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1. Introduction

The study of differential equations with fractional order has become increasingly
popular in recent decades. The reasons behind it are fractional order derivatives provide
powerful tools for describing inherited or defined properties in a wide range of science and
engineering fields [1–8].

There are several approaches of fractional derivatives, Riemann–Liouville, Caputo,
Hadamard, Hilfer, etc. It is important to cite that the Caputo derivative is useful to affront
problems where initial conditions are done in the function and in the respective derivatives
of integer order. Due to the importance of the Caputo version, there are many versions
established as generalization of it, such as Caputo–Katugampola, Caputo–Hadamard,
Caputo–Fabrizio, etc. Furthermore, it is drown attention of huge number of contributors to
study physical and mathematical modelings contain it and its related versions, see [9–13]
and references cited therein.

Finding exact solutions to the differential equations, whether they are ordinary, partial,
or fractional, is a extremely difficult and complex issue, and that is why mathematicians
have resorted to studying the properties of solutions such as existence, uniqueness, stability,
invariant, controllability and others. The most important of these properties are existence
and uniqueness which attracted the attention of many contributors to their study [14–20].
Furthermore, Ulam–Hyers stability analysis that is necessary for nonlinear problems in
terms of optimization and numerical solutions and plays a key role in numerical solutions
where exact solutions are difficult to get.

The fractional differential equations (FDEs) with instantaneous impulses are increas-
ingly being used to analyze abrupt shifts in the evolution pace of dynamical systems, such
as those brought about by shocks, disturbances, and natural disasters [21,22]. The duration
of instantaneous impulses is relatively short in comparison to the duration of the overall
process. However, certain dynamics of evolution processes have been observed to be
inexplicable by instantaneous impulsive dynamic systems. As an instance, the injection
and absorption of drugs in the blood is a gradual and continuous process. Here, each
spontaneous, the action begins in an arbitrary fixed position and lasts for a finite amount
of time. This type of system is known as a non-instantaneous impulsive system, which
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are more suitable for investigating the dynamics of evolutionary processes [23–25] and the
references cited therein. Hernandaz and O’Regan [26] discussed the evolution equations
involving non-instantaneous impulses of the form:

x′ = Ax(t) + f (t, x(t)), t ∈ (sk, tk+1], k = 0, 1, · · · , m,
y(t) = gk(t, x(t)), t ∈ (tk, sk], k = 1, 2, · · · , m,
x(0) = x0.

Liu et al. [27] explored generalized Ulam–Hyers–Rassias stability for the following
fractional differential equation:{

cDv
0,wz(w) = f (w, z(w)), w ∈ (wk, sk], k = 0, 1, · · · , m, 0 < v < 1,

z(w) = gk(w, z(w)), w ∈ (sk−1, wk], k = 1, · · · , m

where cDv
0,w is a Caputo derivative of fractional order 0 < v < 1 with the lower limit 0.

Ho and Ngo [28] analyzed generalized Ulam–Hyers–Rassias stability for the following
fractional differential equation:

cDα,ρ
a+ x(t) = f (t, x(t)), t ∈ (tk, sk], k = 0, 1, · · · , m, 0 < α < 1,

x(t) = Ik(t, x(t)), t ∈ (sk−1, tk], k = 1, · · · , m,
x(a+) = x0

where cDα,ρ
a+ is a Caputo–Katugampola derivative of fractional order 0 < α < 1. Recently,

Abbas [29] has studied non-instantaneous impulsive fractional integro-differential equa-
tions with proportional fractional derivatives with respect to another function by using the
nonlinear alternative Leray–Schauder type and the Banach contraction mapping principle

aDα,ρ,gy(t) = f (t, y(t), a Iβ,ρ,gy(t)), t ∈ (sk, tk+1], k = 0, 1, · · · , m,
y(t) = Ψk(t, y(t+k )), t ∈ (tk, sk], k = 1, 2, · · · , m,

a Iβ,ρ,gy(a) = y0, y0 ∈ R

where 0 < α ≤ 1, β, ρ > 0, aDα,ρ,g is the proportional fractional derivative of order α with
respect to another function g.

It is remarkable that the most of contributions focus on the case when the order
of fractional derivative lies in the unit interval (0, 1). This observation encourages us to
study these equations when the order of fractional derivative lies in the unit interval (1, 2).
Furthermore, although the generalized Liouville–Caputo fractional derivative is considered
a generalization of Caputo and Hadamard fractional derivatives, there is a rareness of the
studies with this approach.

Inspire of the above, we investigate the existence of solutions for non-instantaneous
impulsive fractional boundary value problems in this paper. Specifically, we consider the
following problem:

cDβ,ρ
0+ y(τ) = h(τ, y(τ), τ1−ρy′(τ)), τ ∈ (sr, τr+1], r = 0, 1, · · · , k,

y(τ) = Φr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k,
y′(τ) = τρ−1Ψr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k,
y(0) = y0, limτ→0 τ1−ρy′(τ) = y1, y0, y1 ∈ R

(1)

where all intervals are subset of J = [0, T], cDβ,ρ is a generalized Caputo–Liouville (Katugam-
pola) derivative of order 1 < β ≤ 2 and type 0 < ρ ≤ 1 and h : J ×R×R → R is a given
continuous function. Here, 0 = s0 < τ1 < s1 < · · · < τk < sk < τk+1 = T, k ∈ N are fixed
real numbers and Φr and Ψr : (τr, sr)→ R, r = 1, · · · , k are non-instantaneous impulses.
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The main objectives of our work are to develope the existence theory and Ulam–Hyers
stability of non-instantaneous impulsive BVPs involving Generalized Liouville–Caputo
derivatives. This work is based on modern functional analysis techniques. Three basic
results introduce: the first two deal with the existence and uniqueness of solutions by
applying a nonlinear Leray–Schauder alternative theorem and the Banach fixed point
theorem, respectively. While the third concerns the Ulam–Hyers stability analysis of
solutions for the given problem by establishing a criterion for ensuring various types of
Ulam–Hyers stability.

For the rest of the paper, it is arranged as follows: Section 2 provides some preliminary
concepts about our work and a key lemma that deals with the linear variant of the given
problem, along with giving a formula for converting the given problem into a fixed point
problem.Using the Banach contraction mapping principle and the Leray–Schauder nonlin-
ear alternative, the existence and uniqueness of problem (1) are presented in Section 3.

Remark 1. For fractional differential equation for non-instantaneous impulsive (1).The inter-
vals (τr, sr], r = 1, · · · , k are known as non-instantaneous impulse intervals, and the functions
Φr(τ, y(τ), y(τr − 0)), r = 1, · · · , k are known as non-instantaneous impulsive functions. The
fractional differential equation with non-instantaneous impulses (1) is reduced to a fractional
differential equation with instantaneous impulses if τr = sr−1, r = 1, · · · , k.

2. Preliminaries

Let the space of continuous real-valued functions on J be denoted by C(J,R) . Consider
the space

PC(J,R) =
{

y : J → R : y ∈ C((τk, τk+1],R)
}

and there exist y(τ−k ) and y(τ+
k ), k = 1, · · · , r with y(τ−k ) = y(τk).

Furthermore, consider the space:

PC1
δ(J,R) =

{
y : J → R : δy ∈ PC(J,R)

}
such that δy(τ+

k ) and δy(τ−k ) exist and δy is left continuous at τk for k = 1, · · · , r and
δ = τ1−ρd/dτ. The space PC1

δ(J,R) equipped with the norm:

||y|| = sup
τ∈J
{|y(τ)|PC + |δy(τ)|PC1

δ
} = ||y(τ)||PC + ||δy(τ)||PC1

δ
.

Furthermore, we recall that:

ACn(J,R) = {h : J → R : h, h′, ..., hn−1 ∈ C(J, R)}

and h(n−1) is absolutely continuous.
For 0 ≤ ε < 1, we define the space:

Cε,ρ(J,R) = { f : J → R : (τρ − aρ)ε f (τ) ∈ C(J,R)}

endowed with the norm
|| f ||Cε ,ρ = ||(τρ − aρ)ε f (τ)||C .

Furthermore, we define a class of functions f that is absolutely continuous δn−1, n ∈ N
derivative, denoted by ACn

δ (J,R) as follows:

ACn
δ (J,R) =

{
f : J → R : δk f ∈ AC(J,R), δ = τ1−ρ d

dτ
, k = 0, 1, · · · , n− 1

}

Equipped with the norm

|| f ||Cn
δ
=

n−1

∑
k=0
||δk f ||C .
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Generally, a space of functions that is endowed with the norm

|| f ||Cn
δ,ε

=
n−1

∑
k=0
||δk f ||C + ||δn f ||Cε,ρ

is defined by

Cn
δ,ε(J,R) =

{
f : J → R : f ∈ ACn

δ (J,R), δn f ∈ Cε,ρ(J,R)
}

.

Note that Cn
δ,0 = Cn

δ .

Definition 1 ([30]). The left-sided and right-sided generalized fractional integrals of order α > 0
and type 0 < ρ ≤ 1 are defined, respectively, by:

Iα,ρ
a+ f (x) =

ρ1−α

Γ(α)

∫ x

a
(xρ − tρ)α−1tρ−1 f (t)dt,

Iα,ρ
b− f (x) =

ρ1−α

Γ(α)

∫ b

x
(xρ − tρ)α−1tρ−1 f (t)dt.

Definition 2 ([31]). Let n = [α] + 1, n ∈ N, 0 ≤ a < b < ∞ and f ∈ ACn
δ [a, b]. The left-sided

and right-sided generalized Liouville–Caputo-type (Katugampola) fractional derivatives of order
α > 0 and type 0 < ρ ≤ 1 are defined via the above generalized integrals, respectively, as

(cDα,ρ
a+ f )(x) =

(
In−α,ρ
a+

(
x1−ρ d

dx

)n

f

)
(x) =

ρ1−n+α

Γ(n− α)

∫ x

a

tρ−1

(xρ − tρ)1−n+α

(
t1−ρ d

dt

)n

f (t)dt,

(cDα,ρ
b− f )(x) =

(
In−α,ρ
b−

(
−x1−ρ d

dx

)n

f

)
(x) =

ρ1−n+α

Γ(n− α)

∫ b

x

tρ−1

(xρ − tρ)1−n+α

(
−t1−ρ d

dt

)n

f (t)dt.

Lemma 1 ([31]). Let n− 1 < α ≤ n; n ∈ N and f ∈ ACn
δ [a, b] or f ∈ Cn

δ [a, b]. Then,

Iα,ρ
a+

cDα,ρ
a+ f (x) = f (x)−

n−1

∑
k=0

δk f (a)
k!

(
tρ − aρ

ρ

)k

,

Iα,ρ
b−

cDα,ρ
b− f (x) = f (x)−

n−1

∑
k=0

(−1)kδk f (b)
k!

(
bρ − tρ

ρ

)k

.

In particular, for 1 < α ≤ 2, we have:

Iα,ρ
a+

cDα,ρ
a+ f (x) = f (x)− f (a)−

tρ − aρ

ρ
δ f (a),

Iα,ρ
b−

cDα,ρ
b− f (x) = f (x)− f (b) +

bρ − tρ

ρ
δ f (b).

Lemma 2. Let 1 < β < 2 and υ : J → R be an integrable function. Then, there is a solution to the
linear problem:

cDβ,ρ
sr y(τ) = υ(τ) τ ∈ (sr, τr+1], r = 0, 1, · · · , k

y(τ) = Φr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k

τ1−ρy′(τ) = Ψr(τ, y(τ), y(τr − 0), τ ∈ (τr, sr], r = 1, 2, · · · , k

y(0) = y0, lim
τ→0

τ1−ρy′(τ) = y1, y0, y1 ∈ R

(2)
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given by:

y(τ) =



ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1υ(t)dt + y0 +

y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, y(τ), y(τr − 0)), τ ∈ (τr, sr],
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1h(t)dt + Φr(sr, y(sr), y(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0)), τ ∈ (sr, τr+1].

(3)

Proof. Applying the operator Iβ,ρ
sr to fractional differential equation in (2) and using

Lemma 1, we have:

y(τ) = Iβ,ρ
sr υ(τ) + c1,r + c2,r

τρ − sρ
r

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

sr υ(τ) + c2,r

where c1,r, c2,r ∈ R, r = 0, 1, · · · , k are constants to be determined.

• For τ ∈ [0, τ1], we obtain:

y(τ) = Iβ,ρ
0 υ(τ) + c1,0 + c2,0

τρ

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

0 υ(τ) + c2,0.

Applying the initial conditions y(0) = y0 and limτ→0 τρ−1y′(τ) = y1 give c1,0 = y0
and c2,0 = y1 which imply that:

y(τ) = Iβ,ρ
0 υ(τ) + y0 + y1

τρ

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

0 υ(τ) + y1.

• For τ ∈ (τ1, s1]. Then,

y(τ) = Φ1(τ, y(τ), y(τ1 − 0)) and y′(τ) = τρ−1Ψ1(τ, y(τ), y(τ1 − 0)).

• For τ ∈ (s1, τ2]. Then,

y(τ) = Iβ,ρ
s1 υ(τ) + c1,1 + c2,1

τρ − sρ
1

ρ
and τ1−ρy′(τ) = Iβ−1,ρ

s1 υ(τ) + c2,1.

Due to the previous impulsive conditions, we get

c1,1 = Φ1(s1, y(s1), y(τ1 − 0)) and c2,1 = Ψ1(s1, y(s1), y(τ1 − 0))

which imply that

y(τ) = Iβ,ρ
s1 υ(τ) + Φ1(s1, y(s1), y(τ1 − 0)) + Ψ1(s1, y(s1), y(τ1 − 0))

τρ − sρ
1

ρ
,

τ1−ρy′(τ) = Iβ−1,ρ
s1 υ(τ) + Ψ1(s1, y(s1), y(τ1 − 0)).

• By similar process. For τ ∈ (sr, τr+1]. Then,

y(τ) = Iβ,ρ
sr υ(τ) + Φr(sr, y(sr), y(τr − 0)) +

τρ − sρ
r

ρ
Ψr(sr, y(sr), y(τr − 0)).

Hence, from the previous, we obtain the solution (3). By direct computation, the
converse follows. The proof is complete.
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Next, we present the concept of Ulam stability for problem (1). First, consider
E = PC1

δ(J,R)∩AC2
δ(J,R) with y ∈ E and ε > 0. Let us introduce the following inequality

‖cDβ,ρ
sr y(τ)− h(τ)‖ ≤ ε, τ ∈ (sr, τr+1], r = 0, 1, · · · , k

‖y(τ)−Φr‖ ≤ ε, τ ∈ (τr, sr], r = 1, · · · , k
‖τ1−ρy′(τ)−Ψr‖ ≤ ε, τ ∈ (τr, sr], r = 1, · · · , k

(4)

Definition 3 ([32]). If there is a constant Λ > 0 and ε > 0 such that for any solution ỹ ∈ E of the
inequality (4), there is a unique solution y ∈ E to the problem (1) fulfilling

‖ỹ(τ)− y(τ)‖ ≤ Λε.

Then the problem (1) is said to be UH stable.

Definition 4 ([32]). If there is a function µ ∈ (R+,R+), µ(0) = 0, for ε > 0 such that for any
solution ỹ ∈ E of the inequality (4), there is a unique solution y ∈ E to the problem (1) fulfilling

‖ỹ(τ)− y(τ)‖ ≤ µ(ε).

Then the problem (1) is said to be GUH stable.

Remark 2. If one has a function $ ∈ E together with a sequences $r, r = 0, · · · , r dependent on y.
Then y ∈ E is called a solution of the inequality (4) such that:

(a) |$(τ)| ≤ ε, |$r| ≤ ε, τ ∈ J, r = 0, · · · , k
(b) cDβ,ρ

sr ỹ(τ) = h̃(τ) + $(τ), τ ∈ (sr, τr+1], r = 0, 1, · · · , k
(c) ỹ(τ) = Φr(τ, ỹ(τ), ỹ(τr − 0) + $r, τ ∈ (τr, sr], r = 1, 2, · · · , k
(d) τ1−ρỹ′(τ) = Ψr(τ, ỹ(τ), ỹ(τr − 0) + $r, τ ∈ (τr, sr], r = 1, 2, · · · , k.

3. Existence and Uniqueness Results

Our results for uniqueness and existence for problem (1) are presented in this section.
By using Lemma 2, we convert the non-instantaneous fractional differential Equation (1)
into a fixed point problem. define the operator G : E → E by:

Gy(τ) =



ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1h(t)dt + y0 +

y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, y(τ), y(τr − 0)), τ ∈ (τr, sr],
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1h(t)dt + Φr(sr, y(sr), y(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0)), τ ∈ (sr, τr+1].

(5)

where h(τ) = h(τ, y(τ), τ1−ρy′(τ)).
To explain and prove our main results, we first introduce these hypotheses. Consider

the following

(H1) The function h : [0, T]×R×R→ R is continuous and Φr, Ψr : [τr, sr]×R×R→ R
are continuous functions ∀r = 1, · · · , k and k ∈ N.

(H2) |ĥ(τ)| = |h(τ, y, τ1−ρy′)| ≤ q(τ)υ(|y|), where q ∈ C([0, T],R+) and υ : R+ → R+ is a
nondecreasing function.

(H3) There exist constants ϑr > 0, ϑ∗r > 0, r = 1, · · · , k; k ∈ N such that

|Φr(τ, y, v)| ≤ ϑr, and |Ψr(τ, y, v)| ≤ ϑ∗r

∀τ ∈ [τr, sr] , y, v ∈ R.
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(H4) There exist A > 0 satisfies ||y||E 6= A for some y ∈ E .

(H5) There exist positive constants κ1r, κ2r, κ∗1r and κ∗2r, r = 1, · · · , k; k ∈ N such that:

|Φr(τ, y1, v1)−Φr(τ, y2, v2)| ≤ κ1r|y1 − y2|+ κ2r|v1 − v2|,
|Ψr(τ, y1, v1)−Ψr(τ, y2, v2)| ≤ κ∗1r|y1 − y2|+ κ∗2r|v1 − v2|

for each τ ∈ [τr, sr] and y1, y2, v1, v2 ∈ R.

(H6) There exists L > 0 satisfies

|h(τ, y, δy)− h(τ, u, δu)| ≤ L(|y− u|+ δ|y− u|)

∀τ ∈ [0, T] and y, u ∈ R.

Below are the short constants that we will use later to simplify handling:

Ω = Ω(β) + Ω(β− 1) (6)

Ωr = Ωr(β) + Ωr(β− 1), (7)

Q =
A

Ω‖q‖υ(A) + |y0|+ |y1|
ρ (ρ + τ

ρ
1 )

, (8)

Q1r =
A

ϑr + ϑ∗r
, (9)

Q2r =
A

Ωr‖q‖υ(A) + ϑr +
ϑ∗r
ρ (ρ + Tρ − sρ

r )
(10)

where r = 1, 2, · · · , k; k ∈ N,

Ω(β) =
τ

ρβ
1

ρβΓ(β + 1)
and Ωr(β) =

(Tρ − sρ
r )

β

ρβΓ(β + 1)
.

Lemma 3 ([33,34]). (Leray–Schauder nonlinear alternative) Assume that E is a Banach space, B
is a convex closed subset of E, and Y ⊂ B is an open subset and 0 ∈ Y. If F : Y → B is continuous
and compact, then either

• In Y, F has a fixed point; or
• For some λ ∈ (0, 1), there exists y ∈ ∂Y and y = λFy.

Theorem 1. Consider Hypotheses (H1)–(H4) satisfied. If

max
r
{Q,Q1r,Q2r} > 1

where Q,Q1r and Q2r are given by Equations (8), (9) and (10), respectively. Then, the problem in
Equation (1) has at least one solution in [0, T].

Proof. Verifying the hypotheses of Leray–Schauder nonlinear alternative involves a num-
ber of steps. The first step is to demonstrate that the operator G : E → E defined by
Equation (5) maps bounded sets into bounded sets in E . In other word, we show that for a
positive number ω, there exists a positive constant I such that ‖Gy‖E ≤ I for any y ∈ Bω

where Bω is a closed bounded set defined as

Bω =
{
(y, δy) : y ∈ E ∧ ‖y‖E = ‖y‖PC + ‖δy‖PC1

δ
6 ω

}
with the radius:

ω > max
{

Ω‖q‖υ(ω) + |y0|+
|y1|

ρ
(ρ + τ

ρ
1 ), ϑr + ϑ∗r , Ωr‖q‖υ(ω) + ϑr +

ϑ∗r
ρ
(ρ + Tρ − sρ

r )

}
.
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Then, in light of (H2) and (H3), we have

• Case I. For each τ ∈ [0, τ1] and (y, δy) ∈ Bω. Using (6), we have

‖Gy‖PC ≤ sup
τ∈[0,τ1]

Iβ,ρ
0+
∣∣ĥ(t)∣∣+ |y0|+

∣∣y1

ρ
τρ
∣∣ ≤ Ω(β)||q||υ(ω) + |y0|+

|y1|
ρ

τ
ρ
1 .

Similarly, one can establish that

‖δGy‖PC1
δ
≤ sup

τ∈[0,τ1]

Iβ−1,ρ
0+

∣∣ĥ(t)∣∣+ |y1| ≤ Ω(β− 1)‖q‖υ(ω) + |y1|.

Consequently, we have

‖Gy‖E ≤ Ω‖q‖υ(ω) + |y0|+
|y1|

ρ
(ρ + τ

ρ
1 ) := I1.

• Case II. For each τ ∈ (τr, sr], r = 1, 2, · · · , k and (y, δy) ∈ Bω, we get

‖Gy‖E = ‖Gy‖PC + ‖δG‖PC1
δ
≤ ϑr + ϑ∗r := I2r.

• Case III. For each τ ∈ (sr, τr+1], r = 1, 2, · · · , k and (y, δy) ∈ Bω. Using (7), we have

‖Gy‖PC ≤ sup
τ∈(sr ,τr+1]

Iβ,ρ
sr

∣∣ĥ(t)∣∣+ ∣∣Φr(sr, y(sr), y(τr − 0))
∣∣+ ∣∣τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0))

∣∣
≤ Ωr(β)‖q‖υ(ω) + ϑr +

ϑ∗r
ρ
(Tρ − sρ

r ).

In a similar manner, one can obtain:

‖δGy‖PC1
δ
≤ Ωr(β− 1)‖q‖υ(ω) + ϑ∗r .

Hence, we deduce that:

‖Gy‖E ≤ Ωr‖q‖υ(ω) + ϑr +
ϑ∗r
ρ
(ρ + Tρ − sρ

r ) := I3r.

From the above three inequalities, we can conclude that ‖Gy‖E ≤ I where
I = maxr

{
I1, I2r, I3r

}
. Thus, the operator G maps bounded sets into bounded sets

of the space E .
In the next step, we check that the operator G maps bounded sets into equicontinuous

sets in E .Considering the condition (H1), G is continuous.

• Case I. For each 0 6 ζ1 < ζ2 6 τ1 and (y, δy) ∈ Bω, we obtain that

|(Gy)(ζ2)− (Gy)(ζ1)| ≤
ρ1−β

Γ(β)

∫ ζ1

0
tρ−1

[
(ζ

ρ
2 − tρ)β−1 − (ζ

ρ
1 − tρ)β−1

]
|ĥ(t)|dt

+
ρ1−β

Γ(β)

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−1|ĥ(t)|dt +

|y1|
ρ

(
ζ

ρ
2 − ζ

ρ
1

)
≤ ||q||υ(|y|)

1
ρβΓ(β + 1)

(
ζ

ρβ
2 − ζ

ρβ
1

)
+
|y1|

ρ

(
ζ

ρ
2 − ζ

ρ
1

)
⇒ 0 as ζ2 → ζ1.

Similarly, one can establish that:



Mathematics 2022, 10, 291 9 of 18

|(δGy)(ζ2)− (δGy)(ζ1)|

≤ ||q||υ(|y|)
ρ2−β

Γ(β− 1)

(∫ ζ1

0
tρ−1

[
(ζ

ρ
1 − tρ)β−2 − (ζ

ρ
2 − tρ)β−2

]
dt +

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−2dt

)
≤ 2||q||υ(|y|)

1
ρβ−1Γ(β)

(
ζ

ρ
2 − ζ

ρ
1

)β−1

⇒ 0 as ζ2 → ζ1.

• Case II. For eachτr 6 ζ1 < ζ2 < sr, r = 1, 2, · · · , k and (y, δy) ∈ Bω, we have

|(Gy)(ζ2)− (Gy)(ζ1)| ≤ |Φr(ζ2, y(ζ2), y(τr − 0))| − |Φr(ζ1, y(ζ1), y(τr − 0))|
|(δGy)(ζ2)− (δGy)(ζ1)| ≤ |Ψr(ζ2, y(ζ2), y(τr − 0))| − |Ψr(ζ1, y(ζ1), y(τr − 0))|.

Due to the continuity of both functions. It is clear that the above inequality approaches
zero when letting ζ2 → ζ1.

• Case III. For each sr 6 ζ1 < ζ2 < τr+1, r = 1, 2, · · · , k, and (y, δy) ∈ Bω, we get

|(Gy)(ζ2)− (Gy)(ζ1)| ≤
ρ1−β

Γ(β)

∫ ζ1

sr
tρ−1

[
(ζ

ρ
2 − tρ)β−1 − (ζ

ρ
1 − tρ)β−1

]∣∣∣ĥ(t)∣∣∣dt

+
ρ1−β

Γ(β)

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−1

∣∣∣ĥ(t)∣∣∣dt +
ζ

ρ
2 − ζ

ρ
1

ρ
|Ψr(sr, y(sr), y(τr − 0))|

≤ ||q||υ(|y|)
1

ρβΓ(β + 1)

[(
ζ

ρ
2 − sρ

r

)β
−
(

ζ
ρ
1 − sρ

r

)β
]
+

ζ
ρ
2 − ζ

ρ
1

ρ
|Ψr(sr, y(sr), y(τr − 0))|

⇒ 0 as ζ2 → ζ1.

Moreover, we have:

|(δGy)(ζ2)− (δGy)(ζ1)|

≤ ||q||υ(|y|)
ρ2−β

Γ(β− 1)

(∫ ζ1

sr
tρ−1

[
(ζ

ρ
1 − tρ)β−2 − (ζ

ρ
2 − tρ)β−2

]
dt +

∫ ζ2

ζ1

tρ−1(ζ
ρ
2 − tρ)β−2dt

)
≤ ||q||υ(|y|)

1
ρβ−1Γ(β)

[
2(ζρ

2 − ζ
ρ
1)

β−1 + (ζ
ρ
1 − sρ

r )
β−1 − (ζ

ρ
2 − sρ

r )
β−1
]

⇒ 0 as ζ2 → ζ1.

As a result of the three inequalities above, we conclude that ‖(Gy)(ζ2)− (Gy)(ζ1)‖E →
0 independently of (y, δy) ∈ Bω as ζ2 → ζ1. Using the preceding arguments and the Arzela-
Ascoli theorem, the operator G : E → E is completely continuous.

Finally, we show that there exist an open set Y ⊂ E with y 6= λGy for λ ∈ (0, 1) and
y ∈ ∂Y. Consider the equation y = λGy for λ ∈ (0, 1). Then based on Step 1 , we have the
following cases:

• Case I. For each τ ∈ [0, τ1], one has

‖y(τ)‖ = ‖λ(Gy)(τ)‖ ≤ Ω‖q‖υ(‖y‖) + |y0|+
|y1|

ρ
(ρ + τ

ρ
1 )

which implies that:

‖y‖E
Ω‖q‖υ(‖y‖E ) + |y0|+ |y1|

ρ (ρ + τ
ρ
1 )
≤ 1. (11)
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• Case II. For each τ ∈ (τr, sr], r = 1, 2, · · · , k, one has

‖y(τ)‖ = ‖λ(Gy)(τ)‖ ≤ ϑr + ϑ∗r

which implies that:
‖y‖E

ϑr + ϑ∗r
≤ 1. (12)

• Case III. For each τ ∈ (sr, τr+1], r = 1, · · · , k, we obtain:

‖y(τ)‖ = ‖λ(Gy)(τ)‖ ≤ Ωr‖q‖υ(‖y‖) + ϑr +
ϑ∗r
ρ
(ρ + Tρ − sρ

r )

which implies that:

‖y‖E
Ωr‖q‖υ(‖y‖E ) + ϑr +

ϑ∗r
ρ (ρ + Tρ − sρ

r )
≤ 1. (13)

If (11)–(13) are combined with (H4) and given condition maxr{Q,Q1r,Q2r} > 1. A
positive numberA such that ‖y‖E 6= A can be found. Create a set Y = {y ∈ E : ‖y‖E < A}
with the operator G : Y → E being continuous and completely continuous. In light of the
choice of Y, there is no y ∈ ∂Y satisfying y = λGy for λ ∈ (0, 1). Thus, it follows from
the nonlinear alternative of Leray–Schauder, the operator G has a fixed point y ∈ Y that
corresponds to a solution to Equation (1).

Using the contraction mapping principle, we ensure the uniqueness of solution to
problem (1).

Theorem 2. Suppose that Hypotheses (H1,H3,H5 and H6) are satisfied. If

∆ = max
r

{
LΩ,Kr +K∗r ,LΩr +Kr +

K∗r
ρ (ρ + Tρ − sρ

r )
}
< 1 (14)

where Kr = κ1r + κ2r and K∗r = κ∗1r + κ∗2r. Thus, the non-instantaneous impulsive fractional
differential Equation (1) has a unique solution on J.

Proof. Let us consider a set:

Br =
{
(y, δy) : y ∈ E ∧ ‖y‖E = ‖y(τ)‖PC + ‖δy(τ)‖PC1

δ
6 r
}

with radius

r ≥ max
r

ΩN + |y0|+ |y1|
ρ (ρ + τ

ρ
1 )

1−LΩ
, ϑr + ϑ∗r ,

ΩrN + ϑr +
ϑ∗r
ρ (ρ + Tρ − sρ

r )

1−LΩr


where sup

τ∈[0,T]
|h(τ, 0, 0)| = N. Clearly, G is well defined and Gy ∈ E for all y ∈ E . All that

remains is to demonstrate that G is a contraction mapping. Thus, three cases are considered:

• Case I. For each τ ∈ [0, τ1] and (y, δy), (v, δv) ∈ E . Using (6), we get

‖Gy− Gv‖PC ≤ sup
τ∈[0,τ1]

ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1

∣∣∣h(t, y, t1−ρy′)− h(t, v, t1−ρv′)
∣∣∣dt

≤ LΩ(β)‖y− v‖.
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Similarly, we can obtain:

‖δGy− δGv‖PC1
δ
≤ LΩ(β− 1)‖y− v‖

which implies that:

‖Gy− Gv‖E ≤ LΩ‖y− v‖.

• Case II. For each τ ∈ (τr, sr], r = 1, 2, · · · , k and (y, δy), (v, δv) ∈ E , we have:

‖Gy− Gv‖PC ≤ (κ1r + κ2r)‖y− v‖.

In addition:

‖δGy− δGv‖PC1
δ
≤ (κ∗1r + κ∗2r)‖y− v‖.

Consequently, we have:

‖Gy− Gv‖E ≤ (Kr +K∗r )‖y− v‖.

• Case III. For each τ ∈ (sr, τr+1], r = 1, 2, · · · , k and (y, δy), (v, δv) ∈ E . Using (7),
we obtain:

‖Gy− Gv‖PC

≤ sup
τ∈(sr ,τr+1]

ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1

∣∣∣h(t, y, t1−ρy′)− h(t, v, t1−ρv′)
∣∣∣dt

+ |Φr(sr, y(sr), y(τr − 0))−Φr(sr, v(sr), v(τr − 0))|

+

∣∣∣∣∣τρ − sρ
r

ρ

(
Ψr(sr, y(sr), y(τr − 0))−Ψr(sr, v(sr), v(τr − 0))

)∣∣∣∣∣
≤
[
LΩr(β) +Kr +

K∗r
ρ
(Tρ − sρ

r )

]
‖y− v‖.

In a similar manner, it can be shown that:

‖δGy− δGv‖PC1
δ
≤ [LΩr(β− 1) +K∗r ]‖y− v‖

which leads to:

‖Gy− Gv‖E ≤
[
LΩr +Kr +

K∗r
ρ
(ρ + Tρ − sρ

r )

]
‖y− v‖.

From the above, we obtain: ‖Gy − Gv‖E ≤ ∆‖y − v‖ which, in view of the given
condition ∆ < 1, shows that the operator G is a contraction. This implies that the prob-
lem in Equation (1) has a unique solution on[0, T], according to the Banach contraction
mapping principle.

4. Stability Analysis

We present results regarding the Ulam–Hyers stability of our problem (1) in this section.

Theorem 3. Suppose that Hypotheses (H1), (H5 and (H6) are satisfied. Then, the non-instantaneous
impulsive fractional differential Equation (1) is Ulam–Hyers stable and Generalized Ulam–Hyers
stable if ∆ < 1 where ∆ is defined as (14).
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Proof. Assuming a unique solution y ∈ E to the problem (1) corresponds to any solution
ỹ ∈ E of the inequality (4). Then, in light of Lemma 2, we have:

y(τ) =



ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1υ(t)dt + y0 +

y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, y(τ), y(τr − 0)), τ ∈ (τr, sr],
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1h(t)dt + Φr(sr, y(sr), y(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, y(sr), y(τr − 0)), τ ∈ (sr, τr+1].

Further, if ỹ is the solution of inequality (4) and using Remark 2, we get:

cDβ,ρ
sr ỹ(τ) = h̃(τ) + $(τ) τ ∈ (sr, τr+1], r = 0, 1, · · · , k

ỹ(τ) = Φr(τ, ỹ(τ), ỹ(τr − 0) + $r, r = 1, 2, · · · , k

τ1−ρỹ′(τ) = Ψr(τ, ỹ(τ), ỹ(τr − 0) + $r, r = 1, 2, · · · , k

where h̃(τ) = h(τ, ỹ(τ), τ1−ρỹ′(τ)) and

ỹ(τ) =



Iβ,ρ
0 h̃(τ) + Iβ,ρ

0 $(τ) + y0 +
y1
ρ τρ, τ ∈ [0, τ1],

Φr(τ, ỹ(τ), ỹ(τr − 0)) + $r, τ ∈ (τr, sr],

Iβ,ρ
sr h̃(τ) + Iβ,ρ

sr $(τ) + Φr(sr, ỹ(sr), ỹ(τr − 0))

+
τρ − sρ

r

ρ
Ψr(sr, ỹ(sr), ỹ(τr − 0)) +

$r

ρ
(ρ + τρ − sρ

r ), τ ∈ (sr, τr+1].

For each τ ∈ [0, τ1], we consider:

‖ỹ(τ)− y(τ)‖PC ≤
ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1

∣∣∣h̃(t)− h(t)
∣∣∣dt +

ρ1−β

Γ(β)

∫ τ

0
tρ−1(τρ − tρ)β−1|$(t)|dt

≤ LΩ(β)‖ỹ− y‖E + εΩ(β).

Similarly, we can obtain:

‖δỹ(τ)− δy(τ)‖PC1
δ
≤ LΩ(β− 1)‖ỹ− y‖E + εΩ(β− 1)

which implies that:

‖ỹ(τ)− y(τ)‖E ≤ LΩ‖ỹ− y‖E + εΩ.

Or, equivalently,

‖ỹ− y‖E ≤
εΩ

1−LΩ
, LΩ < 1.

For each τ ∈ (τr, sr], r = 1, 2, · · · , k, we consider:

‖ỹ(τ)− y(τ)‖PC ≤ |Φr(τ, ỹ(τ), ỹ(τr − 0))−Φr(τ, y(τ), y(τr − 0))|+ |$r|,
≤ (κ1r + κ2r)‖ỹ− y‖+ ε.

In addition:

‖δỹ(τ)− δy(τ)‖PC1
δ
≤ (κ∗1r + κ∗2r)‖ỹ− y‖E + ε.
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Consequently, we have:

‖ỹ− y‖E ≤ (Kr +K∗r )‖ỹ− y‖E + 2ε.

Or, equivalently:

‖ỹ− y‖E ≤
2ε

1− (Kr +K∗r )
, Kr +K∗r < 1.

For each τ ∈ (sr, τr+1], r = 1, 2, · · · , k, we consider:

‖ỹ(τ)− y(τ)‖PC ≤
ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1

∣∣∣h̃(t)− h(t)
∣∣∣dt +

ρ1−β

Γ(β)

∫ τ

sr
tρ−1(τρ − tρ)β−1|$(t)|dt

+|Φr(τ, ỹ(τ), ỹ(τr − 0))−Φr(τ, y(τ), y(τr − 0))|+ |$r|

+

∣∣∣∣∣τρ − sρ
r

ρ

∣∣∣∣∣|Ψr(τ, ỹ(τ), ỹ(τr − 0))−Ψr(τ, y(τ), y(τr − 0))|+
∣∣∣∣∣τρ − sρ

r
ρ

$r

∣∣∣∣∣
≤
[
LΩr(β) +Kr +

K∗r
ρ
(Tρ − sρ

r )

]
‖ỹ− y‖E + ε(1 +

Tρ − sρ
r

ρ
).

In a similar manner, it can be shown that:

‖δỹ(τ)− δy(τ)‖PC1
δ
≤ [LΩr(β− 1) +K∗r ]‖ỹ− y‖E + ε

which leads to:

‖ỹ(τ)− y(τ)‖E ≤
(2ρ + Tρ − sρ

r )ε

ρ
(

1−LΩr −Kr − K
∗
r

ρ (ρ + Tρ − sρ
r )
), LΩr +Kr +

K∗r
ρ
(ρ + Tρ − sρ

r ) < 1.

Then, for each τ ∈ J, we obtain:

‖ỹ(τ)− y(τ)‖E ≤ Λε.

where Λ = maxr

{
Ω

1−LΩ , 2
1−(Kr+K∗r )

, 2ρ+Tρ−sρ
r

ρ
(

1−LΩr−Kr−K
∗
r

ρ (ρ+Tρ−sρ
r )
)
}

.

Thus, the solution of (1) is UH stable if ∆ < 1. Additionally, by setting µ(ε) = Λ and
µ(0) = 0. Then, the solution of (1) becomes GUH stable.

5. Applications

In this section, we describe an application of our main results to demonstrate how
they can be applied.

Example 1. Consider the following non-instantaneous impulsive fractional differential equations:

cDβ,ρ
sr y(τ) = h(τ, y(τ), δy(τ)) τ ∈ (0, 1

3 ] ∪ ( 2
3 , 1],

y(τ) =
3
4

τ2 +
1
12

sin y(τ) +
1
8

cos y(τr − 0), τ ∈ ( 1
3 , 2

3 ],

δy(τ) =
3
2

τ +
1
14

cos y(τ) +
1

10
sin y(τr − 0), τ ∈ ( 1

3 , 2
3 ],

y(0) = 0, lim
τ→0

δy(τ) = 1

(15)
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where J = [0, 1], 0 = s0 < τ1 =
1
3
< s1 =

2
3
< τ2 = 1, ρ =

1
2
, β =

5
4

and h(τ, y(τ), δy(τ)) will
be determined later. Using the given data, we can find that

Ω(β) ≈ 1.05646621, Ω(β− 1) ≈ 1.14365822, Ω ≈ 2.20012444,
Ωr(β) ≈ 0.25212249, Ωr(β− 1) ≈ 0.85871184, Ωr ≈ 1.11083434.

In our example, we take

Φ1(τ, y, v) =
3
4

τ2 +
1

12
sin y +

1
8

cos v,

Ψ1(τ, y, v) =
3
2

τ +
1

14
cos y +

1
10

sin v.

It is clear that they are continuous on the interval ( 1
3 , 2

3 ] which meets the first assumption
and satisfy

|Φ1(τ, y, v)| ≤
∣∣∣∣34 τ2

∣∣∣∣+ ∣∣∣∣ 1
12

sin y
∣∣∣∣+ ∣∣∣∣18 cos v

∣∣∣∣ ≤ 3
4

(
2
3

)2
+

1
12

+
1
8
=

13
24

,

|Ψ1(τ, y, v)| ≤
∣∣∣∣32 τ

∣∣∣∣+ ∣∣∣∣ 1
14

cos y
∣∣∣∣+ ∣∣∣∣ 1

10
sin v

∣∣∣∣ ≤ 1 +
1

14
+

1
10

=
82
70

for all τ ∈ ( 1
3 , 2

3 ] and y, v ∈ R. These lead to the third assumption is verified with ϑ1 = 13/24 and
ϑ∗1 = 82/70.

Theorem 4 (Application to Theorem 1). The Leray–Schauder nonlinear alternative theorem has
been applied in Theorem 1 with the assumptions (H1)–(H3). To illustrate our investigation, let
us take

h(τ, y(τ), δy(τ)) =
1

2
√

5− τ

[
1

15π
sin(5πy) +

3|δy(τ)|
4(|δy(τ)|+ 1)

]
.

It is obvious that the function h is continuous which meets the first assumption and satisfies

|ĥ(τ)| = |h(τ, y, δy)| ≤ 1
2
√

5− τ

(
1
3
‖y‖+ 3

4

)
:= q(τ)υ(‖y‖)

where

q(τ) =
1

2
√

5− τ
and υ(‖y‖) =

1
3
‖y‖+

3
4
.

for all τ ∈ (0, 1
3 ] ∪ ( 2

3 , 1]. It is obvious that the function q(τ) is nondecreasing function which
admits the hypothesis (H2) with ||q|| ≤ q(1) = 1/4. The condition (H4) and (11)–(13) imply that

A > max
r


3‖q‖

4 Ω + 1
ρ (ρ + τ

ρ
1 )

1− ‖q‖3 Ω
, ϑr + ϑ∗r ,

3‖q‖
4 Ωr + ϑr +

ϑ∗r
ρ (ρ + Tρ − sρ

r )

1− ‖q‖3 Ωr


A > max{3.018702359, 1.713095238, 2.539578874}

A > 3.018702359.

Therefore, the conditions of Theorem (1) are satisfied, and consequently,on [0, 1] there exists at
least one solution to the boundary value problem (15).
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Theorem 5 (Application to Theorem 2). To demonstrate Theorem 2, which is based on the Banach
fixed point theorem, we take

h(τ, y(τ), δy(τ)) =
e−2τ(|y(τ)|+ |δy(τ)|)

(1 + 9eτ)(1 + |y(τ)|+ |δy(τ)|)

It is clear that the function h : [0, 1] × R× R → R is continuous and that it fulfills the
hypothesis (H2)

|h(τ, y, δy)− h(τ, u, δu)| ≤
e−2τ |(|y|+ |δy|)− (|u|+ |δu|)|

(1 + 9eτ)|(1 + |y|+ |δy|)(1 + |u|+ |δu|)|

≤ 1
10

∣∣∣∣|y| − |u|∣∣∣∣+ ∣∣∣∣|δy| − |δu|
∣∣∣∣

≤ 1
10

(|y− u|+ |δy− δu|).

with L = 1/10. For all τ ∈ ( 1
3 , 2

3 ] and y1, y2, v1, v2 ∈ R, we get

|Φ1(τ, y1, v1)−Φ1(τ, y2, v2)| ≤
1

12
|y1 − y2|+

1
8
|v1 − v2|,

|Ψ1(τ, y1, v1)−Ψ1(τ, y2, v2)| ≤
1

14
|y1 − y2|+

1
10
|v1 − v2|.

Thus, the condition (H5) of Theorem 2 is satisfied with

κ11 =
1

12
, κ21

1
8
, K1 ≈ 0.20833333,

κ∗11 =
1

14
, κ∗22 =

1
10

, K∗1 ≈ 0.17142857.

In conclusion, we have

∆ = max
r

{
LΩ,Kr +K∗r ,LΩr +Kr +

K∗r
ρ (ρ + Tρ − sρ

r )
}

= max{0.22001244, 0.37976190, 0.55376046} = 0.55376046 < 1.

Hence, the problem in Equations (15) has a unique solution on [0, 1] by Theorem 2.

Theorem 6 (Application to Theorem 3). To demonstrate Theorem 3, we take

h(τ, y(τ), δy(τ)) =
|y(τ)|

2(τ + 8)(1 + |y(τ)|) +
|δy(τ)|
(τ + 16)

It is clear that the function h : [0, 1] × R× R → R is continuous and that it fulfills the
hypothesis (H6)

|h(τ, y, δy)− h(τ, u, δu)| ≤
|(|y| − |u|)|

2(τ + 8)|(1 + |y|)(1 + |u|)|+
|(|δy| − |δu|)|

(τ + 16)

≤ 1
16

∣∣∣∣|y| − |u|∣∣∣∣+ ∣∣∣∣|δy| − |δu|
∣∣∣∣

≤ 1
16

(|y− u|+ |δy− δu|).

Clearly the assumptions of Theorem 3 are fulfilled with

L =
1
16

, K1 ≈ 0.20833333, K∗1 ≈ 0.17142857.
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∆ = max{0.137507777, 0.37976190, 0.55376046} = 0.51210450 < 1.

In conclusion, we have:

‖ỹ− y‖ ≤ Λε, τ ∈ J,

where ε is any positive real constant, and

Λ = max

 Ω
1−LΩ

,
2

1− (Kr +K∗r )
,

2ρ + Tρ − sρ
r

ρ
(

1−LΩr −Kr − K
∗
r

ρ (ρ + Tρ − sρ
r )
)
,

Λ = max{2.55089191, 3.22456811, 0.24394774},

Λ = 3.22456811 > 0.

Consequently,

‖ỹ− y‖ ≤ (3.22456811)ε,

Thus, problem (15) is UH stable.

Moreover, by putting µ(ε) = (3.22456811)ε with µ(0) = 0, problem (15) becomes
GUH stable.

6. Conclusions

Our work involved the development of the existence theory and Ulam–Hyers stability
of non-instantaneous impulsive BVPs involving Generalized Liouville–Caputo derivatives.
This work is based on modern functional analysis techniques. Three conclusions have
been obtained: the first two deal with the existence and uniqueness of solutions, while the
third concerns the stability analysis of solutions for the given problem. The first existence
result is based on a nonlinear Leray–Schauder alternative, while the second is based on
the Banach fixed point theorem. The third conclusion establishes a criterion for ensuring
various types of Ulam–Hyers stability, that is necessary for nonlinear problems in terms of
optimization and numerical solutions and plays a key role in numerical solutions where
exact solutions are difficult to get.
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