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Abstract: In this paper, we investigate the existence and Ulam–Hyers–Rassias stability results for
a class of boundary value problems for implicit ψ-Caputo fractional differential equations with
non-instantaneous impulses involving both retarded and advanced arguments. The results are
based on the Banach contraction principle and Krasnoselskii’s fixed point theorem. In addition, the
Ulam–Hyers–Rassias stability result is proved using the nonlinear functional analysis technique.
Finally, illustrative examples are given to validate our main results.
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1. Introduction

Because of its importance in the modeling and scientific understanding of natural
processes, fractional calculus has long been an essential study topic in functional space
theory. Several applications in viscoelasticity and electrochemistry have been studied.
Non-integer derivatives of fractional order have been successfully utilized to generalize
fundamental natural principles. We recommend the monograph [1] for some fundamental
results on fractional calculus and its applications.

While determining the precise solution of differential equations is difficult or impossi-
ble in many contexts, such as nonlinear analysis and optimization, we explore approximate
solutions. It should be noted that only steady approximations are allowed. For this reason,
many techniques for stability analysis are used. Mathematician Ulam originally highlighted
the stability problem in functional equations in a 1940 presentation at Wisconsin University.
S. M. Ulam introduced the following challenge: “Under what conditions does an additive
mapping exist near an approximately additive mapping?” [2]. The following year, in [3],
Hyers provided an answer to Ulam’s problem for additive functions defined on Banach
spaces. In 1978, Rassias [4] demonstrated the existence of unique linear mappings near
approximate additive mappings, generalizing Hyers’ findings. In [5], Luo et al. established
the new existence, uniqueness, and Hyers–Ulam stability results of Caputo fractional
difference equations using some new criteria and by applying the Brouwer theorem and
the contraction mapping principle. The authors of [6] addressed the Ulam stabilities of a
k-generalized ψ-Hilfer fractional differential problem.
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In [7–9], Shah et al. devoted their research work to the study of various kinds of Ulam
stabilities for some classes of coupled systems of fractional differential equations. In the
papers by Salim et al. [10,11], the authors addressed the existence, stability, and uniqueness
of solutions to diverse hybrid problems with fractional differential equations using various
fractional derivatives and different types of conditions. Wang et al. [12] studied the
existence, uniqueness, and different kinds of stability results for a coupled system of a
nonlinear implicit fractional anti-periodic boundary value problem.

Real-world processes and phenomena can exhibit rapid shifts in state. These modifica-
tions have a very brief duration in contrast to the entire longevity of the process and are thus
irrelevant to the evolution of the examined process. In such instances, impulsive equations
can be employed to construct appropriate mathematical models. Physics, biology, popu-
lation dynamics, ecology, pharmacokinetics, and other fields all contain such operations.
Non-instantaneous impulses are actions that begin at an arbitrary fixed moment and last
for a specified time interval. Hernandez and O’Regan [13] studied the existence of solutions
to a novel class of abstract differential equations with non-instantaneous impulses. In the
papers by Alzabut et al. [14,15], Bai et al. [16], Salim et al. [17], and Wang et al. [18,19],
the authors presented some fundamental results and recent developments on differential
equations with instantaneous and non-instantaneous impulses.

The authors of [20] studied the nonlinear fractional differential hybrid system with
periodic boundary conditions, given by

CD$,Ψ
a+ (v(ϑ)g1(ϑ, v(ϑ))) = g2(ϑ, v(ϑ)), $ ∈ (0, 1),

v(a) = v(b),

where ϑ ∈ [a, b], CD$,Ψ
a+ is the Ψ-Caputo fractional derivative; g1 : [a, b]×R→ R \ {0} and

g2 : [a, b]×R→ R are continuous with g1 and g2, which are identically zero at the origin;
and g2(ϑ, 0) ≡ 0. Their arguments are based on Dhage’s fixed point theorem. The authors
of [21] established existence and stability results, with relevant fixed point theorems, for the
following boundary value problem:

(
ζ1Dζ1,ζ2

κ+
i

x
)
(ϑ) = f

(
ϑ, x(ϑ),

(
ζ1Dζ1,ζ2

κ+
i

x
)
(ϑ)

)
; ϑ ∈ Ωi, i = 0, . . . , m,

x(ϑ) = Ψi(ϑ, x(ϑ)); ϑ ∈ Ω̃i, i = 1, . . . , m,

φ1

(
ζ1J1−ζ3

a+ x
)
(a+) + φ2

(
ζ1J1−ζ3

m+ x
)
(b) = φ3,

where ζ1Dζ1,ζ2
κ+

i
, ζ1J1−ζ3

a+ are the generalized Hilfer fractional derivative of order ζ1 ∈ (0, 1)

and type ζ2 ∈ [0, 1] and the generalized fractional integral of order 1− ζ3, respectively;
φ1, φ2, φ3 ∈ R, φ1 6= 0, Ωi := (κi, ϑi+1]; i = 0, . . . , m, Ω̃i := (ϑi,κi]; i = 1, . . . , m, a =
ϑ0 = κ0 < ϑ1 ≤ κ1 < ϑ2 ≤ κ2 < . . . ≤ κm−1 < ϑm ≤ κm < ϑm+1 = b < ∞,
x(ϑ+

i ) = lim
ε→0+

x(ϑi + ε) and x(ϑ−i ) = lim
ε→0−

x(ϑi + ε); f : (a, b] × R2 → R is a given

function; and Ψi : Ω̃i ×R→ R; i = 1, . . . , m are given continuous functions.
Motivated by the above-mentioned papers, first, we present some existence, unique-

ness, and Ulam stability results for the following fractional problem:

CDζ;ψ
κ (Φ(ϑ)y(ϑ)) = ϕ

(
ϑ, yϑ(·), CDζ;ψ

κ (Φ(ϑ)y(ϑ))
)

; ϑ ∈ Ω,  = 0, . . . , m,

y(ϑ) = Ψ(ϑ, y(ϑ− )); ϑ ∈ Ω̃,  = 1, . . . , m,

δ1y(0) + δ2y(κ) = δ3,

y(ϑ) = h̄1(ϑ), ϑ ∈ [−v, 0], v > 0,

y(ϑ) = h̄2(ϑ), ϑ ∈ [κ,κ + ṽ], ṽ > 0,

(1)
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where CDζ;ψ
κ represents the ψ-Caputo derivative of order 0 < ζ ≤ 1, Θ := [0,κ], δ1, δ2 ∈ R,

δ3 ∈ R, where δ1 6= 0, Ω0 := [0, ϑ1], Ω := (κ, ϑ+1];
 = 1, . . . , m, Ω̃ := (ϑ,κ];  = 1, . . . , m, 0 = ϑ0 = κ0 < ϑ1 ≤ κ1 < ϑ2 ≤ κ2 < . . . ≤
κm−1 < ϑm ≤ κm < ϑm+1 = κ < ∞, y(ϑ+

 ) = lim
ε→0+

y(ϑ + ε) and y(ϑ− ) = lim
ε→0−

y(ϑ + ε)

represent the right and left hand limits of y(ϑ) at ϑ = ϑ; ϕ : Θ× PC([−v, ṽ],R)×R→ R
is a given function; and Φ ∈ C(Θ,R\{0}), h̄1 ∈ C([−v, 0],R), h̄2 ∈ C([κ,κ + ṽ],R),
and Ψ : Ω̃ × R → R;  = 1, . . . , m are given continuous functions. For y defined on
[−v,κ + ṽ] and for any ϑ ∈ [0,κ], yϑ is given by

yϑ($) = y(ϑ + $), $ ∈ [−v, ṽ].

The following are the primary novelties of the current paper:

• Given the varied conditions we imposed on problem (1), our study may be viewed as
a partial continuation of the ones in the aforementioned studies.

• The ψ-fractional derivative unifies a larger number of fractional derivatives in a single
fractional operator and opens the door to new applications.

• If we take δ1 = −δ2, δ3 = 0, and remove the impulses, and the retarded and advanced
arguments, we then obtain the problem studied in [20].

• We weaken the several conditions imposed in the study of [20], such as the requirement
that functions g1 and g2 are identically zero at the origin and g2(ϑ, 0) ≡ 0.

• We study the Ulam–Hyers–Rassias stability of an implicit problem with non-instantaneous
impulses, delay, and anticipation.

The following is how the current paper is arranged: In Section 2, we present certain
notations and review some preliminary information on the ψ-Caputo fractional derivative
and auxiliary results. Section 3 presents an existence result to problem (1) based on the
Banach contraction principle and Krasnoselskii’s fixed point theorem. The Ulam–Hyers–
Rassias stability of our problem is discussed in Section 4. In the final part, we provide some
examples to demonstrate the application of our study results.

2. Preliminaries

In this section, we introduce some notations, definitions, and preliminary facts that
are used throughout this paper.

The Banach space of all continuous functions from Θ to R is denoted by C(Θ,R)
equipped with the norm

‖ξ‖∞ = sup{|ξ(ϑ)| : ϑ ∈ Θ}.

Let X = C([−v, 0],R) and X̃ = C([κ,κ + ṽ],R) be the spaces endowed, respectively,
with the norms

‖ξ‖X = sup{|ξ(θ)| : θ ∈ [−v, 0]} and ‖ξ‖X̃ = sup{|ξ(θ)| : θ ∈ [κ,κ + ṽ]}.

Consider the Banach space

PC(Θ,R) =
{

y : Θ→ R : y|Ω̃
= Ψ;  = 1, . . . , m, y|Ω

∈ C(Ω,R);  = 0, . . . , m,

and there exist u(ϑ− ), y(ϑ+
 ), y(κ− ), and y(κ+

 ) with y(ϑ− ) = y(ϑ)
}

,

equipped with the norm
‖y‖PC = sup

ϑ∈Θ
|y(ϑ)|.
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Consider the weighted Banach space

PC([−v, ṽ],R) =
{

y : [−v, ṽ]→ R : y|[τ ,τ̃+1]
∈ C([τ, τ̃+1],R);  = 0, . . . , m,

for each ϑ ∈ Ω, y|[τ̃ ,τ ]
∈ C([τ̃, τ],R);  = 1, . . . , m,

for each ϑ ∈ Ω̃, τ = κ − ϑ, τ̃ = ϑ − ϑ,

there exist y(τ− ), y(τ̃+
 ), y(τ̃− ) and y(τ+

 );  = 1, . . . , m,

with y(τ− ) = y(τ)
}

,

equipped with the norm
‖y‖[−v,ṽ] = sup

τ∈[−v,ṽ]

∣∣yϑ(τ)
∣∣.

Next, we consider the Banach space

F =
{

y : [−v,κ + ṽ]→ R : y|[−v,0] ∈ X , y|[κ,κ+ṽ] ∈ X̃ and y|[0,κ] ∈ PC(Θ,R)
}

,

equipped with the norm

‖y‖F = max
{
‖y‖X , ‖y‖X̃ , ‖y‖PC

}
.

Let ψ ∈ C1(Θ,R) be an increasing differentiable function such that ψ′(ϑ) 6= 0, for all
ϑ ∈ Θ. Now, we start by defining ψ-fractional integral and derivative operators as follows.

Definition 1 ([22]). The ψ–Riemann–Liouville fractional integral of order ζ > 0 for an integrable
function ξ : Θ −→ R is given by

Iζ;ψ
0+ ξ(ϑ) =

1
Γ(ζ)

ϑ∫
0

ψ′(s)(ψ(ϑ)− ψ(s))ζ−1ξ(s)ds,

where Γ is the Gamma function.

One can deduce that

Dϑ

(
Iζ;ψ

0+ ξ(ϑ)
)
= ψ′(ϑ)Iζ−1;ψ

0+ ξ(ϑ), ζ > 1,

where Dϑ = d
dt .

Definition 2 ([23]). For n− 1 < ζ < n (n ∈ N) and ξ, ψ ∈ Cn(Θ,R), the ψ-Caputo fractional
derivative of a function ξ of order ζ is given by

CDζ;ψ
0+ ξ(ϑ) = In−ζ;ψ

0+

(
Dϑ

ψ′(ϑ)

)n
ξ(ϑ),

where n = [ζ] + 1 for ζ /∈ N and n = ζ for ζ ∈ N.

From the above definition, we can express the ψ-Caputo fractional derivative with the
following formula:

CDζ;ψ
0+ ξ(ϑ) =


ϑ∫
0

ψ′(s)(ψ(ϑ)−ψ(s))n−ζ−1

Γ(n−ζ)

(
Dϑ

ψ′(s)

)n
ξ(s)ds, if ζ /∈ N,(

Dϑ
ψ′(τ)

)n
ξ(ϑ), if ζ ∈ N.
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Lemma 1 ([22,23]). For ζ, β > 0, and ξ ∈ C(Θ,R), we have

Iζ;ψ
0+ Iβ;ψ

0+ ξ(ϑ) = Iζ+β;ψ
a+ ξ(ϑ), ϑ ∈ Θ.

Lemma 2 ([22,23]). Let ζ > 0. If ξ ∈ C(Θ,R), then

CDζ;ψ
0+ Iζ;ψ

0+ ξ(ϑ) = ξ(ϑ), ϑ ∈ Θ,

and if ξ ∈ Cn−1(Θ,R), then

Iζ;ψ C
0+ Dζ;ψ

0+ ξ(ϑ) = ξ(ϑ)−
n−1

∑
k=0

(
Dϑ

ψ′(ϑ)

)k
ξ(a)

k!
[ψ(ϑ)− ψ(a)]k, ϑ ∈ Θ.

Lemma 3 ([22,23]). For ϑ > 0, ζ ≥ 0 and β > 0. Then,

• Iζ;ψ
0+ (ψ(ϑ)− ψ(0))β−1 = Γ(β)

Γ(β+ζ)
(ψ(ϑ)− ψ(0))β+ζ−1;

• CDζ;ψ
0+ (ψ(ϑ)− ψ(0))β−1 = Γ(β)

Γ(β−ζ)
(ψ(ϑ)− ψ(0))β−ζ−1;

• CDζ;ψ
0+ (ψ(ϑ)− ψ(0))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

Theorem 1 (Banach fixed point theorem [24]). Let E be a Banach space and H : E −→ E a
contraction, i.e., there exists  ∈ [0, 1) such that

‖H(ξ1)−H(ξ2)‖ ≤ ‖ξ1 − ξ2‖, f or all ξ1, ξ2 ∈ E.

Then,H has a unique fixed point.

Theorem 2 (Krasnoselskii’s fixed point theorem [25]). Let D be a closed, convex, and nonempty
subset of a Banach space E, and A and B the operators such that (1) Ax + By ∈ D for all x, y ∈ D;
(2) A is compact and continuous; (3) B is a contraction mapping. Then, there exists z ∈ D such
that z = Az + Bz.

3. Main Results

We study the fractional differential equation that follows:

CDζ;ψ
κ (Φ(ϑ)y(ϑ)) = σ(ϑ); ϑ ∈ Ω,  = 0, . . . , m, (2)

where 0 < ζ ≤ 1, with the conditions

y(ϑ) = Ψ(ϑ, y(ϑ− )); ϑ ∈ Ω̃,  = 1, . . . , m, (3)

δ1y(0) + δ2y(κ) = δ3, (4)

y(ϑ) = h̄1(ϑ), ϑ ∈ [−v, 0], v > 0, (5)

y(ϑ) = h̄2(ϑ), ϑ ∈ [κ,κ + ṽ], ṽ > 0, (6)

where δ1, δ2 ∈ R, δ3 ∈ R, δ1 6= 0, σ(·) ∈ C(Θ,R), Φ ∈ C(Θ,R\{0}), h̄1 ∈ C([−v, 0],R),
h̄2 ∈ C([κ,κ + ṽ],R), and Ψ : Ω̃ ×R→ R;  = 1, . . . , m are given continuous functions.
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Theorem 3. Function y(·) verifies (2)–(6) if and only if it verifies

y(ϑ) =



1
Φ(ϑ)

[
δ3Φ(0)

δ1
− δ2Φ(0)Φ(κm)Ψm(κm, y(ϑ−m))

δ1Φ(κ)

− δ2Φ(0)
δ1Φ(κ) I

ζ,ψ
κm+σ(κ) + Iζ,ψ

0+ σ(ϑ)

]
, ϑ ∈ Ω0,

1
Φ(ϑ)

[
Φ(κ)Ψ(κ, y(ϑ− )) + Iζ,ψ

κ
+σ(ϑ)

]
, ϑ ∈ Ω;  = 1, . . . , m,

Ψ(ϑ, y(ϑ− )), ϑ ∈ Ω̃;  = 1, . . . , m,
h̄1(ϑ), ϑ ∈ [−v, 0],
h̄2(ϑ), ϑ ∈ [κ,κ + ṽ].

(7)

Proof. Let us assume that y satisfies (2)–(6). If ϑ ∈ Ω0, then

CDζ;ψ
0 Φ(ϑ)y(ϑ) = σ(ϑ).

By applying fractional operator Iζ;ψ
0+ on both sides of (2) and employing Lemma 2, we obtain

Φ(ϑ)y(ϑ) = Iζ,ψ
0+ σ(ϑ) + c0.

If ϑ ∈ Ω̃1, then we have y(ϑ) = Ψ1(ϑ, y(ϑ−1 )).
If ϑ ∈ Ω1, then Lemma 2 implies that

Φ(ϑ)y(ϑ) = Φ(κ1)y(κ1) + Iζ,ψ
κ1

+σ(ϑ) = Φ(κ1)Ψ1(κ1, y(ϑ−1 )) + Iζ,ψ
κ1

+σ(ϑ).

If ϑ ∈ Ω̃2, then we have y(ϑ) = Ψ2(ϑ, y(ϑ−2 )).
If ϑ ∈ Ω2, then Lemma 2 implies that

Φ(ϑ)y(ϑ) = Φ(κ2)y(κ2) + Iζ,ψ
κ2

+σ(ϑ) = Φ(κ2)Ψ2(κ2, y(ϑ−2 )) + Iζ,ψ
κ2

+σ(ϑ).

Repeating the process in this way, for ϑ ∈ Θ, we can obtain

y(ϑ) =


1

Φ(ϑ)

[
Iζ,ψ

0+ σ(ϑ) + c0

]
, ϑ ∈ Ω0,

1
Φ(ϑ)

[
Φ(κ)Ψ(κ, y(ϑ− )) + Iζ,ψ

κ
+σ(ϑ)

]
, ϑ ∈ Ω;  = 1, . . . , m,

Ψ(ϑ, y(ϑ− )), ϑ ∈ Ω̃;  = 1, . . . , m.

(8)

Taking ϑ = κ in (8), we obtain

Φ(κ)y(κ) = Φ(κm)Ψm(κm, y(ϑ−m)) + Iζ,ψ
κm+σ(κ).

Using condition (4), we obtain

Φ(0)y(0) =
δ3Φ(0)

δ1
− δ2Φ(0)Φ(κm)Ψm(κm, y(ϑ−m))

δ1Φ(κ) − δ2Φ(0)
δ1Φ(κ) I

ζ,ψ
κm+σ(κ).

Substituting the value of y(0) in (8), we obtain (7).

Reciprocally, for ϑ ∈ Ω0, taking ϑ = 0, we obtain

y(0) =
δ3

δ1
− δ2Φ(κm)Ψm(κm, y(ϑ−m))

δ1Φ(κ) − δ2

δ1Φ(κ) I
ζ,ψ
κm+σ(κ),
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and for ϑ ∈ Ωm, taking ϑ = κ, we obtain

y(κ) = 1
Φ(κ)

[
Φ(κm)Ψm(κm, y(ϑ−m)) + Iζ,ψ

κm+σ(κ)
]
.

Thus, we can obtain δ1y(0) + δ2y(κ) = δ3, which implies that (4) is verified. Next, we
apply RC

κ
Dζ

ϑ+1
(·) on both sides of (7), where  = 0, . . . , m. Then, using Lemma 2, we obtain

Equation (2). In addition, it is clear that y verifies (3), (5), and (6).

Lemma 4. Let 0 < ζ ≤ 1, ϕ : Θ× PC([−v, ṽ],R)×R → R be a given function, h̄1(·) ∈ X ,
and h̄2(·) ∈ X̃ , Φ ∈ C(Θ,R\{0}); then, y ∈ F verifies (1) if and only if y is the fixed point of
operator ℵ : F→ F, defined by

ℵy(ϑ) =



1
Φ(ϑ)

[
δ3Φ(0)

δ1
− δ2Φ(0)Φ(κm)Ψm(κm, y(ϑ−m))

δ1Φ(κ)

− δ2Φ(0)
δ1Φ(κ) I

ζ,ψ
κm+σ(κ) + Iζ,ψ

0+ σ(ϑ)

]
, ϑ ∈ Ω0,

1
Φ(ϑ)

[
Φ(κ)Ψ(κ, y(ϑ− )) + Iζ,ψ

κ
+σ(ϑ)

]
, ϑ ∈ Ω;  = 1, . . . , m,

Ψ(ϑ, y(ϑ− )), ϑ ∈ Ω̃;  = 1, . . . , m,
h̄1(ϑ), ϑ ∈ [−v, 0],
h̄2(ϑ), ϑ ∈ [κ,κ + ṽ].

(9)

where σ is a function satisfying the following functional equation:

σ(ϑ) = ϕ
(

ϑ, yϑ(·), σ(ϑ)
)

.

Obviously, the fixed points of operator ℵ are solutions of problem (1).

Proof. We can see that the proof follows the same processes as the proof of Theorem 3.
In fact, it is a direct consequence of Theorem 3.

Let us assume the following assumptions:

(A1) Function ϕ : Θ× PC([−v, ṽ],R)×R→ R is continuous.
(A2) There exist constants ψ1,℘ > 0 and 0 < ψ2 < 1 such that

|ϕ(ϑ, ξ, γ)− ϕ(ϑ, ξ̄, γ̄)| ≤ ψ1‖ξ − ξ̄‖[−v,ṽ] + ψ2|γ− γ̄|,
|Ψ(ϑ, γ)−Ψ(ϑ, γ̄)| ≤ ℘|γ− γ̄|,

for any ξ, ξ̄ ∈ PC([−v, ṽ],R), γ, γ̄ ∈ R, and ϑ ∈ Ω;  = 0, . . . , m,
where ℘∗ = max=1,...,m{℘}.

(A3) Function Φ is continuous on Θ, and there exists a positive real constantM such that

|Φ(ϑ)| ≥ M.

Set
Φ = max

=0,...,m+1
|Φ(κ)| and Φ̃ = min

=0,...,m+1
|Φ(κ)|.

We are now in a position to prove the existence result of problem (1) based on the Banach
contraction principle.

Theorem 4. Let us assume that assumptions (A1)–(A3) hold. If

β :=
1
M

[
℘∗Φ +

℘∗|δ2|Φ
2

|δ1|Φ̃
+
|δ2|Φψ1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− ψ2)Γ(ζ + 1)
+

ψ1(ψ(κ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)

]
+ ℘∗ < 1, (10)
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then implicit fractional problem (1) has a unique solution on Θ.

Proof. We show that operator ℵ defined in (9) is a contraction in F.
Let y, z ∈ C(Θ,R). Then, for each ϑ ∈ [−v, 0] ∪ [κ,κ + ṽ], we have

|ℵy(ϑ)− ℵz(ϑ)| = 0.

Moreover, for ϑ ∈ Ω0, we have

|ℵy(ϑ)− ℵz(ϑ)| ≤ 1
|Φ(ϑ)|

[
|δ2Φ(0)Φ(κm)| × |Ψm(κm, y(ϑ−m))−Ψm(κm, z(ϑ−m))|

|δ1Φ(κ)|

+
|δ2Φ(0)|
|δ1Φ(κ)|

(
Iζ,ψ
κm+ |σ(s)− σz(s)|

)
(κ) +

(
Iζ,ψ

0+ |σ(s)− σz(s)|
)
(ϑ)

]
,

where σ and σz are functions satisfying the following functional equations:

σ(ϑ) = ϕ(ϑ, yϑ(·), σ(ϑ)) and σz(ϑ) = ϕ(ϑ, zϑ(·), σz(ϑ)).

Using hypothesis (A2), for ϑ ∈ Θ, we have

|σ(ϑ)− σz(ϑ)| = |ϕ
(

ϑ, yϑ(·), σ(ϑ)
)
− ϕ

(
ϑ, zϑ(·), σz(ϑ)

)
|

≤ ψ1‖yϑ − zϑ‖[−v,ṽ] + ψ2|σ(ϑ)− σz(ϑ)|,

which implies

|σ(ϑ)− σz(ϑ)| ≤
ψ1

1− ψ2
‖yϑ − zϑ‖[−v,ṽ] ≤

ψ1

1− ψ2
‖y− z‖F.

Then, using (A2), we find that

|ℵy(ϑ)− ℵz(ϑ)|

≤ ‖y− z‖F
|Φ(ϑ)|

[
℘|δ2Φ(0)Φ(κm)|
|δ1Φ(κ)| +

|δ2Φ(0)|ψ1
|δ1Φ(κ)|(1− ψ2)

(
Iζ,ψ
κm+ (1)

)
(κ) + ψ1

1− ψ2

(
Iζ,ψ

0+ (1)
)
(ϑ)

]
≤ ‖y− z‖F
|Φ(ϑ)|

[
℘|δ2Φ(0)Φ(κm)|
|δ1Φ(κ)| +

|δ2Φ(0)|ψ1(ψ(κ)− ψ(κm))
ζ

|δ1Φ(κ)|(1− ψ2)Γ(ζ + 1)
+

ψ1(ψ(ϑ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)

]

≤ ‖y− z‖F
M

[
℘∗|δ2Φ(0)Φ(κm)|
|δ1Φ(κ)| +

|δ2Φ(0)|ψ1(ψ(κ)− ψ(0))ζ

|δ1Φ(κ)|(1− ψ2)Γ(ζ + 1)
+

ψ1(ψ(κ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)

]

≤ ‖y− z‖F
M

[
℘∗|δ2|Φ

2

|δ1|Φ̃
+
|δ2|Φψ1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− ψ2)Γ(ζ + 1)
+

ψ1(ψ(κ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)

]
.

For ϑ ∈ Ω;  = 1, . . . , m, we have

|ℵy(ϑ)− ℵz(ϑ)| ≤ 1
|Φ(ϑ)|

[
|Φ(κ)| ×

∣∣∣Ψ(κ, y(ϑ− ))−Ψ(κ, z(ϑ− ))
∣∣∣

+
(
Iζ,ψ
κ

+ |σ(s)− σz(s)|
)
(ϑ)
]
.
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Then, using (A2) and (A3), we find that

|ℵy(ϑ)− ℵz(ϑ)| ≤ ‖y− z‖F
|Φ(ϑ)|

[
℘|Φ(κ)|+

ψ1

1− ψ2

(
Iζ,ψ
κ

+(1)
)
(ϑ)

]
≤ ‖y− z‖F

M

[
℘∗|Φ(κ)|+

ψ1(ψ(ϑ)− ψ(κ))
ζ

(1− ψ2)Γ(ζ + 1)

]

≤ ‖y− z‖F
M

[
℘∗Φ +

ψ1(ψ(κ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)

]
.

For ϑ ∈ Ω̃;  = 1, . . . , m, we have

|ℵy(ϑ)− ℵz(ϑ)| ≤
∣∣∣Ψ(ϑ, y(ϑ− ))−Ψ(ϑ, z(ϑ− ))

∣∣∣ ≤ ℘∗‖y− z‖F.

Thus, we can conclude that

‖ℵy− ℵz‖F ≤ β‖y− z‖F.

Consequently, using the Banach contraction principle, operator ℵ has a unique fixed point,
which is a solution to problem (1).

Our second result is based on Krasnoselskii’s fixed point theorem.

Remark 1. Let us put

λ2(ϑ) = |ϕ(ϑ, 0, 0)|, Λ
2(ϑ) = |Ψ(ϑ, 0)|, ψ1 = λ̃1, ψ2 = λ1, ℘∗ = Λ1,

then hypothesis (A2) implies that

|ϕ(ϑ, ξ, γ)| ≤ λ̃1‖ξ‖[−v,ṽ] + λ1|γ|+ λ2(ϑ) and |Ψ(ϑ, γ)| ≤ Λ1|γ|+ Λ2,

for ϑ ∈ Θ, ξ ∈ PC([−v, ṽ],R), γ ∈ R, and λ2, Λ
2 ∈ C(Θ,R+), with

λ̃2 = sup
ϑ∈Θ

λ2(ϑ), Λ2 = sup
ϑ∈Θ

Λ
2(ϑ).

Set

Ξ1 =
(Φ +M)Λ1

M +
1
M

[
|δ2|Φ

2Λ1

|δ1|Φ̃
+

(|δ2|Φ + |δ1|Φ̃)λ̃1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− λ1)Γ(ζ + 1)

]
,

Ξ2 =
(Φ +M)Λ2

M +
1
M

[
|δ3|Φ
|δ1|

+
|δ2|Φ

2Λ2

|δ1|Φ̃
+

(|δ2|Φ + |δ1|Φ̃)λ̃2(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− λ1)Γ(ζ + 1)

]
,

Ξ3 =
1
M

[
Λ1Φ(|δ2|Φ + |δ1|Φ̃)

|δ1|Φ̃
+
|δ2|Φλ̃1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− λ1)Γ(ζ + 1)

]
.

Theorem 5. Let us assume that (A1)–(A3) hold. If

β̃ := max{Ξ1, Ξ3} < 1, (11)

then the problem (1) has at least one solution in F.

Proof. Consider the set

Υε = {ξ ∈ F : ‖ξ‖F ≤ ε}, where ε ≥ 2Ξ2

1− Ξ1
.
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We define operators ℵ1 and ℵ2 on Υε as

ℵ1y(ϑ) =



1
Φ(ϑ)

[
δ3Φ(0)

δ1
− δ2Φ(0)Φ(κm)Ψm(κm, y(ϑ−m))

δ1Φ(κ)

− δ2Φ(0)
δ1Φ(κ) I

ζ,ψ
κm+σ(κ)

]
, ϑ ∈ Ω0,

1
Φ(ϑ)

[
Φ(κ)Ψ(κ, y(ϑ− ))

]
, ϑ ∈ Ω;  = 1, . . . , m,

0, if ϑ ∈ Ω̃;  = 1, . . . , m,
0, if ϑ ∈ [−v, 0],
0, if ϑ ∈ [κ,κ + ṽ].

(12)

and

ℵ2y(ϑ) =


1

Φ(ϑ)

[
Iζ,ψ
κ

+σ(ϑ)
]
, ϑ ∈ Ω;  = 0, . . . , m,

Ψ(ϑ, y(ϑ− )), ϑ ∈ Ω̃;  = 1, . . . , m,
h̄1(ϑ), ϑ ∈ [−v, 0],
h̄2(ϑ), ϑ ∈ [κ,κ + ṽ].

(13)

Then, we can write the following operator equation:

ℵy(ϑ) = ℵ1y(ϑ) + ℵ2y(ϑ), y ∈ F.

We shall use Krasnoselskii’s fixed point theorem to prove in several steps that operator ℵ
defined in (9) has a fixed point.

Step 1: We prove that ℵ1x + ℵ2y ∈ Υε for any x, y ∈ Υε.
For ϑ ∈ Ω0, using (12) and Remark 1, we obtain

|(ℵ1x)(ϑ)| ≤ 1
|Φ(ϑ)|

[
|δ3Φ(0)|
|δ1|

+
|δ2Φ(0)Φ(κm)| × |Ψm(κm, x(ϑ−m))|

|δ1Φ(κ)| +
|δ2Φ(0)|
|δ1Φ(κ)| I

ζ,ψ
κm+ |σx(κ)|

]
,

where σx is a function satisfying the following functional equations:

σx(ϑ) = ϕ(ϑ, xϑ(·), σx(ϑ)).

Using Remark 1, we have

|σx(ϑ)| = |ϕ(ϑ, xϑ(·), σx(ϑ))|
≤ λ̃1‖xϑ‖[−v,ṽ] + λ1|σx(ϑ)|+ λ2(ϑ)

≤ λ̃1‖x‖F + λ1|σx(ϑ)|+ λ̃2

≤ λ̃1ε + λ1|σx(ϑ)|+ λ̃2,

which implies that

|σx(ϑ)| ≤
λ̃1ε + λ̃2

1− λ1
.

Thus,
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|(ℵ1x)(ϑ)| ≤ 1
|Φ(ϑ)|

[
|δ3Φ(0)|
|δ1|

+
|δ2Φ(0)Φ(κm)|(Λ1ε + Λ2)

|δ1Φ(κ)|

+
|δ2Φ(0)|(λ̃1ε + λ̃2)(ψ(κ)− ψ(κm))

ζ

|δ1Φ(κ)|(1− λ1)Γ(ζ + 1)

]

≤ 1
M

[
|δ3|Φ
|δ1|

+
|δ2|Φ

2
(Λ1ε + Λ2)

|δ1|Φ̃
+
|δ2|Φ(λ̃1ε + λ̃2)(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− λ1)Γ(ζ + 1)

]
.

For ϑ ∈ Ω;  = 1, . . . , m, we have

|(ℵ1x)(ϑ)| ≤ 1
|Φ(ϑ)|

[
|Φ(κ)| × |Ψ(κ, x(ϑ− ))|

]
≤ Φ(Λ1ε + Λ2)

M .

Then, we deduce that for each ϑ ∈ Θ, we obtain

‖ℵ1x‖F ≤ max

{
ΦΛ1

M ε +
ΦΛ2

M ,
1
M

[
|δ3|Φ
|δ1|

+
|δ2|Φ

2Λ2

|δ1|Φ̃
+
|δ2|Φλ̃2(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− λ1)Γ(ζ + 1)

]

+
ε

M

[
|δ2|Φ

2Λ1

|δ1|Φ̃
+
|δ2|Φλ̃1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− λ1)Γ(ζ + 1)

]}
. (14)

For ϑ ∈ Ω;  = 0, . . . , m, using (13) and Remark 1, we obtain

|(ℵ2y)(ϑ)| ≤ 1
|Φ(ϑ)|

[
Iζ,ψ
κ

+ |σ(ϑ)|
]
≤ λ̃1ε + λ̃2

|Φ(ϑ)|(1− λ1)

[
Iζ,ψ
κ

+(1)
]
≤ (λ̃1ε + λ̃2)(ψ(κ)− ψ(0))ζ

M(1− λ1)Γ(ζ + 1)
,

and for ϑ ∈ Ω̃;  = 1, . . . , m, we have

|(ℵ2y)(ϑ)| ≤
∣∣∣Ψ(ϑ, y(ϑ− ))

∣∣∣ ≤ Λ1ε + Λ2,

then, for each ϑ ∈ Θ we obtain

‖ℵ2y‖F ≤ max

{
Λ1ε + Λ2,

λ̃2(ψ(κ)− ψ(0))ζ

M(1− λ1)Γ(ζ + 1)
+ ε

λ̃1(ψ(κ)− ψ(0))ζ

M(1− λ1)Γ(ζ + 1)

}
. (15)

From (14) and (15), for each ϑ ∈ Θ, we have,

‖ℵ1x + ℵ2y‖F ≤ ‖ℵ1x‖PC + ‖ℵ2y‖F ≤ ε,

thus, ℵ1x + ℵ2y ∈ Υε.
Step 2: ℵ1 is a contraction.
Let y, z ∈ C(Θ,R). Then, for ϑ ∈ Ω0, we have

|ℵ1y(ϑ)− ℵ1z(ϑ)| ≤ ‖y− z‖F
|Φ(ϑ)|

[
℘|δ2Φ(0)Φ(κm)|
|δ1Φ(κ)| +

|δ2Φ(0)|ψ1

|δ1Φ(κ)|(1− ψ2)

(
Iζ,ψ
κm+(1)

)
(κ)

]
≤ ‖y− z‖F
|Φ(ϑ)|

[
℘|δ2Φ(0)Φ(κm)|
|δ1Φ(κ)| +

|δ2Φ(0)|ψ1(ψ(κ)− ψ(κm))
ζ

|δ1Φ(κ)|(1− ψ2)Γ(ζ + 1)

]

≤ ‖y− z‖F
M

[
℘∗|δ2Φ(0)Φ(κm)|
|δ1Φ(κ)| +

|δ2Φ(0)|ψ1(ψ(κ)− ψ(0))ζ

|δ1Φ(κ)|(1− ψ2)Γ(ζ + 1)

]

≤ ‖y− z‖F
M

[
℘∗|δ2|Φ

2

|δ1|Φ̃
+
|δ2|Φψ1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− ψ2)Γ(ζ + 1)

]
.
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For ϑ ∈ Ω;  = 1, . . . , m, we have

|ℵy(ϑ)− ℵz(ϑ)| ≤ 1
|Φ(ϑ)|

[
|Φ(κ)| ×

∣∣∣Ψ(κ, y(ϑ− ))−Ψ(κ, z(ϑ− ))
∣∣∣]

≤ ‖y− z‖F
M (℘∗|Φ(κ)|)

≤ ‖y− z‖F
M (℘∗Φ).

Thus, using Remark 1, we find that for each ϑ ∈ Θ, we have

‖ℵ1y− ℵ1z‖F ≤
1
M

[
Λ1Φ(|δ2|Φ + |δ1|Φ̃)

|δ1|Φ̃
+
|δ2|Φλ̃1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− λ1)Γ(ζ + 1)

]
‖y− z‖F ≤ Ξ3‖y− z‖F.

Then, using (11), operator ℵ1 is a contraction.
Step 3: ℵ2 is continuous and compact. Let {yn} be a sequence where yn → y in F.
Then, for each ϑ ∈ [−v, 0] ∪ [κ,κ + ṽ], we have

|ℵyn(ϑ)− ℵy(ϑ)| = 0.

For ϑ ∈ Ω;  = 0, . . . , m, we have

|(ℵ2yn)(ϑ)− (ℵ2y)(ϑ)| ≤ 1
Φ(ϑ)

[
Iζ,ψ
κ

+ |σn(ϑ)− σ(ϑ)|
]
,

where σ and σn are functions satisfying the following functional equations:

σ(ϑ) = ϕ(ϑ, yϑ(·), σ(ϑ)) and σn(ϑ) = ϕ(ϑ, yϑ
n(·), σn(ϑ)).

For each ϑ ∈ Ω̃;  = 1, . . . , m, we have,

|(ℵ2yn)(ϑ)− (ℵ2y)(ϑ)| ≤
∣∣∣Ψ(ϑ, yn(ϑ

−
 ))−Ψ(ϑ, y(ϑ− ))

∣∣∣.
Since yn → y and since ϕ and Ψ are continuous, we may obtain

‖ℵ2yn − ℵ2y‖PC → 0 as n→ ∞.

Then, ℵ2 is continuous. Now, we demonstrate that ℵ2 is uniformly bounded on Υε.
Let y ∈ Υε. Thus, for ϑ ∈ Θ,

‖ℵ2y‖F ≤ max

{
Λ1ε + Λ2,

λ̃2(ψ(κ)− ψ(0))ζ

M(1− λ1)Γ(ζ + 1)
+ ε

λ̃1(ψ(κ)− ψ(0))ζ

M(1− λ1)Γ(ζ + 1)

}
.

Consequently, ℵ2 is uniformly bounded on Υε. We take y ∈ Υε and 0 < γ1 < γ2 ≤ κ.
Then, for γ1, γ2 ∈ Ω;  = 0, . . . , m,

|(ℵ2y)(γ1)− (ℵ2y)(γ2)|

≤
∣∣∣∣ 1
Φ(γ1)

[
Iζ,ψ
κ

+σ(γ1)
]
− 1

Φ(γ2)

[
Iζ,ψ
κ

+σ(γ2)
]∣∣∣∣

≤

∣∣∣∣∣∣ 1
Γ(ζ)

γ1∫
κ

ψ′(s)
(ψ(γ1)− ψ(s))ζ−1

Φ(γ1)
σ(s)ds− 1

Γ(ζ)

γ2∫
κ

ψ′(s)
(ψ(γ2)− ψ(s))ζ−1

Φ(γ2)
σ(s)ds

∣∣∣∣∣∣
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≤ 1
Γ(ζ)

γ1∫
κ

ψ′(s)
∣∣∣∣ (ψ(γ1)− ψ(s))ζ−1

Φ(γ1)
− (ψ(γ2)− ψ(s))ζ−1

Φ(γ2)

∣∣∣∣|σ(s)|ds

+
λ̃1ε + λ̃2

Γ(ζ)

γ2∫
γ1

ψ′(s)
(ψ(γ2)− ψ(s))ζ−1

Φ(γ2)
ds

≤ 1
Γ(ζ)

γ1∫
κ

ψ′(s)
∣∣∣∣ (ψ(γ1)− ψ(s))ζ−1

Φ(γ1)
− (ψ(γ2)− ψ(s))ζ−1

Φ(γ2)

∣∣∣∣|σ(s)|ds

+
(λ̃1ε + λ̃2)(ψ(γ2)− ψ(γ1))

ζ

M(1− λ1)Γ(ζ + 1)

≤
(λ̃1ε + λ̃2)

[
(ψ(γ1)− ψ(0))ζ − (ψ(γ2)− ψ(0))ζ

]
M(1− λ1)Γ(ζ + 1)

.

Note that
|(ℵ2y)(γ1)− (ℵ2y)(γ2)| → 0 as γ1 → γ2.

Moreover, for γ1, γ2 ∈ Ω̃;  = 1, . . . , m,

|(ℵ2y)(γ1)− (ℵ2y)(γ2)| ≤
∣∣∣Ψ(γ1, y(ϑ− ))−Ψ(γ2, y(ϑ− ))

∣∣∣,
Note, since Ψ are continuous, that

|(ℵ2y)(γ1)− (ℵ2y)(γ2)| → 0 as γ1 → γ2.

Thus, ℵ2Υε is equicontinuous on Θ, which implies that ℵ2Υε is relatively compact. By the
Arzelà–Ascoli theorem, ℵ2 is compact. The equicontinuity for the other cases is obvious.
Using Theorem 2, we conclude that ℵ admits at least a fixed point, which is a solution to
problem (1).

4. Ulam–Hyers–Rassias Stability

Now, we consider the Ulam stability for problem (1). For this, we take inspiration
from the papers [6,26–28] and the references therein. Let y ∈ F, ε > 0, ∆1, ∆2 > 0, λ > 0,
and = : Θ −→ [0, ∞) be a continuous function. We consider the following inequalities:

∣∣∣CDζ;ψ
κ (Φ(ϑ)y(ϑ))− ϕ

(
ϑ, yϑ(·), CDζ;ψ

κ (Φ(ϑ)y(ϑ))
)∣∣∣ ≤ ε, ϑ ∈ Ω,  = 0, . . . , m,∣∣∣y(ϑ)−Ψ(ϑ, y(ϑ− ))

∣∣∣ ≤ ε, ϑ ∈ Ω̃,  = 1, . . . , m,

|y(ϑ)− h̄1(ϑ)| ≤ ε, ϑ ∈ [−v, 0],
|y(ϑ)− h̄2(ϑ)| ≤ ε, ϑ ∈ [κ,κ + ṽ],

(16)



∣∣∣CDζ;ψ
κ (Φ(ϑ)y(ϑ))− ϕ

(
ϑ, yϑ(·), CDζ;ψ

κ (Φ(ϑ)y(ϑ))
)∣∣∣ ≤ =(ϑ), ϑ ∈ Ω,  = 0, . . . , m,∣∣∣y(ϑ)−Ψ(ϑ, y(ϑ− ))

∣∣∣ ≤ λ, ϑ ∈ Ω̃,  = 1, . . . , m,

|y(ϑ)− h̄1(ϑ)| ≤ ∆1, ϑ ∈ [−v, 0],
|y(ϑ)− h̄2(ϑ)| ≤ ∆2, ϑ ∈ [κ,κ + ṽ],

(17)

and
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

∣∣∣CDζ;ψ
κ (Φ(ϑ)y(ϑ))− ϕ

(
ϑ, yϑ(·), CDζ;ψ

κ (Φ(ϑ)y(ϑ))
)∣∣∣ ≤ ε=(ϑ), ϑ ∈ Ω,  = 0, . . . , m,∣∣∣y(ϑ)−Ψ(ϑ, y(ϑ− ))

∣∣∣ ≤ ελ, ϑ ∈ Ω̃,  = 1, . . . , m,

|y(ϑ)− h̄1(ϑ)| ≤ ε∆1, ϑ ∈ [−v, 0],
|y(ϑ)− h̄2(ϑ)| ≤ ε∆2, ϑ ∈ [κ,κ + ṽ].

(18)

Definition 3 ([6,27]). Problem (1) is Ulam–Hyers (U-H) stable if there exists a real number
aϕ > 0 such that for each ε > 0 and for each solution x ∈ F of inequality (16), there exists a
solution y ∈ F of (1) with

|x(ϑ)− y(ϑ)| ≤ εaϕ, ϑ ∈ Θ.

Definition 4 ([6,27]). Problem (1) is generalized Ulam–Hyers (G.U-H) stable if there exists
Kϕ : C([0, ∞), [0, ∞)) with Kϕ(0) = 0 such that for each ε > 0 and for each solution x ∈ F of
inequality (16), there exists a solution y ∈ F of (1) with

|x(ϑ)− y(ϑ)| ≤ Kϕ(ε), ϑ ∈ Θ.

Definition 5 ([6,27]). Problem (1) is Ulam–Hyers–Rassias (U-H-R) stable with respect to
(=, λ, ∆1, ∆2) if there exists a real number aϕ,= > 0 such that for each ε > 0 and for each
solution x ∈ F of inequality (18), there exists a solution y ∈ F of (1) with

|x(ϑ)− y(ϑ)| ≤ εaϕ,=(=(ϑ) + λ + ∆1 + ∆2), ϑ ∈ Θ.

Definition 6 ([6,27]). Problem (1) is generalized Ulam–Hyers–Rassias (G.U-H-R) stable with
respect to (=, λ, ∆1, ∆2) if there exists a real number aϕ,= > 0 such that for each solution x ∈ F of
inequality (18), there exists a solution y ∈ F of (1) with

|x(ϑ)− y(ϑ)| ≤ aϕ,=(=(ϑ) + λ + ∆1 + ∆2), ϑ ∈ Θ.

Remark 2. It is clear that

1. Definition 3 =⇒ Definition 4.
2. Definition 5 =⇒ Definition 6.
3. Definition 5 for =(.) = λ = ∆1 = ∆2 = 1 =⇒ Definition 3.

Remark 3. A function y ∈ F is a solution of inequality (18) if and only if there exist υ ∈ F and a
sequence υ,  = 0, . . . , m + 2 such that

• |υ(ϑ)| ≤ ε=(ϑ), ϑ ∈ Ω,  = 0, . . . , m; |υ| ≤ ελ, ϑ ∈ Ω̃,  = 1, . . . , m, |υm+1| ≤ ε∆1
and |υm+2| ≤ ε∆2.

• CDζ;ψ
κ (Φ(ϑ)y(ϑ)) = ϕ

(
ϑ, yϑ(·), CDζ;ψ

κ (Φ(ϑ)y(ϑ))
)
+ υ(ϑ), ϑ ∈ Ω,  = 0, . . . , m.

• y(ϑ) = Ψ(ϑ, y(ϑ− )) + υ, ϑ ∈ Ω̃,  = 1, . . . , m.
• y(ϑ) = h̄1(ϑ) + υm+1, ϑ ∈ [−v, 0].
• y(ϑ) = h̄2(ϑ) + υm+2, ϑ ∈ [κ,κ + ṽ].

Theorem 6. Let us assume that in addition to (A1)–(A3) and (10), the following hypothesis holds:

(A4) There exists a nondecreasing function = : Θ −→ [0, ∞) and `= > 0 such that for each
ϑ ∈ Ω;  = 0, . . . , m, we have

(Iζ,ψ
κ

+=)(ϑ) ≤ `==(ϑ).

Then, problem (1) is U-H-R stable with respect to (=, λ).
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Proof. Let x ∈ F be a solution if inequality (18), and let us assume that y is the unique
solution of problem

CDζ;ψ
κ (Φ(ϑ)y(ϑ)) = ϕ

(
ϑ, yϑ(·), CDζ;ψ

κ (Φ(ϑ)y(ϑ))
)

; ϑ ∈ Ω,  = 0, . . . , m,
y(ϑ) = Ψ(ϑ, y(ϑ− )); ϑ ∈ Ω̃,  = 1, . . . , m,
y(ϑ) = h̄1(ϑ), ϑ ∈ [−v, 0],
y(ϑ) = h̄2(ϑ), ϑ ∈ [κ,κ + ṽ],
δ1y(0) + δ2y(κ) = δ3,
y(κ) = x(κ);  = 0, . . . , m,
y(ϑ) = x(ϑ);  = 1, . . . , m + 1.

Using Theorem 3, we obtain, for each ϑ ∈ Θ,

y(ϑ) =



1
Φ(ϑ)

[
δ3Φ(0)

δ1
− δ2Φ(0)Φ(κm)Ψm(κm, y(ϑ−m))

δ1Φ(κ)

− δ2Φ(0)
δ1Φ(κ) I

ζ,ψ
κm+σ(κ) + Iζ,ψ

0+ σ(ϑ)

]
, ϑ ∈ Ω0,

1
Φ(ϑ)

[
Φ(κ)Ψ(κ, y(ϑ− )) + Iζ,ψ

κ
+σ(ϑ)

]
, ϑ ∈ Ω;  = 1, . . . , m,

Ψ(ϑ, y(ϑ− )), ϑ ∈ Ω̃;  = 1, . . . , m,
h̄1(ϑ), ϑ ∈ [−v, 0],
h̄2(ϑ), ϑ ∈ [κ,κ + ṽ],

where σ is a function satisfying the following functional equations:

σ(ϑ) = ϕ(ϑ, yϑ(·), σ(ϑ)).

Since x is a solution of inequality (18), using Remark 3, we have
CDζ;ψ

κ (Φ(ϑ)x(ϑ)) = ϕ
(

ϑ, xϑ(·), CDζ;ψ
κ (Φ(ϑ)x(ϑ))

)
+ υ(ϑ), ϑ ∈ Ω,  = 0, . . . , m,

x(ϑ) = Ψ(ϑ, x(ϑ− )) + υ, ϑ ∈ Ω̃,  = 1, . . . , m,
x(ϑ) = h̄1(ϑ) + υm+1, ϑ ∈ [−v, 0],
x(ϑ) = h̄2(ϑ) + υm+2, ϑ ∈ [κ,κ + ṽ].

(19)

Clearly, the solution of (19) is given by

x(ϑ) =


1

Φ(ϑ)

[
Φ(κ)x(κ) + Iζ,ψ

κ
+σx(ϑ)

]
, i f ϑ ∈ Ω,  = 0, . . . , m,

Ψ(ϑ, x(ϑ− )) + υ, i f ϑ ∈ Ω̃,  = 1, . . . , m,
h̄1(ϑ) + υm+1, ϑ ∈ [−v, 0],
h̄2(ϑ) + υm+2, ϑ ∈ [κ,κ + ṽ],

where σx is a function satisfying the following functional equations:

σx(ϑ) = ϕ(ϑ, xϑ
n(·), σx(ϑ)).

Hence, for each ϑ ∈ Ω, = 0, . . . , m, we have

|x(ϑ)− y(ϑ)| ≤ 1
Φ(ϑ)

[
1

Γ(ζ)

∫ ϑ

κ

ψ′($)(ψ(ϑ)− ψ($))ζ−1|σx($)− σ($)|d$ +
(
Iζ,ψ
κ

+ |υ(τ)|
)]

≤ 1
M

[
ε`==(ϑ) +

ψ1(ψ(κ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)
‖x− y‖F

]
.
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Moreover, for each ϑ ∈ Ω̃, = 1, . . . , m, we have

|x(ϑ)− y(ϑ)| ≤ |Ψ(ϑ, x(ϑ− ))−Ψ(ϑ, y(ϑ− ))|+ |υ|
≤ ℘∗|x(ϑ)− y(ϑ)|+ ελ

≤ ℘∗‖x− y‖F + ελ.

For each ϑ ∈ [−v, 0], we have

|x(ϑ)− y(ϑ)| ≤ |υm+1| ≤ ε∆1.

Moreover, for each ϑ ∈ [κ,κ + ṽ], we have

|x(ϑ)− y(ϑ)| ≤ |υm+2| ≤ ε∆2.

Thus,

‖x− y‖F ≤
[

ε`=
=(ϑ)
M + ελ + ε∆1 + ε∆2

]
+

[
℘∗ +

ψ1(ψ(κ)− ψ(0))ζ

M(1− ψ2)Γ(ζ + 1)

]
‖x− y‖F.

Then, we have
‖x− y‖F ≤ aϕ,=ε(λ +=(ϑ) + ∆1 + ∆2),

where

aϕ,= =
1 +

`=
M

1−
[
℘∗ +

ψ1(ψ(κ)− ψ(0))ζ

M(1− ψ2)Γ(ζ + 1)

] .

Hence, problem (1) is U-H-R stable with respect to (=, λ, ∆1, ∆2).

Remark 4. If conditions (A1)–(A3) and (10) are satisfied, then using Theorem 6 and Remark 2, it is
clear that problem (1) is U-H-R stable and G.U-H-R stable. Moreover, if=(.) = λ = ∆1 = ∆2 = 1,
then problem (1) is also G.U-H stable and U-H stable.

5. Examples

Example 1. Consider the following boundary value impulsive problem, which is an example of our
problem (1):

CD
1
2 ;ψ
κ (Φ(ϑ)y(ϑ)) = ϕ

(
ϑ, yϑ(·), CD

1
2 ;ψ
κ (Φ(ϑ)y(ϑ))

)
; ϑ ∈ Ω0 ∪Ω1, (20)

y(ϑ) = Ψ1(ϑ, y(ϑ−1 )) ∈ Ω̃1, (21)

y(0) + y(κ) = 0, (22)

y(ϑ) = h̄1(ϑ), ϑ ∈ [−π, 0], v > 0, (23)

y(ϑ) = h̄2(ϑ), ϑ ∈ [π, 2π], ṽ > 0, (24)

where Ω0 = (0, 2], Ω1 = (3, π], Ω̃1 = (2, 3], κ0 = 0, ϑ1 = 2, and κ1 = 3, with ζ = 1
2 ,

ψ(ϑ) = ϑ,  ∈ {0, 1}, δ1 = δ2 = 1, δ3 = 0, and v = ṽ = π.

Set

ϕ(ϑ, y1, y2) =
3 + 3| sin(ϑ)|+ ‖y1‖[−v,ṽ] + |y2(ϑ)|

2450 + 6230eϑ
, ϑ ∈ Ω0 ∪Ω1,

Φ(ϑ) =

√
3

233

(
ϑ2 + 3| sin(ϑ)|+ 1

)
,

Ψ1(ϑ, y2(ϑ
−
1 )) =

| cos(ϑ)|+ |y2(ϑ)|
412eϑ

,
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where y1 ∈ PC([−π, π],R), y2 ∈ R.
Clearly, function ϕ is continuous. Hence, condition (A1) is satisfied. For each x1, y1 ∈

PC([−π, π],R), x2, y2 ∈ R, and ϑ ∈ Θ, we have

|ϕ(ϑ, x1, x2)− ϕ(ϑ, y1, y2)| ≤
1

2450 + 6230eϑ

(
‖x1 − y1‖[−v,ṽ] + |x2 − y2|

)
≤ 1

8680

(
‖x1 − y1‖[−v,ṽ] + ‖x2 − y2‖

)
,

|Ψ1(ϑ, x2(ϑ
−
1 ))−Ψ1(ϑ, y2(ϑ

−
1 ))| ≤ |x2(ϑ)− y2(ϑ)|

412eϑ

≤ 1
412
|x2(ϑ)− y2(ϑ)|.

Hence, condition (A2) is satisfied with ψ1 = ψ2 = 1
8680 and ℘∗ = 1

412 .

Hypothesis (A3) is verified withM =
√

3
233 , indeed we have |Φ(ϑ)| ≥

√
3

233 . Condition (10) of
Theorem 4 is verified, for

Φ̃ =

√
3

233
and Φ =

√
3(π2 + 1)

233
.

Then,

β =
1
M

[
℘∗Φ +

℘∗|δ2|Φ
2

|δ1|Φ̃
+
|δ2|Φψ1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− ψ2)Γ(ζ + 1)
+

ψ1(ψ(κ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)

]
+ ℘∗

=
1√
3

[√
3(π2 + 1) +

√
3(π2 + 1)2

412
+

466(π2 + 1) + 2
8679

]
+

1
412

≈ 0.652663491979853

< 1.

Then, problem (20)–(24) has a unique solution in F.
Now, if we want to check the result obtained in Theorem 5, using Remark 1, we deduce that all

the requirements of Theorem 5 are verified. Indeed, we have

β̃ ≈ 0.6526635 < 1.

Consequently, problem (20)–(24) has at least one solution in F.
Hypothesis (A4) is satisfied with λ = ∆1 = ∆2 = 1, =(ϑ) = 5

√
π, and `= = 2. Indeed,

for each ϑ ∈ Ω0 ∪Ω1, we obtain

I
1
2 ,ψ
κ

+5
√

π =
1

Γ(ζ)

ϑ∫
κ

(ϑ− $)−
1
2 5
√

πd$ ≤ 5
ϑ∫

0

(ϑ− $)−
1
2 d$ ≤ 10

√
π.

Consequently, Theorem 6 implies that problem (20)–(24) is U-H-R stable.

Example 2. Consider the following initial value impulsive problem:

CD
1
4 ;ψ
κ (Φ(ϑ)y(ϑ)) = ϕ

(
ϑ, yϑ(·), CD

1
4 ;ψ
κ (Φ(ϑ)y(ϑ))

)
; ϑ ∈ Ω0 ∪Ω1, (25)

y(ϑ) = Ψ1(ϑ, y(ϑ−1 )) ∈ Ω̃1, (26)

y(0) = 0, (27)

y(ϑ) = 1 + ϑ2, ϑ ∈ [−e, 0], v > 0, (28)

y(ϑ) = 1− ϑ2, ϑ ∈ [6, 8], ṽ > 0, (29)
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where Ω0 = (0, e], Ω1 = (2e, 6], Ω̃1 = (e, 2e], κ0 = 0, ϑ1 = e, and κ1 = 2e, with ζ = 1
4 ,

ψ(ϑ) = ϑ2,  ∈ {0, 1}, δ1 = 1, δ3 = δ2 = 0, and v = ṽ = 2.

Set

ϕ(ϑ, y1, y2) =
1 + ‖y1‖[−v,ṽ] + |y2(ϑ)|

2022 + 2022e12ϑ
, ϑ ∈ Ω0 ∪Ω1,

Φ(ϑ) =
ϑ2 + 1

22
,

Ψ1(ϑ, y2(ϑ
−
1 )) =

| cos(ϑ)|+ |y2(ϑ)|
312e12ϑ

,

where y1 ∈ PC([−2, 2],R), y2 ∈ R.
Clearly, function ϕ is continuous. Hence, condition (A1) is satisfied. For each x1, y1 ∈

PC([−2, 2],R), x2, y2 ∈ R, and ϑ ∈ Θ, we have

|ϕ(ϑ, x1, x2)− ϕ(ϑ, y1, y2)| ≤
1

2022 + 2022e12ϑ

(
‖x1 − y1‖[−v,ṽ] + |x2 − y2|

)
≤ 1

4044

(
‖x1 − y1‖[−v,ṽ] + ‖x2 − y2‖

)
,

|Ψ1(ϑ, x2(ϑ
−
1 ))−Ψ1(ϑ, y2(ϑ

−
1 ))| ≤ |x2(ϑ)− y2(ϑ)|

312e12ϑ

≤ 1
312
|x2(ϑ)− y2(ϑ)|.

Hence, condition (A2) is satisfied with ψ1 = ψ2 = 1
4044 and ℘∗ = 1

312 .
Hypothesis (A3) is verified withM = 1

22 , and condition (10) of Theorem 4 is verified, for

Φ̃ =
1
22

and Φ =
4e2 + 1

22
.

Indeed, we have

β =
1
M

[
℘∗Φ +

℘∗|δ2|Φ
2

|δ1|Φ̃
+
|δ2|Φψ1(ψ(κ)− ψ(0))ζ

|δ1|Φ̃(1− ψ2)Γ(ζ + 1)
+

ψ1(ψ(κ)− ψ(0))ζ

(1− ψ2)Γ(ζ + 1)

]
+ ℘∗

= 22

[
4e2 + 1

412× 2022
+

36
1
4

4043Γ( 5
4 )

]
+

1
312

≈ 0.018717359521359

< 1.

Then, problem (25)–(29) has a unique solution in F. Moreover, since β̃ ≈ 0.0187 < 1, using
Theorem 5, problem (25)–(29) at least one solution in F. As in the above example, we can easily
verify that the requirements of Theorem 6 are verified, which implies that problem (25)–(29) is
U-H-R stable.
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Example 3. Let us consider problem (25)–(29) with the following modifications: ζ = 1
3 and

ψ(ϑ) =
1

1 + e−ϑ
.

By following the same steps as the above example, we obtain

β = β̃

= 22

 4e2 + 1
412× 2022

+

(
1

1 + e−6 −
1
2

) 1
3

4043Γ( 4
3 )

+
1

312

≈ 0.00884062006887214

< 1.

Consequently, we obtain the existence result of our problem using Theorem 5 and the uniqueness
result using Theorem 4.

Hypothesis (A4) is satisfied with λ = ∆1 = ∆2 = 1, =(ϑ) = 3e, and

`= =
1

Γ( 4
3 )

(
1

1 + e−6 −
1
2

) 1
3
.

Indeed, for each ϑ ∈ Ω0 ∪Ω1, we obtain

I
1
3 ,ψ
κ

+3e =
3e

Γ( 1
3 )

ϑ∫
κ

(ϑ− $)−
2
3 d$ ≤ 3e

Γ( 1
3 )

ϑ∫
0

(ϑ− $)−
2
3 d$ ≤ 3e

Γ( 4
3 )

(
1

1 + e−6 −
1
2

) 1
3
.

Consequently, Theorem 6 implies the U-H-R stability of our problem.

6. Conclusions

In the present research, we investigated existence and uniqueness criteria for the
solutions of a boundary value problem for implicit ψ-Caputo fractional differential equa-
tions with non-instantaneous impulses involving both retarded and advanced arguments.
To achieve the desired results for the given problem, the fixed-point approach was used,
namely, the Banach contraction principle and Krasnoselskii’s fixed point theorem. In ad-
dition, we dedicated a section to the investigation of various types of Ulam stability for
problem (2). Examples are provided to demonstrate how the major results can be ap-
plied. Our results in the given configuration are novel and substantially contribute to
the literature on this new field of study. We feel that there are multiple potential study
avenues, such as coupled systems, problems with infinite delays, and many more, due to
the limited number of publications on implicit hybrid differential equations, particularly
with non-instantaneous impulses. We hope that this article will serve as a starting point for
such an undertaking.
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