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Abstract

:

In this paper, we characterize each of   T 0  ,   T 1  , Pre-Hausdorff and Hausdorff separation properties for the category   L - GS   of quantale-valued gauge spaces and  L -gauge morphisms. Moreover, we investigate how these concepts are related to each other in this category. We show that   T 0  ,   T 1   and   T 2   are equivalent in the realm of Pre-Hausdorff quantale-valued gauge spaces. Finally, we compare our results with the ones in some other categories.
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1. Introduction


In 1989, Lowen [1,2] introduced approach spaces as a common framework for both metric and topological spaces. More precisely, let X be a set and let   p q M e  t ∞   ( X )    be the set of all extended pseudo-quasi metrics (pseudo-reflexive property and triangular inequality) on X,   D ⊆ p q M e  t ∞   ( X )    and   d ∈ p q M e  t ∞   ( X )   , then



	(i)

	
 D  is called  ideal  if it is closed under the formation of finite suprema and if it is closed under the operation of taking smaller function.




	(ii)

	
 D  dominates d if   ∀ x ∈ X , ϵ > 0   and   ω < ∞   there exists   e ∈ D   such that   d ( x , . ) ∧ ω ≤ e ( x , . ) + ϵ   and if  D  dominates d, then  D  is called saturated.







If  D  is an ideal in   p q M e  t ∞   ( X )    and saturated, then  D  is called gauge. The pair   ( X , D )   is called a gauge-approach space [2]. Approach spaces can be defined by various distinct structures such as gauges, approach distances, approach systems or limit operators. Although these structures are conceptually different, they are equivalent, see [2].



Note that  Top , the category of topological spaces and continuous maps, and  Met , the category of metric spaces and non-expansive maps, can be embedded as a full and isomorphism-closed subcategory of  App , the topological category of approach spaces and contractions. Therefore, metric and topological spaces are mostly studied in  App .



Approach spaces are closely related to various disciplines and have several applications in practically all branches of mathematics, such as fixed point theory [3], convergence theory [4], domain theory [5] and probability theory [6]. Due to the widely recognized usefulness of approach spaces in research, several generalizations of approach spaces have emerged recently, including quantale-valued gauge spaces [7] and probabilistic approach spaces [8]. Quantale-valued bounded strong topological spaces and bounded interior spaces, which are frequently used by fuzzy mathematicians, have recently been used to characterize some quantale-valued approach spaces [9]. Although the classical approach structures (gauges, approach distances and approach systems) are equivalent, their arbitrary quantale generalizations are different, see Example 5.11 of [7,10].



Classical   T 0   separation of topology has been extended to the topological category [11,12,13]. In 1991, Weck-Schwarz [14] and in 1995, Mehmet Baran and Hüseyin Altındiş [15] analyzed the relationship among these various generalizations of   T 0   objects.   T 0   objects are widely used to define and characterize various forms of Hausdorff [11] and sober [16] objects in topological categories.



Recall that a topological space   ( B , τ )   is called a Pre-Hausdorff space if for each distinct pair   x , y ∈ B  , the subspace   (  { x , y }  ,  τ  { x , y }   )   is not indiscrete; then there exist disjoint neigbourhoods of x and y [11].



In 1994, Mielke [17] showed the important role of Pre-  T 2   objects in general theory of geometric realization, their associated intervals and corresponding homotopic structures. In addition, in 1999, Mielke [18] used Pre-  T 2   objects of topological categories to characterize decidable objects in Topos theory [19]. Another uses of Pre-Hausdorff objects is to define Hausdorff objects [11] in an arbitrary topological category. There is also a relationship between Pre-  T 2   structures and partitions in some categories [20,21].



Note that there is no relationship between   T 0   property and Pre-  T 2   property. For example, let B be a set with at least two elements and  τ  be the indiscrete topology on B, then   ( B , τ )   is Pre-  T 2  , but it is not   T 0  . If we take the cofinite topology   τ c   on the set of real numbers  R , then   ( R ,  τ c  )   is   T 0  , but it is not Pre-  T 2  . However, if   ( B , τ )   is a Pre-Hausdorff space, then by Theorem 3.5 of [22], all of   T 0  ,   T 1   and   T 2   are equivalent.



The salient objectives of the paper are stated:




	(i)

	
To explicitly characterize each of   T 0  ,    T 0  ¯   and   T 1   separation properties in the category   L - GS   of quantale-valued gauge spaces and  L -gauge morphisms;




	(ii)

	
To give the characterization of each of Pre-   T 2  ¯  ,    T 2  ¯   and   N  T 2    in the category   L - GS  ;




	(iii)

	
To examine the mutual relationship among all these separation axioms;




	(iv)

	
To compare our results with the ones in some other categories.










2. Preliminaries


In order theory, the join of a subset A of a partially ordered set   ( L , ≤ )   where ≤ is any order on L, is the least upper bound (supremum) of A, denoted   ⋁ A  , and the meet of A is the greatest lower bound (infimum), denoted   ⋀ A  . A complete lattice is a partially ordered set in which all subsets have both a join (⋁) and a meet (⋀). For any complete lattice, the top and bottom elements are denoted by ⊤ and ⊥, respectively. A complete lattice in which arbitrary joins distribute over arbitrary meets is said to be completely distributive.



Definition 1

([23]). A quantale   L = ( L , ≤ , ∗ )   is a complete lattice   ( L , ≤ )   endowed with a binary operation * satisfying the following:




	(i) 

	
  ( L , ∗ )   is a semi group;




	(ii) 

	
   (  ⋁  i ∈ I    a i  )  ∗ b =  ⋁  i ∈ I    (  a i  ∗ b )    and   b ∗  (  ⋁  i ∈ I    a i  )  =  ⋁  i ∈ I    ( b ∗  a i  )    for all    a i  , b ∈ L   and index-set I, i.e., ∗ is distributive over arbitrary joins.











Definition 2.

Let   ( L , ≤ )   be a complete lattice, then the well-below relation ⊲ and the well-above relation ≺ are defined by




	(i) 

	
  a ⊲ b   if   ∀ K ⊆ L   such that   b ≤ ⋁ K   there exists   k ∈ K   such that   a ≤ k  ;




	(ii) 

	
  a ≺ b   if   ∀ K ⊆ L   such that   ⋀ K ≤ a   there exists   k ∈ K   such that   k ≤ b  .











Definition 3

([23]). A quantale   L = ( L , ≤ , ∗ )   is said to be




	(i) 

	
a commutative quantale if   ( L , ∗ )   is a commutative semi-group;




	(ii) 

	
an integral quantale if   a ∗ ⊤ = ⊤ ∗ a = a   for all   a ∈ L  ;




	(iii) 

	
a value quantale if  L  is commutative and integral quantale with an underlying completely distributive lattice   ( L , ≤ )   such that   ⊥ ⊲ ⊤   and   a ∨ b ⊲ ⊤   for all   a , b ⊲ ⊤  ;




	(iv) 

	
a linearly ordered quantale if either   a ≤ b   or   b ≤ a   for all   a , b ∈ L  .











Example 1.






	(i) 

	
Lawvere’s quantale,   L = [ 0 , ∞ ]   with the opposite order and addition as the quantale operation, where   c + ∞ = ∞ + c = ∞   for all   c ∈ L  , is a linearly ordered value quantale [23,24].




	(ii) 

	
Let   L = ( [ 0 , 1 ] , ≤ , ∗ )   be a triangular norm with a binary operation * defined as   ∀ a , b ∈ [ 0 , 1 ] , a ∗ b = a . b   and named as a product triangular norm [25]. The triple   L = ( [ 0 , 1 ] , ≤ , . )   is a commutative and integral quantale.




	(iii) 

	
Let   L = (  ▵ +  , ≤ , ∗ )   (a probabilistic quantale) where   φ ∗ Ψ = φ . Ψ   for all   φ , Ψ ∈  ▵ +   , then  L  is not linearly ordered quantale [7].











In this sequel, we consider only integral and commutative quantales  L  with underlying completely distributive lattices.



Definition 4

(cf. [7]). Let X be a nonempty set. A map   m : X × X → L = ( L , ≤ , ∗ )   is called an  L -metric on X if it satisfies for all   s ∈ X  ,   m ( s , s ) = ⊤  , and for all   s , t , y ∈ X  ,   m ( s , t ) ∗ m ( t , y ) ≤ m ( s , y )  . The pair   ( X , m )   is called an  L -metric space.





A map   f :  ( X ,  m X  )  →  ( Y ,  m Y  )    is called an  L -metric morphism if    m X   (  s 1  ,  s 2  )  ≤  m Y   ( f  (  s 1  )  , f  (  s 2  )  )    for all    s 1  ,  s 2  ∈ X  .



The category whose objects are  L -metric spaces and morphisms are  L -metric morphisms is denoted by   L - MET  . Furthermore, we define   L - MET ( X )   as the set of all  L -metrics on X.



Example 2.






	(i) 

	
If   L = ( { 0 , 1 } , ≤ , ∧ )  , then an  L -metric space is a preordered set.




	(ii) 

	
If  L  is a Lawvere’s quantale, then an  L -metric space is an extended pseudo-quasi metric space.




	(iii) 

	
If   L = (  ▵ +  , ≤ , ∗ )  , then an  L -metric space is a probabilistic quasi metric space [23].











Definition 5

(cf. [7]). Let   H ⊆  L - MET ( X )    and   m ∈  L - MET ( X )   .




	(i) 

	
m is called locally supported by  H  if for all   s ∈ X  ,   a ⊲ ⊤  ,   ⊥ ≺ ω  , there is   n ∈ H   such that   n ( s , . ) ∗ a ≤ m ( s , . ) ∨ ω  .




	(ii) 

	
 H  is called locally directed if for all finite subsets    H 0  ⊆ H  ,    ⋀  m ∈  H 0    m   is locally supported by  H .




	(iii) 

	
 H  is called locally saturated if for all   m ∈  L - MET ( X )    we have   m ∈ H   whenever m is locally supported by  H .




	(iv) 

	
The set    H ˜   = { m ∈  L - MET ( X )  : m    is locally supported by   H }   is called local saturation of  H .











Definition 6

(cf. [7]). Let X be a set.   G ⊆  L - MET ( X )    is called an  L -gauge if  G  satisfies the following:




	(i) 

	
  G ≠ ∅  .




	(ii) 

	
  m ∈ G   and   m ≤ n   implies   n ∈ G  .




	(iii) 

	
  m , n ∈ G   implies   m ∧ n ∈ G  .




	(iv) 

	
 G  is locally saturated.









The pair   ( X , G )   is called an  L -gauge space.





A map   f :  ( X , G )  →  (  X ′  ,  G ′  )    is called an  L -gauge morphism if    m ′  ∘  ( f × f )  ∈ G   whenever    m ′  ∈  G ′   .



The category whose objects are  L -gauge spaces and morphisms are  L -gauge morphisms is denoted by   L - GS   (cf. [7]).



Definition 7

(cf. [7]). Let   ( X , G )   be an  L -gauge space and let   H ⊆  L - MET ( X )   . If    H ˜  = G  , then  H  is called a basis for the gauge  G .





Proposition 1

(cf. [7]). Let   L = ( L , ≤ , ∗ )   be a value quantale. If   ∅ ≠ H ⊆  L - MET ( X )    is locally directed, then   G =  H ˜    is a gauge with  H  as a basis.





Lemma 1

(pcf. [7]). Let   L = ( L , ≤ , ∗ )   be a value quantale,   (  X i  ,  B i  )   be the collection of  L -approach spaces and let    f i  : X →  (  X i  ,  B i  )    be a source. A basis for the initial  L -gauge on X is given by


  H = {  ⋀  i ∈ K    m i  ∘  (  f i  ×  f i  )  : K ⊆ I  f i n i t e ,  m i  ∈  G i  , ∀ i ∈ I }  













Lemma 2.

Let X be a nonempty set and   ( X , G )   be an  L -gauge space.




	(i) 

	
The discrete  L -gauge structure on X is given by    G  d i s   =  L - MET ( X )    [26].




	(ii) 

	
The indiscrete  L -gauge structure on X is given by    G  i n d   =  { ⊤ }    [7].











Note that for a value quantale  L , the category   L - GS   is a topological category [27,28] over  Set  (the category of sets and functions) [7].




3.   T 0   and   T 1   Quantale-Valued Approach Spaces


Let X be a non-empty set and the wedge    X 2   V ▵   X 2    be the pushout of the diagonal   ▵ : X →  X 2    along itself [11].



A point   ( s , t )   in    X 2   V ▵   X 2    is denoted as    ( s , t )  1   if it lies in the first component and as    ( s , t )  2   if it lies in the second component. Note that     ( s , t )  1  =   ( s , t )  2    if   s = t  .



Definition 8

(cf. [11]).   A :  X 2   V ▵   X 2  →  X 3   , the principal axis map is defined by


     A   ( s , t )  i  =      ( s , t , s ) ,     i = 1       ( s , s , t ) ,      i = 2  ,               








  S :  X 2   V ▵   X 2  →  X 3   , the skewed axis map is defined by


     S   ( s , t )  i  =      ( s , t , t ) ,     i = 1       ( s , s , t ) ,      i = 2  ,               











and   ∇ :  X 2   V ▵   X 2  →  X 2   , the fold map is defined by   ∇   ( s , t )  i  =  ( s , t )    for   i = 1 , 2  .





Definition 9.

Let   U : E → Set   be a topological functor and   X ∈ O b ( E )   with   U ( X ) = B  .




	(i) 

	
X is    T 0  ¯   if the initial lift of the U-source   { A :  B 2   V ▵   B 2  → U  (  X 3  )  =  B 3    and   ∇ :  B 2   V ▵   B 2  → U D  (  B 2  )  =  B 2   }    is discrete, where D is the discrete functor [11].




	(ii) 

	
X is   T 0   if X does not contain an indiscrete subspace with at least two points [13].




	(iii) 

	
X is   T 1   if the initial lift of the U-source   { S :  B 2   V ▵   B 2  → U  (  X 3  )  =  B 3    and   ∇ :  B 2   V ▵   B 2  → U D  (  B 2  )  =  B 2   }    is discrete [11].











In  Top , both    T 0  ¯   and   T 0   are equivalent, and they reduce to the usual   T 0   separation property [11,13]. Similarly,   T 1   reduces to classical   T 1   property [11].



Theorem 1.

An  L -gauge space   ( X , G )   is    T 0  ¯   if for all   s , t ∈ X   with   s ≠ t  , there exists   m ∈ G   such that   m ( s , t ) ∧ m ( t , s ) = ⊥  .





Proof. 

Suppose   ( X , G )   is    T 0  ¯   and   s , t ∈ X   with   s ≠ t  . Let    H  d i s   =  {  m  d i s   }    be a basis for the discrete  L -gauge where   m  d i s    is the discrete  L -metric on    X 2   V ▵   X 2   . For     ( s , t )  1  ,   ( s , t )  2  ∈  X 2   V ▵   X 2    with     ( s , t )  1  ≠   ( s , t )  2   . Note that


      m  d i s    ( ∇   ( s , t )  1  , ∇   ( s , t )  2  )     =     m  d i s    (  ( s , t )  ,  ( s , t )  )  = ⊤       m (  π 1  A   ( s , t )  1  ,  π 1  A   ( s , t )  2  )    =    m (  π 1   ( s , t , s )  ,  π 1   ( s , s , t )  ) = m  ( s , s )  = ⊤       m (  π 2  A   ( s , t )  1  ,  π 2  A   ( s , t )  2  )    =    m (  π 2   ( s , t , s )  ,  π 2   ( s , s , t )  ) = m  ( t , s )        m (  π 3  A   ( s , t )  1  ,  π 3  A   ( s , t )  2  )    =    m (  π 3   ( s , t , s )  ,  π 3   ( s , s , t )  ) = m  ( s , t )      











Since     ( s , t )  1  ≠   ( s , t )  2    and   ( X , G )   is    T 0  ¯  , by Lemma 1 and Definition 9 (i),


    ⊥   =    ⋀  {  m  d i s    ( ∇   ( s , t )  1  , ∇   ( s , t )  2  )  , m  (  π k  A   ( s , t )  1  ,  π k  A   ( s , t )  2  )   ( k = 1 , 2 , 3 )  }       =    ⋀  { ⊤ , m ( s , t ) , m ( t , s ) }       =    m ( s , t ) ∧ m ( t , s )     











Conversely, let   H ¯   be the initial  L -gauge basis on    X 2   V ▵   X 2    induced by   A :  X 2   V ▵   X 2  → U  (  X 3  ,  G 3  )  =  X 3    and   ∇ :  X 2   V ▵   X 2  → U  (  X 2  ,  G  d i s   )  =  X 2   , where, by Lemma 2 (i),    G  d i s   =  L - MET ( X )    is the discrete  L -gauge on   X 2  , and   G 3   is the product structure on   X 3   induced by the projection maps    π k  :  X 3  → X   for   k = 1 , 2 , 3  .



Suppose for all   s , t ∈ X   with   s ≠ t  , there exists   m ∈ G   such that   m ( s , t ) ∧ m ( t , s ) = ⊥  . Let    m ¯  ∈  H ¯    and   u , v ∈  X 2   V ▵   X 2   .



Case I: If   u = v  , then    m ¯   ( u , v )  =  m ¯   ( u , u )  = ⊤  



Case II: If   u ≠ v   and   ∇ u ≠ ∇ v  , then    m  d i s    ( ∇ u , ∇ v )  = ⊥   since   m  d i s    is discrete. By Lemma 1,


      m ¯   ( u , v )     =    ⋀  {  m  d i s    ( ∇ u , ∇ v )  , m  (  π k  A u ,  π k  A v )   ( k = 1 , 2 , 3 )  }       =    ⋀  { ⊥ , m  (  π 1  A u ,  π 1  A v )  , m  (  π 2  A u ,  π 2  A v )  , m  (  π 3  A u ,  π 3  A v )  } = ⊥     











Case III: Suppose   u ≠ v   and   ∇ u = ∇ v  . If   ∇ u = ( s , t ) = ∇ v   for some   s , t ∈ X   with   s ≠ t  , then   u =   ( s , t )  1    and   v =   ( s , t )  2    or   u =   ( s , t )  2    and   v =   ( s , t )  1    since   u ≠ v  .



If   u =   ( s , t )  1    and   v =   ( s , t )  2   , then


      m  d i s    ( ∇ u , ∇ v )     =     m  d i s    ( ∇   ( s , t )  1  , ∇   ( s , t )  2  )        =     m  d i s    (  ( s , t )  ,  ( s , t )  )  = ⊤     










     m (  π 1  A u ,  π 1  A v )    =    m (  π 1  A   ( s , t )  1  ,  π 1  A   ( s , t )  2  )       =    m ( s , s ) = ⊤     










     m (  π 2  A u ,  π 2  A v )    =    m (  π 2  A   ( s , t )  1  ,  π 2  A   ( s , t )  2  ) = m  ( t , s )        m (  π 3  A u ,  π 3  A v )    =    m (  π 3  A   ( s , t )  1  ,  π 3  A   ( s , t )  2  ) = m  ( s , t )      











It follows that


      m ¯   ( u , v )     =     m ¯   (   ( s , t )  1  ,   ( s , t )  2  )        =    ⋀  {  m  d i s    ( ∇   ( s , t )  1  , ∇   ( s , t )  2  )  , m  (  π k  A   ( s , t )  1  ,  π k  A   ( s , t )  2  )   ( k = 1 , 2 , 3 )  }       =    ⋀  { ⊤ , m ( s , t ) , m ( t , s ) }       =    m ( s , t ) ∧ m ( t , s )     











By the assumption   m ( s , t ) ∧ m ( t , s ) = ⊥  , and we have    m ¯   ( u , v )  = ⊥  .



Similarly, if   u =   ( s , t )  2    and   v =   ( s , t )  1   , then    m ¯   ( u , v )  = ⊥  .



Therefore, for all   u , v ∈  X 2   V ▵   X 2   , we have


      m ¯   ( u , v )  =      ⊤ ,     u = v       ⊥ ,     u ≠ v          








and by Lemma 2 (i),   m ¯   is the discrete  L -metric on    X 2   V ▵   X 2   . Hence, by Definition 9 (i),   ( X , G )   is    T 0  ¯  . □





Note that in a quantale   ( L , ≤ , ∗ )  , if   p ∈ L   and   p ≠ ⊤  , then p is called a prime element if   a ∧ b ≤ p   implies   a ≤ p   or   b ≤ p   for all   a , b ∈ L  .



Corollary 1.

Let   ( X , G )   be an  L -gauge space where  L  has a prime bottom element.   ( X , G )   is    T 0  ¯   if for all   s , t ∈ X   with   s ≠ t  , there exists   m ∈ G   such that   m ( s , t ) = ⊥   or   m ( t , s ) = ⊥  .





Proof. 

It follows from the definition of the prime bottom element and Theorem 1. □





Theorem 2.

An  L -gauge space   ( X , G )   is   T 0   if for all   s , t ∈ X   with   s ≠ t  , there exists   m ∈ G   such that   m ( s , t ) < ⊤   or   m ( t , s ) < ⊤  .





Proof. 

Let   ( X , G )   be   T 0  ,   B = { s , t } ⊂ X   and   H B   be the initial  L -gauge basis induced by   i : B → ( X , L )   and    m B  ∈  H B   . For all   s , t ∈ X   with   s ≠ t  ,    m B   ( s , t )  = m  ( i  ( s )  , i  ( t )  )  = m  ( s , t )    or    m B   ( t , s )  = m  ( i  ( t )  , i  ( s )  )  = m  ( t , s )   . It follows that   m ( s , t ) < ⊤   or   m ( t , s ) < ⊤  ; otherwise   m ( s , t ) = ⊤ = m ( t , s )  , and X contains an indiscrete subspace with at least two elements.



Conversely, suppose the condition holds. Let B be an indiscrete subspace of X with at least two elements   s , t ∈ B   with   s ≠ t  . Let   H B   be the initial  L -gauge basis induced by   i : B → ( X , L )   and    m B  ∈  H B   . It follows that   T =  m B   ( s , t )  = m  ( i  ( s )  , i  ( t )  )  = m  ( s , t )    and   T =  m B   ( t , s )  = m  ( i  ( t )  , i  ( s )  )  = m  ( t , s )    and consequently,   m ( s , t ) = ⊤ = m ( t , s )  , a contradiction to our assumption. Therefore, X does not contain an indiscrete subspace with at least two elements. Hence, by Definition 9 (ii),   ( X , G )   is   T 0  .



□





Theorem 3.

An  L -gauge space   ( X , G )   is   T 1   if for all   s , t ∈ X   with   s ≠ t  , there exists   m ∈ G   such that   m ( s , t ) = ⊥ = m ( t , s )  .





Proof. 

Suppose that   ( X , G )   is   T 1   and   s , t ∈ X   with   s ≠ t  . Let   u =   ( s , t )  1   ,   v =   ( s , t )  2  ∈  X 2   V ▵   X 2   . Note that


      m  d i s    ( ∇ u , ∇ v )     =     m  d i s    (  ( s , t )  ,  ( s , t )  )  = ⊤       m (  π 1  S u ,  π 1  S v )    =    m (  π 1   ( s , t , t )  ,  π 1   ( s , s , t )  ) = m  ( s , s )  = ⊤       m (  π 2  S u ,  π 2  S v )    =    m (  π 2   ( s , t , t )  ,  π 2   ( s , s , t )  ) = m  ( t , s )        m (  π 3  S u ,  π 3  S v )    =    m (  π 3   ( s , t , t )  ,  π 3   ( s , s , t )  ) = m  ( t , t )  = ⊤     








where   m  d i s    is the discrete  L -metric on    X 2   V ▵   X 2    and    π k  :  X 3  → X   are the projection maps for   k = 1 , 2 , 3  . Since   u ≠ v   and   ( X , G )   is   T 1  , by Lemma 1 and Definition 9 (iii),


    ⊥   =    ⋀   {  m  d i s    ( ∇ u , ∇ v )  , m  (  π k  S u ,  π k  S v )   ( k = 1 , 2 , 3 )  }  = ⋀   { ⊤ , m  ( t , s )  }  = m  ( t , s )      











Similarly, if   u =   ( s , t )  2   ,   v =   ( s , t )  1  ∈  X 2   V ▵   X 2   , then


    ⊥   =    ⋀   {  m  d i s    ( ∇ u , ∇ v )  , m  (  π k  S u ,  π k  S v )   ( k = 1 , 2 , 3 )  }  = ⋀   { ⊤ , m  ( s , t )  }  = m  ( s , t )      











Conversely, let   H ¯   be the initial  L -gauge basis on    X 2   V ▵   X 2    induced by   S :  X 2   V ▵   X 2  → U  (  X 3  ,  G 3  )  =  X 3    and   ∇ :  X 2   V ▵   X 2  → U  (  X 2  ,  G  d i s   )  =  X 2    where, by Proposition 2,    G  d i s   =  L - MET ( X )    is the discrete  L -gauge on   X 2   and   G 3   is the product structure on   X 3   induced by the projection maps    π k  :  X 3  → X   for   k = 1 , 2 , 3  .



Suppose for all   s , t ∈ X   with   s ≠ t  , there exists   m ∈ G   such that   m ( s , t ) = ⊥ = m ( t , s )  . Let    m ¯  ∈  H ¯    and   u , v ∈  X 2   V ▵   X 2   .



Case I: If   u = v  , then    m ¯   ( u , v )  =  m ¯   ( u , u )  = ⊤  



Case II: If   u ≠ v   and   ∇ u ≠ ∇ v  , then    m  d i s    ( ∇ u , ∇ v )  = ⊥   since   m  d i s    is a discrete structure on   X 2  . By Lemma 1,


      m ¯   ( u , v )     =    ⋀  {  m  d i s    ( ∇ u , ∇ v )  , m  (  π k  S u ,  π k  S v )   ( k = 1 , 2 , 3 )  }       =    ⋀  { ⊥ , m  (  π 1  S u ,  π 1  S v )  , m  (  π 2  S u ,  π 2  S v )  , m  (  π 3  S u ,  π 3  S v )  } = ⊥     











Case III: Suppose   u ≠ v   and   ∇ u = ∇ v  . If   ∇ u = ( s , t ) = ∇ v   for some   s , t ∈ X   with   s ≠ t  , then   u =   ( s , t )  1    and   v =   ( s , t )  2    or   u =   ( s , t )  2    and   v =   ( s , t )  1    since   u ≠ v  .



If   u =   ( s , t )  1    and   v =   ( s , t )  2   , then by Lemma 1,


      m ¯   ( u , v )     =     m ¯   (   ( s , t )  1  ,   ( s , t )  2  )        =    ⋀  {  m  d i s    ( ∇   ( s , t )  1  , ∇   ( s , t )  2  )  , m  (  π k  S   ( s , t )  1  ,  π k  S   ( s , t )  2  )   ( k = 1 , 2 , 3 )        =    ⋀  { ⊤ , m ( t , s ) } = m ( t , s ) = ⊥     








since   s ≠ t   and   m ( t , s ) = ⊥  .



Similarly, if   u =   ( s , t )  2    and   v =   ( s , t )  1   , then   m ( s , t ) = ⊥  .



Hence, for all   u , v ∈  X 2   V ▵   X 2   , we obtain


      m ¯   ( u , v )  =      ⊤ ,     u = v       ⊥ ,     u ≠ v          








and it follows that   m ¯   is the discrete  L -metric on    X 2   V ▵   X 2   . By Definition 9 (iii),   ( X , G )   is   T 1  .



□






4. (Pre-)Hausdorff  L -Gauge Spaces


Definition 10.

Let   U : E → Set   be a topological functor and   X ∈ O b ( E )   with   U ( X ) = B  .




	(i) 

	
X is Pre-   T 2  ¯   if the initial lifts of U-sources   { A :  B 2   V ▵   B 2  → U  (  X 3  )  =  B 3    and   { S :  B 2   V ▵   B 2  → U  (  X 3  )  =  B 3    coincide [11].




	(ii) 

	
X is    T 2  ¯   if X is    T 0  ¯   and Pre-   T 2  ¯   [11].




	(iii) 

	
X is   N  T 2    if X is   T 0   and Pre-   T 2  ¯   [29].











In  Top , both    T 2  ¯   and   N  T 2    are equivalent, and they reduce to the usual   T 2   [11,13]. By Theorem 2.1 of [30], a topological space   ( B , τ )   is Pre-Hausdorff if the initial topologies on    B 2   V ▵   B 2    induced by the maps A and S agree.



Theorem 4.

An  L -gauge space   ( X , G )   is Pre-   T 2  ¯   if there exists   m ∈ G   such that the following conditions are satisfied.




	(I) 

	
For all   s , t ∈ X   with   s ≠ t  ,   m ( s , t ) ∧ m ( t , s ) = m ( s , t ) = m ( t , s )  .




	(II) 

	
For any three distinct points   s , t , y ∈ X  ,   m ( t , s ) ∧ m ( y , s ) ∧ m ( t , y ) = m ( t , s ) ∧ m ( y , s ) = m ( s , t ) ∧ m ( y , t ) = m ( y , s ) ∧ m ( t , y )  .




	(III) 

	
For any four distinct points   s , t , y , z ∈ X  ,   m ( s , y ) ∧ m ( t , y ) ∧ m ( t , z ) = m ( s , y ) ∧ m ( t , y ) ∧ m ( s , z ) = m ( s , z ) ∧ m ( t , y ) ∧ m ( t , z ) = m ( s , y ) ∧ m ( t , z ) ∧ m ( s , z )  .











Proof. 

Suppose that   ( X , G )   is Pre-   T 2  ¯   and   s , t ∈ X   with   s ≠ t  . Let    π k  :  X 3  → X  ,   k = 1 , 2 , 3   be the projection maps.



Suppose   u =   ( s , t )  1  , v =   ( s , t )  2  ∈  X 2   V ▵   X 2   . Note that


     m (  π 1  A u ,  π 1  A v )    =    m (  π 1   ( s , t , s )  ,  π 1   ( s , s , t )  ) = m  ( s , s )  = ⊤       m (  π 2  A u ,  π 2  A v )    =    m (  π 2   ( s , t , s )  ,  π 2   ( s , s , t )  ) = m  ( t , s )        m (  π 3  A u ,  π 3  A v )    =    m (  π 3   ( s , t , s )  ,  π 3   ( s , s , t )  ) = m  ( s , t )      








and


     m (  π 1  S u ,  π 1  S v )    =    m (  π 1   ( s , t , t )  ,  π 1   ( s , s , t )  ) = m  ( s , s )  = ⊤       m (  π 2  S u ,  π 2  S v )    =    m (  π 2   ( s , t , t )  ,  π 2   ( s , s , t )  ) = m  ( t , s )        m (  π 3  S u ,  π 3  S v )    =    m (  π 3   ( s , t , t )  ,  π 3   ( s , s , t )  ) = m  ( t , t )  = ⊤     











Since   ( X , G )   is Pre-   T 2  ¯   and by Definition 10 (i), we have


     ⋀ { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }    =    ⋀ { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }       ⋀ { ⊤ , m ( s , t ) , m ( t , s ) }    =    ⋀ { ⊤ , m ( t , s ) }       m ( s , t ) ∧ m ( t , s )    =    m ( t , s )     











Let   u =   ( s , t )  2  , v =   ( s , t )  1  ∈  X 2   V ▵   X 2   . Similarly, since   ( X , G )   is Pre-   T 2  ¯   and by Definition 10 (i), we have   m ( s , t ) ∧ m ( t , s ) = m ( s , t )  , and consequently   m ( s , t ) ∧ m ( t , s ) = m ( s , t ) = m ( t , s )  .



Let   s , t , y   be any three distinct points of X. Since   ( X , G )   is Pre-   T 2  ¯   and by Definition 10 (i), we have


     ⋀ { m  (  π k  A   ( t , y )  1  ,  π k  A   ( s , y )  2  )  : k = 1 , 2 , 3 }    =    ⋀ { m  (  π k  S   ( t , y )  1  ,  π k  S   ( s , y )  2  )  : k = 1 , 2 , 3 }       ⋀ { m ( t , s ) , m ( y , s ) , m ( t , y ) }    =    ⋀ { ⊤ , m ( t , s ) , m ( y , s ) } ,     










     ⋀ { m  (  π k  A   ( s , y )  1  ,  π k  A   ( t , y )  2  )  : k = 1 , 2 , 3 }    =    ⋀ { m  (  π k  S   ( s , y )  1  ,  π k  S   ( t , y )  2  )  : k = 1 , 2 , 3 }       ⋀ { m ( s , t ) , m ( y , t ) , m ( s , y ) }    =    ⋀ { ⊤ , m ( s , t ) , m ( y , t ) } ,     








and


     ⋀ { m  (  π k  A   ( s , t )  1  ,  π k  A   ( y , t )  2  )  : k = 1 , 2 , 3 }    =    ⋀ { m  (  π k  S   ( s , t )  1  ,  π k  S   ( y , t )  2  )  : k = 1 , 2 , 3 }       ⋀ { m ( s , y ) , m ( t , y ) , m ( s , t ) }    =    ⋀ { ⊤ , m ( s , y ) , m ( t , y ) } .     











By condition (I), we have   m ( t , s ) ∧ m ( y , s ) ∧ m ( t , y ) = m ( t , s ) ∧ m ( y , s ) = m ( s , t ) ∧ m ( y , t ) = m ( y , s ) ∧ m ( t , y )  .



Let   s , t , y , z   be any four distinct points of X. Since   ( X , G )   is Pre-   T 2  ¯   and by Definition 10 (i), we have


     ⋀ { m  (  π k  A   ( s , t )  1  ,  π k  A   ( y , z )  2  )  : k = 1 , 2 , 3 }    =    ⋀ { m  (  π k  S   ( s , t )  1  ,  π k  S   ( y , z )  2  )  : k = 1 , 2 , 3 }       ⋀ { m ( s , y ) , m ( t , y ) , m ( s , z ) }    =    ⋀ { m ( s , y ) , m ( t , y ) , m ( t , z ) } ,     










     ⋀ { m  (  π k  A   ( s , t )  1  ,  π k  A   ( z , y )  2  )  : k = 1 , 2 , 3 }    =    ⋀ { m  (  π k  S   ( s , t )  1  ,  π k  S   ( z , y )  2  )  : k = 1 , 2 , 3 }       ⋀ { m ( s , z ) , m ( t , z ) , m ( s , y ) }    =    ⋀ { m ( s , z ) , m ( t , z ) , m ( t , y ) } ,     








and


     ⋀ { m  (  π k  A   ( z , y )  1  ,  π k  A   ( t , s )  2  )  : k = 1 , 2 , 3 }    =    ⋀ { m  (  π k  S   ( z , y )  1  ,  π k  S   ( t , s )  2  )  : k = 1 , 2 , 3 }       ⋀ { m ( z , t ) , m ( y , t ) , m ( z , s ) }    =    ⋀ { m ( z , t ) , m ( y , t ) , m ( y , s ) } .     











By condition (I), we have   m ( s , y ) ∧ m ( t , y ) ∧ m ( t , z ) = m ( s , y ) ∧ m ( t , y ) ∧ m ( s , z ) = m ( s , z ) ∧ m ( t , y ) ∧ m ( t , z ) = m ( s , y ) ∧ m ( t , z ) ∧ m ( s , z )  .



Conversely, suppose that the conditions hold. Then, we will show that   ( X , G )   is Pre-   T 2  ¯  . Let   H ¯   and   H ′   be two initial  L -gauge bases on    X 2   V ▵   X 2    induced by   A :  X 2   V ▵   X 2  → U  (  X 3  ,  G 3  )  =  X 3    and   S :  X 2   V ▵   X 2  → U  (  X 3  ,  G 3  )  =  X 3   , respectively, and   G 3   be the product structure on   X 3   induced by    π k  :  X 3  → X   the projection map for   k = 1 , 2 , 3  . Let   m ¯   and   m ′   be any two  L -metrics in   H ¯   and   H ′  , respectively. We need to show that    m ¯  =  m ′   .



First, note that   m ¯   and   m ′   are symmetric by assumption (I),   m ( s , t ) ∧ m ( t , s ) = m ( s , t ) = m ( t , s )  .



Suppose u and v are any two points in    X 2   V ▵   X 2   .



If   u = v  , then    m ¯   ( u , v )  =  m ¯   ( u , u )  = ⊤ =  m ′   ( u , u )  =  m ′   ( u , v )   .



If   u ≠ v  , and they are in the same component of    X 2   V ▵   X 2   , i.e.,   u =   ( s , t )  i    and   v =   ( y , z )  i    for   i = 1 , 2  , then


      m ¯   ( u , v )     =    ⋀ { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }       =    ⋀ { m ( s , y ) , m ( t , z ) }       =    ⋀ { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }       =     m ′   ( u , v )      











Suppose   u ≠ v  , and they are in the different component of    X 2   V ▵   X 2   . We have:



Case I:   u =   ( s , t )  1    or    ( t , s )  1   and   v =   ( s , t )  2    or    ( t , s )  2   for   s ≠ t  .



If   u =   ( s , t )  1    and   v =   ( s , t )  2    (resp.   v =   ( t , s )  2   ), then


   m ¯   ( u , v )  = ⋀  { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }  = m  ( s , t )  ∧ m  ( t , s )     ( r e s p .  m  ( s , t )  )  ,  










   m ′   ( u , v )  = ⋀  { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }  = m  ( t , s )     ( r e s p .  m  ( s , t )  ∧ m  ( t , s )  )   











Consequently, we have    m ¯   ( u , v )  =  m ′   ( u , v )    by assumption (I).



Similarly, if   u =   ( t , s )  1    and   v =   ( s , t )  2    (resp.   v =   ( t , s )  2   ), then    m ¯   ( u , v )  =  m ′   ( u , v )   .



Case II:   u =   ( s , t )  1   ,    ( s , y )  1  ,    ( t , y )  1  ,    ( t , s )  1  ,    ( y , s )  1   or    ( y , t )  1   and   v =   ( s , t )  2   ,    ( s , y )  2  ,    ( t , y )  2  ,    ( t , s )  2  ,    ( y , s )  2   or    ( y , t )  2   for three distinct points   s , t , y   of X.



If   u =   ( s , t )  1    or    ( t , s )  1   and   v =   ( s , t )  2    or    ( t , s )  2  ,   u =   ( s , y )  1    or    ( y , s )  1   and   v =   ( s , y )  2    or    ( y , s )  2  ,   u =   ( t , y )  1    or    ( y , t )  1   and   v =   ( t , y )  2    or    ( y , t )  2  , then by case I, we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( s , t )  1    and   v =   ( s , y )  2    or    ( t , y )  2   (resp.   u =   ( t , s )  1    and   v =   ( s , y )  2    or    ( t , y )  2  ), then by assumption (I),


   m ¯   ( u , v )  = ⋀  { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }  = m  ( t , s )  ∧ m  ( s , y )     ( r e s p .  m  ( t , s )  ∧ m  ( t , y )  )  ,  










   m ′   ( u , v )  = ⋀  { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }  = m  ( t , s )  ∧ m  ( t , y )     ( r e s p .  m  ( t , s )  ∧ m  ( s , y )  )  ,  








and by assumption (II), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( s , t )  1    and   v =   ( y , s )  2    or   u =   ( t , s )  1    and   v =   ( y , t )  2    (resp.   u =   ( s , t )  1    and   v =   ( y , t )  2    or   u =   ( t , s )  1    and   v =   ( y , s )  2   ), then by assumption (I),


   m ¯   ( u , v )  = ⋀  { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }  = m  ( s , y )  ∧ m  ( t , y )     ( r e s p .  m  ( s , y )  ∧ m  ( t , y )  ∧ m  ( s , t )  )  ,  










   m ′   ( u , v )  = ⋀  { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }  = m  ( s , y )  ∧ m  ( t , y )  ∧ m  ( s , t )     ( r e s p .  m  ( s , y )  ∧ m  ( t , y )  )  ,  








and by assumption (II), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( s , y )  1    and   v =   ( s , t )  2    or    ( y , t )  2   (resp.   u =   ( y , s )  1    and   v =   ( s , t )  2    or    ( y , t )  2  ), then by assumption (I),


   m ¯   ( u , v )  = ⋀  { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }  = m  ( y , s )  ∧ m  ( s , t )     ( r e s p .  m  ( y , s )  ∧ m  ( y , t )  )  ,  










   m ′   ( u , v )  = ⋀  { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }  = m  ( y , s )  ∧ m  ( y , t )     ( r e s p .  m  ( y , s )  ∧ m  ( s , t )  )  ,  








and by assumption (II), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( s , y )  1    and   v =   ( t , y )  2    or   u =   ( y , s )  1    and   v =   ( t , s )  2    (resp.   u =   ( s , y )  1    and   v =   ( t , s )  2    or   u =   ( y , s )  1    and   v =   ( t , y )  2   ), then by assumption (I),


   m ¯   ( u , v )  = ⋀  { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }  = m  ( s , t )  ∧ m  ( y , t )  ∧ m  ( s , y )     ( r e s p .  m  ( s , t )  ∧ m  ( y , t )  )  ,  










   m ′   ( u , v )  = ⋀  { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }  = m  ( s , t )  ∧ m  ( y , t )     ( r e s p .  m  ( s , t )  ∧ m  ( y , t )  ∧ m  ( s , y )  )  ,  








and by assumption (II), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( t , y )  1    and   v =   ( s , y )  2    or   u =   ( y , t )  1    and   v =   ( s , t )  2    (resp.   u =   ( t , y )  1    and   v =   ( s , t )  2    or   u =   ( y , t )  1    and   v =   ( s , y )  2   ), then by assumption (I),


   m ¯   ( u , v )  = ⋀  { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }  = m  ( t , s )  ∧ m  ( y , s )  ∧ m  ( t , y )     ( r e s p .  m  ( t , s )  ∧ m  ( y , s )  )  ,  










   m ′   ( u , v )  = ⋀  { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }  = m  ( t , s )  ∧ m  ( y , s )     ( r e s p .  m  ( t , s )  ∧ m  ( y , s )  ∧ m  ( t , y )  )  ,  








and by assumption (II), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( t , y )  1    and   v =   ( t , s )  2    or    ( y , s )  2   (resp.   u =   ( y , t )  1    and   v =   ( t , s )  2    or    ( y , s )  2  ), then by assumption (I),


   m ¯   ( u , v )  = ⋀  { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }  = m  ( y , t )  ∧ m  ( t , s )     ( r e s p .  m  ( y , t )  ∧ m  ( y , s )  )  ,  










   m ′   ( u , v )  = ⋀  { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }  = m  ( y , t )  ∧ m  ( y , s )     ( r e s p .  m  ( y , t )  ∧ m  ( t , s )  )  ,  








and by assumption (II), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



Case III: Let   s , t , y , z   be four distinct points of X.



If   u =   ( s , t )  1    and   v =   ( y , z )  2    (resp.   u =   ( y , z )  1    and   v =   ( s , t )  2   ), then by assumption (I),


      m ¯   ( u , v )     =    ⋀ { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }       =    m ( s , y ) ∧ m ( t , y ) ∧ m ( s , z )     










      m ′   ( u , v )     =    ⋀ { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }       =    m ( s , y ) ∧ m ( t , y ) ∧ m ( t , z )       =    ( r e s p .  m ( s , y ) ∧ m ( t , z ) ∧ m ( s , z ) )     








and by assumption (III), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( s , t )  1    and   v =   ( z , y )  2    (resp.   u =   ( z , y )  1    and   v =   ( s , t )  2   ), then by assumption (I),


      m ¯   ( u , v )     =    ⋀ { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }       =    m ( s , y ) ∧ m ( t , z ) ∧ m ( s , z )     










      m ′   ( u , v )     =    ⋀ { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }       =    m ( s , z ) ∧ m ( t , y ) ∧ m ( t , z )       =    ( r e s p .  m ( s , y ) ∧ m ( t , y ) ∧ m ( s , z ) )     








and by assumption (III), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( t , s )  1    and   v =   ( y , z )  2    (resp.   u =   ( y , z )  1    and   v =   ( t , s )  2   ), then by assumption (I),


      m ¯   ( u , v )     =    ⋀ { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }       =    m ( s , y ) ∧ m ( t , y ) ∧ m ( t , z )     










      m ′   ( u , v )     =    ⋀ { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }       =    m ( s , y ) ∧ m ( t , y ) ∧ m ( s , z )       =    ( r e s p .  m ( s , z ) ∧ m ( t , y ) ∧ m ( t , z ) )     








and by assumption (III), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



If   u =   ( t , s )  1    and   v =   ( z , y )  2    (resp.   u =   ( z , y )  1    and   v =   ( t , s )  2   ), then by assumption (I),


      m ¯   ( u , v )     =    ⋀ { m  (  π k  A u ,  π k  A v )  : k = 1 , 2 , 3 }       =    m ( s , z ) ∧ m ( t , y ) ∧ m ( t , z )     










      m ′   ( u , v )     =    ⋀ { m  (  π k  S u ,  π k  S v )  : k = 1 , 2 , 3 }       =    m ( s , y ) ∧ m ( t , z ) ∧ m ( s , z )       =    ( r e s p .  m ( s , y ) ∧ m ( t , y ) ∧ m ( t , z ) )     








and by assumption (III), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



Similarly, if   u =   ( s , y )  1    and   v =   ( t , z )  2   ,   u =   ( t , z )  1    and   v =   ( s , y )  2   ,   u =   ( s , y )  1    and   v =   ( z , t )  2   ,   u =   ( z , t )  1    and   v =   ( s , y )  2   ,   u =   ( y , s )  1    and   v =   ( t , z )  2   ,   u =   ( t , z )  1    and   v =   ( y , s )  2   ,   u =   ( y , s )  1    and   v =   ( z , t )  2   ,   u =   ( z , t )  1    and   v =   ( y , s )  2   , and if   u =   ( s , z )  1    and   v =   ( t , y )  2   ,   u =   ( t , y )  1    and   v =   ( s , z )  2   ,   u =   ( s , z )  1    and   v =   ( y , t )  2   ,   u =   ( y , t )  1    and   v =   ( s , z )  2   ,   u =   ( z , s )  1    and   v =   ( t , y )  2   ,   u =   ( t , y )  1    and   v =   ( z , s )  2   ,   u =   ( z , s )  1    and   v =   ( y , t )  2   ,   u =   ( y , t )  1    and   v =   ( z , s )  2   , then by assumption (III), we have    m ¯   ( u , v )  =  m ′   ( u , v )   .



Hence, for all points   u , v ∈  X 2   V ▵   X 2   , we obtain    m ¯   ( u , v )  =  m ′   ( u , v )   , and by Lemma 1 and Definition 10 (i),   ( X , G )   is Pre-   T 2  ¯  . □





Corollary 2.

Let   ( X , G )   be an  L -gauge space, where  L  is a linearly ordered quantale.   ( X , G )   is Pre-   T 2  ¯   if there exists   m ∈ G   such that for any distinct points   s , t , y , z ∈ X  , the following conditions are satisfied.




	(I) 

	
   m ( s , t ) = m ( t , s ) .   




	(II) 

	
  m ( s , t ) = m ( s , y ) ≤ m ( t , y )   or   m ( s , t ) = m ( t , y ) ≤ m ( s , y )   or   m ( s , y ) = m ( t , y ) ≤ m ( s , t ) .  




	(III) 

	
  m ( s , y ) = m ( t , y ) ≤ m ( s , z ) , m ( t , z )   or   m ( s , y ) = m ( s , z ) ≤ m ( t , y ) , m ( t , z )   or



  m ( s , y ) = m ( t , z ) ≤ m ( t , y ) , m ( s , z )   or   m ( t , y ) = m ( s , z ) ≤ m ( s , y ) , m ( t , z )   or



  m ( t , y ) = m ( t , z ) ≤ m ( s , y ) , m ( s , z )   or   m ( s , z ) = m ( t , z ) ≤ m ( s , y ) , m ( t , y ) .  











Theorem 5.

An  L -gauge space   ( X , G )   is    T 2  ¯   if   ( X , G )   is discrete.





Proof. 

By Definition 10 (ii), Theorems 1 and 4, the condition   m ( s , t ) = m ( t , s ) = ⊥   for all   s ≠ t   implies that m is the discrete  L -metric and if such a   m ∈ G   exists, then  G  contains all  L -metrics on X, i.e.,    G  d i s   =  { d ∈  L - MET ( X )  : d ≥ m }   , and consequently,   ( X , G )   is discrete. □





Theorem 6.

An  L -gauge space   ( X , G )   is   N  T 2    if there exists   m ∈ G   such that the following conditions are satisfied.




	(I) 

	
For all   s , t ∈ X   with   s ≠ t  ,   m ( s , t ) ∧ m ( t , s ) = m ( s , t ) = m ( t , s ) < ⊤  .




	(II) 

	
For any three distinct points   s , t , y ∈ X  ,   m ( t , s ) ∧ m ( y , s ) ∧ m ( t , y ) = m ( t , s ) ∧ m ( y , s ) = m ( s , t ) ∧ m ( y , t ) = m ( y , s ) ∧ m ( t , y )  .




	(III) 

	
For any four distinct points   s , t , y , z ∈ X  ,   m ( s , y ) ∧ m ( t , y ) ∧ m ( t , z ) = m ( s , y ) ∧ m ( t , y ) ∧ m ( s , z ) = m ( s , z ) ∧ m ( t , y ) ∧ m ( t , z ) = m ( s , y ) ∧ m ( t , z ) ∧ m ( s , z )  .











Proof. 

It follows from Definition 10 (iii), Theorems 2 and 4. □





Corollary 3.

A   ( X , G )  , where  L  is a linearly ordered quantale, is   N  T 2    if there exists   m ∈ G   such that for any distinct points   s , t , y , z ∈ X  , the following conditions are satisfied.




	(I) 

	
   m ( s , t ) = m ( t , s ) < ⊤ .   




	(II) 

	
  m ( s , t ) = m ( s , y ) ≤ m ( t , y )   or   m ( s , t ) = m ( t , y ) ≤ m ( s , y )   or   m ( s , y ) = m ( t , y ) ≤ m ( s , t ) .  




	(III) 

	
  m ( s , y ) = m ( t , y ) ≤ m ( s , z ) , m ( t , z )   or   m ( s , y ) = m ( s , z ) ≤ m ( t , y ) , m ( t , z )   or



  m ( s , y ) = m ( t , z ) ≤ m ( t , y ) , m ( s , z )   or   m ( t , y ) = m ( s , z ) ≤ m ( s , y ) , m ( t , z )   or



  m ( t , y ) = m ( t , z ) ≤ m ( s , y ) , m ( s , z )   or   m ( s , z ) = m ( t , z ) ≤ m ( s , y ) , m ( t , y ) .  











Example 3.

Let X be a set with at least two points and   ( X , G )   be an indiscrete  L -gauge space. Then, by Theorem 3.3 of [22],   ( X , G )   is Pre-   T 2  ¯  , but by Theorems 1, 3 and 5,   ( X , G )   is neither   T 0  ,    T 0  ¯  ,   T 1  ,    T 2  ¯   nor   N  T 2   .





Theorem 7.

Let   ( X , G )   be a Pre-   T 2  ¯   L -gauge space, then the following are equivalent.




	1. 

	
  ( X , G )   is     T 2  ¯  .  




	2. 

	
  ( X , G )   is    T 1  .  




	3. 

	
  ( X , G )   is     T 0  ¯  .  











Proof. 

Combine Theorems 1 and 3–5. □






5. Comparative Evaluation


In this section, we compare our results with the ones in some other categories.



Let  E  be a topological category, and let   T ( E )   be the full subcategory of  E  consisting of all  T  objects where  T  is    T 0  ¯  ,   T 1  , Pre-   T 2  ¯   or    T 2  ¯  .



By Theorem 3.4 of [22], the full subcategory  Pre -   T 2   ( E )    of  E  consisting of all Pre-   T 2  ¯   objects in  E  is a topological category.



Theorem 8.

The following categories are isomorphic.




	1. 

	
   T 0  ¯    ( Pre  -   T 2    (  L - GS  )  ) .   




	2. 

	
  T 1    ( Pre  -   T 2    (  L - GS  )  ) .   




	3. 

	
   T 2  ¯    ( Pre  -   T 2    (  L - GS  )  ) .   




	4. 

	
   T 1      (  L - GS  ) .   




	5. 

	
    T 2  ¯      (  L - GS  ) .   











Proof. 

It follows from Theorem 3.5 of [22] and Theorems 3, 5 and 7. □





We can infer the following:




	(1)

	
In   L - GS  ,



	(a)

	
By Theorems 1–3 and 5,     T 2  ¯  =  T 1  ⇒   T 0  ¯  ⇒  T 0   .




	(b)

	
By Theorems 4–6, if an  L -gauge space   ( X , G )   is    T 2  ¯  , then   ( X , G )   is both   N  T 2    and Pre-   T 2  ¯  .




	(c)

	
By Theorem 7,   ( X , G )   is a Pre-Hausdorff  L -gauge space, then    T 0  ¯  ,   T 1   and    T 2  ¯   are equivalent.








	(2)

	
In the category  App  of approach spaces and contraction maps,   T 0  ,    T 0  ¯   and   T 1   separation axioms, given in [2,31] are the special forms of our results. For example, if we take Lawvere’s quantale [23,24], then Theorems 1 and 3 reduce to Theorems 3.1.3 and 3.2.3 of [31], respectively.




	(3)

	
For the category  Top ,     T 2  ¯  = N  T 2  ⇒  T 1  ⇒   T 0  ¯  =  T 0    and     T 2  ¯  = N  T 2  ⇒   Pre-   T 2  ¯   [13,29,30]. Moreover, in the realm of Pre-  T 2   property, by Theorem 3.5 of [22], all of   T 0  ,   T 1   and   T 2   are equivalent.




	(4)

	





	(a)

	
In category  Prox  of proximity spaces and proximity maps, if a proximity space   ( X , z )   is    T 0  ¯   or   T 1   or    T 2  ¯  , then   ( X , z )   is Pre-   T 2  ¯   [32]. Similarly, in category  CHY  of Cauchy spaces and Cauchy continuous maps,    T 0  =   T 0  ¯  =  T 1  =   T 2  ¯  ⇒   Pre-   T 2  ¯   [33].




	(b)

	
In category  Born  of bornological spaces and bounded maps, if a bornological space is   T 0  , then it is    T 0  ¯   or   T 1   or    T 2  ¯   or Pre-   T 2  ¯   [14,15,29]. However, in category  Lim  of limit spaces and filter convergence maps,    T 1  ⇒  T 0  =   T 0  ¯    [15].




	(c)

	
In  ConFCO  (the category of constant filter convergence spaces and continuous maps),    T 0  =   T 0  ¯  =  T 1    and     T 2  ¯  = N  T 2  ⇒   Pre-   T 2  ¯   [34]. In the realm of Pre-   T 2  ¯   property,    T 0  =   T 0  ¯  =  T 1  =   T 2  ¯  = N  T 2    [22,34]. In  ConLFCO  (the category of constant local filter convergence spaces and continuous maps),    T 0  ⇒   T 0  ¯  =  T 1    and    T 0  = N  T 2  ⇒   T 2  ¯  ⇒   Pre-   T 2  ¯   [34]. In the realm of Pre-   T 2  ¯   property,    T 0  = N  T 2  ⇒   T 2  ¯  =   T 0  ¯  =  T 1    [22,34].




	(d)

	
In the category   ∞ pqsMet   of extended pseudo-quasi-semi-metric spaces and contraction maps,    T 1  =   T 2  ¯  ⇒   T 0  ¯  ⇒  T 0    and     T 2  ¯  ⇒ N  T 2  ⇒   Pre-   T 2  ¯   [20,35]. Furthermore, in the realm of Pre-   T 2  ¯   property,     T 0  ¯  =  T 1  =   T 2  ¯    and   N  T 2  =  T 0    [20,35].




	(e)

	
In category  CP  of pair spaces and pair preserving maps, all pair spaces are    T 0  ¯  ,   T 1  ,    T 2  ¯   and Pre-   T 2  ¯   [16]. Moreover,    T 0  = N  T 2  ⇒   T 2  ¯  =   T 0  ¯  =  T 1  =   Pre-   T 2  ¯   [16].










	(5)

	





	(a)

	
For any arbitrary topological category, there is no relationship between    T 0  ¯   and   T 0   [15]. In addition, it is shown in [29] that the notions of    T 2  ¯   and   N  T 2    are independent of each other, in general. However, in the realm of Pre-  T 2   property, by Theorem 3.5 of [22], all of    T 0  ¯  ,   T 1   and    T 2  ¯   are equivalent.




	(b)

	
By Corollary 2.7 of [36], if   U : E → Set   is normalized (i.e., U is topological and there is only one structure on a one-point set and ∅, the empty set ), then    T 0  ¯  ,   T 1  , Pre-   T 2  ¯   and    T 2  ¯   imply    T 0  ¯   at p,   T 1   at p, Pre-   T 2  ¯   at p and    T 2  ¯   at p, respectively. In   L - GS  , by Theorems 3.1–3.4 of [26], if an  L -gauge space   ( X , G )   is    T 0  ¯   (or   T 1  ), then   ( X , G )   is    T 0  ¯   at p (or   T 1   at p).
















6. Conclusions


Firstly, we characterized   T 0  ,    T 0  ¯  ,   T 1  , Pre-   T 2  ¯  ,    T 2  ¯   and   N  T 2    L -gauge spaces and showed that     T 2  ¯  =  T 1  ⇒   T 0  ¯  ⇒  T 0   . Moreover, we obtained that an  L -gauge space   ( X , G )   is    T 2  ¯  , then   ( X , G )   is both   N  T 2    and Pre-   T 2  ¯  , and in the realm of Pre-Hausdorff quantale-valued gauge spaces,    T 0  ¯  ,   T 1   and    T 2  ¯   are equivalent. Finally, we compared our results with the ones in some other categories. Considering these results, the following can be treated as open research problems:




	(i)

	
Can one characterize each of   T 3  ,   T 4  , irreducible, compact, connected, sober and zero-dimensional quantale-valued gauge spaces?




	(ii)

	
Can one present the Urysohn’s Lemma, the Tietze Extension Theorem and the Tychonoff Theorem for the category   L - GS  ?




	(iii)

	
How can one characterize   T 0  ,    T 0  ¯  ,   T 1  , Pre-   T 2  ¯  ,    T 2  ¯   and   N  T 2    separation axioms for quantale generalization of other approach structures such as approach distances and approach systems, and what would be their relation to each other?




	(iv)

	
In the category  App  of approach spaces and contraction maps, what would be the characterization of Pre-   T 2  ¯  ,    T 2  ¯   and   N  T 2    properties?
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