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Abstract: If X is a Hilbert space, one can consider the space cabv(X) of X valued measures defined
on the Borel sets of a compact metric space, having a bounded variation. On this vector measures
space was already introduced a Monge–Kantorovich type norm. Our first goal was to introduce a
Monge–Kantorovich type norm on cabv(X), where X is a Banach space, but not necessarily a Hilbert
space. Thus, we introduced here the Monge–Kantorovich type norm on cabv(Lq([0, 1])), (1 < q < ∞).
We obtained some properties of this norm and provided some examples. Then, we used the Monge–
Kantorovich norm on cabv

(
Kn)(K being R or C) to obtain convergence properties for sequences of

fractal sets and fractal vector measures associated to a sequence of iterated function systems.

Keywords: variation of a vector measure; Haar functions; attractor; fractal measure; Lipschitz
functions; weak convergence of operators

MSC: 28C20; 46G12; 28B05; 28C15; 46C05

1. Introduction

We consider two types of vector integrals, which were introduced in [1,2]. They
involve vector functions and vector measures and the result of each of them is a scalar
(real or complex). Using these integrals, one can introduce Monge–Kantorovich type
norms on some spaces of vector measures (see [3]). In some particular cases, these norms
have important applications in the theory of fractals (see [4,5]). Unlike [3], where the
Monge–Kantorovich type norm was introduced on cabv(X) (X–Hilbert space), we intro-
duce, in Sections 2–5 the Monge–Kantorovich type norm on the space of vector measures:
cabv(Lq([0, 1])) (1 < q < ∞). To this aim, we use the Haar functions and the duality
(Lp)∗ = Lq, 1

p + 1
q = 1. We provide some properties of this norm. Some examples are,

also provided. In the second part of the paper (Sections 6 and 7), we consider the Monge–
Kantorovich type norm on cabv(X) (X—being a Hilbert space) and, more in particular, on
cabv

(
Kn) (K = R or C). We consider a sequence of iterated function systems (I.F.S.), built

using a finite family of contractions and a sequence of linear and continuous operators. We
take into account the convergence of the I.F.S. sequence, which is based on the topology of
weak convergences of the operators. We study the problems of the convergence of attractos
and fractal measures associated to the sequence of I.F.S. In the last part of the paper, we
give an example of a sequence of operators which is convergent to an operator in the
topology of weak convergence of operators, but is not convergent in the topology given
by the operatorial norm. For more details regarding Monge–Kantorovich norm, one can
consult [6–13]. About the fractals theory, you can read the following [14–17]. For more
details regarding functional analysis, see [16,18,19].
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2. Preliminaries

Let X be a Banach space over R and X′ its conjugate. Let, also, (T, d) be a compact
metric space. We denote by B the Borel subsets of T. If µ : B → X is a countable-additive
measure and A ∈ B, we define the variation of µ on A, by the formula:

|µ|(A) = sup

{
∑

i
‖µ(Ai)‖

∣∣ (Ai)i is a finite partition of A with Borel subsets

}
.

If |µ|(T) < ∞ we say that µ has bounded variation. We denote by: cabv X = {µ : B →
R||µ|(T) < ∞}, called the vectorial norm. One can prove that ‖‖ : cabv X → R+ is
a norm and (cabv(X), ‖‖) is a Banach space (see [18]). Now, we define the following
function spaces:

S(X) = { f : T → X| f is a simple function};

TM(X) = { f : T → X| ∃( fn)n ⊂ S(X) such that fn
u→ f }

(the space of totally measurable functions);

C(X) = { f : T → X| f is continuous}.

For any A ∈ B, we denote by ϕA the characteristic function of A.

3. An Integral for Vector Function with Respect to Vector Measures

Definition 1 (see [2]). Let f =
m
∑

i=1
ϕAi xi ∈ S(X), where xi ∈ X, Ai ∈ B. Let, also, µ ∈

cabv(X′). We define the integral of f with respect to µ by the formula:
∫

f dµ =
m
∑

i=1
µ(Ai)(xi).

Obviously, we have:
∣∣ ∫ f dµ

∣∣ ≤ ‖µ‖ · ‖ f ‖∞, hence, the linear application f 7→
∫

f dµ
is continuous and can be extended to the closure of S(X) with respect to ‖‖∞, that is, to the
space TM(X): if ( fn)n ⊂ S(X) such that fn

u→ f ∈ TM(X), we define
∫

f dµ = lim
n→∞

∫
fndµ

and the limit does not depend on the sequence of simple functions, which tends to f .

Example 1. We will provide now an example of such sequence which will be called the cannonical
sequence (see [1]), for the case when f ∈ C(X).

Let us denote: X̃ = f (T); f is continuous and T is compact, hence, X̃ is also compact. That
means X̃ is precompact (totally bounded). Consequently, for any m ∈ N, we will find the elements:

xm
1 = f

(
tm
1
)
, xm

2 = f (tm
2 ), . . . , xm

j(m)
= f

(
tm

j(m)

)
such that X̃ ⊂

j(m)⋃
i=1

B
(

xm
i , 1

m

)
.

We deduce that tm
i ∈ Dm

i
de f
= f−1

(
B
(

xm
i , 1

m

))
and

j(m)⋃
i=1

Dm
i = T. We obtain the following

partition of T:

Cm
1 = Dm

1 , Cm
2 = Dm

2 \Dm
1 , . . . , Cm

p = Dm
p \

p−1⋃
i=1

Dm
i

(we consider only those sets Cm
i , which are not empty).

Let ym
i ∈ f

(
Cm

i
)
, arbitrarily fixed. We define the simple function fm =

p
∑

i=1
ϕCm

i
ym

i . If we take

t ∈ T, arbitrarily, then there exists i ∈ {1, . . . , p} such that t ∈ Cm
i . Then, both f (t) and ym

i belong

to f
(
Cm

i
)
. But, f

(
Cm

i
)
⊂ f

(
Am

i
)
⊂ B

(
xm

i , 1
m

)
, hence ‖ f (t)− fm(t)‖ = ‖ f (t)− ym

i ‖ < 2
m ,

which means fm
u→ f .

Example 2. Let f ∈ C(X), a ∈ T, x ∈ X′, µ = δax, δa being the Dirac measure concentrated at a.
Let us compute

∫
f d(δax). We consider the cannonical sequence ( fm)m associated to f . For any m,
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we denote by Cm
i the unique set from the partition of T such that a ∈ Cm

i . We have:
∫

fmd(δax) =
=
[
(δax)

(
Cm

i
)](

ym
i
)
= x

(
ym

i
)
. We conclude that:∫

f d(δax) = lim
m→∞

∫
fmd(δax) = lim

m→∞
x(ym

i ) = x( f (a))

( f (a), ym
i ∈ f

(
Cm

i
)
=⇒ ‖ym

i − f (a)‖ < 2
m ).

Proposition 1 (the properties of the integral).

(a) Let f ∈ TM(R), µ ∈ cabv(R),
x ∈ X, y ∈ X′. Then:

(i) f x ∈ TM(X); (ii) µy ∈ cabv(X′); (iii)
∫
( f x)d(µy) =

(∫
f dµ

)
y(x);

(b) Let X = Rn and {e1, . . . en} its cannonical basis, f ∈ TM(X), µ ∈ cabv(X′), f =
n
∑

i=1
fiei, µ =

n
∑

i=1
µiei. Then,

∫
f dµ =

n
∑

i=1
(
∫

fidµi).

4. The Haar Functions

Let r ∈ (1, ∞). We consider the space Lr([0, 1]) (with respect to the Lebesgue measure,
denoted by λ) and the functions

(
γk

n

)
k,n

,

γk
n : [0, 1]→ R defined as follows: γ0

0 = 1, γ1
0(x) =


1, x ∈

[
0, 1

2

)
0, x = 1

2

−1, x ∈
(

1
2 , 1
] , . . . ,

γk
n(x) =


√

2n, x ∈
[

2k−2
2n+1 , 2k−1

2n+1

)
−
√

2n, x ∈
(

2k−1
2n+1 , 2k

2n+1

]
0, otherwise

, . . . , k ∈ {1, . . . , 2n}. These functions may be written

as a sequence (gj)j≥1 of functions, increasing k (for a fixed n) and then increasing n.
One can prove the following results:

Lemma 1 (see [16]).
∫

[0,1]
gigjdλ = δi,j, ∀i, j ∈ N∗.

Lemma 2 (see [16]). For any r ∈ (1, ∞), the functions (gj)j≥1 represents a Schauder basis for
Lr([0, 1]).

Theorem 1 (see [2]). Let p, q ∈ (1, ∞) such that 1
p + 1

q = 1, X = Lp([0, 1]), X′ = Lq([0, 1]),

f ∈ TM(X), µ ∈ cabv(X′), f ∈
∞
∑

n=1
fngn, µ =

∞
∑

m=1
µmgm. Then,

∫
f dµ =

∞
∑

n=1
fndµn.

5. The Monge–Kantorovich Type Norm on cabv(Lq), 1 < q < ∞

We will denote: L(X) = { f : T → X| f is a Lipschitz function}, BL(X) = { f : T →
X| f is a bounded Lipschitz function}, T being compact, L(X) = BL(X) ⊂ C(X). For any
f ∈ L(X), we denote by ‖ f ‖L the Lipschitz constant of f . It is easy to prove (see [3]):

Lemma 3. The application ‖‖BL : BL(X)→ R+, ‖ f ‖BL
de f
= ‖ f ‖∞ + ‖ f ‖L is a norm on BL(X).

Let: BL1(X) = { f ∈ BL(X)|‖ f ‖BL ≤ 1}.
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We consider, now, p, q ∈ (1, ∞) such that 1
p + 1

q = 1, X = Lp([0, 1]) not
= Lp,

X′ = Lq([0, 1]) not
= Lq. For any µ ∈ cabv(Lq), we define:

‖µ‖MK = sup
{∣∣∣∣∫ f dµ

∣∣∣∣∣∣∣∣ f ∈ BL1(Lp)

}
.

Theorem 2. The application ‖‖MK : cabv(Lq)→ R+ is a norm on cabv(Lq), called the Monge–
Kantorovich type norm.

Proof.

(1◦) For any a ∈ R, ‖aµ‖MK = sup
{∣∣∣∣∫ f d(aµ)

∣∣∣∣∣∣∣∣ f ∈ BL1(Lp)

}
=

= |a| sup
{∣∣∣∣∫ f dµ

∣∣∣∣∣∣∣∣ f ∈ BL1(Lp)

}
= |a|‖µ‖MK;

(2◦) Let µ1, µ2 ∈ cabv(Lq), f ∈ BL1(Lp). We have:∣∣∣∣∫ f d(µ1 + µ2)

∣∣∣∣≤ ∣∣∣∣∫ f dµ1

∣∣∣∣+∣∣∣∣∫ f dµ2

∣∣∣∣≤ ‖µ1‖MK + ‖µ2‖MK =⇒

=⇒ sup
{∣∣∣∣∫ f d(µ1 + µ2)

∣∣∣∣∣∣∣∣ f ∈ BL1(Lp)

}
≤ ‖µ1‖MK + ‖µ2‖MK =⇒

=⇒ ‖µ1 + µ2‖MK ≤ ‖µ1‖MK + ‖µ2‖MK.

(3◦) We consider µ ∈ cabv(Lq) such that ‖µ‖MK = 0. We prove that µ = 0. We will need
the following result:

Lemma 4. If µ ∈ cabv(R) and ‖µ‖MK = 0, then µ = 0 (for the proof one can see [3]).

Let now, (gj)j≥1 the Haar functions sequence and we denote by ‖‖p the norm on Lp.

Let f : T → R, f ∈ BL1(R) and, for, j ∈ N∗, arbitraily, fixed, f j =
f ·gj
‖gj‖p

.

We can write: ‖ f j(t1)− f j(t2)‖p = 1
‖gj‖p

(∫
| f (t1)− f (t2)|p|gj|pdλ

) 1
p ≤

≤ ‖ f ‖Ld(t1, t2) · ‖gj‖p · 1
‖gj‖p

, ∀t1, t2 ∈ T =⇒ f j ∈ BL(Lp) and ‖ f j‖L = ‖ f ‖L. Then

‖ f j‖∞ = max
t∈T
‖ f j(t)‖p = max

t∈T

(∫
| f (t)|p|gj|pdλ

) 1
p 1
‖gj‖p

= max
t∈T
| f (t)| = ‖ f ‖∞;=⇒ ‖ f j‖BL =

= ‖ f ‖BL ≤ 1 =⇒ f j ∈ BL1(Lp).

But ‖µ‖MK = 0 =⇒
∫

f jdµ = 0 =⇒ 0 =
∫ f gj
‖gj‖p

d
(

∞
∑

i=1
µigi

)
lemma 1
= 1

‖gj‖p

(∫
f dµj

)
=⇒

=⇒
∫

f dµj = 0, ∀ f ∈ BL1(R) =⇒ ‖µj‖MK = 0 lemma4
=⇒ µj = 0. So, µj = 0, ∀j ∈ N∗, hence

µ = 0.

Definition 2. The norm defined by Theorem 2 is called the Monge–Kantorovich type norm.

Proposition 2. We have the inequality: ‖µ‖MK ≤ ‖µ‖, ∀µ ∈ cabv(Lq).

Proof. For any f ∈ BL1(Lp) and µ ∈ cabv(Lq), we have:∣∣∣∣∫ f dµ

∣∣∣∣≤ ‖µ‖ · ‖ f ‖∞︸ ︷︷ ︸
≤1

≤ ‖µ‖ =⇒ ‖µ‖MK ≤ ‖µ‖.

Example 3. Let a ∈ T, x ∈ Lq such that ‖x‖q = 1. We will compute ‖δax‖MK.
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(i) For f ∈ BL1(Lp) we have: |
∫

f d(δax)| example2
= |x( f (a))| = |

∫
x f (a)dλ| ≤

≤ ‖ f (a)‖p ‖x‖q︸︷︷︸
=1

≤ ‖ f ‖∞ ≤ ‖ f ‖BL ≤ 1. Taking the supremum for f ∈ BL1(Lp), we

get: ‖δax‖MK ≤ 1.
(ii) Consider the function f (t) = xq−1 sgn(x), ∀t ∈ T. We have:∫

| f (t)|pdλ =
∫
|x|pq−pdλ =

∫
|x|qdλ < ∞ =⇒ f (t) ∈ Lp, ∀t ∈ T.

‖ f ‖BL = ‖ f ‖∞ + ‖ f ‖L︸ ︷︷ ︸
= 0 (f is constant)

= ‖ f (t)‖p =
∥∥xq−1‖p =

(∫
|x|qdλ

) 1
p
=

=

[(∫
|x|qdλ

) 1
q
] q

p

= ‖x‖
q
p
q = 1.

For µ = δax, we have: |
∫

f dµ| = |x( f (a))| = |
∫

x f (a)dλ| = |
∫

xq sgn(x)dλ| =
=
∫
|x|qdλ = ‖x‖q

q = 1 =⇒ ‖δax‖MK ≥ 1. From (i) and (ii) we deduce that:
‖δax‖MK = 1.

Theorem 3. We suppose that T is infinite. Let us denote by τMK and τ the topologies generated on
cabv(Lq) by the norms ‖‖MK, respectively ‖‖. Then τMK ⊂ τ, the inclusion being strictly.

Proof. From the inequality ‖µ‖MK ≤ ‖µ‖, ∀µ ∈ cabv(Lq), it results that τMK ⊂ τ. We will
prove that τ 6⊂ τMK. Let us suppose the contrary: τ ⊂ τMK. Then, it would result that the
identity application I : (cabv(Lq), ‖‖MK) → (cabv(Lq), ‖‖) is continuous. Then, for any

sequence (µn)n ⊂ (cabv(Lq)) and µ ∈ (cabv(Lq)) such that µn
‖‖MK→ µ, we would have:

µn
‖‖→ µ (∗). Presently, we need the following result:

Lemma 5. For any a, b ∈ T, a 6= b and for any x ∈ Lq, with ‖x‖q = 1, we have:

(i) ‖δax− δbx‖ = 2;
(ii) ‖δax− δbx‖MK ≤ d(a, b).

Proof of Lemma 5.

(i) Let (Aj)1≤j≤n a partition of T with Borel sets. We can have two cases:
1◦) If ∃j0 ∈ {1, . . . , n} such that a, b ∈ Aj0 , then, denoting µ = δax− δbx, we have:

n
∑

j=1
‖µ(Aj)‖ = ‖x− x‖q = 0.

2◦) If ∃j1 6= j2 such that a ∈ Aj1 , b ∈ Aj2 , then
n
∑

j=1
‖µ(Aj)‖ = ‖x‖q + ‖x‖q = 2.

Therefore,

‖δax− δbx‖ = ‖µ‖ = sup

{
∑

j
‖µ(Aj)‖

∣∣(Aj)j finite partition of T with Borel subsets

}
= 2.

(ii) Let f ∈ BL1(Lp), µ = δax− δbx. We have:∣∣∣∣∫ f dµ

∣∣∣∣= ∣∣∣∣∫ f d(δax)−
∫

f d(δbx)
∣∣∣∣= |x( f (a))− x( f (b))| =

∫
x · [ f (a)− f (b)]dλ ≤

≤
∫
|x|| f (a)− f (b)|dλ ≤ ‖x‖q‖ f (a)− f (b)‖p ≤ ‖ f ‖Ld(a, b) ≤ d(a, b).
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Now, we continue the Proof of Theorem 3:

T being compact and infinite, we will find (tn)n ⊂ T, t ∈ T such that tn → t,
tn 6= t, ∀n ≥ 1. Let x ∈ Lq with ‖x‖q = 1. According to Lemma 5 (i),∥∥δtn x− δtx

∥∥= 2, hence δtn x
‖‖
6→ δtx. On the other hand, from Lemma 5 (ii),∥∥δtn x− δtx

∥∥
MK≤ d(tn, t)→ 0, so, δtn x

‖‖MK−−−→ δtx. But, this is in contradiction with (∗).
We conclude that τ 6⊂ τMK.

6. The Integral and Monge–Kantorovich Type Norm in the Particular Case Where the
Functions and Measures Take Values in a Hilbert Space

Let (X, 〈 , 〉) be a Hilbert space, (T, d) a compact metric space and we denote, as before,
by B the Borel subsets of T.

Definition 3 (see [1]). Let f ∈ S(X), f =
m
∑

i=1
ϕAi xi, where (Ai)1≤i≤m is a partition of T with

Borel sets and ϕAi is the characteristic function of Ai, xi ∈ X. The number
m
∑

i=1
〈xi, µ(Ai)〉 is called

the integral of f with respect to µ and is denoted by
∫

f dµ (it is easy to prove that the value of
the integral does not depend on the representation of f ).

Definition 4 (see [1]). If f ∈ TM(X), we define
∫

f dµ = lim
n→∞

(
∫

fndµ), ( fn)n≥1 being a
sequence of simple functions which converges uniformly to f (one can prove that this integral does
not depend on the sequence ( fn)n≥1, uniformly convergent to f ).

For more details about Definitions 3 and 4, one can consult [1].

Lemma 6 (see [3]).

(a) The application ‖ · ‖MK : cabv(X) → [0, ∞) defined by ‖µ‖MK = sup{|
∫

f dµ|, f ∈
BL1(X)} is a norm on cabv(X), called the Monge-Kantorovich type norm;

(b) Let a > 0 and K = R or C. We denote: Ba(Kn) = {µ ∈ cabv(Kn)|‖µ‖ ≤ a}. Then the
topology generated on Ba(Kn) by ‖ · ‖MK is the same with the weak-∗ topology;

(c) Ba(Kn) equipped with the metric generated by ‖ · ‖MK, which is a compact metric space.

7. The Particular Case When the Functions and Measure Take Values in Rn:
Applications on Fractals Theory

We first provide some results that were already proved in previous papers, which we
will use.

Let us denote L(X) = {R : X → X|R is linear and continuous}. Let N ∈ N∗; for any
i ∈ {1, . . . , N}, we consider the contraction ωi : T → T, with its ratio ri and Ri ∈ L(X).
One can define the following operator, denoted by H, via:

H(µ) =
N
∑

i=1
Ri(µ(ω

−1
i )), (this means: H(µ)(A) =

N
∑

i=1
Ri(µ(ω

−1
i (A))), for any A ∈ B and

µ ∈ cabv(X)).

It can be proved that for any µ ∈ cabv(X), H(µ) ∈ cabv(X) and ‖H‖ ≤
N
∑

i=1
‖Ri‖o

(‖ · ‖o being the operatorial norm on L(X)).

Lemma 7 (Change of variable formula (see [5])). For any f ∈ C(X) and H as before, we have:∫
f dH(µ) =

∫
gdµ, where g =

N
∑

i=1
R∗i ◦ f ◦ωi (R∗i being the adjoint of Ri).
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Theorem 4 (see [5]). Let us suppose that
N
∑

i=1
‖Ri‖o(1 + ri) < 1. Let a > 0, µ0 ∈ cabv(Kn); we

define P : cabv(Kn) → cabv(Kn), P(µ) = H(µ) + µ0. Let, also, A ⊂ Ba(Kn) be non-empty,
weak-∗ close, such that P(A) ⊂ A. We denote by P0 the restriction of P to A. Then, there is a
unique measure µ∗ ∈ A, such that P0(µ

∗) = µ∗. If µ0 = 0 (the zero-measure) then µ∗ = 0.

Definition 5 (see [5]). The measure µ∗ introduced by Theorem 4 is called the Hutchinson vector
measure (or the fractal vector measure).

Let X, Y Banach spaces and ω : Y → X a contraction of ratio r.

Let, also, (Tn)n≥1 ⊂ L(X, Y) such that α
not
= sup

n≥1
‖Tn‖o <

1
r . For any n ≥ 1 we consider

the operators Un : Y → Y, Un
de f
= Tn ◦ω.

The following two lemmas were proved in [4].

Lemma 8. For any n, Un is a contraction of ratio less or equal to α · r.

Remark 1 (see [4]). In the Proof of Lemma 9, for an arbitrarily and fixed ε > 0, we find a rank N0
such that for any n ≥ N0, δ(Un(K), U(K)) ≤ ε. This rank depends not only on ε, but also on K.
However, if we take Y0 ⊂ Y, compact, such that Un(Y0) ⊂ Y0 and U(Y0) ⊂ Y0, denoting again by
Un and U the restrictions of these functions on Y0, it is easy to prove that N0 depends only on ε.

Hence, in this case, Un(K)
δ−→ U(K), uniformly with respect to K ⊂ Y0. For example, if Y is the

finite dimensional, we can take Y0 = B[0, R] = {x ∈ Y|‖x‖ ≤ R}, with R ≥ α‖ω(0)‖
1−αr :

‖Un(x)‖ = ‖Tn(ω(x))‖ ≤ ‖Tn(ω(x))− Tn(ω(0))‖+ ‖Tn(ω(0))‖
≤ ‖Tn‖o · ‖ω(x)−ω(0)‖+ ‖Tn‖o‖ω(0)‖ ≤ α(r‖x‖+ ‖ω(0)‖)
≤ α(rR + ‖ω(0)‖) ≤ R,

according to the condition satisfied by R.

Let (T, d) be a metric space. We denote by P∗(T) the family of non-empty and
bounded subsets of T. For any x ∈ T and A ∈ P∗(T), we will denote: d(x, A) = inf

y∈A
d(x, y).

If A, B ∈ P∗(T) we define d(A, B) = sup
x∈A

d(x, B). In a similar way, we define:

d(B, A) = sup
y∈B

d(y, A). Presently, we denote:

δ(A, B) = max{d(A, B), d(B, A)}. Let us define

K∗(T) = {K ⊂ T|K is compact and non-empty}.

Proposition 3.

(i) δ : K∗(T)×K∗(T)→ [0, ∞) is a metric on K∗(T);
(ii) If ω : T → T is a Lipschitz function , then δ(ω(A), ω(B)) ≤ L · δ(A, B), L being the

Lipschitz constant of ω;
(iii) if (Ai)1≤i≤n ⊂ K∗(T), (Bi)1≤i≤n ⊂ K∗(T), then:

δ

(
n⋃

i=1

Ai,
n⋃

i=1

Bi

)
≤ max

1≤i≤n
δ(Ai, Bi).

Definition 6 (see [20]). The metric δ introduced by Proposition 3 is called the Hausdorff-
Pompeiu metric.
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Proposition 4.

(i) If (T, d) is complete, then (K∗(T), δ) is also complete;
(ii) If (T, d) is compact, (K∗(T), δ) is also compact.

Lemma 9. Let us suppose that there exists T ∈ L(X, Y) such that Tn
‖·‖o−−→ T. Then, for any

K ∈ K∗(Y), Un(K)
δ−→ U(K), where we denoted: U = T ◦ω.

Definition 7 (see [20]). Let (T, d) be a complete metric space and (ωi)1≤i≤m, ωi : T → T,
i = 1, m such that any ωi is a contraction of ratio ri ∈ [0, 1). The family (ωi)1≤i≤m is called the
iterated function system (I.F.S.).

Definition 8 (see [20]). If (ωi)1≤i≤m is an I.F.S. on the complete metric space (T, d), we define:

S : K∗(T)→ K∗(T), S(E) =
m⋃

i=1
ωi(E), ∀E ∈ K∗(T).

Proposition 5. The function S above defined is a contraction of ratio r ≤ max
1≤i≤n

ri. Hence, using

the contraction principle, we deduce that there is an unique set K ∈ K∗(T), such that K = S(K).

Definition 9 (see [20]). The set K introduced by Proposition 5 is called the attractor (or: the
fractal) associated to the I.F.S. (ωi)1≤i≤n.

Remark 2 ([4]). Let now (ωj)1≤j≤m, ωj : Y0 → X be contractions of ratio rj, Y0 being a compact
and non-empty subset of a Banach space Y. We denote r = max

i
ri. Let us consider Tn, T ∈ L(X, Y)

such that α
not
= sup

n
‖Tn‖o < 1

r and Tn
‖·‖o−−→ T. We denote Un

j = Tn ◦ ωj, Uj = T ◦ ωj and

we will suppose, as before, that Un
j (Y0) ⊂ Y0, Uj(Y0) ⊂ Y0. Using Lemma 8, we have that the

functions Un
j : Y0 → Y0 and Uj : Y0 → Y0 are contractions of ratios less or equal by αr. Here, if

Y is finite dimensional, we can take Y0 = B[0, R], R ≥ αβ
1−αr , β = max

j
‖ωj(0)‖]. We can deduce

that (Un
j )j is an I.F.S. on K∗(Y0). Y0 being compact in the Banach space Y, it results that Y0 is a

complete metric space (with respect to the metric given by the restriction on Y0 of the norm on Y).
Consequently, (Proposition 4), K∗(Y0) is complete. Hence (Proposition 5) there exists an unique

set Kn ∈ K∗(Y0) such that Kn =
m⋃

j=1
Un

j (Kn) (the attractor associated to the I.F.S. (Un
j )j. Similar,

(Uj)j is an I.F.S. with its attractor K =
m⋃

j=1
Uj(K).

Lemma 10. For any ε > 0, there exists N0 ∈ N such that for any n ≥ N0, x ∈ Y0 and
j ∈ {1, . . . , m} we have: ‖Un

j (x)−Uj(x)‖ < ε.

Proof. Y0 being compact, it is precompact, that means: for a given ε, there exists p ∈ N and
{x1, x2, . . . , xp} ⊂ Y0 such that for any x ∈ Y0, we can find i ∈ 1, p with ‖x− xi‖ < ε

3 (?);
let x ∈ Y0, arbitrarily, fixed and xi which satisfies (?). We can write:

‖Un
j (x)−Uj(x)‖ ≤ ‖Un

j (x)−Un
j (xi)‖︸ ︷︷ ︸

not
= a

+ ‖Un
j (xi)−Uj(xi)‖︸ ︷︷ ︸

not
= b

+ ‖Uj(xi)−Uj(x)‖︸ ︷︷ ︸
not
= c

.

We have: a = ‖Tn(ωj(x)− ωj(xi))‖ ≤ ‖Tn‖o‖ωi(x)− ωi(xi)‖ ≤ αr‖x− xi‖ < ‖x−

xi‖ < ε
3 ; similar c ≤ ‖T‖o‖ωj(x)−ωj(xi)‖ < ‖x− xi‖ < ε

3 ; using the fact that Tn
‖·‖o−−→ T,

for any i ∈ 1, p there exists Ni ∈ N such that for any n ≥ Ni, ‖Un
j (xi)−Uj(xi)‖ < ε

3 . Let
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N0 = max
i

Ni. Then, for n ≥ N0, we obtain b < ε
3 . Hence, for any n ≥ N0, j ∈ 1, m, x ∈ Y0

we have:‖Un
j (x)−Uj(x)‖ < ε.

Consequence 1. Let N0 given by lemma 10. We have: max
j

sup
x∈Y0

‖Un
j (x)−Uj(x)‖ ≤ ε, ∀n ≥ N0.

Now, we will suppose that there exists T ∈ L(X, Y), with ‖T‖o ≤ α, such that Tn → T
in the topology of the weak convergences of the operators, that is: for any y′ ∈ Y∗ and for
any x ∈ Y, y′(Tn(x))→ y′(T(x)).
( Y′ is the conjugate of Y : Y′ = {y′ : Y → K|y′ is linear and continuous}). We consider
again the operators (Un)n≥1 as before.

Lemma 11. Let Y0 ⊂ Y, compact, such that Un(Y0) ⊂ Y0 and U(Y0) ⊂ Y0 (for example, as in
the remark after lemma 9). Then, for any a ∈ Y0, we can find a subquence (Ujn(a)) ⊂ (Un(a))n≥1
with the property: lim

n→∞
‖Ujn(a)−U(a)‖ = 0.

Proof. From the hypothesis, the sequence ((Un −U)(a))n≥1 is included in Y0 −Y0, which
is compact, hence, we can find j1 < j2 < . . . < jn < . . . and z ∈ Y0 such that Ujn(a)−

U(a)
‖·‖−→ z. Let y′ ∈ Y∗, arbitrarily. We have: lim

n→∞
y′(Tjn(ω(a))) = y′(T(ω(a))), hence,

0 = lim
n→∞

y′(Tjn(ω(a))− T(ω(a))) = y′(z). Using a consequence of Hahn-Banach theorem,

we find y′ ∈ Y∗ such that y′(z) = ‖z‖ and ‖y′‖ = 1. We deduce that: 0 = y′(z) = ‖z‖ =⇒
z = 0 =⇒ lim

n→∞
‖Ujn(a)−U(a)‖ = 0.

Consequence 2. There exists a subsequence (Ujn)n≥1 ⊂ (Un)n≥1 such that lim
n→∞

‖Ujn(a) −
U(a))‖ = 0 uniformly with respect to a ∈ Y0.

Proof. Y0 being compact, for any ε > 0 there exists N ∈ N and z1, z2, . . . , zN ∈ Y0 such that
∀a ∈ Y0, ∃p ∈ {1, 2, . . . , N} with ‖a− zp‖ < ε

3 . We will find the subsequences:

(1) (Ujn1
)n1 ⊂ (Ujn)n such that ‖Ujn1

(z1)−U(z1)‖ → 0

(2) (Ujn2
)n2 ⊂ (Ujn1

)n1 such that ‖Ujn2
(z2)−U(z2)‖ → 0

...

(N) (UjnN
)nN ⊂ (UjnN−1

)nN−1 such that ‖UjnN
(zN)−U(zN)‖ → 0.

Hence, for any p ∈ {1, 2, . . . , N} we will find N(p) ∈ N such that for np ≥ N(p), we
have: ‖Ujnp

(zp)−U(zp)‖ < ε
3 . We denote: N0 = max

1≤p≤N
N(p). Let now a ∈ Y0, arbitrarily;

we find p ∈ {1, 2, . . . , N} such that ‖a− zp‖ < ε
3 . We deduce successively:

‖UjnN
(a)−U(a)‖ ≤ ‖UjnN

(a)−UjnN
(zp)‖︸ ︷︷ ︸

≤‖a−zp‖< ε
3

+ ‖UjnN
(zp)−U(zp)‖︸ ︷︷ ︸

< ε
3 for nN≥N0

+ ‖U(zp)−U(a)‖︸ ︷︷ ︸
≤‖zp−a‖< ε

3

< ε,

for any nN > N0. Hence, denoting again by (Ujn)n the subsequence (UjnN
)nN , we can write

that lim
n→∞

‖Ujn(a)−U(a)‖ = 0, uniformly, with respect to a ∈ Y0.

Lemma 12. For any K ∈ K∗(Y0) there exists (Ujn)n≥1 ⊂ (Un)n≥1 such that: lim
n→∞

δ(Ujn(K),

U(K)) = 0, uniformly with respect to K ∈ K∗(Y0).
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Proof. Let ε > 0, arbitrarily, fixed. For any t ∈ Un(K), we find a ∈ K such that t = Tn(ω(a)).
We have:

d(t, U(K)) = inf{‖Tn(ω(a))− T(ω(b))‖|b ∈ K} ≤

inf{‖Tn(ω(a))− T(ω(a))‖+ ‖T(ω(a))− T(ω(b))‖|b ∈ K} b=a
=

‖Tn(ω(a))− T(ω(a))‖ = ‖Un(a)−U(a)‖.

Using Lemma 11 and its Consequence 2, we find the subsequence (Ujn)n ⊂ (Un)n and
nε ∈ N such that ‖Ujn(a)−U(a)‖ < ε, ∀n > nε.

It results d(t, U(K)) < ε, ∀t ∈ Ujn(K), ∀n > nε. Hence, sup
t∈Ujn

(t, U(K)) ≤ ε, that

is: d(Ujn(K), U(K)) ≤ ε, ∀n > nε. Similar, d(U(K), Ujn(K)) = sup
t∈U(K)

inf
y∈Ujn (K)

d(t, y). For

y ∈ Ujn(K), there exists b ∈ K such that y = Ujn(b). We can write as above in this proof:
inf{‖T(ω(a)) − Tjn(ω(b))‖|b ∈ K} ≤ ‖T(ω(a)) − Tjn(ω(a))‖ < ε, ∀n > nε. We obtain
d(U(K), Ujn(K)) ≤ ε, hence, δ(Ujn(K), U(K)) ≤ ε,
∀n > nε, ∀K ∈ K∗(Y0).

Theorem 5. Let Kn, respectively K, the attractors associated to the I.F.S. (Un
j )1≤j≤m respectively

(Uj)1≤j≤m. Then, there exists (Kin)n ⊂ (Kn)n such that lim
n→∞

δ(Kin , K) = 0.

Proof. Let (Uin)n ⊂ (Un)n such that lim
n→∞

‖Uin(a)−U(a)‖ = 0, uniformly with respect to

a ∈ Y0. We have:

δ(Kin , K) = δ

 m⋃
j=1

Uin
j (Kin),

m⋃
j=1

Uj(K)

 ≤
δ

 m⋃
j=1

Uj(K),
m⋃

j=1

Uin
j (K)

+ δ

 m⋃
j=1

Uin
j (K),

m⋃
j=1

Uin
j (Kin)

.

Let ε > 0, arbitrarily fixed. Using Proposition 3 (iii), we have:

δ

 m⋃
j=1

Uj(K),
m⋃

j=1

Uin
j (K)

 ≤ max
1≤j≤m

δ(Uj(K), Uin
j (K)) ≤ ε,

for n large enough (see Lemma 12);

δ

 m⋃
j=1

Uin
j (K),

m⋃
j=1

Uin
j (K)

 ≤ max
1≤j≤m

δ(Uin
j (K), Uin

j (K)) ≤
2.1.1, (ii)

rαδ(Kin , K).

We deduce that: (∃)nε ∈ N such that (1− rα)δ(Kin , K) ≤ ε, ∀n > nε. Hence, lim
n→∞

δ(Kin , K) = 0.

Remark 3. With the same type of convergence of (Tn)n to T as in this whole section, we consider
now the framework, regarding fractal vector measures. Let us suppose that all the conditions
regarding the operators Hn and H are fulfilled and denote by µ∗n, respectively µ; the fractal vector
measures associated to Pn, respectively P.

Theorem 6. There exists a subsequence (µ∗in)n ⊂ (µ∗n)n such that:

lim
n→∞

‖µ∗in − µ∗‖MK = 0.
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Proof. (see, also [4]) To make this proof easier to be read, in any place, we will use “n”
instead of “in”. For example, µ∗in becomes µ∗n, Pin becomes Pn and so on.

‖µ∗n − µ∗‖MK = ‖Pn(µ∗n)− P(µ∗)‖MK ≤ ‖Pn(µ∗n)− Pn(µ∗)‖MK+

+ ‖Pn(µ∗)− Pn(µ∗)‖MK ≤ qn‖µ∗n − µ∗‖MK + ‖Pn(µ∗)− P(µ∗)‖MK (1)

We have, obviously: qn ≤ ‖Hn‖o ≤
(

m
∑

j=1
‖Rj‖o

)
(1 + αr) < 1.

Hence q
de f
= sup

n
qn < 1. According to (1), we can write:

‖µ∗n − µ∗‖MK ≤ q‖µ∗n − µ∗‖MK + ‖Pn(µ∗)− P(µ∗)‖MK =⇒

(1− q)‖µ∗n − µ∗‖MK ≤ ‖Pn(µ∗)− P(µ∗)‖. (2)

Let now ε > 0 arbitrarily fixed and f ∈ BL1
(
KN). We can write:∣∣∣∣ m

∑
j=1

(∫
R∗j ◦ f ◦Un

j dµ∗ −
∫

R∗j ◦ f ◦Ujdµ∗
)∣∣∣∣︸ ︷︷ ︸

lemma 7
=

∣∣∣∣∫ f dHn(µ∗)−
∫

f dH(µ∗)

∣∣∣∣
=

∣∣∣∣ m

∑
j=1

∫
R∗j ◦ ( f ◦Un

j − f ◦Uj)dµ∗
∣∣∣∣≤ m

∑
j=1

∣∣∣∣∫ R∗j ◦ ( f ◦Un
j − f ◦Uj)dµ∗

∣∣∣∣≤
m

∑
j=1

∫
‖R∗j ◦ ( f ◦Un

j − f ◦Uj)‖d|µ∗| ≤
m

∑
j=1

∫
‖R∗j ‖o‖ f ◦Un

j − f ◦Uj‖d|µ∗| ≤

m

∑
j=1
‖R∗j ‖o

∫
‖Un

j (x)−Uj(x)‖d|µ∗|(x) ≤ max
j

sup
x∈Y0

‖Un
j (x)−Uj(x)‖ · |µ∗|(Y0) < ε,

for n big enough, according the consequence of lemma 10 and using the fact that
m
∑

j=1
‖R∗j ‖o < 1.

Hence, sup
f∈BL1(KN)

∣∣∣∣∫ f dHn(µ∗)−
∫

f dH(µ∗)

∣∣∣∣≤ ε;

=⇒ ‖Hn(µ∗)− H(µ∗)‖MK ≤ ε =⇒ ‖Pn(µ∗)− P(µ∗)‖MK ≤ ε

(2)
=⇒ (1− q)‖µ∗n − µ∗‖MK ≤ ε, for n large enough.

We deduce that µ∗n
‖·‖MK−−−→ µ∗.

Example 4. For any f ∈ L2, we define :

Tn( f )(x) =

 f (x), if x ∈
(

1
n , 1
]

f (x)
√

n, if x ∈
[
0, 1

n

]
.

Let T( f ) = f .

(a) We prove that Tn( f ) ∈ L2:∫
[0,1]

|Tn( f )(x)|2dλ =
∫

[0, 1
n ]

n f 2(x)dλ +
∫

( 1
n ,1]

f 2(x)dλ.
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Using the density of C([0, 1]) in L1([0, 1]) we find a sequence (Fk)k ⊂ C([0, 1]) such that

Fk
L1([0,1])−−−−→ f 2 and consequently, a subsequence

(Fkj
)j ⊂ (Fk)k and the Borel set A with the properties:

(i) A ⊂ [0, 1] and λ(A) = 0;
(ii) lim

j→∞
Fkj

(x) = f 2(x), ∀x ∈ [0, 1]\A.

For ε > 0, arbitrarily, fixed, we will find k j ∈ N such that |Fkj
(x)− f 2(x)| < ε, ∀x ∈

[0, 1]\A. We denote: M = max
x∈[0, 1

n ]
|Fkj

(x)|. We can write:

∫
[0, 1

n ]

n f 2(x)dλ ≤
∫

[0, 1
n ]

n| f 2(x)− Fkj
(x)|dλ + n

∫
[0, 1

n ]

|Fkj
(x)|dλ ≤

M · n · 1
n
+

∫
[0, 1

n ]∩A

n| f 2(x)− Fkj
(x)|dλ +

∫
[0, 1

n ]\A

n| f 2(x)− Fkj
(x)|dλ ≤

M + n · ε · 1
n
= ε + M, and that implies

∫
[0,1]

|Tn( f )(x)|2dλ ≤ ε + M +
∫

[ 1
n ,1]

f 2(x)dλ;

this inequality shows that Tn( f ) ∈ L2.

(b) We prove that Tn�
��‖·‖o−−→T. We consider f : [0, 1]→ R, f (x) = 1, ∀x ∈ [0, 1]. We have:

‖Tn( f )− T( f )‖2
2 =

∫
[0, 1

n ]

[ f (x)
√

n− f (x)]2dλ =
∫

[0, 1
n ]

(
√

n− 1)2dλ =

n− 2
√

n + 1
n

→ 1, when n→ ∞.

Hence, we found f ∈ L2, with ‖ f ‖ ≤ 1 such that lim
n→∞

‖(Tn − T)( f )‖ 6= 0, that proves

Tn�
��‖·‖o−−→T.

(c) Let g ∈ (L2)∗ = L2, f ∈ L2. We deduce:

|g(Tn( f ))− g(T( f ))| = |g(Tn( f ))− g( f )| =
∣∣∣∣ ∫
[0, 1

n ]

g(x) f (x)(
√

n− 1)dλ

∣∣∣∣.
Now, we use again the density of C([0, 1]) in L1([0, 1]): we find a sequence (hk)k ⊂ C([0, 1]) such

that hk
L1([0,1])−−−−→ f g and, consequently, a subsequence (hkj

)j ⊂ (hk)k and the Borel set B with
the properties:

(i) B ⊂ [0, 1] and λ(B) = 0;
(ii) lim

j→∞
hkj

(x) = f (x)g(x), ∀x ∈ [0, 1]\B.

Let ε > 0 arbitrarily be fixed. We will find k j ∈ N such that |hkj
(x)− f (x)g(x)| < ε, ∀x ∈

[0, 1]\B. We have:∫
[0, 1

n ]

| f (x)g(x)− hkj
(x)|(

√
n− 1)dλ =

∫
[0, 1

n ]\B

| f (x)g(x)− hkj
(x)|(

√
n− 1)dλ ≤

ε(
√

n−1)
n .
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Hence, ∫
[0, 1

n ]

| f (x)g(x)|(
√

n− 1)dλ ≤
∫

[0, 1
n ]

| f (x)g(x)− hkj
(x)|(

√
n− 1)dλ

︸ ︷︷ ︸
≤ε
√

n−1
n

+

∫
[0, 1

n ]

|hkj
(x)|(

√
n− 1)dλ ≤

(
max

x∈[0,1]
|hkj

(x)|+ ε

)
·
√

n− 1
n

→ 0.

We have proved that for any g ∈ (L2)∗, g(Tn( f ))→ g(T( f )), for any f ∈ L2, that is Tn → T in
the topology of weak convergence of operators.

8. Conclusions

This paper shows, especially in its second part, the important role played by the
Monge–Kantorovich norms in the vector measure theory and fractals theory.

In the future, we intend to concentrate our research work in two directions:

(a) To introduce Monge–Kantorovich type norms on more general measure space;
(b) To give convergence properties for families of fractal sets and fractal vector measures

in a more general framework (for example, in the case of an uncountable family of
iterated function systems).
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2. Nit, ă, L. An Integral for Vector Functions with respect to Vector Measures. In Proceedings of the 13th Workshop of Scientific

Communications, Bucharest, Romania, 23 May 2015; pp. 127–129.
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