (3), with mean µt, unknown precision φ, and that:

g(µt) =
k∑

i=1

xtiβi = ηt, (4)

where β = (β1, . . . , βk)
> is a vector of unknown regression parameters to be estimated,

and xt1, . . . , xtk are the values of the covariates which are assumed to be fixed and known.
Note that the function g stated in (4) is a link function. We assume that g is strictly monotonic
and twice differentiable, which maps µt to the real line [21] (p. 228). In the case of beta
models, a suitable choice of g is the logit function formulated as g(µ) = log(µ/(1− µ)) and
used in generalized linear models [22], which allows the mean to be formulated as:

µt =
exp(x>t β)

1 + exp(x>t β)
. (5)

Note that the expression given in (5) is similar to logistic regression models based
on the binomial distribution to describe proportions/percentages [23]. These models are
suitable only if the outcome is of the form r out of N (with y = r/N). However, this is
inapplicable in situations where the raw numbers r and N are not available.

Let Y = (Y1, . . . , Yn)> be independent random variables, where each Yt, for t ∈
{1, . . . , n}, follows a beta distribution with mean µt defined in (5) and PDF stated as in (3).
In addition, y = (y1, . . . , yn)> are the observed values of Y and, as mentioned xt1, . . . , xtk
are observations of k fixed covariates, for k < n. Then, the log-likelihood function for
θ = (β1, . . . , βk,φ)> based y is expressed as:

`(θ; y) = `(θ) =
n∑

t=1

`t(θ), (6)

where

`t(θ) = log(Γ(φ)) − log(Γ(µtφ)) − log(Γ((1− µt)φ)) + (µtφ− 1) log(yt) + ((1− µt)φ− 1) log(1− yt).

Therefore, when maximizing the log-likelihood function defined in (6), we obtain the
ML estimator of θ. Under mild standard regularity conditions (for example, the conditions
described in [24] (Sections 7.1 and 7.2)), the ML estimator of θ is consistent and asymptotically
normal, whereas the log-likelihood function defined in (6) is strictly concave [25]. Note that
the ML estimator of θ does not have a closed form [26]. Hence, they need to be obtained by
numerically maximizing the log-likelihood function using nonlinear optimization methods
such as Newton or quasi-Newton algorithms [27]. Nonetheless, this ML estimator is biased
in small sample size [19,28], but its bias decreases as the sample size increases, which
justifies the search for alternative non-linear optimization algorithms.

The beta regression model can be extended to cover different sources of heterogeneity,
including non-constant dispersion and non-linearity [29–31], temporal dependence [32–35],
inflated points [36,37], truncation [38], and error-in-variables as well as latent informa-
tion [39–42], among others. To keep a clear focus, in the present study, we restrict our
attention primarily to the fixed precision. Our presentation, however, is not critically
dependent on the fixed precision assumption and the simulation results can be increased
over other scenarios in future works.

2.2. Optimization Algorithms

As mentioned, it is possible to estimate the parameters of the beta regression model
by maximizing the log-likelihood function defined in (6). To do this, several optimization
methods can be used, such as heuristics that aim to find satisfactory solutions in viable com-
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putational time. These methods are generally effective for highly complex computational
problems, such as the one of interest in this investigation.

Monte Carlo simulations considered in this study are divided into two steps. The first
step is more general, allowing us to evaluate a large number of methods, selecting those
that provide better computational results. The second step aims to compare the previously
selected methods with the most employed one by the command optim of R from the
betareg package.

The authors in [43] evaluated the 18 optimization methods available in the R language
applied to 48 different optimization problems with known solutions. In our case and
during the first step, we carry out a simulation study considering only the problem of
maximizing the log-likelihood function defined in (6), with 10 different methods available
in R packages. In the second stage, we use the methods that provided better results in the
previous stage and the optim function implemented in the betareg package, in order to
make a comparison. The methods utilized are defined as follows:

• Genetic algorithm: This is a heuristic inspired by the basic principle of biological
evolution and natural selection, simulating evolution so that the fittest individuals
survive, imitating its mechanisms such as the processes of selection, crossing, and
mutation. The ga function that implements this algorithm is available in an R package
named GA [44].

• Differential evolutionary algorithm: This method is similar to the genetic algorithm
indicated to find the global optimum of real-valued functions with real-valued param-
eters as well [45]. Such an algorithm does not need the function to be optimized that is
continuous or differentiable and is available by the DEoptim command of an R package
named DEoptim [46].

• Self-adapted evolutionary algorithm: This method proposed in [47] is a strategy of
self-adaptation of the covariance matrix that is implemented in the cma_es function of
the cmaes package of R. This is also an evolutionary method, which uses a covariance
matrix approximation to be more efficient in the generation of next generations.

• Simulated annealing algorithm: This is a metaheuristic based on the thermodynamic
annealing process that performs a probabilistic local search replacing the current
solution with a solution in its vicinity, obtaining good solutions regardless of the chosen
starting point. The GenSA function is available in an R package named GenSA [48]. A
general strategy to improve the simulated annealing (SANN) algorithm is to inject
noise via the Markov chain Monte Carlo algorithms (noise-boosted) to sample high
probability regions of the search space and to accept solutions that increase the search
breadth [49–51]. Another approach is based on hybridized search gradient methods or
genetic algorithms for cases of difficulties in the convergence with SANN [52,53].

• Controlled random search algorithm: This is a direct search heuristic [54] that tries to
balance the fulfillment of constraints and convergence by storing possible trial points
by the nloptr_crs function. Such a function has implemented this algorithm and is
available in an R package named nloptr [55].

• DIRECT algorithm: This is a deterministic method based on the division of the
search space into increasingly smaller hyperrectangles and was proposed in [56].
The nloptr_d function has implemented such an algorithm and is available in the
nloptr package of R.

• DIRECT_L algorithm: This is a variation of DIRECT containing certain randomness and
was proposed in [57]. The nloptr_d_l function is available in the nloptr package.

• Evolutionary algorithm: A common practice in evolutionary methods is to apply a
penalty function to bias the search for viable solutions. This method is a strategy
improved by stochastic ranking that proposes a way to eliminate subjectivity in the
configuration of penalty parameters and was proposed in [58]. The nloptr_i function
implements this algorithm and is available in the nloptr package of R.
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• Memetic algorithm: This technique does a search locally combining the evolutionary
method with a local search algorithm. The alschains function has implemented this
algorithm and is available in the malschains package of R [59].

• Particle swarm algorithm: This is a heuristic that considers the movement of a swarm
of particles through the search space, using formulas for position and velocity that
depend on the state of other particles. The PSopt function that implements this
algorithm is available in an R package named NMOF [60–63].

• Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm: This is a quasi-Newton op-
timization method that applies analytical gradients for parameter estimation and
uses as initial guesses values obtained through an auxiliary linear regression of the
transformed response. The BFGS algorithm is employed in the optim function of the
betareg package [16].

3. Results and Discussion
3.1. First Stage of the Simulation

The first stage of the Monte Carlo simulation study was carried out considering the
10 methods mentioned and applied to the estimation of the mentioned beta regression
parameters. The data were generated from the beta regression structure with link function
g(µt) = β0 + β1xt, such as defined in (4). The values of the covariate xt were obtained
as independent realizations of the uniform distribution, denoted as Uniform(0, 1). Thus,
under this structure, we can explore the behavior of the optimization procedures from
a challenging vision but in a simple scenario and easy to compute due to the intensive
calculations. Therefore, multiple regressions and modeling with varying precision were
not considered in the present study and will be considered in future research. Logically,
the simulation schemes can be structured using more covariates in mean or precision, in-
cluding categorical and continuous covariates, nonlinearity, and other linking specifications
to evaluate, for example, misspecification and sparsity. Nevertheless, this is beyond the
scope of our original work.

Note that, in our study, the matrix of covariates remains constant throughout the
experiment. Then, random samples of the response variable Yt were generated following the
beta distribution presented in (3), that is, Yt ∼ Beta(µt,φ). Four different sets of parameter
values were considered as stated in Table 1, where Sets 1 and 2 result in average response
values close to one, while Sets 3 and 4 report these values close to zero. For example,
β0 = −2.5 and β1 = −1.2 result in mean response values close to zero, µ ∈ (0.024, 0.075)
and, for φ = 5, a beta PDF is induced close to the inverted “J”-shape (asymptotes at zero).
This situation is an extreme scenario, where traditional optimization procedures generally
fail as shown in [64]. The sample sizes used were n ∈ {30, 60, 90, 120}. For each sample size,
50 instances were generated and, for each instance, 100 replicates of each method were
performed. Thus, we got 80,000 observations per method. The number of iterations and
other method control parameters were adjusted to allow a maximum of 10,000 function
calls. Among the 10 evaluated methods, three of them returned an error in some replicates,
without providing any result. These methods and the number of failures are shown in
Table 2. The seven remaining methods did not return any error.

Table 1. Parameter values for the indicated set used in the simulation study.

Parameter
Set β0 β1 φ

1 4.0 −0.8 12
2 4.0 −0.8 148
3 −2.5 −1.2 12
4 −2.5 −1.2 148
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Table 2. Indicators of failures for the listed method.

Method
Indicator cma_es malschains PSopt

Number of failures 39.03 33.90 7.06
Percentage of failures 48.78% 42.37% 8.82%

The performance of methods can be further visualized with box plots summarizing
the main statistical properties of the measures. The bar in each box is the median value of
the measure across the runnings, while outliers deviating by one or more quartiles from
the median are denoted as discrete dots at the extremes (outliers). Figure 2 displays the
values obtained of the overall log-likelihood function corresponding with each method
through box plots. With the exception of the nloptr_d and nloptr_d_lmethods, the other
algorithms obtained similar results to each other.

Figure 2. Box plots of the values of the overall log-likelihood function corresponding to the beta
regression mean with dots in blue indicating the sample mean and central line for the sample median
using the indicated method (color).

Figure 3 shows the performance in terms of the values of the log-likelihood function
corresponding to the beta regression mean for each of the four sets described in Table 1.
For the first set of parameters, most methods seem to have a similar performance, with the
exception of the malschains and cma_es methods. In the second set, the nloptr_crs
and malschains methods stand out from the rest. In the third set, there is a certain
heterogeneity in the estimates, whereas for the fourth set, the malschainsmethod stands
out again, with the nloptr_d and nloptr_d_l methods being quite different from the
others. Although the malschainsmethod seems to perform well in some sets, it has some
inconsistency with 33,900 failed executions, which are about 42%.

Figure 4 presents the box plots of the intercept estimates (β0) for each method,
separated by parameter set and sample size, where the blue line indicates the real value
of the parameter to be estimated. Such estimates seem to be more accurate as the sample
size increases, as expected. The nloptr_d and nloptr_d_lmethods report large variations
in the results, which is evident in the graphical plot of Set 3. Note that the ga and cma_es
methods present a large number of outliers in most sets. The other methods seem to behave
similarly to each other, obtaining estimates close to the expected value.
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The box plots of the estimates of the parameter β1, separating by parameter set and
sample size, are shown in Figure 5, where once again the blue line indicates the real value
of the parameter to be estimated. The results are very similar to those obtained in Figure 4,
since again the nloptr_d and nloptr_d_lmethods present large variations in the results
and the ga and cma_es methods show a large number of outliers, while the rest of the
methods obtained similar results, approaching the blue line. Again, an approximation of
the estimates in relation to the blue line is observed as the sample size increases.

Figure 3. Box plots of the values of the log-likelihood function corresponding to the beta regression
mean with dots in blue indicating the sample mean and central line for the sample median using the
indicated method (color) and set of parameters.

Figure 4. Box plots of the maximum likelihood estimates of β0 for the indicated method, sample size,
and set of parameters.
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Figure 5. Box plots of the maximum likelihood estimates of β1 for the indicated method, sample size,
and set of parameters.

In addition to the quality of the estimates, it is of interest to assess the speed of the
methods to obtain them. Figure 6 shows a bar plot of the average time per execution in
seconds for each method. The ga algorithm is the slowest one, taking more than 1.5 s per
run. The nloptr_crsmethod is much faster than all the others. The other methods have a
similar speed performance to each other.

Figure 7 sketches the bar plots of the average time per execution in seconds, for each
method, separated by a set of parameters. Observe that the execution speed behavior does
not seem to depend on the set of parameters to be estimated, with the exception of the
cma_esmethod, which was much slower when dealing with estimates for φ = 148.

Given these results, the DEoptim, GenSA, nloptr_i, and nloptr_crs methods seem
to be the most suitable, as the malschains, nloptr_d, nloptr_d_l, PSopt, ga, and cma_es
methods show some inconsistencies in the parameter estimation.

3.2. Second Stage of the Simulation

In this step, the same methodology as the previous step is used, considering only
the methods that have previously obtained better results (DE, SA, isres, crs) and the
optim function currently utilized in the betareg package. Thus, it is possible to compare
how the heuristics behave in relation to the currently most employed method, that is,
the optim function of the betareg package. Furthermore, sets are investigated in which the
methods are expected to have greater difficulty in estimating the parameters, diversifying
the distribution of the covariate to the cases: Uniform(0,1); Normal(0,1); and Student-t(3).
Note that the value of the precision parameter φ drastically decreases as the variance
increases. The configuration used for the generated samples is found in Table 3. Note that,
in Table 4, for Sets 5 and 6, only the DEoptim and GenSAmethods can consistently estimate
the parameters based on the number of failures per method.



Mathematics 2022, 10, 299 9 of 17

Figure 6. Bar plot of the average time per run in seconds for the indicated method (color) when
estimating the beta regression mean by the ML method.

Figure 7. Bar plot of average execution time in seconds for the indicated method (color) and set of
parameters when estimating the beta regression mean by the ML method.

Table 3. Parameter sets used in the second stage of the simulation.

Parameter
Set Distribution β0 β1 φ

5 Uniform(0,1) −2.50 −1.20 0.5
6 Uniform(0,1) −2.50 −1.20 2.0
7 Normal(0,1) −2.05 −1.20 0.5
8 Normal(0,1) −2.50 −1.20 2.0
9 Student-t(3) 1.21 1.25 0.5
10 Student-t(3) 1.21 1.25 2.0
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In Figure 8, the box plots of the estimates of β0 for Sets 5 and 6 are presented. Note
that, for Set 5, only the DE and SAmethods reported successes, whereas for Set 6, the isres,
crs, and optim methods had few successes. This result is consistent with the number
of failures shown in Table 4. Furthermore, the estimates performed with the DE and SA
methods are similar. For the same sets, in Figure 9, the box plots of the estimates of β1 are
displayed, where similar behavior is detected, with the notable difference that, in this case,
the optim function provides more heterogeneous results in the case of samples with small
sizes. The estimates of φ are shown in Figure 10, where a similar behavior is observed in
relation to the estimates of β0 and β1.

For Sets 7 and 8, observe that, in Table 4, the crs and isres methods failed in all
attempts, while the optim function failed in most executions. In addition, the DE and SA
methods had few flaws/failures, being the most consistent algorithms. The estimates of β0
shown in Figure 11 report that the behavior remains similar between the DE and SAmethods.
Note that the optim function did not have any success in estimating the parameters for
samples of size n = 120. The same can be seen in the estimates of β1 in Figure 12 and in the
estimates of φ in Figure 13.

For Sets 9 and 10, observe that, in Table 4, once again the crs and isresmethods are
unable to provide estimates. In this case, the optim function had a lower number of failures,
although it is still a considerably significant number. The DEmethod follows without failing,
while the SAmethod reports some few flaws. Figures 14–16 show the estimates of β0, β1,
and φ, respectively. In this case, the optim function did not obtain estimates for Set 9.
Furthermore, a similar behavior between the DE and SAmethods is confirmed. Note that
the estimates of β1 were not very accurate for Set 9.

For Sets 5 and 6, Figure 17 sketches the average execution time in seconds, considering
only the successes. Note that, despite the large number of failures, the optim function is
quite efficient when it comes to estimating the parameters. Although the DE and SAmethods
have obtained close estimates, the execution time of the SAmethod is much smaller, so that
its use is indicated in the studied cases. For Sets 7 and 8, as previously shown in Figure 18,
it is confirmed that the execution time of the SA method is less than for the DE method,
despite the similarity in the estimates. For Sets 9 and 10, as for the execution times shown
in Figure 19, the previous behavior is once again detected, with the SAmethod being more
efficient than the DEmethod.

Table 4. Indicators of failures for the listed method with Sets 5 and 6 of the second stage of the
simulation.

Method
Sets Indicator crs DEoptim isres optim GenSA

5–6 Number of failures 39.83 0 39.80 37.50 19
Percentage of failures 99.56% 0% 99.50% 93.75% 0.04%

7–8 Number of failures 39.83 0 39.80 37.50 19
Percentage of failures 99.56% 0% 99.50% 93.75% 0.04%

9–10 Number of failures 39.83 0 39.80 37.50 19
Percentage of failures 99.56% 0% 99.50% 93.75% 0.04%



Mathematics 2022, 10, 299 11 of 17

Figure 8. Box plots of the estimates of β0 for the indicated method and sample size with Sets 5 and 6.

Figure 9. Box plots of the estimates of β1 for the indicated method and sample size with Sets 5 and 6.

Figure 10. Box plots of the estimates of φ for the indicated method and sample size with Sets 5 and 6.
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Figure 11. Box plots of the estimates of β0 for the indicated method and sample size with Sets 7 and 8.

Figure 12. Box plots of the estimates of β1 for the indicated method and sample size with Sets 7 and 8.

Figure 13. Box plots of the estimates of φ for the indicated method and sample size with Sets 7 and 8.
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Figure 14. Box plots of the estimates of β0 for the indicated method and sample size with Sets 9 and 10.

Figure 15. Box plots of the estimates of β1 for the indicated method and sample size with Sets 9 and 10.

Figure 16. Box plots of the estimates of φ for the indicated method and sample size with Sets 9 and 10.
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Figure 17. Bar plot of the average time per run in seconds for the indicated method (color) when
estimating the beta regression mean by the ML method with Sets 5 and 6.

Figure 18. Bar plot of the average time per run in seconds for the indicated method (color) when
estimating the beta regression mean by the ML method with Sets 7 and 8.

Figure 19. Bar plot of the average time per run in seconds for the indicated method (color) when
estimating the beta regression mean by the ML method with Sets 9 and 10.
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4. Conclusions

This work evaluated the performance of the most used optimization methods when nu-
merically maximizing the likelihood function associated with the beta regression model for
different scenarios, varying the distribution of the covariate, its parameters, and sample size.

We considered a Monte Carlo simulation study in two stages. From the results of the
first stage of these simulations carried out and the analysis of the graphical plots presented,
we observed that six methods reported some inconsistencies and were not suitable for the
problem. These methods are the genetic, evolutionary with self-adaptation of the covariance
matrix, DIRECT, DIRECT_L, memetic with local search strings, and particle swarm algorithms.
Four other methods provided satisfactory results, that is, the differential evolutionary,
simulated annealing, controlled random search, and evolutionary with improved stochastic
ranking algorithms. All of them obtained similar and satisfactory results in relation to the
estimates in the evaluated scenarios. However, among them, the controlled random search
algorithm had a superior computational speed performance in relation to the others. In the
second stage of the simulations, sets of parameters were used to make the estimation process
more difficult. In this case, we observed that the controlled random search and evolutionary
with improved stochastic ranking algorithms presented a very large number of failures,
in some cases not achieving any success. The optim function used in the betareg package
of R had many failures, but in cases where it was successful, it outperformed the other
methods both in terms of accuracy of estimation and speed. The differential evolutionary
and simulated annealing algorithms provided satisfactory estimates with few failures, with
the simulated annealing algorithm being more efficient in terms of computational time.

Based on the findings detected in our computational study, we report the following.
The optim function, implemented in the betareg package to maximize the log-likelihood
function of the beta regression model and to estimate its parameters, is accurate and efficient
for most of the cases. Nevertheless, in some scenarios reported in our study, it presents
some difficulties in estimating such parameters. In these scenarios, we recommend the use
of the simulated annealing algorithm, which for the cases studied in this work showed
greater consistency, providing satisfactory estimates in viable computational time.

Some limitations of our investigation, which open naturally the possibility of future
works, are related to investigating the case of a varying precision parameter by means of a
regression structure to log(φt). In addition, since we used one covariate in the simulation
study, an exploration of experimental results in the case of multiple regression is of interest
because could affect the results. These open problems and others that are related are suitable
to be further analyzed so that we hope to report their findings in a future publication.
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