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Abstract: We investigate a uniformly rotating finite mass consisting of two immiscible, viscous, in-
compressible self-gravitating fluids which is governed by an interface problem for the Navier–Stokes
system with mass forces and the gradient of the Newton potential on the right-hand sides. The
interface between the liquids is assumed to be closed. Surface tension acts on the interface and on the
exterior free boundary. A study of this problem is performed in the Hölder spaces of functions. The
global unique solvability of the problem is obtained under the smallness of the initial data, external
forces and rotation speed, and the proximity of the given initial surfaces to some axisymmetric
equilibrium figures. It is proved that if the second variation of the energy functional is positive
and mass forces decrease exponentially, then small perturbations of the axisymmetric figures of
equilibrium tend exponentially to zero as the time t→ ∞, and the motion of liquid mass passes into
the rotation of the two-phase drop as a solid body.

Keywords: two-phase liquid problem with mass forces; stability of a solution; viscous incompressible
self-gravitating fluids; interface problem for the Navier–Stokes system; Hölder spaces; exponential decay
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1. Introduction

The paper deals with the stability of the problem of rotation of an isolated liquid mass
about a fixed axis. Such problems were treated by many outstanding mathematicians. A
review of the topic was presented in the book of Appell [1]. One can find there, for example,
the results of Charrueau [2,3], who was one of the first to start studying the problem with a
capillarity effect at the beginning of the 20th century.

A. M. Lyapunov [4,5] analyzed the stability of equilibrium figures for a rotating fluid
mass without surface tension by analytical methods. He investigated the second variation
of an energy functional considering small perturbations of the boundary of an equilibrium
figure. The positiveness of this variation guarantees the stability of the figure because the
energy potential possesses a minimum in this case.

The Lyapunov method was generalized for a rotating capillary fluid by one of the
authors of this paper in [6,7]. We developed this technique for a finite mass of two-phase
liquids. We studied the stability problem for two rotating incompressible capillary self-
gravitating fluids with an unknown interface and a free surface to be close to the boundaries
of two equilibrium figures inserted into each other. The existence of two-phase figures of
equilibrium was obtained in [8]. We adapted the proof of the global maximal regularity
of two-fluid problem without rotation ([9] Ch. 7, 12) to our case. A study of rotating
two-phase drop was performed in the Sobolev–Slobodetskiı̌ spaces by ourselves in [10,11],
where an a priori exponential inequality was obtained for a generalized energy. At first, on
this basis, the global solvability of a linearized problem was proved. Next, a solution to
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the non-linear problem was found as the sum of the solution of the linear homogeneous
system and that of a problem with small non-linear terms. We use this technique also in the
case of the Hölder spaces. We note that the problem in [10] governs the rotation without
mass force and self-gravity of the drop. In the present paper, we take both these forces into
account.

2. Setting of a problem

We give a mathematical statement of the problem. We assume two immiscible viscous
incompressible fluids of densities ρ± and viscosities µ± to be situated in a domain Ωt ⊂ R3

which is separated by a variable closed interface Γ+
t and bounded by a free surface Γ−t , Γ+

t
being the boundary of the domain Ω+

t filled with a fluid of the density ρ+. It is surrounded
by another fluid of the density ρ− contained in the domain Ω−t = Ωt \Ω+

t (see Figure 1).
At the initial moment t = 0, the boundaries Γ±0 are given. This two-layer fluid mass rotates
about the vertical axis x3. One should find the surfaces Γ±t , velocity vector field v(x, t)
and pressure function p(x, t) which satisfy the interface problem for the Navier–Stokes
equations:

ρ±
(
Dtv + (v · ∇)v

)
− µ±∇2v +∇p = ρ±( f +κ∇U),

∇ · v = 0 in ∪Ω±t = Ω+
t ∪Ω−t , t > 0,

v(x, 0) = v0(x), x ∈ ∪Ω±0 ,

[v]
∣∣
Γ+

t
≡ lim

x→x0∈Γ+
t ,

x∈Ω+
t

v(x, t)− lim
x→x0∈Γ+

t ,
x∈Ω−t

v(x, t) = 0,

[T(v, p)n]
∣∣
Γ+

t
= σ+H+n on Γ+

t , T(v, p)n
∣∣
Γ−t

= σ−H−n on Γ−t ,

Vn = v · n on Γt = Γ+
t ∪ Γ−t ,

(1)

where Dt = ∂/∂t, ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), ∇2 ≡ ∇ · ∇; f is the vector of mass forces,

U(x, t) =
∫

Ωt

ρ± dz
|x− z| ;

κ > 0 is the gravitational constant; v0 is initial velocity vector field; the stress tensor is

T(v, p) = −pI+ µ±S(v),

where I is identity matrix, S(v) = (∇v) + (∇v)T is the twice rate-of-strain tensor, the
superscript T means the transposition, the step-functions of density and dynamical viscosity
ρ±, µ± > 0 are equal to ρ−, µ− in Ω−t and ρ+, µ+ in Ω+

t , respectively; σ± > 0 are surface
tension coefficients on Γ±t , H± are the doubled mean curvatures of the surfaces Γ±t and
(H+ < 0 at the points where Γ+

t is convex toward Ω−t ), the vector n is the outward normal
to Γ−t ∪ Γ+

t and Vn is the speed of evolution of the surfaces Γ±t in the direction of n. A
Cartesian coordinate system {x} is assumed to be introduced in R3. The centered dot ·
denotes the Cartesian scalar product.

The vectors and vector spaces are marked by boldface letters. We imply the summation
from 1 to 3 by repeated indices, indicated in Latin letters.

The domains Ω+
0 and Ω0 are supposed to be close to equilibrium figures F+ and F of

the same volumes:
|Ω+

0 | = |F
+|, |Ω0| = |F |. (2)

In view of the incompressibility of the fluids, equalities (2) hold for arbitrary t > 0:

|Ω+
t | = |F

+|, |Ωt| = |F |. (3)

Mass conservation follows from the constancy of the densities.
We set G+ = ∂F+, G− = ∂F and F− = F \ F+ (see Figure 1).
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Figure 1. Two–phase drop.

If mass force f is orthogonal to all the vectors of rigid motion, i.e.,∫
Ωt

ρ± f (x, t)dx = 0,
∫

Ωt
ρ± f (x, t) · ηi(x)dx = 0, i = 1, 2, 3, (4)

a solution of system (1) also satisfies the additional conservation laws:∫
Ωt

ρ±xj dx =
∫

Ω0

ρ±xj dx ≡ 0, j = 1, 2, 3, (barycenter conservation),∫
Ωt

ρ±v(x, t)dx =
∫

Ω0

ρ±v0(x)dx ≡ 0 (momentum conservation),∫
Ωt

ρ±v(x, t) · ηi(x)dx =
∫

Ω0

ρ±v0(x) · ηi(x)dx ≡ ω
∫
F

ρ̄η3(x) · ηi(x)dx = βδ3
i ,

i = 1, 2, 3, (angular momentum conservation),

(5)

where δk
i is the Kronecker delta, ηj(x) = ej × x, j = 1, 2, 3, ρ̄ is a density step-function:

ρ̄ = ρ− in F−, ρ̄ = ρ+ in F+, ω is the angular speed of the rotation and

β = ω
∫
F

ρ̄(x)|x′|2 dx ≡ ωI

is angular momentum of the rotating fluids. Under conditions (4) for t > 0, it was shown
in [8] that laws (5) are satisfied for all t > 0 if they hold at t = 0.

For the new pressure function p− ρ±κU, system (1) transforms into the problem

ρ±
(
Dtv + (v · ∇)v

)
− µ±∇2v +∇p = ρ± f ,

∇ · v = 0 in ∪Ω±t , t > 0, (6)

v(x, 0) = v0(x) in ∪Ω±0 = Ω+
0 ∪Ω−0 ,

[v]
∣∣
Γ+

t
= 0, [T(v, p)n]

∣∣
Γ+

t
= (σ+H+ + [ρ±]

∣∣
Γ+

t
κU)n on Γ+

t ,

T(v, p)n
∣∣
Γ−t

= (σ−H− + ρ−κU)n on Γ−t , (7)

Vn = v · n on Γt = Γ+
t ∪ Γ−t .
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The uniform rotation of a two-phase drop about the x3-axis with constant angular
velocity ω = β/I is governed by the homogeneous steady Navier–Stokes equations:

ρ̄(V · ∇)V − µ̄∇2V +∇P = 0, ∇ ·V = 0 in ∪ F±

with the step-function of dynamical viscosity µ̄ ≡ µ+ in F+ and µ̄ ≡ µ− in F−. The
solution of this system is the couple of velocity vector field

V(x) = ωe3 × x ≡ ωη3

and the function of pressure

P(x) = ρ̄
ω2

2
|x′|2 + p±0 ,

where |x′|2 = x2
1 + x2

2 and ρ̄ and p±0 are step-functions in F±. In order to find the equations
of the surfaces G± of the domains F±, we substitute V ,P into boundary conditions (7)

σ−H−(x) + ρ−
ω2

2
|x′|2 + ρ−κU + p−0 = 0, x ∈ G−,

σ+H+(x) + [ρ̄]
∣∣
G+

ω2

2
|x′|2+ [ρ̄]

∣∣
G+κU + [p±0 ]

∣∣
G+= 0, x ∈ G+,

(8)

whereH− andH+ are twice the mean curvatures of G− and G+, respectively, and

U (x) =
∫
F

ρ̄ dz
|x− z| .

In [8], the existence of the boundaries G± satisfying Equation (8) was proved, provided
that β is small enough, and κ, [ρ̄]

∣∣
G+ > 0 (Proposition 3.3). It was noted there that G±

are flattened spheroids. If κ = 0, the condition [ρ̄]
∣∣
G+ > 0 is not necessary. We cite this

proposition.

Proposition 1. Let the angular momentum β be small enough, and κ > 0 and ρ+ > ρ−. Then,
for given volumes |F+| and |F |, there exists a unique equilibrium figure which is axially symmetric
about the axis x3 and symmetric about the plane x3 = 0. The surfaces G± are close to the spheres
SR± = {|x| = R±}, respectively, where R+, R− are such that

4π

3
R3
+ = |F+|, 4π

3
R3
− = |F |

and
G± = {x = z + φ±(z)

z
|z| , z ∈ SR±}.

Thus, we admit the axial symmetry of F± and their symmetry about the plane x3 = 0.
Then ∫

F
ρ̄xidx = 0, i = 1, 2, 3, (9)∫

F
ρ̄x3xjdx = 0, j = 1, 2.

Relation (9) corresponds to the first condition in (5). It means that mass center of the fluids
is in the origin all the time. The other conservation laws in (5) take the form∫

Ωt
ρ±v(x, t)dx =

∫
F

ρ̄V(x)dx = 0, (10)

∫
Ωt

ρ±v(x, t) · ηi(x)dx =
∫
F

ρ̄V(x) · ηi(x)dx = δ3
i β, i = 1, 2, 3.
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Let us consider the perturbations of the velocity and pressure

vr(x, t) = v(x, t)−V(x), pr(x, t) = p(x, t)−P(x).

We introduce the new coordinates {yi} rotating about the x3-axis with the angular velocity
ω and the new unknown functions (ṽ, p̃) by the formulas

x = Z(ωt)y,

ṽ(y, t) = Z−1(ωt)vr(Z(ωt)y, t), p̃(y, t) = pr(Z(ωt)y, t),

where

Z(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

.

We note that ∇x = Z∇y, Z−1(ωt)(V · ∇x)vr = ω
(
η3(x) · ∇x

)
ṽ(y, t) = ω

(
Zη3(y) ·

Z∇y
)
ṽ = ω

(
η3(y) · ∇y

)
ṽ(y, t) = ω

(
y2

∂ṽ
∂y1
− y1

∂ṽ
∂y2

)
and Dtvr|x=Zy = Dtvr(Zy, t)− (V ·

∇)vr. By substituting this in (6) and (7), acting by Z−1 and taking (8) into account in the
boundary conditions, we obtain the following interface problem for the perturbations ṽ
and p̃:

ρ±
(
Dtṽ + (ṽ · ∇)ṽ + 2ω(e3 × ṽ)

)
− µ±∇2ṽ +∇ p̃ = ρ± f̃ ,

∇ · ṽ = 0 in ∪ Ω̃±t ≡ Ω̃−t ∪ Ω̃+
t , t > 0,

ṽ(y, 0) = v0(y)−V(y) ≡ ṽ0(y), y ∈ ∪Ω̃±0 ,

− p̃ñ + µ−S(ṽ)ñ
∣∣
Γ̃−t

=
{

σ−
(

H̃−(y)−H−(z)
)
+ ρ−ω2(|y′|2 − |z′|2)/2

+κρ−
(
Ũ(y, t)−U (z)

)}
ñ,

[ṽ]
∣∣
Γ̃+

t
= 0,

[− p̃ñ +µ±S(ṽ)ñ]|Γ̃+
t
=
{

σ+
(

H̃+(y)−H+(z)
)
+[ρ±]ω2(|y′|2− |z′|2)/2

+κ[ρ±]|Γ+
t

(
Ũ(y, t)−U (z)

)}
ñ,

Ṽñ = ṽ · ñ on Γ̃t ≡ Γ̃−t ∪ Γ̃+
t ,

(11)

where Ω̃±t = Z−1(ωt)Ω±t , Γ̃±t = Z−1(ωt)Γ±t , f̃ (y, t) = Z−1(ωt) f (Z(ωt)y, t), ñ is the
outward normal to Γ̃t, n = Z ñ, y′ = (y1, y2, 0), etc. We note that the kinematic boundary
condition Vn = v · n, conserves its form (see [10]).

Relations (3), (5) and (10) go over into

|Ω̃+
t | = |F

+|, |Ω̃t| = |F |, (12)∫
Ω̃t

ρ±yj dy = 0, j = 1, 2, 3, (centroid conservation),∫
Ω̃t

ρ±ṽ(y, t)dy = 0 (impulse conservation),∫
Ω̃t

ρ±ṽ(y, t) · ηi(y)dy + ω
∫

Ω̃t
ρ±η3 · ηi(y)dy = ω

∫
F

ρ̄η3 · ηi(y)dy = βδ3
i

(angular momentum conservation),

(13)

where ηi(y) = ei × y, i = 1, 2, 3.
We give the definition of the anisotropic Hölder spaces which we use below.
Let Ω be a domain in Rn, n ∈ N and α ∈ (0, 1). We set QT = Ω× (0, T) for T > 0. By

Cα,α/2(QT), we denote the set of functions f in QT having the norm

| f |(α,α/2)
QT

= | f |QT + 〈 f 〉(α,α/2)
QT

,
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where
| f |QT = sup

t∈(0,T)
sup
x∈Ω
| f (x, t)|, 〈 f 〉(α,α/2)

QT
= 〈 f 〉(α)x,QT

+ 〈 f 〉(α/2)
t,QT

,

and

〈 f 〉(α)x,QT
= sup

t∈(0,T)
sup

x,y∈Ω
| f (x, t)− f (y, t)||x− y|−α,

〈 f 〉(µ)t,QT
= sup

x∈Ω
sup

t,τ∈(0,T)
| f (x, t)− f (x, τ)||t− τ|−µ, µ ∈ (0, 1).

We introduce the following notation:

Dr
x = ∂|r|/∂xr1

1 . . . ∂xrn
n , r = (r1, . . . rn), ri > 0, |r| = r1 + · · ·+ rn,

Ds
t = ∂s/∂ts, s ∈ N∪ {0}.

Let k ∈ N. By definition, the space Ck+α,(k+α)/2(QT) consists of functions f with finite
norm

| f |(k+α, k+α
2 )

QT
≡ ∑
|r|+2s6k

|Dr
xDs

t f |QT + 〈 f 〉(k+α, k+α
2 )

QT
,

where
〈 f 〉(k+α, k+α

2 )
QT

= ∑
|r|+2s=k

〈Dr
xDs

t f 〉(α, α
2 )

QT
+ ∑
|r|+2s=k−1

〈Dr
xDs

t f 〉(
1+α

2 )
t,QT

.

We define Ck+α(Ω), k ∈ N∪ {0}, as the space of functions f (x), x ∈ Ω, with the norm

| f |(k+α)
Ω ≡ ∑

|r|6k
|Dr

x f |Ω + 〈 f 〉(k+α)
Ω .

Here
〈 f 〉(k+α)

Ω = ∑
|r|=k
〈Dr

x f 〉(α)Ω = ∑
|r|=k

sup
x,y∈Ω

|Dr
x f (x)−Dr

y f (y)||x− y|−α.

One also needs the following norm with α, γ ∈ (0, 1):

| f |(γ,1+α)
QT

= 〈 f 〉(γ,1+α)
QT

+ 〈 f 〉(
1+α−γ

2 )
t,QT

+ | f |QT

with

〈 f 〉(γ,1+α)
QT

≡ sup
t,τ∈(0,T)

sup
x,y∈Ω

| f (x, t)− f (y, t)− f (x, τ) + f (y, τ)|
|x− y|γ|t− τ|(1+α−γ)/2

.

The estimate
〈 f 〉(γ,1+α)

QT
6 c1〈 f 〉

(1+α, 1+α
2 )

QT

is known. By definition, f ∈ C(γ,1+α)(QT) if

| f |(γ,1+α)
QT

< ∞.

Finally, if a function f has finite norm

| f |(γ,µ)
QT

≡ 〈 f 〉(γ)x,QT
+ | f |(µ)t,QT

, γ ∈ (0, 1), µ ∈ [0, 1),

where

| f |(µ)t,QT
=

{
| f |QT + 〈 f 〉(µ)t,QT

if µ > 0,

| f |QT if µ = 0,

we consider that f ∈ Cγ,µ(QT).
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We consider that a vector-valued function belongs to a Hölder space if all of its
components belong to this space and define its norm as the maximum of component norms.
The same applies to a tensor-valued function.

We set

| f |(k+α, k+α
2 )

DT
≡ | f |(k+α, k+α

2 )

Q−T
+ | f |(k+α, k+α

2 )

Q+
T

, DT ≡ Q+
T ∪Q−T ,

| f |(k+α)
∪Ω± ≡ | f |

(k+α)
Ω− + | f |(k+α)

Ω+ .

3. A Linearized Problem

We suppose the surfaces Γ̃±t to be given by the relations

Γ̃±t = {y = z + N(z)r(z, t), z ∈ G±}, (14)

where N is the outward normal to G− ∪ G+.
Let us map Ω̃±t into F± by the inverse transformation to the Hanzawa transform

y = z + N∗(z)r∗(z, t) ≡ er(z, t), (15)

where N∗, r∗ are some extensions of N and r into F , respectively.
In order to analyze problem (11) with initial data close to the regime of rotation as

a rigid body (see Figure 1), we linearize it. To this end, we calculate the first variation
with respect to r of the differences H(y)−H(z), |y′|2 − |z′|2, U(y, t)− U (z). We use the
following formulas for the first and second variations of a functional R[r]

δ0R[r] =
d
ds

R[sr]
∣∣
s=0, δ2

0 R[r] =
d2

ds2 R[sr]
∣∣
s=0. (16)

It is easily seen that δ0
(
|y′|2 − |z′|2

)
= d

ds
(
|z′ + N ′sr|2 − |z′|2

)∣∣
s=0 = 2z′ · N ′r, N ′ =

(N1, N2, 0). By [12], δ0
(

H±(y) − H±(z)
)

= ∆±r± +
(
H±2

(z) − 2K±(z)
)
r±, where the

Laplace–Beltrami operators ∆± act on G±. Moreover, as mentioned in [8],

δ0
(
U(y, t)−U (z)

)
=

∂U
∂N

r +W [r](z, t),

where

U (z) =
∫
F

ρ̄ dx
|z− x| , W [r](z, t) ≡ ρ−

∫
G−

r(x, t)
|z− x| dGx + [ρ±]

∣∣
G+

∫
G+

r(x, t)
|z− x| dGx.

In new coordinates (15), the kinematic condition for Vn ≡ Dty · n|G takes the form

DtrN · n = ṽ · n. (17)

Thus, collecting the above relations, we obtain a linear problem corresponding to (11)
with the unknown functions w and p1:

ρ̄
(
Dtw + 2ω(e3 ×w)

)
− µ̄∇2w +∇p1 = ρ̄ f ,

∇ ·w = f ≡ ∇ · F in ∪F± ≡ F− ∪ F+, t > 0,

w(z, 0) = v0(z)−V(z) ≡ w0(z), z ∈ ∪F±,

[w]
∣∣
G+ = 0, [T(w, p1)N]

∣∣
G+ + NB+0 (r) = d on G+,

T(w, p1)N + NB−0 (r) = d on G−,

Dtr−w · N = g on G ≡ G− ∪ G+, r(z, 0) = r0(z), z ∈ G,

(18)
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where the operators

B−0 (r) = −σ−∆−r− b−(z)r− ρ−κW [r], z ∈ G−,

B+0 (r) = −σ+∆+r− b+(z)r− [ρ̄]
∣∣
G+κW [r], z ∈ G+,

(19)

with

b−(z) = σ−(H−2 − 2K−) + ρ−ω2N · z′ + ρ−κ∂U/∂N,

b+(z) = σ+(H+2 − 2K+) + [ρ̄]
∣∣
G+ω2N · z′ + [ρ̄]

∣∣
G+κ∂U/∂N,

where z′ = (z1, z2, 0) and K± are the Gaussian curvatures of G±, ω is the angular velocity,
r(x, t) is an unknown function equal to the deviation of the surfaces Γ±t from G± and
f , f , d, g, w0, r0 are given functions.

First, we study problem (18) with the homogeneous equations and boundary condi-
tions:

ρ̄(Dtw + 2ω(e3 ×w))− µ̄∇2w +∇p1 = 0, ∇ ·w = 0 in ∪F±, t > 0,

w
∣∣
t=0 = w0 in ∪F±,

[w]
∣∣
G+ = 0, [T(w, p1)N]

∣∣
G+ + NB+0 (r) = 0 on G+,

T(w, p1)N
∣∣
G− + NB−0 (r) = 0 on G−,

Dtr−w · N = 0 on G, r
∣∣
t=0 = r0 on G.

(20)

We assume that the domains F± are symmetric with respect to z1, z2, z3 and that the
initial data satisfy, due to assumptions (12), (13), orthogonality conditions∫

G±
r0(z)dG = 0,

ρ−
∫
G−

r0(z)zj dG + [ρ̄]
∣∣
G+

∫
G+

r0(z)zj dG = 0, j = 1, 2, 3,
(21)

∫
F

ρ̄w0(z)dz = 0,∫
F

ρ̄w0(z) · ηj(z)dz + ω
(

ρ−
∫
G−

r0(z)η3(z) · ηj(z)dG

+ [ρ̄]
∣∣
G+

∫
G+

r0(z)η3(z) · ηj(z)dG
)
= 0.

(22)

We put Q±T = F± × (0, T), G±T = G± × (0, T), DT = Q+
T ∪ Q−T , QT = Q+

T ∪ Q−T ,
GT = G+

T ∪ G−T , T ∈ (0, ∞].

Proposition 2. A solution of problem (20) under conditions (21), (22) at the initial instant satisfies
(21) and (22) for all t > 0.

This proposition is proved in the same way as Proposition 2.1 in [10] by virtue of
Proposition 3.

In view of impulse conservation, the following statement is valid.

Corollary 1. There holds the decomposition

w = w⊥ +
3

∑
i=1

di(r)ηi, (23)
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where w⊥ means a vector field orthogonal to all the vectors of rigid motion η; i.e.,∫
F

ρ̄w⊥ · η dz = 0,

η = ei or η(z) = ηi(z), i = 1, 2, 3, and

di(r) = −
ω

Si

(
ρ−
∫
G−

rη3 · ηi dG + [ρ̄]|G+
∫
G+

rη3 · ηi dG
)
, Si =

∫
F

ρ̄|ηi|
2 dz.

Proposition 3. The following relations hold:

B−0 (η · N) = −ω2ρ−η · z′, z ∈ G−,

B+0 (η · N) = −ω2[ρ̄]|G+t η · z′, z ∈ G+,

where η is an arbitrary vector of rigid motion.

This statement was proved in [11].
We cite the result obtained in ([9], § 5.3) about the solvability of the following linear

problem for the Stokes system in an unbounded domain Ω− ∪Ω+, Ω+ ∪Ω− = R3, with
the closed interface Γ = ∂Ω+:

Dtv− ν±∇2v +
1

ρ±
∇p = f , ∇ · v = g in DT ≡ ∪Q±T = Ω± × (0, T),

v|t=0 = v0 in Ω− ∪Ω+, v−−−→
|x|→∞

0,

[v]|Γ = 0, [Π0Tn]|Γ = b
(
b · n = 0

)
, (24)

[n ·Tn]
∣∣
Γ − σn ·

∫ t

0
∆Γv dt′ = b′ + σ

∫ t

0
B dt′ on GT ≡ Γ× (0, T),

where f , g, b, b′, B, v0 are given functions; n denotes the outward unit normal to Γ; Π0a =
a− (n · a)n.

We assume first that there hold two representations:

g = ∇ · R and DtR− f ≡ h = ∇ ·M =
3

∑
k=1

∂Mik/∂xk, (25)

and second, that compatibility conditions

[v0]|Γ = 0, ∇ · v0(x) = g(x, 0), x ∈ Ω− ∪Ω+,

[µ±Π0S(v0(x))n]|x∈Γ = b(x, 0), x ∈ Γ, (26)[
Π0
(

f (x, 0)− 1
ρ±
∇p(x, 0) + ν±∇2v0(x)

)]∣∣
x∈Γ = 0

are satisfied. The last of relations (26) follows from the tangential part of the necessary
condition of the continuity of velocity derivative Dtv at t = 0 : [Dtv]|Γ = 0. The normal
part of this equality [Dtv · n]|Γ,t=0 = 0 holds if the initial pressure p0 ≡ p(x, 0) is a solution
to the problem

1
ρ±
∇2 p0(x) = ∇ ·

(
f (x, 0) + ν±∇g(x, 0)−DtR(x, 0)

)
in ∪Ω±,

[p0]|Γ =
[
2µ±

∂v0

∂n
· n
]∣∣∣

Γ
− b′|t=0 ≡ p00, (27)
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[ 1
ρ±

∂p0

∂n

]∣∣∣
Γ
=
[
n ·
(

f (x, 0) + ν±∇2v0
)]∣∣

Γ ≡ p01

(∂ψ

∂n
≡ ∇ψ · n

)
.

(Here the first equation is understood in a weak sense.)

Theorem 1. Let assumptions (25)–(27) be fulfilled. In addition, we assume for α, γ ∈ (0, 1) and
γ < α when σ > 0 and T < ∞ that Γ ∈ C2+α, f ∈ C α, α

2 (DT), g ∈ C1+α, 1+α
2 (DT), R ∈

C(γ,1+α)(DT), DtR ∈ C α, α
2 (DT), [R · n]

∣∣
GT

= 0, v0 ∈ C2+α(Ω− ∪Ω+), b ∈ C1+α, 1+a
2

n (GT),

b′ ∈ C(γ,1+α)(GT), B ∈ Cα,α/2(GT), and the elements of the tensor M have finite semi-norms
|Mik|

(γ,1+α)
DT

, 〈Mik〉
(γ)
x,DT

, i, k = 1, 2, 3. We suppose also that all given functions decrease quickly
enough for |x| → ∞ (for example, in a power-law way). Then problem (24) has a solution (v, p)
such that v ∈ C2+α,1+α/2(DT), ∇p ∈ Cα,α/2(DT), p ∈ C(γ,1+α)(BT) and the inequality

|v|(2+α,1+α/2)
DT

+ |∇p|(α,α/2)
DT

+ 〈p〉(γ,1+α)
DT

+ |p|(
1+α−γ

2 )
t,BT

6 c13(T)
{
| f |(α, α

2 )
DT

+ |g|(1+α, 1+a
2 )

DT
+ |DtR|

(α, α
2 )

DT
+ |R|(γ,1+α)

DT
+ |b|(1+α, 1+α

2 )
GT

+ |b′|(γ,1+α)
GT

+ |b′|GT + |∇τb′|(α, α
2 )

GT
+ σ|B|(α, α

2 )
GT

+ |M|(γ,1+α)
DT

+ 〈M〉(γ)x,DT
+ |v0|

(2+α)
∪Ω±

}
≡ c13(T)F(T) (28)

holds, where ∇τ = Π0∇, c13(T) is a nondecreasing function of T, BT ≡ B1 × (0, T) and B1
is a ball containing the domain Ω+. The velocity vector field v is defined uniquely, and the
pressure p is determined in the class of functions of weak power-law growth up to a smooth bounded
time-dependent function.

A similar theorem for the bounded domain DT ≡ ∪F± × (0, T), is also valid [9]. In
order to prove such a theorem, one applies the estimates near the outer boundary G− which
were obtained in [13,14] for a single liquid.

Theorem 2 (Local Solvability of the Linear Problem). Let G ∈ C3+α and r0 ∈ C3+α(G) with
α ∈ (0, 1). We suppose that f ∈ C α, α

2 (DT), f ∈ C1+α, 1+α
2 (DT), f = ∇ · F, F ∈ C(γ,1+α)(DT),

DtF ∈ Cα,α/2(DT), [F · N]|G+ = 0, w0 ∈ C2+α(∪F±), d = dτ + dN, dτ ∈ C1+α, 1+a
2 (GT),

N · dτ = 0, d ∈ C(γ,1+α)(GT), ∇τd ∈ Cα,α/2(GT), g ∈ C2+α,1+ α
2 (GT), GT ≡ G × (0, T) and

γ ∈ (0, 1), γ < α, T < ∞, satisfy compatibility conditions

∇ ·w0 = f |t=0,

[w0]|G+ = 0, [µ̄ΠGS(w0)N]|G+ = dτ |t=0, µ−ΠGS(w0)N|G− = dτ |t=0,

[
ΠG
(

f (x, 0)− 1
ρ±
∇p1(x, 0) + ν̄∇2w0(x)

)]∣∣
x∈G+ = 0,

where ΠGb = b− (N · b)N. Moreover, we assume f and F to satisfy the representation

DtF − f ≡ h = ∇ ·M =
3

∑
k=1

∂Mik/∂xk,
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where Mik have finite norm |Mik|
(γ,1+α)
DT

and semi-norm 〈Mik〉
(γ)
x,DT

, i, k = 1, 2, 3. We also assume
the initial pressure p0 ≡ p1(x, 0) to be a solution (in a weak sense) to the problem

1
ρ̄
∇2 p0(x) = ∇ ·

(
f (x, 0) + ν̄∇ f (x, 0)−DtF(x, 0)− 2ω(e3 ×w0)

)
, x ∈ ∪F±,

[p0]|G+ =
[
2µ̄

∂w0

∂N
· N
]∣∣∣
G+

+ B+0 (r0)− d|t=0 ≡ p+00,[1
ρ̄

∂p0

∂N

]∣∣∣
G+

=
[
N ·
(

f (x, 0) + ν̄∇2w0
)]∣∣
G+ ≡ p+01

( ∂ψ

∂N
≡ ∇ψ · N

)
,

p0|G− = 2µ−
∂w0

∂N
· N
∣∣∣
G−

+ B−0 (r0)− d|t=0 ≡ p−00.

Then problem (18) has a unique solution (w, p1, r) such that w ∈ C2+α,1+α/2(DT), ∇p1 ∈
Cα,α/2(DT), p1 ∈ C(γ,1+α)(DT), r(·, t) ∈ C3+α(G) for any t ∈ (0, T) and the inequality

Y(0,T)[w, p1, r] ≡ |w|(2+α,1+ α
2 )

DT
+ |∇p1|

(α, α
2 )

DT
+ |p1|

(γ,1+α)
DT

+ |r|(3+α, 3+α
2 )

GT
+ |Dtr|

(2+α,1+ α
2 )

GT

6 c13(T)
{
| f |(α, α

2 )
DT

+ | f |(1+α, 1+a
2 )

DT
+ |DtF|(α, α

2 )
DT

+ |F|(γ,1+α)
DT

+ |dτ |
(1+α, 1+α

2 )
GT

+ |d|(γ,1+α)
GT

+ |∇τd|(α, α
2 )

GT
+ σ|B|(α, α

2 )
GT

+ |M|(γ,1+α)
DT

+ 〈M〉(γ)x,DT
+ |w0|

(2+α)
∪Ω± + |r0|

(3+α)
G + |g|(2+α,1+α/2)

GT

}
≡ c13(T)F(T) (29)

holds.

Proof. Let r1 be a function satisfying the conditions

r1(y, 0) = r0(y),

Dtr1(y, 0) = g(y, 0) + w0(y) · N(y) ≡ r′0(y)

and the estimate

|r1|
(3+α,3/2+ α

2 )
GT

+ |Dtr1|
(2+α,1+ α

2 )
GT

6 c
{
|r0|

(3+α)
G + |r′0|

(2+α)
G

}
. (30)

Such a r1 exists. Indeed, we find this function as a solution of a hyperbolic equation with
the initial data r∗1(y, 0) = r∗0(y) and Dtr∗1 = r′∗0 , where r∗0 and r′∗0 are extensions of the initial
data into R3 with conservation of class. Then

|r1|
(3+α, 3+α

2 )
GT

+ |Dtr1|
(2+α,1+α/2)
GT

6 |r∗1 |
(3+α,3+α)
QT

+ |Dtr∗1 |
(2+α,2+α)
QT

6 c
{
|r0|

(3+α)
G + |r′0|

(2+α)
G

}
.

We can write

B±0 r(y, t) = B±0 r1(y, t) +
∫ t

0
B±0 Dt

(
r(y, τ)− r1(y, τ)

)
dτ

= B±0 r1(y, t) +
∫ t

0
B±0
(

g(y, τ) + w(y, τ) · N(y)−Dtr1(y, τ)
)

dτ.
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Hence, problem (18) can be transformed to the form:

ρ̄
(
Dtw + 2ω(e3 ×w)

)
− µ̄∇2w +∇p1 = ρ̄ f , ∇ ·w = f in DT ,

w(y, 0) = w0(y) in ∪ F±,

[w]|G+
T
= 0, [µ±ΠGS(w)N]

∣∣
G+

T
= dτ , µ−ΠGS(w)N

∣∣
G−T

= dτ ,

N ·T(w, p1)N
∣∣
G−T
− σ−N · ∆−

∫ t

0
w|G−T dτ = d′ + σ−

∫ t

0
B′ dτ

+ ρ−κ
∫ t

0

(
W [N ·w] +

∂U
∂N

N ·w
)

dτ + σ−∇GH ·
∫ t

0
w dτ (31)

− σ−ω2ρ−N · y′
∫ t

0
w · N dτ + 2σ−

∫ t

0
∇Gw : ∇GN dτ on G−T ,

[N ·T(w, p1)N]
∣∣
G+

T
− σ+N · ∆+

∫ t

0
w|G+

T
dτ = d′+σ+

∫ t

0
B′ dτ + σ+∇GH+ ·

∫ t

0
w dτ

+ [ρ̄]
∣∣
G+κ

∫ t

0

(
W [N ·w] +

∂U
∂N

N ·w
)

dτ − σ+ω2[ρ̄]
∣∣
G+ N · y′

∫ t

0
w · N dτ

+ 2σ+
∫ t

0
∇Gw : ∇GN dτ on G+

T ,

where d′ = d−B±0 r1, B′ = −B±0 (g−Dtr1), ∇G = ΠG∇ is the surface gradient on ∪G±;
S :T ≡ SijTij. Here we have used (Lemma 10.7 in [15]) the relation

∆±N = ∇GH± − (H±2 − 2K±)N.

We can apply Theorem 1, formulated for a bounded domain, to problem (31) in order
to state the solvability of it, the additional terms 2ω(e3 ×w) and

[ρ̄]
∣∣
G±κ

∫ t

0

(
W [N ·w] +

∂U
∂N

N ·w
)

dτ + σ±∇GH ·
∫ t

0
w dτ

− σ±ω2[ρ̄]|G±N · y′
∫ t

0
w · N|G± dτ + 2σ±

∫ t

0
∇Gw(y, t) : ∇GN(y)|G± dτ

being of lower order and having no essential influence on the final result. Indeed, let us
evaluate, for example, the terms connected with self-gravity:

|W [w · N]|(α,α/2)
GT

6 c|w · N|(α,α/2)
GT

6 c|w|(α,α/2)
GT

|N|(α)G , (32)∣∣∣ ∂U
∂N

w · N
∣∣∣(α,α/2)

GT
6 c|U |(1+α)

G |w · N|(α,α/2)
GT

6 c|w|(α,α/2)
GT

. (33)

The others terms can be treated in a similar way. Thus, inequality (28) together with (30),
(32) and (33) implies estimate (29).

Let us consider now homogeneous problem (20) with w0 and r0 satisfying orthogonal-
ity conditions (21) and (22). On the basis of decomposition (23), an L2-estimate of w and r
with exponential weight was obtained in [11] (Proposition 2.3). We cite it here.

Proposition 4. Assume that the form

R0(r) =
∫
G

rB±0 r dG (34)

is positive definite—i.e.,
c−1‖r‖2

W1
2 (G)

6 R0(r) 6 c‖r‖2
W1

2 (G)
(35)
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for arbitrary r(x) satisfying (21). Then a solution of (20)–(22) is subjected to the inequality

‖eβ1tw(·, t)‖2
F + ‖eβ1tr(·, t)‖2

W1
2 (G)

6 c
{
‖w0‖2

F + ‖r0‖2
W1

2 (G)
}

, t > 0, (36)

where β1, c > 0 are independent of t.

Remark 1. Condition (35) coincides with the positiveness of the second variation of the expression
for potential energy

G(r) = σ+|Γ+
t |+ σ−|Γ−t | −

ω2

2

∫
∪Ω±t

ρ±|x′|2 dx− κ
2

∫
∪Ω±t

ρ±U dx− p+0 |Ω
+
t | − p−0 |Ω

−
t |

for given volumes of Ω±t . One can calculate it by (16) (see [6,8,11]). Taking into account Equation (8),
we finally obtain

δ2
0G(r) =

∫
G−

{
σ−|∇Gr|2 +

(
σ−(2K−H2)− ρ−ω2N · x′

)
r2
}

dG

+
∫
G+

{
σ+|∇Gr|2 +

(
σ+(2K−H2)− [ρ̄]

∣∣
G+ω2N · x′

)
r2
}

dG

−κρ−
∫
G−

∂U
∂N

r2 dG −κ[ρ̄]
∣∣
G+

∫
G+

∂U
∂N

r2 dG

−κρ−
∫
G−

r(x)W [r](x.t)dGx −κ[ρ̄]
∣∣
G+

∫
G+

r(x)W [r](x.t)dGx.

If δ2
0G(r) > 0 for the subspace of r satisfying orthogonality conditions (21), then the potential G(r)

is weakly lower semicontinuous. Since G(r) is also coercive, it has a minimum which is clear to be
realized at r = 0. This means the stability of the figures F and F+ with the boundaries G± defined
by (8). We note that these relations serve as the Euler equations for G(r). This is variational setting
for stability problem of F and F+.

Theorem 3 (Global Existence for the Linear Homogeneous Problem). We assume that
estimate (35) is valid for the functional R0(r) defined by (34) and that w0 ∈ C2+α(∪F±),
r0 ∈ C3+α(G), G ∈ C3+α with α ∈ (0, 1) satisfy orthogonality conditions (21) and (22) and
compatibility ones

∇ ·w0 = 0 in ∪ F±,

[w0]|G+ = 0, [µ̄ΠGS(w0)N]|G+ = 0, µ−ΠGS(w0)N|G− = 0, (37)

[
ΠG
(
− 1

ρ̄
∇p1(x, 0) + ν̄∇2w0(x)

)]∣∣
x∈G+ = 0

with initial pressure function p1(x, 0) ≡ p0 being a solution to the problem

1
ρ̄
∇2 p0(x) = −2ω∇ · (e3 ×w0) in ∪ F±,

[p0]|G+ =
[
2µ̄

∂w0

∂N
· N
]∣∣∣
G+
+ B+0 (r0) ≡ p+00, p0|G− = 2µ−

∂w0

∂N
· N
∣∣∣
G−
+ B−0 (r0) ≡ p−00,[1

ρ̄

∂p0

∂N

]∣∣∣
G+

=
[
ν̄∇2w0

]∣∣
G+ ≡ p+01.
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Then problem (20) has a unique solution (w, p1, r) such that w ∈ C2+α,1+α/2(D∞), ∇p1 ∈
Cα,α/2(D∞), p1 ∈ C(γ,1+α)(B∞), r(·, t) ∈ C3+α(G) for any t ∈ (0, ∞), and the inequality

|eβtw|(2+α,1+α/2)
D∞

+ |eβt∇p1|
(α,α/2)
D∞

+ |eβt p1|
(γ,1+α)
D∞

+ |eβtr|(3+α, 3+α
2 )

G∞
+ |eβtDtr|(2+α,1+α/2)

G∞

6 c14

{
|w0|

(2+α)
∪F± + |r0|

(3+α)
G

}
(38)

holds with a certain β > 0.

In order to obtain bounds for the exponentially weighted Hölder norms of a solution,
we apply a local-in-time estimate of the solution.

Proposition 5. Let T > 2. For a solution to problem (20)–(22), the inequality

Y(t0−1,t0)
[w, p1, r] 6 c

{
‖w‖Qt0−2,t0

+ ‖r‖Gt0−2,t0

}
(39)

is valid, where 2 < t0 6 T, Dt1,t2 = ∪F± × (t1, t2), Qt1,t2 = F × (t1, t2), F = F+ ∪ F−,
Gt1,t2 = G × (t1, t2).

Proof of Proposition 5. Let t0 ∈ (2, T). We multiply (20) by the cutoff function ζλ(t),
which is smooth and monotone, ζλ(t) = 0 if t 6 t0− 2+λ/2 and ζλ(t) = 1 if t > t0− 2+λ,
where λ ∈ (0, 1]. In addition, for ζ̇λ(t) ≡ dζλ(t)

dt and ζ̈λ(t), the inequalities

sup
t∈R

∣∣ζ̇λ(t)
∣∣ 6 cλ−1, sup

t∈R
|ζ̈λ(t)| 6 cλ−2, 〈ζ̈λ(t)〉

(ϑ)
R 6 cλ−2−ϑ, ∀ϑ ∈ (0, 1),

hold.
Then, for wλ = wζλ, pλ = p1ζλ, rλ = rζλ, we obtain the system

ρ̄
(
Dtwλ + 2ω∇ · (e3 ×wλ)

)
− µ̄∇2wλ +∇pλ = ρ̄wζ̇λ,

∇ ·wλ = 0 in ∪ F±, t > 0,

wλ(y, 0) = 0 in ∪ F±, rλ(y, 0) = 0 on G,

µ−ΠGS(wλ)N
∣∣
G− = 0, N ·T(wλ, pλ)N

∣∣
G− + B0(rλ)|G− = 0,

[wλ]|G+ = 0, [µ̄ΠGS(wλ)N]
∣∣
G+ = 0, [N ·T(wλ, pλ)N]

∣∣
G+ + B0(rλ)|G+ = 0,

Dtrλ −wλ · N = rζ̇λ(t) on G.

(40)

From Theorem 2 applied to system (40), (21) and (22), it follows that estimate (29) is valid
for wλ, pλ and rλ, which implies

Ψ(λ) ≡ |w|(2+α,1+α/2)
Dt1+λ,t0

+ |∇p|(α,α/2)
Dt1+λ,t0

+ |p|(γ,1+α)
Dt1+λ,t0

+ |r|(3+α,3/2+α/2)
Gt1+λ,t0

+ |Dtr|(2+α,1+α/2)
Gt1+λ,t0

6 c13(T)
{
|wζ̇λ|

(α, α
2 )

Dt1+λ/2,t0
+ |M|(γ,1+α)

Dt1+λ/2,t0
+ 〈M〉(γ)x,Dt1+λ/2,t0

+ |rζ̇λ|
(2+α,1+α/2)
Gt1+λ/2,t0

}
, (41)

where t1 = t0 − 2, and

M(ξ, t) = ∇
∫
R3

E(ξ, y)wζ̇λ dy
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with E(x, y) = −1
4π|x−y| ; the vector w is extended into the whole R3 and vanishes at infinity.

By Lemmas 1, 2 which are given below, inequality (41) can be prolonged as follows:

Ψ(λ) 6 c(T)λ−2−α/2
{
|w|(α, α

2 )
Dt1+λ/2,t0

+ |w|(
1+α−γ

2 )
t,Dt1+λ/2,t0

+ |r|(2+α,1+α/2)
Gt1+λ/2,t0

}
6 cλ−2−α/2

{
θγ|w|(2+α,1+ α

2 )
Dt1+λ/2,t0

+ θ〈r〉(3+α, 3+α
2 )

Gt1+λ/2,t0
+

t0∫
t1

(
θ−

7
2 ‖w(·, τ)‖2,Ω

+ θ−α− 11
2 ‖r(·, τ)‖2,G

)
dτ
}

with θ < 1, which leads to

Ψ(λ) 6 c1θλ−2−α/2Ψ(λ/2) + c2θ−mλ−2−α/2K.

Here, K = ‖w‖Qt1,t0
+ ‖r‖Gt1,t0

, m = α + 11/2.

Setting θ = δλ2+α/2 < 1, we obtain

λ(m+1)(2+α/2)Ψ(λ) 6 c1δ2(m+1)(2+α/2)(λ/2)(m+1)(2+α/2)Ψ(λ/2) + c2δ−mK.

This implies

Ψ(λ) 6 c3(δ)λ
−(m+1)(2+α/2)(K + 2−1K + 2−2K + ...) 6

c3λ−(m+1)(2+α/2)

1− 1/2
K,

provided that c1δ2(m+1)(2+α/2) < 1/2. For λ = 1, this inequality coincides with (39).

In ([9] Ch. 5), the following lemma was established on the estimate of Newtonian
potential gradient for the Hölder spaces over DT ≡

(
Ω+

0 ∪ (R3 \Ω+
0 )
)
× (0, T).

Lemma 1. If F ∈ C(0, 1+α−γ
2 )(DT) and vanishes at infinity; then, for the gradient of the Newtonian

potential

∇xV(x, t) = ∇x

∫
R3

E(x, y)F(y, t)dy,

the inequalities

|∇V|(γ,0)
DT

6 c|F|DT ,

|||∇V|||(γ,1+α)
DT

6 c
(
|F|DT + 〈F〉(

1+α−γ
2 )

t,DT

)
≡ c|F|(0, 1+α−γ

2 )
DT

hold.

Interpolation inequalities are proved in a way similar to ([9] Ch. 6).

Lemma 2. Let v ∈ C0, 1+α
2 (DT0) with T0 > θ2 > 0. Then v satisfies the estimate

〈v〉(
1+α−γ

2 )
t,DT0

6 2θγ〈v〉(
1+α

2 )
t,DT0

+ c θγ−α− 9
2

T0∫
0

‖v(·, τ)‖2,Ω dτ.
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Functions u ∈ C2+α,1+ α
2 (DT0) and r ∈ C3+α, 3+α

2 (DT0), 0 < θ < min
{

diam {Ω}, T1/2
0
}

, are
subjected the inequalities

〈u〉(α, α
2 )

DT0
6 2θ2〈u〉(2+α,1+ α

2 )
DT0

+ c θ−α− 7
2

T0∫
0

‖u(·, τ)‖2,Ωdτ,

|u|DT0
6 c

{
θ2+α〈u〉(2+α,1+ α

2 )
DT0

+ θ−
7
2

T0∫
0

‖u(·, τ)‖2,Ω dτ
}

,

|r|(2+α,1+ α
2 )

DT0
6 c

{
θ〈r〉(3+α, 3+α

2 )
DT0

+ θ−α− 11
2

T0∫
0

‖r(·, τ)‖2,Ω dτ
}

.

Proof of Theorem 3. By Theorem 2 and Proposition 5, one has

eβ(T−j)Y(T−j−1,T−j)[w, p1, r] 6 ceβ(T−j)
{
‖w‖QT−j−2,T−j + ‖r‖GT−j−2,T−j

}
, (42)

j = 0, 1, ..., [T]− 2.

Summing (42) from j = 0 to j = [T]−2, we obtain an inequality which implies

j=[T]−2

∑
j=0

Y(T−j−1,T−j)[e
βtw, eβt p1, eβtr] 6 c

∫ T

T−[T]
eβt
(
‖w(·, t)‖Ω + ‖r(·, t)‖G

)
dt. (43)

By choosing β 6 β1 in (43) from Proposion 4, we make use of an inequality equivalent
to (36) and add the estimate

Y(0,2)[w, p1, r] 6 c
{
|w0|

(2+α)
∪Ω± + |r0|

(3+α)
G

}
.

Now taking supremum in t ∈ (0, ∞), one arrives at (38).

4. Global Solvability of the Nonlinear Problem

We separate the normal and tangent parts in the boundary conditions in (11) after
transformation (15) and take (17) and (19) into account. Then this problem can be written
in the form ([9], Ch. 12, [16]):

ρ̄
(
Dtu + 2ω(e3 × u)

)
− µ̄∇2u +∇q = ρ̄ f̂ + l1(u, q, r) ≡ f 1,

∇ · u = l2(u, r) in ∪F±, t > 0,

u
∣∣
t=0 = u0 in ∪F±, r

∣∣
t=0 = r0 on G,

µ−ΠGS(u)N = l−3 (u, r) on G−, [µ̄ΠGS(u)N]
∣∣
G+ = l+3 (u, r) on G+,

− q + µ−N · S(u)N + B−0 r = l−4 (u, r) + l−5 (r) on G−,

[u]
∣∣
G+ = 0, [−q + µ̄N · S(u)N]

∣∣
G+ + B+0 r = l+4 (u, r) + l+5 (r) on G+,

Dtr− u · N = l6(u, r) on G,

(44)
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where u(z, t) = ṽ
(
er(z, t), t

)
, u0(z) = ṽ

(
er0(z, 0), 0

)
, q(z, t) = p̃

(
er(z, t), t

)
, f̂ (z, t) =

f̃
(
er(z, t), t

)
,

l1(u, q, r) = µ̄(∇̃2 −∇2)u + (∇− ∇̃)q + ρ̄Dtr∗(L−1N∗ · ∇)u− ρ̄(L−1u · ∇)u,

l2(u, r) = (∇− ∇̃) · u ≡ ∇ · L2(u, r),

l−3 (u, r) = µ−ΠG
(
ΠGS(u)N − Π̃S̃(u)ñ(er)

)
,

l+3 (u, r) =
[
µ̄ΠG

(
ΠGS(u)N − Π̃S̃(u)ñ(er)

)]∣∣
G+ ,

l−4 (u, r) = µ−
(

N · S(u)N − ñ(er) · S̃(u)ñ(er)
)
, (45)

l+4 (u, r) =
[
µ̄
(

N · S(u)N − ñ(er) · S̃(u)ñ(er)
)]∣∣
G+ ,

l−5 (r) = σ−
∫ 1

0
(1− s)

d2

ds2

(
L−T(z, sr)∇G ·

L̂T(z, sr)N
|L̂T(z, sr)N|

)
ds +

ω2

2
ρ−|N ′|2r2

+κρ−
∫ 1

0
(1− s)

d2

ds2 Ũ(esr(z), t)ds,

l+5 (r) = σ+
∫ 1

0
(1− s)

d2

ds2

(
L−T(z, sr)∇G ·

L̂T(z, sr)N
|L̂T(z, sr)N|

)
ds +

ω2

2
[ρ̄]
∣∣
G+ |N

′|2r2

+κ[ρ̄]
∣∣
G+

∫ 1

0
(1− s)

d2

ds2 Ũ(esr(z), t)ds,

l6(u, r) =
( L̂T N

N · L̂T N
− N

)
· u,

L is the Jacobi matrix of transformation (15):

L(z, r) ≡
{

Lij
}
=
{

δi
j +

∂
(
r∗(z, t)N∗i (z)

)
∂zj

}3

i,j=1
,

L̂ ≡ LL−1, L ≡ detL. In addition, ∇̃ = L−T∇ is the transformed gradient ∇x;

L−T ≡ (L−1)T ; the superscript T means transposition; ñ = L̂T(z,r)N
|L̂T(z,r)N|

;

S̃(u) = ∇̃u + (∇̃u)T is the transformed doubled rate-of-strain tensor;
Π̃b = b− ñ · bñ and ΠGb = b− N · bN are the projections of a vector b on the tangent
planes to Γ̃t and G; ∇G = ΠG∇.

We observe that the operators l1 and l2 have divergence form:

l1(w, s) = ρ̄∂L1j(w, s)/∂ξ j,

L1j(w, s, r) = ν̄(L̂ji L̂mi/L2 − δm
j )∂w/∂ξm −BTejs/ρ̄ + ∂U(w, s, r)/∂ξ j

= ν̄(Bji L̂mi/L + Bmj)∂w/∂ξm −BTejs/ρ̄ + ∂U(w, s, r)/∂ξ j,

U(ξ, t) =
∫
∪F±
E(ξ, η)

{
Dtr∗(L−1N∗ · ∇)w− (L−1w · ∇)w

+ ν̄
L̂ki
L2

∂L
∂ξk

L̂mi
L

∂w
∂ξm
− s

L−T∇η L
ρ̄L(η, t)

}
dη,

l2(w) = (I−L−T)∇ ·w = ∇ · L2(w, r),

L2(w, r) = −Bw +∇V(w), B ≡ L−1 − I,

V(ξ, t) ≡−
∫
∪F±

E(ξ, η)

L2(η, t)
∇η L · L̂w(η, t) dη = −

∫
∪F±

E(ξ, η)

L(η, t)
L−T∇η L ·w(η, t) dη.
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(ej is the unit vector in the direction of ξ j, ν̄ = µ̄/ρ̄ and I is identity matrix). We have used
the equality L̂T∇ ·w = ∇ · L̂w that follows from the identity

∂L̂ij

∂ξi
= 0,

which is valid for the cofactors of the Jacobi matrix of any transformation.
Moreover, the expression ρ̄Dtl2(u)−∇ · f 1 is also representable in divergence form:

ρ̄Dtl2(u)−∇ · f 1 = ρ̄
(
Dtl2(u)−∇ · f̂

)
−∇ · l1(u, q)

= ∇ · [ρ̄DtL2(u, r)− ρ̄ f̂ − l1(u, q)]

=−∇ · [ρ̄ f̂ + ρ̄BDtu + ρ̄(DtB)u + ρ̄∇DtV(u) + l1(u, q)]

≡−∇ ·
(
ρ̄L−1 f̂ + l7(u, q)

)
with

l7(u, q) = ρ̄B(Dtu− f̂ ) + ρ̄(DtB)u + ρ̄∇DtV(u) + l1(u, q)

= −B
(
2ωρ̄(e3 × u)− µ̄∇2u +∇q

)
+ ρ̄(DtB)u +L−1l1(u, q) ≡

∂L7j(u, q)
∂ξ j

,

L7j(u, q) = µ̄B ∂u
∂ξ j
−Bejq + ρ̄L−1L1j +

∂W
∂ξ j

, j = 1, 2, 3, (46)

W(ξ, t) = −
∫
∪F±
E(ξ, η)

{ ∂B
∂ηm

(
µ̄

∂u
∂ηm
− emq + ρ̄L1m

)
+ 2ωρ̄B(e3 × u)− ρ̄(DtB)u

}
dη.

We assume the fulfillment of restrictions (4). Then we can express conditions (12) and
(13) in terms of r in the following way (see [17]):∫

G±
ϕ±(z, r)dG = 0 (mass conservation),

ρ−
∫
G−

ψ−(z, r)dG + [ρ̄]
∣∣
G+

∫
G+

ψ+(z, r)dG = 0 (barycenter conservation),∫
F

ρ̄u(z, t)L(z, r)dz = 0 ( momentum conservation),∫
F

ρ̄u(z, t) · ηj(er(z, t))L(z, r)dz + ω
∫
F

ρ̄η3(er(z, t)) · ηj(er(z, t))L(z, r)dz

=
∫
F

ρ̄η3(z) · ηj(z)dz j = 1, 2, 3, (angular momentum conservation),

(47)

where

ϕ±(z, r) = r− r2

2
H±(z) + r3

3
K±(z),

ψ±(z, r) = ϕ±(z, r)z + N(z)
( r2

2
− r3

3
H±(z) + r4

4
K±(z)

)
.

Proposition 6. For arbitrary numbers l±, vectors l, m, M = (M1, M2, M3), a function f0 ∈
C1+α(∪F±) and a vector field b0 ∈ C1+α(G), there exist r ∈ C3+α(G) and u ∈ C2+α(∪F±)
satisfying the conditions ∫

G−
r(z)dG = l−,

∫
G+

r(z)dG = l+,

ρ−
∫
G−

r(z)z dG + [ρ̄]|G+
∫
G+

r(z)z dG = l,
(48)
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∫
F

ρ̄u(z)dz = m,∫
F

ρ̄u(z) · ηj(z)dz + ω
(

ρ−
∫
G−

r(z)η3(z) · ηj(z)dG

+ [ρ̄]|G+
∫
G+

r(z)η3(z) · ηj(z)dG
)
= Mj, j = 1, 2, 3,

∇ · u = f0 in ∪F±, b0 · n0 = 0 on G±,

µ−ΠGS(u)N = b0 on G−, [u]|G+ = 0, [µ̄ΠGS(u)N]|G+ = b0 on G+

and the inequality

|r|(3+α)
G + |u|(2+α)

∪F± 6 c
(
|l+|+ |l−|+ |l|+ |m|+ |M|+ | f0|

(1+α)
∪F± + |b0|

(1+α)
G

)
. (49)

Proof. Let

r(z) =
l−N(z) · z

3|F | +
C−

|F | l · N(z), z ∈ G−,

r(z) =
l+N(z) · z

3|F+| +
C+

|F+| l · N(z), z ∈ G+.
(50)

Since l is a constant vector, we have∫
G±

l · N(z)dG = 0.

In addition, ∫
G−

N · z dG =
∫
F
∇ · z dz = 3|F |.

Thus, the relations in the first line in (48) is satisfied.
We take into account that

ρ−
∫
G−

r(z)z dG =
ρ−l−

3|F |

∫
F

(
∇ · (z1z),∇ · (z2z),∇ · (z3z)

)
dz

+
ρ−C−

|F |

∫
F

(
∇ · (z1l),∇ · (z2l),∇ · (z3l)

)
dz =

4ρ−l−

3|F |

∫
F

z dz + ρ−C−l.

In view of barycenter conservation, the second line in relation (48) for (50) holds if ρ−C− +
[ρ̄]|G+C+ = 1. Thus, we set

C+ =
[ρ̄]|G+

ρ−2 + [ρ̄]|2G+
, C− =

ρ−

ρ−2 + [ρ̄]|2G+
.

We find now a vector u1 which satisfies the equations

∇ · u1 = f0 in ∪F±,

[u1]|G+ = 0, u1 · N|G− = f1 on G−,
(51)

where

f1(z) =
N(z) · z

3|F |

∫
F

f0(z)dz +
1
|F |K

− · N(z), z ∈ G−,

with some vector K− defined below. A solution of (51) can be found as u1 = ∇Ψ with Ψ
solving the problem

∇2Ψ = f0 in ∪F±,

[Ψ]|G+ = 0,
[ ∂Ψ

∂N

]∣∣∣
G+

= 0,
∂Ψ
∂N

∣∣∣
G−

= f1 on G−.
(52)



Mathematics 2022, 10, 4799 20 of 28

Since the compatibility condition∫
G−

f1(z)dG =
∫
F

f0(z)dz

holds, there exists Ψ satisfying (52) and the inequality

|Ψ|(3+α)
∪F± 6 c

(
| f0|

(1+α)
∪F± + | f1|

(2+α)
G

)
(53)

(see [9], Ch. 9).
From the relation∫
F

ρ̄(∇ · u1)z dz = −
∫
F

ρ̄u1 dz + ρ−
∫
G−

(u1 · N)z dG + [ρ̄]|G+
∫
G+

(u1 · N)z dG,

we reduce ∫
F

ρ̄u1 dz = −
∫
F

ρ̄ f0z dz + ρ−K− + [ρ̄]|G+K+ = m,

provided that

K− =
ρ−

ρ−2 + [ρ̄]|2G+

(
m +

∫
F

ρ̄ f0z dz
)
, K+ =

[ρ̄]|G+
ρ−2 + [ρ̄]|2G+

(
m +

∫
F

ρ̄ f0z dz
)
.

Note that
∫
G−(u1 · N)z dG =

∫
G− f1z dG = K−. Due to (53), u1 is subject to the inequality

|u1|
(2+α)
∪F± 6 c

(
| f0|

(1+α)
∪F± + |m|

)
.

Next, we construct a vector field u2 satisfying the relations

µ−ΠGS(u2)N = b0(z)− µ−ΠGS(u1)N ≡ b′(z), z ∈ G−,

[µ̄ΠGS(u2)N]|G+ = b0(z)− [µ̄ΠGS(u1)N]|G+ ≡ b′(z), z ∈ G+.

Following [9] (Ch. 12), we put u2 =rot Φ(z), where Φ ∈ C3+α(∪F±),

Φ(z) =
∂Φ(z)

∂N
= 0,

∂2Φ(z)
∂N2 = b′(z)× N, z ∈ G−,

Φ(z) =
∂Φ(z)

∂N
= 0,

[
µ̄

∂2Φ(z)
∂N2

]∣∣∣
G+

= b′(z)× N, z ∈ G+,

and we require that

|Φ|(3+α)
F± 6 c|b′|(1+α)

G± 6 c
{
|b0|

(1+α)
G± + |u1|

(2+α)
∪F±

}
.

We define

u3(z) =
3

∑
k=1

M̂krotei A(z),

where A∈C∞
0 (F−), ρ−

∫
F− A(z)dz = 1

2 , and

M̂k = Mk −
∫
F

ρ̄(u1(z) + u2(z)) · ηk(z)dz−ω
(

ρ−
∫
G−

rη3 · ηk dG

+ [ρ̄]|G+
∫
G+

rη3 · ηk dG
)

.

Finally, we have
∫
F ρ̄u3(z) · ηj(z)dz = M̂j and

|u3|
(2+α)
∪F± 6 c|M̂|.
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Now one can conclude that the function r defined by (50) and the vector u = u1 + u2 + u3
satisfy all the necessary requirements.

We denote DT ≡ ∪F± × (0, T), QT ≡ F × (0, T), GT ≡ ∪G± × (0, T).

Theorem 4 (Local Solvability of the Nonlinear Problem). Let Γ ∈ C3+α, f , Dx f ∈
Cα, 1+α−γ

2 (QT0), u0 ∈ C2+α(∪F±) for some α, γ ∈ (0, 1), γ < α and T0 < ∞. We assume
that compatibility conditions are satisfied:

∇ · u0 = l2(u0, r0) in ∪ F±, µ−ΠGS(u0)N = l−3 (u0, r0) on G−,

[u0]
∣∣
G+ = 0, [µ̄ΠGS(u0)N]

∣∣
G+ = l+3 (u0, r0) on G+,[

ΠG
(
ν̄∇2u0(x)− 1

ρ̄
∇q0 +

1
ρ̄

l1(u0, q0, r0)
)]∣∣

x∈G+ = 0,

where q0 ≡ q(x, 0) is the initial pressure function being a solution to the problem

1
ρ̄
∇2q0(x)−1

ρ̄
∇ · l1(u0, q0, r0) = f̂ − 2ω∇ · (e3 × u0) + ν̄∇2l2(u0, r0) in ∪ F±,

[q0]|G+ =
[
2µ̄

∂u0

∂N
· N
]∣∣∣
G+
+ B+0 (r0)− l4(u0, r0)− l5(r0),[1

ρ̄

∂q0

∂N

]∣∣∣
G+
− N · l1(u0, q0, r0) =

[
ν̄N · ∇2u0

]∣∣
G+ ,

q0|G− = 2µ−
∂u0

∂N
· N
∣∣∣
G−
+ B−0 (r0)− l4(u0, r0)− l5(r0).

Then there exists such a value ε(T0)� 1 that problem (44) with the data

|u0|
(2+α)
∪F± + |r0|

(3+α)
G + | f |(α, 1+α−γ

2 )
QT0

+ |∇ f |(α, 1+α−γ
2 )

QT0
6 ε (54)

has a unique solution (u, q, r) on the interval (0, T0], and

Y(0,T0)
(u, q, r) 6 c(ε)

{
N(u0, r0) + | f |

(α, 1+α−γ
2 )

QT0

}
, (55)

N
(
u(·, T0), r(·, T0)

)
6 ϑN(u0, r0) + c| f |(α, 1+α−γ

2 )
QT0

, (56)

where ϑ < 1/2,

Y(0,T)(u, q, r) ≡|u|(2+α,1+α/2)
DT

+ |∇q|(α,α/2)
DT

+ |q|(γ,1+α)
DT

+ |r|(3+α, 3+α
2 )

GT
+ |Dtr|(2+α,1+α/2)

GT

and
N(w, ρ) ≡ |w|(2+α)

∪F± + |ρ|(3+α)
G .

The proof of Theorem 4 is based on Theorem 2 and on the smallness of the nonlinear
terms.

Proposition 7. If

|r|(2+α,1+ α
2 )

GT
+ |Dtr|

(2,1+ α−γ
2 )

GT
+ |u|(1+α, 1+α

2 )
DT

6 δ, (57)
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where δ is a certain small positive number and f ,∇ f ∈ Cα, 1+α−γ
2 (QT0) satisfy smallness condi-

tion (54), then nonlinear terms (45) and f̂ (z, t) ≡ f̃ (er(z, t), t) are subject to the inequalities

Z(0,T)(u, q, r) ≡ |l1(u, r)|(α, α
2 )

DT
+ |l2(u, r)|(1+α, 1+α

2 )
DT

+ |DtL2(u, r)|(α, α
2 )

DT
+ |L2(u, r)|(γ,1+α)

DT

+ |l3(u, r)|(1+α, 1+α
2 )

GT
+ |l4(u, r)|(γ,1+α)

GT
+ |l4(u, r)|GT + |∇τ l4(u, r)|(α, α

2 )
GT

+ |l5(r)|GT

+ |l5(r)|
(γ,1+α)
GT

+ |∇τ l5(r)|
(α, α

2 )
GT

+ |l6(u, r)|(1+α, 1+α
2 )

GT
+ |M|(γ,1+α)

DT
+ 〈M〉(γ)x,DT

6 c1

{(
1 + |Dtr∗|(1,0)

DT

)
| f |(1, 1+α−γ

2 )
QT

+ Y2
(0,T)(u, q, r)

}
, (58)

where ∇ ·M = −ρ̄L−1 f̂ − l7, and

| f̂ |(α, 1+α−γ
2 )

QT
6 c
{
| f |(α, 1+α−γ

2 )
QT

+
(
|∇r|GT + |Dtr∗|QT

)
|∇ f |QT

}
.

If (u, r) and (u′, r′) satisfy (57), then

Z(0,T)(u− u′, q− q′, r− r′) 6 c(δ + ε)Y(0,T)(u− u′, q− q′, r− r′),

| f̂ − f̂
′|(α, 1+α−γ

2 )
QT

6 cεY(0,T)(u− u′, q− q′, r− r′), (59)

where f̂
′
= f̃ (er′(z, t), t).

Proof. We estimate, for instance, the term l1. In view of the form of L, it is easily seen that
the first summand in l1 contains the second-order derivatives only multiplied by functions
of ∇r(z, t). Thus, one can conclude

|µ̄(∇̃2 −∇2)u|(α, α
2 )

DT
6 c
(
|r∗|(1+α, α

2 )
DT

+ |∇r∗|(1+α, α
2 )

DT

)
|u|(2+α, α

2 )
DT

6 cY2
(0,T)(u, q, r).

The term (∇− ∇̃)q can be evaluated in a similar way. The third summand satisfies the
inequality

|ρ̄Dtr∗(L−1N∗ · ∇)u|(α, α
2 )

DT
6 c|Dtr∗|(α,0)

DT
(1 + |∇r∗|(α,0)

DT
)|∇u|(α, α

2 )
DT

+ |Dtr∗|
(α, α

2 )
DT

(1 + |∇r∗|(α, α
2 )

DT
)|u|(1+α,0)

DT
6 cY2

(0,T)(u, q, r).

Additionally, the last one can be estimated as follows:

ρ̄(L−1u · ∇)u|(α, α
2 )

DT
6 c
((

1 + |r∗|(1+α,0)
DT

)
|u|(α, α

2 )
DT

+ |∇r∗|(α, α
2 )

DT
|u|(α,0)

DT

)
|u|(1+α, 1+α

2 )
DT

6 c|u|(2+α,1+ α
2 )

DT
Y(0,T)(u, q, r).

Next,

|l2(u, r)|(1+α, 1+α
2 )

DT
+ |DtL2(u, r)|(α, α

2 )
DT

+ |L2(u, r)|(γ,1+α)
DT

6 c
{
|r∗|(3+α, 3+α

2 )
DT

|∇u|(1+α, 1+α
2 )

DT
+
(
|Dtr∗|

(1+α, α
2 )

DT
+ |r∗|(2+α,1+ α

2 )
DT

)
|u|(2+α,1+ α

2 )
DT

}
6 cY(0,T)(u, q, r)|u|(2+α,1+ α

2 )
DT

.

Now consider l7(u, q, r) = ∂L7j(u, q, r)/∂xj and

M(x, t) = −{L7j}3
j=1 −∇

∫
R3

ρ̄E(x, y)L−1 f dy,
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where, by (46),

L7j(u, q) = µ̄B ∂u
∂ξ j
−Bejq + ρ̄L−1L1j +

∂W
∂ξ j

, j = 1, 2, 3,

W(ξ, t) = −
∫
∪F±
E(ξ, η)

{ ∂B
∂ηm

(
µ̄

∂u
∂ηm
− emq + ρ̄L1m

)
+ 2ωρ̄B(e3 × u)− ρ̄(DtB)u

}
dη.

In order to estimate M, we apply Lemma 1. Then we have

|M|(γ,1+α)
DT

+ 〈M〉(γ)x,DT
6 c
{

max
j
|L7j|

(γ,1+α)
DT

+ max
j
〈L7j〉

(γ)
x,DT

+ |ρ̄L−1 f |(0, 1+α−γ
2 )

DT

}
6 c
{(

1 + |∇r∗|(0, 1+α−γ
2 )

DT

)
| f |(0, 1+α−γ

2 )
DT

+ |u|(0, 1+α−γ
2 )

DT

(
|Dtr∗|

(1+α, 1+α
2 )

DT
+ |r∗|(2+α, 1+α

2 )
DT

)
+
(
|r∗|(1, 1+α−γ

2 )
DT

+ |∇∇r∗|(0, 1+α−γ
2 )

DT

)(
|u|(2+α, 1+α

2 )
DT

+ |q|(0, 1+α−γ
2 )

DT

)}
6 c
{(

1 + |Dtr∗|(1,0)
DT

)
| f̂ |(0, 1+α−γ

2 )
DT

+ Y2
(0,T)(u, q, r)

}
.

Moreover,

|l4(u, r)|(γ,1+α)
GT

+ |∇τ l4(u, r)|(α, α
2 )

GT
+ |l5(r)|

(γ,1+α)
GT

+ |∇τ l5(r)|
(α, α

2 )
GT

+ |l6(u, r)|(1+α, 1+α
2 )

GT

6 c
{
|∇r|(γ,1+α)

GT
|u|(2+α,1+ α

2 )
DT

+ |∇r|(1+α, 1+α
2 )

GT

(
|∇∇r|(γ,1+α)

GT
+ |r|(3+α, 3+α

2 )
GT

+ |u|(1+α, 1+α
2 )

DT

)}
.

The estimation of the deviations of the potential U from U and the doubled mean curvature
H fromH can be found in [18] (Proposition 3.1).

The other nonlinear terms are estimated in a similar way.
Finally, we extend the function f outside Ω with preservation of class and make use

of the relation

f
(
er(y, t), t

)
− f

(
er(y, t− τ), t

)
=

=
∫ 1

0
∇ f
(

er(y, t)− λ
∫ τ

0
N∗(y)Dtr∗(y, t− τ′)dτ′, t

)
dλ
∫ τ

0
N∗(y)Dtr∗(y, t− τ′)dτ′.

Then we conclude that

| f̂ |(α, 1+α−γ
2 )

QT
6 c
{
| f |(α, 1+α−γ

2 )
QT

+
(
|∇r|GT + |Dtr|GT

)
|∇ f |QT

}
.

Collecting the previous estimates, we arrive at (58).
To prove inequality (59), one should apply the above estimate to

f
(
er, t
)
− f

(
er′ , t

)
=
∫ 1

0 ∇ f
(

er′ + λ
(

N∗(y, t)(r− r′)
)
, t
)

dλN∗(y, t)(r− r′).

On the basis of Proposition 7, Theorem 4 can be proved by successive approximations
similarly to [9] (Ch. 12).

Now we state the main result of the paper.

Theorem 5 (Global Solvability of the Nonlinear Problem). Let κ > 0, [ρ̄]
∣∣
G+> 0, and in

addition, let all the hypotheses of Theorem 4 be satisfied. We assume also that smallness condition

|u0|
(2+α)
∪F± + |r0|

(3+α)
G 6 ε� 1, (60)

and inequality (35), restrictions (47) at t = 0 and (4) hold. Moreover, we assume that f has small
norms:

|ebt f |(1, 1+α−γ
2 )

Q∞
6 ε, b > 0, |Di

x f |(α, 1+α−γ
2 )

Q∞
6 ε, |i| = 1, (61)
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where Q∞ = F × (0, ∞), T0 > 2 is an appropriate fixed number.
Then problem (44) has a unique solution defined for all t > 0 and

|eatu|(2+α,1+ α
2 )

D∞
+ |eat∇q|(α, α

2 )
D∞

+ |eatq|(γ,1+α)
D∞

+ |eatr|(3+α, 3+α
2 )

G∞
+ |eatDtr|

(2+α,1+ α
2 )

G∞

6 c1(ε)
{
|eat f |(1, 1+α−γ

2 )
Q∞

+ |u0|
(2+α)
∪F± + |r0|

(3+α)
G

} (62)

with a certain 0 < a < b; c1(ε) is a bounded function of ε.

We note that a similar result in the case of κ = 0 can be proved without the restriction
[ρ̄]
∣∣
G+ > 0.

Proof of Theorem 5. Conditions (47) may be written in the form∫
G±

r dG =
∫
G±

(r− ϕ(z, r))dG, ϕ(z, r) = ϕ±(z, r) on G±,

ρ−
∫
G−

rz dG + [ρ̄]|G+
∫
G+

rz dG = ρ−
∫
G−

(
rz−ψ−(z, r)

)
dG

+ [ρ̄]|G+
∫
G+

(
rz−ψ+(z, r)

)
dG,∫

F
ρ̄u dz =

∫
F

ρ̄u
(
1− L(z, r)

)
dz,∫

F
ρ̄u · ηj(z)dz + ω

(
ρ−
∫
Gi

rη3 · ηj dG + [ρ̄]|G+
∫
Gi

rη3 · ηj dG
)

= ω
(

ρ−
∫
Gi

rη3 · ηj dG + [ρ̄]|G+
∫
Gi

rη3 · ηj dG −
∫

Ω̃t
ρ±η3(y) · ηj(y)dy

)
+
∫
F

ρ̄u · ηj(z)
(
1− L(z, r)

)
dz +

∫
F

ρ̄η3(z) · ηj(z)dz, j = 1, 2, 3.

(63)

By Proposition 44, we can find the functions u′′0 , r′′0 satisfying the relations∫
G±

r′′0 dG =
∫
G±

(
r0 − ϕ(z, r0)

)
dG ≡ l±,

ρ−
∫
G−

r′′0 z dG + [ρ̄]|G+
∫
G+

r′′0 z dG = ρ−
∫
G−

(
r0z−ψ−(z, r0)

)
dG

+ [ρ̄]
∣∣
G+

∫
G+

(
r0z−ψ+(z, r0)

)
dG ≡ l,∫

F
ρ̄u′′0 dz =

∫
F

ρ̄u0
(
1− L(z, r0)

)
dz ≡ m,∫

F
ρ̄u′′0 · ηj(z)dz + ω

(
ρ−
∫
G−

r′′0 η3 · ηj dG + [ρ̄]
∣∣
G+

∫
G+

r′′0 η3 · ηj dG
)

= ω
(

ρ−
∫
G−

r0η3 · ηj dG + [ρ̄]
∣∣
G+

∫
Gi

r0η3 · ηj dG −
∫

Ω̃0

ρ±η3(y) · ηj(y)dy
)

+
∫
F

ρ̄u0 · ηj(z)
(
1− L(z, r0)

)
dz +

∫
F

ρ̄η3(z) · ηj(z)dz, j = 1, 2, 3,

∇ · u′′0 = l2(u0, r0) in ∪F±,

[u′′0 ]
∣∣
G+ = 0, [µ̄ΠGS(u′′0 )N]

∣∣
G+ = l+3 (u0, r0), µ−ΠGS(u′′0 )N

∣∣
G− = l−3 (u0, r0).

(64)

We seek a solution to (44) in the form of the sum

u = u′ + u′′, q = q′ + q′′, r = r′ + r′′,
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while defining (u′, q′, r′) as a solution to the linear problem

ρ̄
(
Dtu′(z, t) + 2ω(e3 × u′)

)
− µ̄∇2u′ +∇q′ = 0, ∇ · u′ = 0 in ∪F±,

u′(z, 0) = u′0(z), z ∈ F , r′(z, 0) = r′0(z), z ∈ G,

[u′]
∣∣
G+ = 0,

[
µ̄ΠGS(u′)N(z)

]∣∣
G+ = 0,[

− q′ + µ−N · S(u′)N
]∣∣
G+ + B+0 r′ = 0 on G+,

µ−ΠGS(u′)N
∣∣
G− = 0, −q′ + µ−N · S(u′)N + B−0 r′ = 0 on G−,

Dtr′ − u′ · N = 0 on G,

(65)

where u′0 ≡ u0 − u′′0 , r′0 ≡ r0 − r′′0 which satisfy (21), (22) and homogeneous compatibility
conditions (37).

Finally, as (u′′, q′′, r′′), we take a solution of the nonlinear system

ρ̄
(
Dtu′′ + 2ω(e3 × u′′)

)
− µ̄∇2u′′ +∇q′′ = ρ̄ f̂ + l1(u′ + u′′, q′ + q′′, r′ + r′′),

∇ · u′′ = l2(u′ + u′′, r′ + r′′) in ∪F±, t > 0,

u′′
∣∣
t=0 = u′′0 in ∪F±, r′′

∣∣
t=0 = r′′0 on G,

[u′′]
∣∣
G+ = 0,

[
µ̄ΠGS(u′′)N

]∣∣
G+ = l+3 (u

′ + u′′, r′ + r′′) on G+, (66)

[−q′′ + µ̄N · S(u′′)N]|G+ + B+0 r′′ = l+4 (u′ + u′′, r′ + r′′) + l+5 (r′ + r′′) on G+,

µ−ΠGS(u′′)N = l−3 (u
′ + u′′, r′ + r′′) on G−,

− q′′ + µ−N · S(u′′)N + B−0 r′′ = l−4 (u′ + u′′, r′ + r′′) + l−5 (r′ + r′′) on G−,

Dtr′′ − u′′ · N = l6(u′ + u′′, r′ + r′′) on G.

Let us consider restrictions (64). If (60) holds, then the expressions

l± =
∫
G±

(
r0 − ϕ(z, r0)

)
dG,

l = ρ
∫
G−

(
r0z−ψ−(z, r0)

)
dG + [ρ̄]|G+

∫
G+

(r0z−ψ+(z, r0))dG,

m =
∫
F

ρu0
(
1− L(z, r0)

)
dz,

Mj =
∫
F

ρu0 · ηj
(
1− L(z, r0)

)
dz, j = 1, 2, 3,

and the functions f0 = l2(u0, r0), b0(z) = l±3 (u0, r0), z ∈ G± and satisfy the inequality

|l+|+ |l−|+ |l|+ |m|+ |M|+ | f0|
(1+α)
∪F± + |b0|

(1+α)
G 6 cε

(
|u0|

(2+α)
∪F± + |r0|

(3+α)
G

)
.

Hence, by (49),

|u′′0 |
(2+α)
∪F± + |r′′0 |

(3+α)
G 6 cε

(
|u0|

(2+α)
∪F± + |r0|

(3+α)
G

)
, (67)

|u′0|
(2+α)
F + |r′0|

(3+α)
G 6 c

(
|u0|

(2+α)
∪F± + |r0|

(3+α)
G

)
.

Moreover, in view of (63) and (64), u′0 and r′0 are subjected to the necessary conditions∫
G±

r′0 dG =
∫
G±

(r0 − r′′0 )dG =
∫
G±

ϕ(z, r0)dS = 0,

ρ−
∫
G−

r′0z dG + [ρ̄]
∣∣
G+

∫
G+

r′0z dG = ρ−
∫
G−

ψ−(z, r0)dG + [ρ̄]
∣∣
G+

∫
G+

ψ+ dG = 0,∫
F

ρ̄u′0 dG = 0,
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∫
F

ρ̄u′0 · ηj dz + ω
(

ρ−
∫
G−

r′0η3 · ηj dG + [ρ̄]|G+
∫
G+

r′0η3 · ηj dS
)
= 0.

Theorem 3 guarantees for the solution (u′, q′, r′) of problem (65), the inequality:

N
(
u′(·, T), r′(·, T)

)
≡ |u′(·, T)|(2+α)

∪F± + |r′(·, T)|(3+α)
G 6 c1e−βT{|u0|

(2+α)
∪F± + |r0|

(3+α)
G

}
for any positive T. Let T = T0 be so large that

c1e−βT0 6 θ/2� 1/2, β > 0.

Next, problem (66) can be solved by iterations, similarly to [9] (Ch. 12), on the basis of
Theorem 2 and estimate (58) of nonlinear terms (45):

Z0,T(u′ + u′′, q′ + q′′, r′ + r′′) 6 c
{
| f |(1, 1+α−γ

2 )
QT0

+ Y2
0,T(u

′ + u′′, q′ + q′′, r′ + r′′)
}

.

We observe that smallness inequality (57) of the zero-approximation is guaranteed by (67)
and (60). Thus, if ε is small enough, by inequalities (55) and (56), we obtain

Y0,T0(u
′′, q′′, r′′) 6 c2(ε)

(
| f |(1, 1+α−γ

2 )
QT0

+ |u0|
(2+α)
∪F± + |r0|

(3+α)
G

)
,

N
(
u(·, T0), r(·, T0)

)
6 N

(
u′(·, T0), r′(·, T0)

)
+ N

(
u′′(·, T0), r′′(·, T0)

)
6 (θ/2 + ϑ)

(
|u0|

(2+α)
∪F± + |r0|

(3+α)
G

)
+ c| f |(1, 1+α−γ

2 )
QT0

.

We set λ ≡ θ/2 + ϑ < 1, due to (60), (61), which implies

Y0,T0(u, q, r) 6 c
(
| f |(1, 1+α−γ

2 )
QT0

+ |u0|
(2+α)
∪F± + |r0|

(3+α)
G

)
6 cε,

N
(
u(·, T0), r(·, T0)

)
6 λ

(
|u0|

(2+α)
∪F± + |r0|

(3+α)
G

)
+ c| f |(1, 1+α−γ

2 )
QT0

6 Cε.
(68)

In view of inequalities (68), we can extend the solution (u, q, r) into the intervals
(T0, 2T0), ..., (kT0, (k + 1)T0), ... up to the infinite interval t > 0 by means of the repeated
applications of the obtained local result and to complete the proof of Theorem 5 by analogy
with [9] (Ch. 12).

Thus, let us suppose that the solution has already been found for t 6 kT0. Then we
can define it for t ∈ (kT0, (k + 1)T0] as a solution of the problem with the initial conditions
u(z, kT0) ≡ uk(z) and r(z, kT0) ≡ rk(z).

We consider the case k = 1. From (54) and (55), it follows that

N1 ≡ N(u1, r1) 6 Cε;

hence, by replacing ε with C−1ε, we see that this problem is solvable in the time interval
(T0, 2T0], and by (68), the estimates

Y1(u, q, r) 6 c
{

N1 + | f |
(1, 1+α−γ

2 )
QT0,2T0

}
,

N2 6 λN1 + c| f |(1, 1+α−γ
2 )

QT0,2T0
6 Cε

are satisfied, where

Nk ≡ N(uk, rk), Yk(u, q, r) ≡ YkT0,(k+1)T0
(u, q, r).



Mathematics 2022, 10, 4799 27 of 28

If the solution is found for t 6 kT0 and the inequalities

Nj 6 λNj−1 + c| f |(1, 1+α−γ
2 )

Q(j−1)T0,jT0
, λ < 1,

Yj 6 c
{

Nj + | f |
(1, 1+α−γ

2 )
QjT0,(j+1)T0

}
, j = 1, ..., k, (69)

are proved, then for λ0 = e−bT0 < λ

Nj 6 ... 6 λjN0 + c
j−1

∑
i=0

λj−1−i| f |(1, 1+α−γ
2 )

QiT0,(i+1)T0

6 λjN0 + cλj−1|ebT0 f |(1, 1+α−γ
2 )

Q0,jT0

j−1

∑
i=0

λi
0

λi 6 cλj
(

N0 +
|ebT0 f |(1, 1+α−γ

2 )
Q∞

λ− λ0

)
6 cλjε

(70)

with the constants c independent of j. We have used inequalities (61) for f . Since λj → 0 as
j → ∞, the right-hand side of (70) is less than ε for j > j0, and the replacement of ε with
C−1ε can be done only a finite number of times.

Let λ1 > λ (λ1 = e−aT0 , a < b). We multiply (70) by λ
−j
1 and sum it with respect to j.

This gives us

k

∑
j=0

λ
−j
1 Nj 6N0 +

k

∑
j=1

λj

λ
j
1

N0 + c
k

∑
j=1

λj

λ
j
1

j−1

∑
i=0
| f |(1, 1+α−γ

2 )
QiT0,(i+1)T0

6
λ1

λ1 − λ

(
N0 +

cλ

λ− λ0
|ebT0 f |(1, 1+α−γ

2 )
Q∞

)
.

Finally, the sum of (69) multiplied by λ
−j
1 leads us to

k

∑
j=0

λ
−j
1 Yj(u, q, r) 6c

{ λ1

λ1 − λ

(
N0 +

cλ

λ− λ0
|ebT0 f |(1, 1+α−γ

2 )
Q∞

)
+

k

∑
j=0

λ
−j
1 | f |

(1, 1+α−γ
2 )

QjT0,(j+1)T0

}
6c
{

N0 +
(

c +
λ1

λ1 − λ0

)
|ebT0 f |(1, 1+α−γ

2 )
Q∞

}
.

The left-hand side in the last inequality can be replaced by maxj6k λ
−j
1 Yj. Thus, by passing

to the limit there as k→ ∞, one arrives at an inequality equivalent to (62).

5. Conclusions

We have studied a uniformly rotating finite mass consisting of two immiscible, vis-
cous, incompressible, self-gravitating capillary fluids. We have assumed that the interface
between the liquids is closed and unknown and the initial form of the drop is close to an
axially symmetric two-layer equilibrium figure ∪F±. An analysis of the problem has been
performed in the spaces of Hölder functions. The stability of a rotating two-phase drop
with self-gravity has been proved for sufficiently small initial data, an angular velocity
and exponentially decreasing mass forces. The proof was based on the analysis of small
perturbations of equilibrium state (V ,P , 0) of rotating two-layer liquids.

First, we have linearized the non-linear problem and obtained global maximal regular-
ity for a linear homogeneous problem (Theorem 3). Next, we have found a solution to the
non-linear problem as the sum of the solution of the linear homogeneous problem and that
of a system with small non-linear terms. We have proved the global solvability of the last
one on the basis of local existence theorem (Theorem 4) step by step.

The conclusion that can be drawn from the main theorem (Theorem 5) is as follows.
Solution (u, q, r) of problem (44) tends exponentially to zero as t → ∞. This means that
velocity vector field v → V , pressure function p → P and the boundaries of two-layer
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drop Γ±t approach the surfaces G± of the two-phase equilibrium figure F . This regime
describes the rotation of a fluid as a rigid body. Since the proof has been based on inequality
(35), which coincides with the positiveness of the second variation of the energy functional,
we conclude that it is a necessary condition for the stability of the two-phase figure of
equilibrium ∪F±.
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