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Abstract: This paper presents for the first time a closed-form solution of the dynamic response of 

sigmoid bidirectional functionally graded (SBDFG) microbeams under moving harmonic load and 

thermal environmental conditions. The formulation is established in the context of the modified 

couple stress theory to integrate the effects of microstructure. On the basis of the elasticity theory, 

nonclassical governing equations are derived by using Hamilton’s principle in combination with 

the parabolic higher-order shear deformation theory considering the physical neutral plane concept. 

Sigmoid distribution functions are used to describe the temperature-dependent thermomechanical 

material of bulk continuums of the beam in both the axial and thickness directions, and the grada-

tion of the material length scale parameter is also considered. Linear and nonlinear temperature 

profiles are considered to present the environmental thermal loads. The Laplace transform is ex-

ploited for the first time to evaluate the closed-form solution of the proposed model for a simply 

supported (SS) boundary condition. The solution is verified by comparing the predicted fundamen-

tal frequency and dynamic response with the previously published results. A parametric study is 

conducted to explore the impacts of gradient indices in both directions, graded material length scale 

parameters, thermal loads, and moving speed of the acted load on the dynamic response of mi-

crobeams. The results can serve as a principle for evaluating the multi-functional and optimal de-

sign of microbeams acted upon by a moving load. 

Keywords: closed-form solution; Laplace transform; sigmoid microbeams; dynamic response;  

moving load; couple stress; thermomechanical 
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1. Introduction 

Functionally graded material (FGM) is an innovative class of composites with con-

tinuous gradation of material through a certain spatial direction, which have enhanced 

properties rather than traditional composites, such as designability, reduced singular 

stress interface problems, small stress concentration, lower weight, higher fracture tough-

ness, enhanced thermal properties, high damage resistance, etc. [1]. Due to their unique 

properties, FGMs are broadly employed in many applications such as electronics, dental 

implants, and turbines, as well as in aerospace, marine, automotive, military, and nuclear 

applications [2,3]. Due to the rapid advances in nanotechnology, FGMs nowadays are ex-

ploited in micro/nano-electro-mechanical systems (MEMs/NEMs), atomic force 
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microscopes, shape memory alloys, thin film coatings, and transmission systems [4,5]. At 

nanometer scales, size effects, which are missing in classical mechanics, often become im-

portant and observable and must be considered in the analysis and design of 

MEMs/NEMs [6]. To consider a size effect, modified continuum models such as nonlocal 

theories, modified couple stress theory, strain gradient theory, nonlocal strain gradient, 

doublet mechanics, and surface energy are exploited [7]. 

Asghari et al. [8] analytically studied the mechanical responses of FG-modified cou-

ple stress nanobeams based on first-order shear deformation theory (FOSDT). Şimşek [9] 

evaluated the critical buckling loads of 2d-FG Timoshenko beams with different boundary 

conditions via the Ritz method. Nejad et al. [10,11] examined the buckling stability and 

free vibration of arbitrary 2D-FG thin nonlocal nanobeams by using the generalized dif-

ferential quadrature method. Mirafzal and Fereidoon [12] investigated the vibration be-

haviors of temperature-dependent viscoelastic FG nonlocal nanobeams exposed to a 2D-

magnetic field under periodic loading. Shafiei et al. [13,14] studied buckling and vibration 

behaviors of 2D-FG porous tapered modified couple stress nanoscale beams using Euler 

and Timoshenko beam theories. Rajasekaran and Khaniki [15] illustrated the impact of 

single/multi-cracked 2D-FG beams on free vibration by using a novel finite element 

method. Sahmani and Safaei [16,17] investigated the nonlinear vibrations of 2D-FG non-

local strain gradient micro/nanobeams within the framework of the refined hyperbolic 

shear deformation beam theory. Tang and Ding [18] studied the nonlinear hygro-thermal 

dynamics of 2D-FG beams with coupled transverse and longitudinal displacements. Tang 

et al. [19] presented the asymmetric mode and nonlinear vibration of 2D-FG Euler–Ber-

noulli beams via the homotopy analysis method. Attia and Mohamed [20] studied the 

nonlinear vibration characteristics of pre- and postbuckled nonuniform 2D-FGM-modi-

fied couple stress microbeams exposed to nonlinear thermal loading. 

Barati et al. [21] evaluated the natural frequencies of 2D-FGM nonlocal nanobeam 

under a magnetic field employed by Maxwell’s relations. Ghatage et al. [22] presented a 

comprehensive review on the modeling and mechanical analysis of multi-directional FG 

beam, plate, and shell structures. Karami et al. [23] studied the dynamic response of 2D-

FG-tapered Timoshenko nonlocal strain gradient nanobeams in a thermal environment 

by using the numerical generalized differential quadrature method. Zhao et al. [3] exam-

ined buckling and postbuckling of FG graphene origami (GOri)-enabled auxetic metallic 

metamaterial (GOEAM) beams. Guo et al. [24] examined the elastic wave dispersion prop-

agating along the thickness direction in FG-laminated phononic crystal auxetic metamate-

rials. Zhao et al. [25] proposed data-driven micromechanics models based on molecular 

dynamic (MD) simulations to predict thermo-elastic properties of vacancy-defective gra-

phene/Cu nanocomposites in different temperature conditions. Daikh et al. [26] studied 

bending and stress responses of nonlocal strain gradient Quasi-3D FG sandwich nano-

plates based on the sigmoid gradation function. Daikh et al. [27] explored the static buck-

ling stability, static deflection, and vibration of an axially temperature-dependent FG-

CNTs nanoplate based on higher-order shear deformation. Soni et al. [28] presented an 

extensive review on FG carbon nanotube-reinforced composite structures, their applica-

tion, and studies on the mechanical, vibration, thermal, thermo-mechanical, and low-ve-

locity impact responses. Ahmadi [6] exploited the meshless method to examine the dy-

namic response of 2D-FG nonlocal nanobeams by using FOSDT. Attia and Shanab [29] 

investigated the size-dependent bending, buckling, and vibration responses of 2D-FG mi-

cro/nanoscale beams including the microstructure surface energy-based theory. Zhao et 

al. [30] presented a comprehensive review on the mechanical analyses of FG graphene 

platelet-reinforced composite structure. Assie et al. [31] studied the buckling stability of 

BDFG porous plates resting on an elastic foundation by using unified higher-order shear 

theories. 

Understanding the dynamic motion of nanoparticles is critical for MEMS/NEMS and 

microfluidics [32]. For example, in biological and colloidal science applications, nanotubes 

and nanobeams are exploited to transport drug materials into targeted nano-sized 
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molecules to change the behavior of cancer cells [33]. Therefore, understanding the pro-

cess of mass transport and the dynamic response of micro/nanobeams under such load-

ings would be of great importance for optimal designs [34]. Şimşek [35] analytically stud-

ied the forced vibration of an elastically connected double-carbon nanotube system 

(DCNTS) under a moving nanoparticle. Şimşek [36] investigated the forced vibration of a 

simply supported (SS) single-walled carbon nanotube (SWCNT) under a moving har-

monic load, based on nonlocal Euler–Bernoulli beam theory, and showed that dynamic 

deflection of the SWCNT is strongly affected by the nonlocal parameter, and that its dy-

namic behavior is also affected by other parameters such as load velocity and excitation 

frequency. Şimşek [9] developed a mathematical model to examine free and forced vibra-

tion of 2D-FG Timoshenko beams under moving loads with the implicit Newmark time 

integration method. Hosseini and Rahmani [37] adopted the nonlocal elasticity theory to 

study the dynamic response of SS-FG Euler–Bernoulli nanobeams subjected to a constant 

moving load. Based on nonlocal elasticity theory, the influences of surface energy and 

viscoelastic foundation on the steady-state response of Euler–Bernoulli nanobeams in a 

thermal environment and subjected to a moving concentrated load were examined by 

Ghadiri et al. [38] using the multiple scales method. In Barati and Shahverdi [39], the 

forced vibration response of FG nanobeams resting on Winkler–Pasternak foundation and 

under a uniform harmonic dynamic load was investigated employing a higher-order 

shear deformation beam theory in the context of nonlocal elasticity theory. In the frame-

work of parabolic shear deformation theory, Zhang and Liu [40] employed the modified 

couple stress theory to study the vibration response of 2D-FG porous microbeams excited 

by a moving harmonic load using FEM. 

For even and uneven porosity distributions, power law functions were adopted to 

model the material variation in both thickness and length directions. Liu et al. [41] 

adopted the modified couple stress theory to explore the effects of thermal rise and mov-

ing load on the vibration response of 2D-FG microbeams using FEM. Temperature-de-

pendent material properties were assumed with a power law distribution in both the 

thickness and length directions. Hosseini et al. [42] presented the influence of the thermal 

environment on the forced vibration response of FG nonlocal nanobeams under moving 

load via the Laplace transform method. Abdelrahman et al. [43–45] analyzed the dynamic 

response of perforated nanobeams and FG nanobeams reinforced by carbon nanotubes 

under moving load via nonlocal strain gradient. Chung et al. [46] developed a new type 

of planar transmission line with unique dual-signal path characteristics and ultimately 

achieved circuit miniaturization. Eltaher et al. [47] exploited bottom-up modeling nano-

mechanics theory to illustrate the dynamic response of armchair and zigzag CNTs under 

a dynamic moving load. Esen et al. [48,49] exploited nonlocal strain gradient theory to 

present the size scale and microstructure effects on the dynamic response of FG nano-

beams reinforced by carbon nanotubes and sigmoid FG nanobeams under moving loads. 

Thongchom et al. [50] studied the vibration behavior of fluid-conveying hybrid smart 

CNTs considering slip boundary conditions under a moving nanoparticle. Akbaş et al. 

[51] studied the dynamic responses of a fiber-reinforced composite Timoshenko beam un-

der a moving load by using the Ritz method. 

Based on the literature and our knowledge, the dynamic analysis of sigmoid BDFG 

microbeams with temperature-dependent materials under moving and thermal loads ap-

pears limited. Thus, this article aims to fill this gap analytically by using Laplace transform 

on a system of variable coefficients for the first time. The effect of microstructure is cap-

tured via the modified couple stress. The materials’ compositions are changing gradually 

through thickness and length by sigmoidal functions. The formulation considers the phys-

ical neutral axis concept. The nonclassical motion equations are derived. Laplace trans-

form and the Newmark method are employed to evaluate the dynamic deflection of BDFG 

microbeams under moving loads. The rest of the article is organized as follows. The for-

mulation, constitutive equations, distribution functions, and kinematic relations are pre-

sented in Section 2. The variational techniques to derive the equations of motion and the 
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boundary conditions are given in Section 3. Analytical solutions and model validation are 

presented in Sections 4 and 5, respectively. Numerical and parametric studies to present 

the influence of gradation, temperature distribution, and moving velocity on the dynamic 

response are discussed in Section 6. 

2. Theory and Formulation 

2.1. Material Constitutions and Distributions 

Consider a straight uniform sigmoid bidirectional functionally graded (SBDFG) mi-

crobeam with 𝑏 width, 𝐿 length, and ℎ thickness, as shown in Figure 1, in a Cartesian 

system (𝑥𝑚, 𝑦, 𝑧𝑚) that represents the midplane. The beam is excited by a moving load 

with a constant velocity 𝑣. The FG beam is composed of a mixture of ceramic and metallic 

constituents, where the lowermost (𝑥 = 0, 𝑧𝑚  = −
ℎ

2
) is pure metal “m” and the uppermost 

(𝑥 = 𝐿, 𝑧𝑚 = 
ℎ

2
) is pure ceramic “c”. The equivalent thermomechanical properties for the 

bulk continuum of SBDFG at temperature 𝑇(𝑧) can be described by a sigmoid function 

in both directions as [52]: 

𝒫1(𝑥, 𝑧, 𝑇) = {𝒫𝑚(𝑇) + (𝒫𝑐(𝑇) − 𝒫𝑚(𝑇)) [0.5 (1 +
2𝑧

ℎ
)
𝑘𝑧

] (
𝑥

𝐿
)
𝑘𝑥
}           −

ℎ

2
≤ 𝑧 ≤ 0 (1) 

𝒫2(𝑥, 𝑧, 𝑇) = {𝒫𝑚(𝑇) + (𝒫𝑐(𝑇) − 𝒫𝑚(𝑇)) [1 − 0.5 (1 −
2𝑧

ℎ
)
𝑘𝑧

] (
𝑥

𝐿
)
𝑘𝑥
}        0 ≤ 𝑧 ≤

ℎ

2
 (2) 

where 𝒫𝑚 and 𝒫𝑐  are the metallic and ceramic constituent properties, respectively. The 

material property “𝒫” represents the Young’s modulus 𝐸 , Poisson’s ratio 𝜈, the mass 

density 𝜌 , microstructure material length scale parameter (MSLSP) 𝑙 , and thermal 

expansion coefficient 𝛼. 𝑘𝑥 and 𝑘𝑧 are the gradient indices in the axial and transverse 

directions, respectively. 

 

Figure 1. Illustration of a 2D-FG microbeam exposed to a moving load and thermal environment. 

Lame’s parameters of bulk are: 

𝜆(𝑥, 𝑧) =
𝐸(𝑥, 𝑧𝑚) 𝜈(𝑥, 𝑧𝑚)

(1 + 𝜈(𝑥, 𝑧𝑚))(1 − 2𝜈(𝑥, 𝑧𝑚))
        and        𝜇(𝑥, 𝑧𝑚) =

𝐸(𝑥, 𝑧𝑚)

2(1 + 𝜈(𝑥, 𝑧𝑚))
 (3) 

Ignoring the Poisson effect yields, [𝜆(𝑥, 𝑧𝑚) + 2𝜇(𝑥, 𝑧𝑚)] ≡ 𝐸(𝑥, 𝑧) , as adopted by 

[53–55]. In Equations (1)–(3), the axially FG (AFG) and transversely FG (TFG) gradations 

can be obtained by setting 𝑘𝑧 = 0 and 𝑘𝑥 = 0, respectively. A pure metal constituent 

beam is obtained when 𝑘𝑥 = 𝑘𝑧 = 0. In addition, for 𝑘𝑧 = 1, the power law distribution 

function is retained from Equations (1) and (2). 

Temperature-dependent (TD) material properties 𝒫𝑚 and 𝒫𝑐  are estimated by [56]: 

𝒫𝑖(𝑇) = 𝒫0[𝒫−1𝑇
−1 + 1 + 𝒫1𝑇 + 𝒫2𝑇

2 + 𝒫3𝑇
3], 𝑖 = 𝑚, 𝑐 (4) 

where 𝒫−1, 𝒫0, 𝒫1, 𝒫2, and 𝒫3 are temperature-dependent coefficients. 
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Because of nonsymmetric material properties’ gradation of the BDFG beam about its 

midplane, the geometrical neutral plane (GNP) does not coincide with the physical neu-

tral plane (PNP) [57,58], as shown in Figure 1. The difference between the locations of 

GNP and PNP is evaluated by [29,59]: 

𝑒𝑛(𝑥) =

∫ ∫ 𝑧𝑚 [𝜆
𝐵(𝑥, 𝑧𝑚) + 2𝜇

𝐵(𝑥, 𝑧𝑚)]
𝑏
2

−
𝑏
2

 𝑑𝑦
ℎ
2

−
ℎ
2

𝑑𝑧𝑚

∫ ∫ [𝜆𝐵(𝑥, 𝑧𝑚) + 2𝜇
𝐵(𝑥, 𝑧𝑚)]

𝑏
2

−
𝑏
2

 𝑑𝑦
ℎ
2

−
ℎ
2

𝑑𝑧𝑚

,   𝑧𝑛(𝑥) = 𝑧𝑚 − 𝑒𝑛(𝑥) (5) 

2.2. Kinematics Relation 

Based on general shear deformation theory, the displacement field of the BDFG mi-

crobeam is presented by [60]: 

𝑢𝑥(𝑥, 𝑧, 𝑡)  = 𝑢(𝑥) + 𝑓(𝑧𝑛)
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
+ 𝑅(𝑧𝑛)𝜙(𝑥, 𝑡)

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0

𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)

 (6) 

where 𝑢 and 𝑤 are the displacement components along the midplane, 𝜙 is the trans-

verse shear function, and 𝑡 indicates time. The shear–strain function 𝑅(𝑧𝑛) = 𝑅(𝑧𝑚) −

𝑟𝑛(𝑥), where: 

𝑟𝑛(𝑥) =  

∫ ∫ 𝑅(𝑧𝑚) [𝜆
𝐵(𝑥, 𝑧𝑚) + 2𝜇

𝐵(𝑥, 𝑧𝑚)]
𝑏
2

−
𝑏
2

 𝑑𝑦
ℎ
2

−
ℎ
2

𝑑𝑧𝑚

∫ ∫ [𝜆𝐵(𝑥, 𝑧𝑚) + 2𝜇
𝐵(𝑥, 𝑧𝑚)]

𝑏
2

−
𝑏
2

 𝑑𝑦
ℎ
2

−
ℎ
2

𝑑𝑧𝑚

 (7) 

Various beam theories can be derived by proper functions of 𝑓(𝑧𝑛) and 𝑅(𝑧𝑛). The 

Euler–Bernoulli and Timoshenko beam theories are achieved by setting 𝑓(𝑧𝑛) = −𝑧𝑛 , 

𝑅(𝑧𝑚) = 0 and 𝑓(𝑧𝑛) = 0, 𝑅(𝑧𝑚) = −𝑧𝑚 , respectively. Adopting the third-order para-

bolic shear deformable beam theory (PSDBT) [61], we obtain: 

𝑓(𝑧𝑛) = −𝑧𝑛    and     𝑅(𝑧𝑚) = 𝑧𝑚 (1 −
4𝑧𝑚
2

3ℎ2
) (8) 

2.3. Constitutive Relations 

Based on generalized elasticity theory and modified couple stress theory [62], the 

strain 𝜀, Cauchy stress 𝜎𝐵, symmetric curvature 𝜒, and the couple stress 𝑚 are given by 

[63,64]: 

𝜀 =
1

2
[∇u + (∇u)𝑇] (9) 

𝜎𝐵 = 𝜆𝐵(𝑥, 𝑧𝑚) tr(𝜀)𝐼 + 2𝜇
𝐵(𝑥, 𝑧𝑚) 𝜀 (10) 

𝜒 =
1

2
[∇θ + (∇θ)𝑇], θ =

1

2
curl(u) (11) 

𝑚 = [2𝑙2(𝑥, 𝑧𝑚)𝜇
𝐵(𝑥, 𝑧𝑚)]𝜒 (12) 

where u and θ  represent the displacement and rotation vectors, respectively. In this 

analysis, the gradation of the MLSP in thickness and length directions is considered, as 

described in Equations (1) and (2). The strain and the symmetric curvature components 

according to Equations (6), (8), (9) and (11) are: 
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𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧𝑛
𝜕2𝑤

𝜕2𝑥
+ 𝑅(𝑧𝑛)

𝜕𝜙

𝜕𝑥

𝛾𝑥𝑧 = 𝛾𝑧𝑥 = 2𝜀𝑥𝑧 =
𝜕𝑅(𝑧𝑛)

𝜕𝑧𝑚
𝜙

 (13) 

𝜒𝑥𝑦 = 𝜒𝑦𝑥 =
1

2
(
1

2

𝜕𝑅(𝑧𝑛)

𝜕𝑧𝑚

𝜕𝜙

𝜕𝑥
−
𝜕2𝑤

𝜕𝑥2
)

𝜒𝑦𝑧 = 𝜒𝑧𝑦 =
1

4

𝜕2𝑅(𝑧𝑛)

𝜕𝑧𝑚
2
𝜙

 (14) 

According to Equations (8) and (13), the nonzero components of the classical Cauchy 

stress tensors including the thermal effects and the deviatoric part of the couple stress 

tensor are: 

𝜎𝑥𝑥
𝐵 = 𝔼𝐵(𝑥, 𝑧𝑚, 𝑇)𝜀𝑥𝑥 − 𝔼

𝑡ℎ(𝑥, 𝑧𝑚, 𝑇) 𝜀
𝑡ℎ (15) 

𝜎𝑥𝑧
𝐵 = 𝜇𝐵(𝑥, 𝑧𝑚 , 𝑇)

𝜕𝑅(𝑧𝑛)

𝜕𝑧𝑚
 𝜙 (16) 

𝑚𝑦𝑥 = 𝑚𝑥𝑦 = 2[𝑙
2(𝑥, 𝑧𝑚) 𝜇

𝐵(𝑥, 𝑧𝑚)] 𝜒𝑥𝑦  (17) 

𝑚𝑧𝑦 = 𝑚𝑦𝑧 = 2[𝑙
2(𝑥, 𝑧𝑚) 𝜇

𝐵(𝑥, 𝑧𝑚)] 𝜒𝑧𝑦  (18) 

where the equivalent elasticity and thermal moduli are [65]: 

𝔼𝐵(𝑥, 𝑧𝑚, 𝑇) = [𝜆
𝐵(𝑥, 𝑧𝑚, 𝑇) + 2𝜇

𝐵(𝑥, 𝑧𝑚, 𝑇)] (19) 

𝔼𝑡ℎ(𝑥, 𝑧𝑚, 𝑇) = [3𝜆
𝐵(𝑥, 𝑧𝑚 , 𝑇) + 2𝜇

𝐵(𝑥, 𝑧𝑚, 𝑇)] (20) 

By ignoring the influence of Poisson’s ratio, Equations (19) and (20) can be simplified 

to: 

𝔼𝐵(𝑥, 𝑧𝑚, 𝑇) = 𝔼
𝑡ℎ(𝑥, 𝑧𝑚, 𝑇) = 𝐸(𝑥, 𝑧𝑚 , 𝑇) (21) 

where 𝜀𝑡ℎ = 𝛼(𝑥, 𝑧𝑚, 𝑇) Δ𝑇(𝑧), which presents the thermal strain induced by temperature 

rise Δ𝑇 from the ambient temperature 𝑇0, and 𝛼 is the thermal expansion coefficient. 

3. Formulation of Governing Equations 

Based on elasticity theory and modified couple stress theory, the total strain energy 

(𝕌) of the BDFG beam is [66–68]: 

𝕌 =
1

2
∫ ∫[𝜎𝑖𝑗𝜀𝑖𝑗 +𝑚𝑖𝑗𝜒𝑖𝑗]

𝐴

𝑑𝐴𝑑𝑥

𝐿

0

 (22) 

where 𝐴 is the cross-sectional area. Substituting Equations (15)–(18) into Equation (22) 

produces: 

𝕌 =
1

2
𝛿∫ ∫𝜎𝑥𝑥𝜀𝑥𝑥 + 2𝜎𝑥𝑧𝜀𝑥𝑧 + 2𝑚𝑥𝑦𝜒𝑥𝑦 + 2𝑚𝑦𝑧𝜒𝑦𝑧

𝐴

𝑑𝐴𝑑𝑥

𝐿

0

 (23) 

Substituting Equations (15)–(18), the first variation of Equation (23) can be obtained 

as: 

𝛿𝕌 = ∫ {𝑁(𝑥)
𝜕𝛿𝑢

𝜕𝑥
− [𝑀𝑐(𝑥) + Y1(𝑥)]

𝜕2𝛿𝑤

𝜕𝑥2
+ [𝑀𝑛𝑐(𝑥) +

1

2
Y2(𝑥)]

𝜕𝛿𝜙

𝜕𝑥
+ [𝑄𝑛𝑐(𝑥) +

1

2
Y3(𝑥)] 𝛿𝜙}

𝐿

0

𝑑𝑥𝑑𝑡 (24) 
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The classical Cauchy stress and couple stress resultants of the bulk continuum can 

be obtained as: 

{

𝑁(𝑥)

𝑀𝑐(𝑥)

𝑀𝑛𝑐(𝑥)
} ≡ ∫𝜎𝑥𝑥 {

1
𝑧𝑛
𝑅(𝑧𝑛)

}

𝐴

𝑑𝐴 = [

𝐴𝑥𝑥(𝑥) 𝐵𝑥𝑥(𝑥) 𝐸𝑥𝑥(𝑥)

𝐵𝑥𝑥(𝑥) 𝐷𝑥𝑥(𝑥) 𝐹𝑥𝑥(𝑥)

𝐸𝑥𝑥(𝑥) 𝐹𝑥𝑥(𝑥) 𝐻𝑥𝑥(𝑥)
]

{
 
 

 
 
𝜕𝑢

𝜕𝑥

−
𝜕2𝑤

𝜕𝑥2

𝜕𝜙

𝜕𝑥 }
 
 

 
 

 (25) 

𝑄𝑛𝑐(𝑥) = ∫
𝑑𝑅(𝑧𝑛)

𝑑𝑧𝑚
𝜎𝑥𝑧

𝐴

𝑑𝐴 ≡ 𝐵̅𝑥𝑧(𝑥)𝜙 (26) 

{

Y1(𝑥)

Y2(𝑥)

Y3(𝑥)
} ≡ ∫ 𝑚𝑥𝑦

{
 
 

 
 
1

𝑑𝑅(𝑧𝑛)

𝑑𝑧
𝑑2𝑅(𝑧𝑛)

𝑑𝑧2 }
 
 

 
 

𝐴

𝑑𝐴 =

[
 
 
 
 
 𝐴𝑥𝑧(𝑥) 0

1

2
𝐷𝑥𝑧(𝑥)

𝐷𝑥𝑧(𝑥) 0
1

2
𝐵𝑥𝑧(𝑥)

0
1

2
𝐸𝑥𝑧(𝑥) 0 ]

 
 
 
 
 

{
 
 

 
 −
𝜕2𝑤

𝜕𝑥2

𝜙
𝜕𝜙

𝜕𝑥 }
 
 

 
 

 (27) 

with 

{
  
 

  
 
𝐴𝑥𝑥(𝑥)

𝐵𝑥𝑥(𝑥)

𝐷𝑥𝑥(𝑥)

𝐸𝑥𝑥(𝑥)

𝐹𝑥𝑥(𝑥)

𝐻𝑥𝑥(𝑥)}
  
 

  
 

=

∫

 
 
 
 
 
 

∫

 
 
 
 
 

𝔼(𝑥, 𝑧𝑚 , 𝑇)

{
  
 

  
 
1
𝑧𝑛 

𝑧𝑛
2

𝑅(𝑧𝑛)

𝑧𝑛𝑅(𝑧𝑛)

𝑅2(𝑧𝑛) }
  
 

  
 

ℎ
2

−
ℎ
2

𝑏
2

−
𝑏
2

𝑑𝑧𝑑𝑦 (28) 

𝐵̅𝑥𝑧(𝑥) = ∫ ∫ 𝜇(𝑥, 𝑧𝑚, 𝑇) (
𝜕𝑅(𝑧𝑛)

𝜕𝑧
)

2
ℎ
2

−
ℎ
2

𝑏
2

−
𝑏
2

𝑑𝑧𝑑𝑦   (29) 

{
 

 
𝐴𝑥𝑧(𝑥)

𝐵𝑥𝑧(𝑥)

𝐷𝑥𝑧(𝑥)

𝐸𝑥𝑧(𝑥)}
 

 
≡

∫

 
 
 
 
 
 
 
 

∫

 
 
 
 
 
 
 

[𝑙2(𝑥, 𝑧𝑚) 𝜇(𝑥, 𝑧𝑚, 𝑇)]

{
 
 
 

 
 
 

1

(
𝜕𝑅(𝑧𝑛)

𝜕𝑧
)

2

𝜕𝑅(𝑧𝑛)

𝜕𝑧

(
𝜕2𝑅(𝑧𝑛)

𝜕𝑧2
)

2

}
 
 
 

 
 
 

ℎ
2

−
ℎ
2

𝑏
2

−
𝑏
2

𝑑𝑧𝑑𝑦 (30) 

Performing the partial integration in Equation (17) with respect to 𝑥 and 𝑡 over the 

time interval [𝑡0, 𝑡𝑓], the total strain energy first variation can be calculated as: 

∫ 𝛿𝕌
𝑡𝑓

𝑡0

𝑑𝑡 ≡ −∫ ∫ {[
𝜕𝓝𝑥𝑥(𝑥)

𝜕𝑥
] 𝛿𝑢 + [

𝜕2𝓜𝑤(𝑥)

𝜕𝑥2
] 𝛿𝑤 + [

𝜕𝓜𝜙(𝑥)

𝜕𝑥
− 𝓠𝜙(𝑥)] 𝛿𝜙}

𝐿

0

𝑡𝑓

𝑡0

𝑑𝑥𝑑𝑡

+ ∫ {[𝓝𝑥𝑥(𝑥)]𝛿𝑢 + [
𝜕𝓜𝑤(𝑥)

𝜕𝑥
] 𝛿𝑤 − [𝓜𝑤(𝑥)]

𝜕𝛿𝑤

𝜕𝑥
+ [𝓜𝜙(𝑥)]𝛿𝜙}

0

𝐿𝑡𝑓

𝑡0

𝑑𝑡 

(31) 

in which the effective stress resultants are defined as 
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{

𝑁𝐵(𝑥)

𝑀𝑐
𝐵(𝑥)

𝑀𝑛𝑐
𝐵 (𝑥)

} ≡ ∫𝜎𝑥𝑥 {

1
𝑧𝑛
𝑅(𝑧𝑛)

}

𝐴

𝑑𝐴 = [

𝐴𝑥𝑥
𝐵 (𝑥) 𝐵𝑥𝑥

𝐵 (𝑥) 𝐸𝑥𝑥
𝐵 (𝑥)

𝐵𝑥𝑥
𝐵 (𝑥) 𝐷𝑥𝑥

𝐵 (𝑥) 𝐹𝑥𝑥
𝐵 (𝑥)

𝐸𝑥𝑥
𝐵 (𝑥) 𝐹𝑥𝑥

𝐵 (𝑥) 𝐻𝑥𝑥
𝐵 (𝑥)

]

{
 
 

 
 
𝜕𝑢

𝜕𝑥

−
𝜕2𝑤

𝜕𝑥2

𝜕𝜙

𝜕𝑥 }
 
 

 
 

 (32) 

{

Y1
𝐵(𝑥)

Y2
𝐵(𝑥)

Y3
𝐵(𝑥)

} ≡

∫

 
 
 
 

𝑚𝑥𝑦

{
 
 

 
 
1

𝑑𝑅(𝑧𝑛)

𝑑𝑧
𝑑2𝑅(𝑧𝑛)

𝑑𝑧2 }
 
 

 
 

𝐴

𝑑𝐴 =

[
 
 
 
 
 𝐴𝑥𝑧(𝑥) 0

1

2
𝐷𝑥𝑧(𝑥)

𝐷𝑥𝑧(𝑥) 0
1

2
𝐵𝑥𝑧(𝑥)

0
1

2
𝐸𝑥𝑧(𝑥) 0 ]

 
 
 
 
 

{
 
 

 
 −
𝜕2𝑤

𝜕𝑥2

𝜙
𝜕𝜙

𝜕𝑥 }
 
 

 
 

 (33) 

and 

{

𝓝(𝑥)

𝓜𝑐(𝑥)

𝓜𝑛𝑐(𝑥)
} = {

𝓝𝑥𝑥(𝑥)

𝓜𝑤(𝑥)

𝓜𝜙(𝑥)
} ≡

{
 

 
𝑁𝐵(𝑥)

𝑀𝑐
𝐵(𝑥) + Y1

𝐵(𝑥)

𝑀𝑛𝑐
𝐵 (𝑥) +

1

2
Y2
𝐵(𝑥)}
 

 
 = [

A11(𝑥) B11(𝑥) E11(𝑥)

ℬ11(𝑥) 𝒟11(𝑥) ℱ11(𝑥)

ℰ11(𝑥) ℱ11(𝑥) ℋ11(𝑥)
]

{
 
 

 
 
𝜕𝑢

𝜕𝑥

−
𝜕2𝑤

𝜕𝑥2

𝜕𝜙

𝜕𝑥 }
 
 

 
 

 (34) 

𝓠(𝑥) = 𝓠𝜙 ≡ 𝑄𝑛𝑐(𝑥) +
1

2
Y3
𝐵(𝑥) = ℬ𝑥𝑧(𝑥)𝜙 (35) 

with 

{
 
 
 

 
 
 
𝒜11(𝑥)

ℬ11(𝑥)

𝒟11(𝑥)

ℰ11(𝑥)

ℱ11(𝑥)

ℋ11(𝑥)

ℬ𝑥𝑧(𝑥)}
 
 
 

 
 
 

=

{
 
 
 
 
 

 
 
 
 
 

𝐴𝑥𝑥
𝐵 (𝑥)

𝐵𝑥𝑥
𝐵 (𝑥)

𝐷𝑥𝑥
𝐵 (𝑥) + 𝐴𝑥𝑧(𝑥)

𝐸𝑥𝑥
𝐵 (𝑥)

𝐹𝑥𝑥
𝐵 (𝑥) +

1

2
𝐷𝑥𝑧(𝑥)

𝐻𝑥𝑥
𝐵 (𝑥) +

1

4
𝐵𝑥𝑧(𝑥)

𝐵̅𝑥𝑧(𝑥)  +
1

4
𝐸𝑥𝑧(𝑥)}

 
 
 
 
 

 
 
 
 
 

 (36) 

The kinetic energy of 2D-FG microbeams accounting for the size effect can be ex-

pressed as: 

𝕋 ≡
1

2
∫ ∫ 𝜌𝐵(𝑥, 𝑧𝑚, 𝑇) [(

𝜕𝑢𝑥
𝜕𝑡
)
2

+ (
𝜕𝑢𝑧
𝜕𝑡
)
2

]
𝐴

𝑑𝐴𝑑𝑥

𝐿

0

=
1

2
∫ [(I𝐴(𝑥)

𝜕𝑢

𝜕𝑡
− I𝐵(𝑥)

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ I𝐸(𝑥)

𝜕𝜙

𝜕𝑡
)
𝜕𝑢

𝜕𝑡
+ IA(𝑥) (

𝜕𝑤

𝜕𝑡
)
𝜕𝑤

𝜕𝑡

𝐿

0

− (I𝐵(𝑥)
𝜕𝑢

𝜕𝑡
− I𝐷(𝑥)

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ I𝐹(𝑥)

𝜕𝜙

𝜕𝑡
)
𝜕2𝑤

𝜕𝑥𝜕𝑡
+ (I𝐸(𝑥)

𝜕𝑢

𝜕𝑡
− I𝐹(𝑥)

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ I𝐻(𝑥)

𝜕𝜙

𝜕𝑡
)
𝜕𝜙

𝜕𝑡
] 𝑑𝑥 

(37) 

where the mass moments of inertia are computed by 
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{
  
 

  
 
I𝐴(𝑥)

I𝐵(𝑥)

I𝐷(𝑥)

I𝐸(𝑥)

I𝐹(𝑥)

I𝐻(𝑥)}
  
 

  
 

=

∫

 
 
 
 
 
 

∫

 
 
 
 
 

𝜌𝐵(𝑥, 𝑧𝑚, 𝑇)

{
  
 

  
 
1
𝑧𝑛 

𝑧𝑛
2

𝑅(𝑧𝑛)

𝑧𝑛𝑅(𝑧𝑛)

𝑅2(𝑧𝑛) }
  
 

  
 

𝑑𝑧𝑑𝑦

ℎ
2

−
ℎ
2

𝑏
2

−
𝑏
2

 (38) 

The first-order variation of the kinetic energy of BDFG microbeam can be expressed 

by: 

𝛿𝕋 =∫ ∫ [𝕡𝑢(𝑥)
𝜕𝛿𝑢

𝜕𝑡
+ 𝕡𝑤(𝑥)

𝜕𝛿𝑤

𝜕𝑡
+ 𝕡𝑤2(𝑥)

𝜕2𝛿𝑤

𝜕𝑥𝜕𝑡
+ 𝕡𝜙(𝑥)

𝜕𝛿𝜙

𝜕𝑡
] 𝑑𝑥𝑑𝑡

𝐿

0

𝑡𝑓

𝑡0

 (39) 

in which the momentums are 

{
 

 
𝕡𝑢(𝑥)

𝕡𝑤(𝑥)

𝕡𝑤2(𝑥)

𝕡𝜙(𝑥) }
 

 

=

[
 
 
 
I𝐴(𝑥) 0 −I𝐵(𝑥) I𝐸(𝑥)

0 I𝐴(𝑥) 0 0

−I𝐵(𝑥) 0 I𝐷(𝑥) 0

I𝐸(𝑥) 0 −I𝐹(𝑥) I𝐻(𝑥)]
 
 
 

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝑡
𝜕𝑤

𝜕𝑡
𝜕2𝑤

𝜕𝑥𝜕𝑡
𝜕𝜙

𝜕𝑡 }
 
 
 
 

 
 
 
 

 (40) 

Proceeding the above integration by parts over the time interval [𝑡0, 𝑡𝑓] with respect 

to 𝑥 and 𝑡, and using the zero variation at time boundaries (𝑡 = 𝑡0 and 𝑡 = 𝑡𝑓), we obtain 

the following: 

∫ 𝛿𝕋
𝑡𝑓

𝑡0

𝑑𝑡 ≡ −∫ ∫ [{
𝜕𝕡𝑢(𝑥)

𝜕𝑡
}𝛿𝑢 + {

𝜕𝕡𝑤1(𝑥)

𝜕𝑡
−
𝜕2𝕡𝑤2(𝑥)

𝜕𝑥𝜕𝑡
}𝛿𝑤 + {

𝜕𝕡𝜙(𝑥)

𝜕𝑡
}𝛿𝜙]

𝐿

0

𝑡𝑓

𝑡0

𝑑𝑥𝑑𝑡 +∫ [{−
𝜕𝕡𝑤2(𝑥)

𝜕𝑡
} 𝛿𝑤]

0

𝐿𝑡𝑓

𝑡0

𝑑𝑡

+∫ [{𝕡𝑢(𝑥)}𝛿𝑢 + {𝕡𝑤(𝑥)}𝛿𝑤 + {𝕡𝑤2(𝑥)}
𝜕𝛿𝑤

𝜕𝑥
+ {𝕡𝜙(𝑥)}𝛿𝜙]

𝑡0

𝑡𝑓

𝑑𝑥

𝐿

0

 

(41) 

3.1. Moving Load Formulations 

The virtual work carried out by the applied forces on the BDFG beam, including 

modified couple stress theory, can be expressed as: 

𝛿𝕎 = ∫(𝐟 ∙ 𝛿𝒖 + 𝐟𝑐 ∙ 𝛿𝛉)𝑑Ω
Ω

+∮ (𝐭 ̅. 𝛿𝐮 + 𝐬̅ . 𝛿𝛉)𝑑𝑆
𝜕𝐴

 (42) 

where 𝐟 is the body force resultant and 𝐟𝑐 is the body couple resultant per unit volume. 

In the absence of an applied compressive force, assuming the externally applied harmonic 

load moves with a constant speed, ignoring its inertial effect, a uniform thermal environ-

ment is assumed, and employing zero initial conditions, the virtual work in the time in-

terval [𝑡0, 𝑡𝑓] can be obtained as: 

∫ 𝛿𝕎 𝑑𝑡
𝑡𝑓

𝑡0

= ∫ {𝑓𝑢𝛿𝑢 + [𝑃(𝑥)δ(𝑥 − 𝑣𝑡) + 𝑞 +
𝜕

𝜕𝑥
(𝑓𝑐 −
1

2
𝑓𝑐𝑎𝑐(𝑥) )] 𝛿𝑤 − (

1

2
𝑓𝑐𝑎𝑐(𝑥) + 𝑁𝑡ℎ

∂w

∂x
 ) 𝛿
𝜕𝑤

𝜕𝑥
+ (
1

2
𝑓𝑐𝑎𝑐(𝑥) ) 𝛿𝜙}

𝐿

0

𝑑𝑥

+∫ {𝑁̅𝛿𝑢 + [𝑉̅ − (𝑓𝑐 −
1

2
𝑓𝑐𝑎𝑐(𝑥) )] 𝛿𝑤 − (𝑀̅𝑐 + 𝑀̅𝑛𝑐)𝛿

𝜕𝑤

𝜕𝑥
− 𝑀̅𝑐𝛿𝜙}

0

𝐿

𝑑𝑡

𝑡𝑓

𝑡0

 
(43) 

where δ is the Dirac delta function, and 𝑓𝑢 and 𝑞 are distributed loads in the 𝑥- and 𝑧-

directions, respectively. 𝑓𝑐  represents the 𝑦 -component of the body couple per unit 
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length along the 𝑥-axis. 𝑁 is applied axial force, 𝑉̅ is applied lateral force, 𝑀̅𝑐 is the clas-

sical bending moment, 𝑀̅𝑛𝑐 is the nonclassical bending moment due to the couple stress, 

and 𝑎𝑐 is defined as: 

𝑎𝑐(𝑥) = ∫ ∫
𝜕𝑅(𝑧𝑛)

𝜕𝑧
 𝑑𝑧𝑑𝑦

ℎ/2

−ℎ/2

𝑏/2

−𝑏/2

 (44) 

The applied external moving harmonic load is given by: 

𝑃(𝑥) = 𝑃0 sin Ω𝑡 (45) 

in which 𝑃0 and Ω are the amplitude and frequency, respectively, of the applied moving 

load. 

3.2. Thermal Environment Formulations 

To consider the impact of the thermal environment on the microbeam, a nonlinear 

temperature profile can be described by [65]: 

𝑇(𝑧) = 𝑇0 + ∆𝑇 (
𝑧

ℎ
+
1

2
)
𝛼𝑇

 (46) 

where the temperature difference ∆𝑇 = 𝑇𝑈 − 𝑇0, and the lower surface temperature is kept 

constant at 𝑇𝐵 = 𝑇0. 

Based on the power index 𝛼𝑇 ,  two different temperature profiles across the 

thickness of the beam can be evaluated: 

• Linear temperature rise (LTR) for 𝛼𝑇 = 1; 

• Nonlinear temperature rise (NTR) for 𝛼𝑇 > 1. 

By imposing the thermal influence on the formulation, the force and moment result-

ants can be evaluated by the integration of Equation (46), which yields: 

{

𝑁𝑡ℎ(𝑥)

𝑀̅𝑐
𝑡ℎ(𝑥)

𝑀̅𝑛𝑐
𝑡ℎ(𝑥)

} = ∆𝑇∫ ∫ 𝔼𝑡ℎ(𝑥, 𝑧𝑚, 𝑇)𝛼(𝑥, 𝑧, 𝑇) (
𝑧𝑛
ℎ
+
1

2
)
𝛼𝑇

{

1
𝑧𝑛
R𝑛(𝑧)

}

ℎ
2

−
ℎ
2

𝑏
2

−
𝑏
2

𝑑𝑧𝑑𝑦 (47) 

In the present work, the nonclassical equilibrium motion and the corresponding non-

classical boundary conditions of 2D-FG microbeams are obtained employing the Hamil-

ton principle: 

∫ (𝛿𝕋 − 𝛿𝕌 + 𝛿𝕎)
𝑡𝑓

𝑡0

= 0 (48) 

By substitution Equations (41)–(43) into Equation (48), the governing equations of the 

2D-FG temperature-dependent thermomechanical microbeam under moving mass can be 

evaluated as: 

𝑢:  − I𝐴(𝑥)
𝜕2𝑢

𝜕𝑡2
+ I𝐵(𝑥)

𝜕3𝑤

𝜕𝑥𝜕𝑡2
− I𝐸(𝑥)

𝜕2𝜙

𝜕𝑡2
+𝒜11(𝑥)

𝜕2𝑢

𝜕𝑥2
− ℬ11(𝑥)

𝜕3𝑤

𝜕𝑥3
+ ℰ11(𝑥)

𝜕2𝜙

𝜕𝑥2
+
𝜕𝒜11(𝑥)

𝜕𝑥

𝜕𝑢

𝜕𝑥

−
𝜕ℬ11(𝑥)

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
+
𝜕ℰ11(𝑥)

𝜕𝑥

𝜕𝜙

𝜕𝑥
+ 𝑓𝑢 −

𝜕𝑁

𝜕𝑥
= 0 

(49) 
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𝑤:  {−I𝐵(𝑥)
𝜕3𝑢

𝜕𝑥𝜕𝑡2
−
𝜕I𝐵(𝑥)

𝜕𝑥

𝜕2𝑢

𝜕𝑡2
+ I𝐷(𝑥)

𝜕4𝑤

𝜕𝑥2𝜕𝑡2
+
𝜕I𝐷(𝑥)

𝜕𝑥

𝜕3𝑤

𝜕𝑥𝜕𝑡2
− I𝐴(𝑥)

𝜕2𝑤

𝜕𝑡2
− I𝐹(𝑥)

𝜕3𝜙

𝜕𝑥𝜕𝑡2
−
𝜕I𝐹(𝑥)

𝜕𝑥

𝜕2𝜙

𝜕𝑡2
}

+ {ℬ11(𝑥) 
𝜕3𝑢

𝜕𝑥3
+ 2
𝜕ℬ11(𝑥)

𝜕𝑥
 
𝜕2𝑢

𝜕𝑥2
+
𝜕2ℬ11(𝑥)

𝜕𝑥2
 
𝜕𝑢

𝜕𝑥
}

+ {−𝒟11(𝑥) 
𝜕4𝑤

𝜕𝑥4
− 2
𝜕𝒟11(𝑥)

𝜕𝑥
 
𝜕3𝑤

𝜕𝑥3
+ {−
𝜕2𝒟11(𝑥)

𝜕𝑥2
− 𝑁𝑡ℎ(𝑥)} 

𝜕2𝑤

𝜕𝑥2
}

+ {ℱ11(𝑥)
𝜕3𝜙

𝜕𝑥3
+ 2
𝜕ℱ11(𝑥)

𝜕𝑥

𝜕2𝜙

𝜕𝑥2
+
𝜕2ℱ11(𝑥)

𝜕𝑥2
𝜕𝜙

𝜕𝑥
}

+ {𝒜11(𝑥)
𝜕2𝑢

𝜕𝑥2
+
𝜕𝒜11(𝑥)

𝜕𝑥

𝜕𝑢

𝜕𝑥
+
1

2

𝜕𝐵11(𝑥)

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
+
1

2

𝜕2𝐵11(𝑥)

𝜕𝑥2
𝜕𝑤

𝜕𝑥
+ ℰ11(𝑥)

𝜕2𝜙

𝜕𝑥2

+
𝜕ℰ11(𝑥)

𝜕𝑥

𝜕𝜙

𝜕𝑥
} −
𝜕2𝑀̅𝑐

𝑡ℎ(𝑥)

𝜕𝑥2
+ {𝑃(𝑥)δ(𝑥 − 𝑣𝑡) + 𝑞 +

𝜕

𝜕𝑥
(𝑓𝑐 −

1

2
𝑓𝑐𝑎𝑐(𝑥) )} = 0 

(50) 

𝜙: {−I𝐸(𝑥)
𝜕2𝑢

𝜕𝑡2
+ I𝐹(𝑥)

𝜕3𝑤

𝜕𝑥𝜕𝑡2
− I𝐻(𝑥)

𝜕2𝜙

𝜕𝑡2
} + {ℰ11(𝑥) 

𝜕2𝑢

𝜕𝑥2
+
𝜕ℰ11(𝑥)

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
}

+ {−ℱ11(𝑥) 
𝜕3𝑤

𝜕𝑥3
−
𝜕ℱ11(𝑥)

𝜕𝑥
 
𝜕2𝑤

𝜕𝑥2
} + {ℋ11(𝑥)

𝜕2𝜙

𝜕𝑥2
+
𝜕ℋ11(𝑥)

𝜕𝑥

𝜕𝜙

𝜕𝑥
− ℬ𝑥𝑧(𝑥)𝜙(𝑥)}

− {
𝜕𝑀̅𝑛𝑐
𝑡ℎ(𝑥)

𝜕𝑥
−
1

2
𝑓𝑐𝑎𝑐(𝑥)} = 0 

(51) 

with the following boundary conditions: 

𝜹𝑢: 𝐄𝐢𝐭𝐡𝐞𝐫  𝑢 = 𝑢̃  𝐨𝐫   𝒜11(𝑥)
𝜕𝑢

𝜕𝑥
− ℬ11(𝑥) 

𝜕2𝑤

𝜕𝑥2
+ ℰ11(𝑥)

𝜕𝜙

𝜕𝑥
− 𝑁 = 0 (52) 

𝜹𝒘: 𝐄𝐢𝐭𝐡𝐞𝐫   𝑤 = 𝑤̃  𝐨𝐫   {−I𝐵(𝑥)
𝜕2𝑢

𝜕𝑡2
+ I𝐷(𝑥)

𝜕3𝑤

𝜕𝑥𝜕𝑡2
− I𝐹(𝑥)

𝜕2𝜙

𝜕𝑡2
} + {ℬ11(𝑥) 

𝜕2𝑢

𝜕𝑥2
+
𝜕ℬ11(𝑥)

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
}

+ {−𝒟11(𝑥) 
𝜕3𝑤

𝜕𝑥3
−
𝜕𝒟11(𝑥)

𝜕𝑥
 
𝜕2𝑤

𝜕𝑥2
− 𝑁
𝜕𝑤

𝜕𝑥
} + {ℱ11(𝑥)

𝜕2𝜙

𝜕𝑥2
+
𝜕ℱ11(𝑥)

𝜕𝑥

𝜕𝜙

𝜕𝑥
}

+ {𝑉̅ − (𝑓𝑐 −
1

2
𝑓𝑐𝑎𝑐(𝑥) )} = 0 

(53) 

𝜹𝜙: 𝐄𝐢𝐭𝐡𝐞𝐫    𝜙 = 𝜙̃  𝐨𝐫   ℰ11(𝑥)
𝜕𝑢

𝜕𝑥
− ℱ11(𝑥) 

𝜕2𝑤

𝜕𝑥2
+ℋ11(𝑥) 

𝜕𝜙

𝜕𝑥
− 𝑀̅𝑐 = 0 (54) 

𝝏𝜹𝒘

𝝏𝒙
: 𝐄𝐢𝐭𝐡𝐞𝐫  

𝜕𝑤

𝜕𝑥
=
𝜕𝑤̅̅ ̅̅

𝜕𝑥
  𝐨𝐫    ℬ11(𝑥)

𝜕𝑢

𝜕𝑥
− 𝒟11(𝑥) 

𝜕2𝑤

𝜕𝑥2
+ ℱ11(𝑥)

𝜕𝜙

𝜕𝑥
+ {𝑀̅𝑐 + 𝑀̅𝑛𝑐} = 0 (55) 

4. Analytical Solution 

To solve the system of partial differential equations of the SBDFG microbeam excited 

by a moving load, Equations (49)–(51), Galerkin’s decomposition is adopted to reduce this 

set of equations into a system of ordinary differential equations. In this regard, the dy-

namic axial, transverse deflection, and the rotation of the SBDFG microbeam are truncated 

into n-modes as 𝑤(𝑥, 𝑡) = ∑ 𝑊𝑛(𝑡)𝜃𝑤(𝑥)
∞
𝑛=1 , 𝑢(𝑥, 𝑡) = ∑ 𝑈𝑛(𝑡)𝜃𝑢(𝑥)

∞
𝑛=1 ,  and 𝜙(𝑥, 𝑡) =

∑ Φ𝑛(𝑡)𝜃𝜙 (𝑥)
∞
𝑛=1 , in which the 𝜃𝑤 , 𝜃𝑢, and 𝜃𝜙  denote the appropriate nth mode shapes of 

the SBDFG beam that satisfies the boundary conditions. 𝑊𝑛(𝑡) is deflection time-depend-

ent for nth mode shapes. In the case of SS boundary conditions, the mode shapes are 

𝜃𝑤(𝑥) = sin (𝛼𝑛𝑥) and 𝜃𝑢(𝑥) = 𝜃𝜙(𝑥) = cos (𝛼𝑛𝑥) and 𝛼𝑛 = 𝑛𝜋/𝐿. For simplicity, a sin-

gle-mode Galerkin decomposition is used, 𝛼𝑛 = 𝛼 = 𝜋/𝐿. 

Multiplying Equations (49)–(51) by cos(𝛼𝑥) and sin(𝛼𝑥), we can integrate the ob-

tained equations with respect to 𝑥 from 0 to 𝐿. 

By using the general property of the Dirac delta function and its Fourier series 

as 𝛿(𝑥, 𝑡) = ∑ sin (𝛼𝑛𝑥)
∞
𝑛=1 sin (𝛼𝑛𝑣0𝑡), the following set of ODEs is obtained: 
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𝑎1𝑈̈𝑛(𝑡) + 𝑎2𝑈𝑛(𝑡) + 𝑎3𝑊̈𝑛(𝑡) + 𝑎4𝑊𝑛(𝑡) + 𝑎5Φ̈𝑛(𝑡) + 𝑎6Φ𝑛(𝑡) = 0 (56) 

𝑏1𝑈̈𝑛(𝑡) + 𝑏2𝑈𝑛(𝑡) + 𝑏3𝑊̈𝑛(𝑡) + 𝑏4𝑊𝑛(𝑡) + 𝑏5Φ̈𝑛(𝑡) + 𝑏6Φ𝑛(𝑡) = 𝐹1 sin(𝛼𝑛𝑣0𝑡) (57) 

𝑐1𝑈̈𝑛(𝑡) + 𝑐2𝑈𝑛(𝑡) + 𝑐3𝑊̈𝑛(𝑡) + 𝑐4𝑊𝑛(𝑡) + 𝑐5Φ̈𝑛(𝑡) + 𝑐6Φ𝑛(𝑡) = 0 (58) 

where the coefficients 𝑎𝑖 , 𝑏𝑖, and 𝑐𝑖 are defined as (𝑖 = 1, 2, …6) 

{

𝑎1 𝑎2
𝑎3 𝑎4
𝑎5 𝑎6

} =

∫

 
 
 
 
 

{
 
 

 
 −I𝐴(𝑥)𝜃𝑢 𝒜11(𝑥)𝜃𝑢

′′ +
𝜕𝒜11(𝑥)

𝜕𝑥
𝜃𝑢
′

I𝐵(𝑥)𝜃𝑤
′ −ℬ11(𝑥)𝜃𝑤

′′′ −
𝜕ℬ11(𝑥)

𝜕𝑥
𝜃𝑤
′′

−I𝐸(𝑥)𝜃𝜙 ℰ11(𝑥)𝜃𝜙 
′′ +
𝜕ℰ11(𝑥)

𝜕𝑥
𝜃𝜙 
′
}
 
 

 
 

cos(𝛼𝑚𝑥)

𝐿

0

𝑑𝑥 (59) 

{

𝑏1 𝑏2

𝑏3 𝑏4

𝑏5 𝑏6

}

=

∫

 
 
 
 
 
 

{
  
 

  
 −I𝐵(𝑥)𝜃𝑢

′ −
𝜕I𝐵(𝑥)

𝜕𝑥
𝜃𝑢 ℬ11(𝑥)𝜃𝑢

′′′ + 2
𝜕ℬ11(𝑥)

𝜕𝑥
𝜃𝑢
′′ +
𝜕2ℬ11(𝑥)

𝜕𝑥2
𝜃𝑢
′

I𝐷(𝑥)𝜃𝑤
′′ +
𝜕I𝐷(𝑥)

𝜕𝑥
𝜃𝑤
′ − I𝐴(𝑥)𝜃𝑤 −𝒟11(𝑥)𝜃𝑤

′′′′ − 2
𝜕𝒟11(𝑥)

𝜕𝑥
 𝜃𝑤
′′′ + {−

𝜕2𝒟11(𝑥)

𝜕𝑥2
−𝑁𝑡ℎ} 𝜃𝑤

′′

−I𝐹(𝑥)𝜃𝜙 
′ −
𝜕I𝐹(𝑥)

𝜕𝑥
𝜃𝜙 ℱ11(𝑥)𝜃𝜙 

′′′ + 2
𝜕ℱ11(𝑥)

𝜕𝑥
𝜃𝜙 
′′ +
𝜕2ℱ11(𝑥)

𝜕𝑥2
𝜃𝜙 
′

}
  
 

  
 

𝑳

𝟎

sin(𝛼𝑚𝑥) 𝑑𝑥 

(60) 

{

𝑐1 𝑐2
𝑐3 𝑐4
𝑐5 𝑐6

} =

∫

 
 
 
 
 

{
 
 

 
 −I𝐸(𝑥)𝜃𝑢 ℰ11(𝑥)𝜃𝑢

′′ +
𝜕ℰ11(𝑥)

𝜕𝑥
𝜃𝑢
′

I𝐹(𝑥)𝜃𝑤
′ −ℱ11(𝑥)𝜃𝑤

′′′ −
𝜕 − ℱ11(𝑥)

𝜕𝑥
𝜃𝑤
′′

−I𝐻(𝑥)𝜃𝜙 ℋ11(𝑥)𝜃𝜙 
′′ +
𝜕ℋ11(𝑥)

𝜕𝑥
𝜃𝜙 
′ − ℬ𝑥𝑧(𝑥)𝜃𝜙 }

 
 

 
 

cos(𝛼𝑚𝑥)

𝐿

0

𝑑𝑥 

and 𝐹1 = −∫ 𝑃(𝑥) sin (𝛼𝑛𝑥)
𝑳

𝟎
sin(𝛼𝑚𝑥) 

(61) 

with the initial condition: 

𝑊𝑛(0) = 𝑊𝑛̇(0) = 𝑈𝑛(0) = 𝑈𝑛̇(0) = Φ𝑛(0) = Φ𝑛̇(0) (62) 

To solve the system of equations in the time domain, Laplace transform (LT) is pro-

posed with the following functions: ℒ{𝑊̈𝑛(𝑡)} = 𝑠
2𝑊𝑠(𝑠) − 𝑠𝑊𝑛(0) −𝑊𝑛̇(0) , where 

ℒ{𝑊𝑛(𝑡)} = 𝑊𝑠(𝑠)  and ℒ{𝑈̈𝑛(𝑡)} = 𝑠
2𝑈𝑠(𝑠) − 𝑠𝑈𝑛(0) − 𝑈𝑛̇(0)  and ℒ{Φ̈𝑛(𝑡)} = 𝑠

2Φ𝑠(𝑠) −

𝑠Φ𝑛(0) − Φ𝑛̇(0). 

Finally, by using the initial conditions and applying Laplace transform (LT), the sys-

tem of equations in Laplace form is obtained as follows: 

(𝑎1𝑠
2 + 𝑎2)𝑈𝑠 + (𝑎3𝑠

2 + 𝑎4)𝑊𝑠 + (𝑎5𝑠
2 + 𝑎6)Φ𝑠 = 0 (63) 

(𝑏1𝑠
2 + 𝑏2)𝑈𝑠 + (𝑏3𝑠

2 + 𝑏4)𝑊𝑠 + (𝑏5𝑠
2 + 𝑏6)Φ𝑠 =

𝐹1𝛼𝑛𝑣0
(𝛼𝑛𝑣0)

2 + 𝑠2
 (64) 

(𝑐1𝑠
2 + 𝑐2)𝑈𝑠 + (𝑐3𝑠

2 + 𝑐4)𝑊𝑠 + (𝑐5𝑠
2 + 𝑐6)Φ𝑠 = 0 (65) 

Solving Equation (63)–(65), one derives: 

𝑊𝑠(𝑠) =
𝑟1𝑠
4+𝑟2𝑠

2 + 𝑟3
𝒦1𝑠

6 +𝒦2𝑠
4 +𝒦3𝑠

2 +𝒦4
(

1

(𝛼𝑛𝑣0)
2 + 𝑠2

) (66) 

in which 
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𝒦1 = 𝑎1(𝑏3𝑐5 − 𝑏5𝑐3) + 𝑎3(𝑏5𝑐1 − 𝑏1𝑐5) + 𝑎5(𝑏1𝑐3 − 𝑏3𝑐1) (67) 

𝒦2 = 𝑎1(𝑏3𝑐6 + 𝑏4𝑐5 − 𝑏5𝑐4 − 𝑏6𝑐3) + 𝑎3(𝑏5𝑐2 + 𝑏6𝑐1 − 𝑏1𝑐6 − 𝑏2𝑐5) + 𝑎5(𝑏1𝑐4 + 𝑏2𝑐3 − 𝑏3𝑐2 − 𝑏4𝑐1)

+ 𝑎2(𝑏3𝑐5 − 𝑏5𝑐3) + 𝑎4(𝑏5𝑐1 − 𝑏1𝑐5)+𝑎6(𝑏1𝑐3 − 𝑏3𝑐1) 
(68) 

𝒦3 = 𝑎1(𝑏3𝑐6 + 𝑏4𝑐5 − 𝑏5𝑐4 − 𝑏6𝑐3) + 𝑎3(𝑏5𝑐2 + 𝑏6𝑐1 − 𝑏1𝑐6 − 𝑏2𝑐5) + 𝑎5(𝑏1𝑐4 + 𝑏2𝑐3 − 𝑏3𝑐2 − 𝑏4𝑐1)

+ 𝑎2(𝑏3𝑐5 − 𝑏5𝑐3) + 𝑎4(𝑏5𝑐1 − 𝑏1𝑐5)+𝑎6(𝑏1𝑐3 − 𝑏3𝑐1) 
(69) 

𝒦4 = a2(b4c6 − b6c4) + a4(b6c2 − b2c6) + a6(b2c4 − b4c2) (70) 

and 

{

𝑟1
𝑟2
𝑟3
} = 𝐹1𝛼𝑛𝑣0 {

𝑎1𝑐5 − 𝑎5𝑐1
𝑎1𝑐6 + 𝑎2𝑐5 − 𝑎5𝑐2 − 𝑎6𝑐1

𝑎2𝑐6 − 𝑎6𝑐2
} (71) 

The roots of the sixth-order polynomial of the dominator of 𝑊𝑠(𝑠) can be found as 

{

𝜓1,2
𝜓3,4
𝜓5,6

} =

{
 
 
 
 

 
 
 
 

±√
∆1 − (12 𝒦1𝒦3 − 4𝒦2

2) − 2𝒦2∆1
6𝒦1 ∆1

±√
1

12𝒦1 ∆1
[−∆1
2 + (12 𝒦1𝒦3 − 4𝒦2

2) − 4𝒦2∆1 + √3𝑖(∆1
2 + 12𝒦1𝒦3 − 4𝒦2

2)]

±√
1

12𝒦1 ∆1
[−∆1
2 + (12 𝒦1𝒦3 − 4𝒦2

2) − 4𝒦2∆1 − √3𝑖(∆1
2 + 12𝒦1𝒦3 − 4𝒦2

2)]
}
 
 
 
 

 
 
 
 

 (72) 

where 

∆1= √−108 𝒦4 𝒦1
2 + 36 𝒦3 𝒦2 𝒦1 + 12 √3 𝒦1√27 𝒦4

2𝒦1
2 − 18 𝒦4 𝒦1 𝒦2 𝒦3 + 4 𝒦4𝒦2

3 + 4 𝒦1𝒦3
3 −𝒦2

2𝒦3
2 − 8 𝒦2

3
3

 (73) 

By using the inverse Laplace transform (ILT) to 𝑊𝑠(𝑠), the dynamic response can be 

obtained by 

𝑤(𝑥, 𝑡) =
1

𝒦1𝑑0
(𝑑1 sinh(𝜓5𝑡) + 𝑑2 sinh(𝜓1𝑡) − 𝑑3 sinh(𝜓3𝑡) + 𝑑4sin(𝛼𝑛𝑣0𝑡)) sin(𝛼𝑛𝑥) (74) 

in which 

{
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=
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 (75) 

The following nondimensional quantities are proposed in the analysis to generalize 

the problem: 

𝑤̅(𝑥, 𝑡) =
𝑤(𝑥, 𝑡)

𝐷0
, 𝜔̅1 = 𝜔1𝐿

2√𝜌𝑐𝑏ℎ/𝐸𝑐𝐼 , 𝑣̅ =
𝑣

𝑉𝑐
, 𝑉𝑐 =

𝐿𝜔1
𝜋
, 𝜏 =

𝑡

𝐿/𝑣
 (76) 

where 𝑤̅(𝑥, 𝑡) represents the normalized dynamic deflections. 𝐷0 is the peak transverse 

deflection of the beam with full metal constituent under a point load 𝑃0  (𝐷0  =

𝑃0 𝐿
3/48𝐸𝑚 𝐼), 𝐼 = 𝑏ℎ

3/12. 𝜔1 is the dimensionless first natural frequency. 𝑣̅ is the di-

mensionless velocity of the moving load. 𝑉𝑐 is the critical velocity (the maximum magni-

tudes of the maximum deflections to occur). τ (0 < 𝜏 < 1) signifies the dimensionless time. 

When 𝜏 > 1, the load is away from the beam. 
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5. Model Validation 

This section presents the convergence and accuracy of the present model and solution 

procedure by comparing our results with previous works. Since there is no previous work 

considering bidirectional sigmoidal graded beams, the SBDFG is validated with power 

law results for the 𝑘𝑧 = 1 case and also for the homogeneous case 𝑘𝑧 = 𝑘𝑥 = 0. Table 1 

compares the peak deflections (𝑤̅𝑝) and the corresponding absolute velocities (𝑣𝑝) of an 

SS transverse power functionally graded (TPFG) SUS304/Al2O3 beam with the results re-

ported by [29,35,69,70] at Ω𝑓 = 0 (ignoring temperature effect). In Table 1, the beam is 

composed of a mixture of metal SUS304 stainless steel (𝐸𝑚 = 210 GPa and mass density 

of 𝜌𝑚
𝐵  = 7800 kg/m3) and ceramic (Al2O3) (𝐸𝑐 = 390 GPa, and 𝜌𝑐

𝐵 = 3960 kg/m3). The beam 

has 0.4 m width, 0.9 m thickness, and 20 m length. As concluded, the current results for 

dynamic deflection and absolute velocity are close to all previous works, within 1% max-

imum deviation. 

Table 1. Peak normalized dynamic deflection 𝑤̅𝑝  and corresponding absolute velocity 𝑣𝑝  of 

simply supported beams, at 𝑇(𝑧) = 0. 

 Source Pure SUS304 𝒌𝒛 = 1.0 Pure Al2O3 

𝑤̅𝑝 

Present, SBDFG 1.7475 1.2641 0.9433 

Ref. [29] (RBT) 1.7384 1.2575 0.9384 

Ref. [70] (TBT) 1.7379 1.2287 0.9382 

Ref. [69] (TBT) 1.7420 1.2566 0.9380 

Ref. [35] (EBT) 1.7324 1.2503 0.9328 

𝑣𝑝 

Present, SBDFG 130 177 249 

Ref. [29] (RBT) 131 178 252 

Ref. [70] (TBT) 132 179 252 

Ref. [69] (TBT) 131 178 251 

Ref. [35] (EBT) 132 179 252 

To validate the temperature effect, a beam with constituents of metal (SUS304 stain-

less steel) and silicon nitride (Si3N4) is considered. The material properties are tempera-

ture-dependent according to Equation (3) for SUS304 and Si3N4. The constants 

𝒫0, 𝒫−1, 𝒫1, 𝒫2 , and 𝒫3 are given in Table 2 for metal and ceramic phases. Considering the 

validation of the temperature effect, the fundamental dimensionless frequency 𝜔̅ of the 

simply supported TSFG SUS304/Si3N4 beam is validated by Ebrahimi and Salari [71] for 

EBT at different temperature differences ∆T (LTR), as in Table 3. As seen, the natural fre-

quencies of isotropic and FG material are decreased with increasing temperature differ-

ences or by increasing the gradation index through thickness. The same observation was 

predicted by Ebrahimi and Salari [71]. 

Table 2. Temperature-dependent coefficients for metal (SUS304) and ceramic (Si3N4) constituents 

[71]. 

Material Properties 𝓟−𝟏 𝓟𝟎 𝓟𝟏 𝓟𝟐 𝓟𝟑 

SUS304 

(Metal) 

𝐸(Pa) 0 201.04 × 109 3.079 × 10‒4 ‒6.534 × 10‒7 0 

𝜌(Kg/m3) 0 8166 0 0 0 

𝜈 0 0.3262 0 0 0 

𝛼(1/K) 0 12.330 × 10‒6 8.086 × 10‒4 0 0 

Si3N4 

(Ceramic) 

𝐸(Pa) 0 348.43 × 109 ‒3.070 × 10‒4 2.160 × 10‒7 ‒8.946 × 10‒11 

𝜌(Kg/m3) 0 2170 0 0 0 

𝜈 0 0.24 0 0 0 

𝛼(1/K) 0 5.8723 × 10‒6 9.095 × 10‒4 0 0 



Mathematics 2022, 10, 4797 15 of 24 
 

 

Table 3. Comparison of the fundamental dimensionless frequency 𝜔̅ of simply supported TFG 

SUS304/Si3N4 beams at different temperature differences ∆𝑇(𝐿𝑇𝑅). 

Source ∆𝑻 𝒌𝒛 = 0.0 𝒌𝒛 = 1.0 

Present, SBDFG 
10 

9.7643 5.7294 

Ref. [71] (TBT) 9.6461 5.7717 

Present, SBDFG 
30 

9.6074 5.5964 

Ref. [71] (TBT) 9.4538 5.6105 

Present, SBDFG 
60 

9.3682 5.3889 

Ref. [71] (TBT) 9.1475 5.3537 

In Figures 2 and 3, the fundamental frequency and the maximum dynamic response 

at the center are calculated to give comparisons with two available results in the literature. 

First, a comparison is performed with Liu et al. [41], showing the dependency of the di-

mensionless fundamental frequency of the SBDFG on temperature under LTR. Secondly, 

to show the accuracy of the present analytical solution, the relation between dimension-

less dynamic deflection and moving load speed is validated by Abdelrahman et al. [44] 

and Şimşek [36]. Through these validations and as can be observed, there is good agree-

ment with the literature results, which demonstrates the validity of the present model and 

its analytical solution. 

 

Figure 2. Comparison of the dependency of the dimensionless fundamental frequency of the beam 

at different temperature differences ∆𝑇 under LTR for 𝑘𝑥 = (0.5, 2), 𝑘𝑧 = 0.5, 𝑙𝑐𝑠 = 0.25 ℎ. 
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Figure 3. The variation in the dynamic deflection at the center of the beam vs. moving load velocity. 

6. Numerical Results 

In this section, the influences of different key parameters on the dynamical response 

of SBDFG microbeams under a moving harmonic load are extensively explored, i.e., the 

transverse and axial gradient indices, velocity, frequency, temperature, and the small-

scale effects due to the microstructure energy. Consider a simply supported SBDFG mi-

crobeam made of metal (SUS304) and ceramic (Si3N4) with the material properties in Table 

2. In the following results, the material length scale constants 𝒫0 for metal and ceramic 

phases are 𝑙𝑚 = 𝑙𝑐 = 𝑙 = 22.5 µm, and the other material length constants are set to zero 

[65,72]. The beam dimensions are ℎ = 𝑏 = 2𝑙 and 𝐿 = 25ℎ. The other geometrical and 

material parameters are fixed through analysis. 

6.1. Influence of the Gradation Indices 

Variations in the dimensionless fundamental frequency of SBDFG microbeams with 

SS boundaries vs. temperature variations are portrayed in Figures 4 and 5, respectively. 

From Figures 4 and 5, we can conclude that frequencies of SBDFG microbeams reduce 

with the rise in temperature until reaching the critical frequency temperature. This is be-

cause the geometrical stiffness decreases when the temperature rises without any varia-

tion in equivalent mass. The frequency reaches zero at the critical temperature point. After 

that, the stiffness induced by thermal load is higher than the structural stiffness; hence, 

the increase in temperature yields higher frequency after the branching point [71]. The 

branching point of the SBDFG microbeam is delayed by consideration of the lower axial 

gradient index, as seen in Figure 5. However, by increasing the transverse gradation index 

of the SBDFG microbeam, the critical temperature will be increased insignificantly, as con-

cluded from Figure 4. 
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Figure 4. Influence of the transverse gradient index on the dimensionless fundamental frequency at 

different temperature differences ∆𝑇 under LTR and based on classical analysis (𝑙 = 0, 𝑘𝑥 = 0.2). 

 

Figure 5. Influence of the axial gradient index on the dimensionless fundamental frequency at dif-

ferent temperature differences ∆𝑇 under LTR and based on classical analysis (𝑙 = 0, 𝑘𝑧 = 0.2). 

Figures 6 and 7 illustrate the variation in the maximum normalized central dynamic 

deflection (dynamic magnification factor, 𝑤̅𝑚𝑎𝑥(𝐿/2, 𝑡)) vs. the dimensionless moving ve-

locity at different values of 𝑘𝑧 and 𝑘𝑥, respectively. Both temperature-dependent and -

independent LTR are considered at Δ𝑇  = 80. It is depicted from Figures 6 and 7 that 

𝑤̅𝑚𝑎𝑥(𝐿/2, 𝑡), over the entire time history, both increases and decreases, then increases to 

reach the peak value when the velocity reaches critical values. After that, 𝑤̅𝑚𝑎𝑥 gradually 

decreases as the moving load velocity increases, which is consistent with Olsson’s obser-

vation [73]. The velocity at which 𝑤̅𝑚𝑎𝑥 attains its peak value is denoted as the beam crit-

ical velocity [74]. At lower velocities of the moving load, the repeated increase and de-

crease in the 𝑤̅𝑚𝑎𝑥  is due to the beam oscillations. It is noted that by increasing the 
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gradation index through the thickness, the dynamic deflection increases for temperature-

independent material. However, in the case of temperature-dependent material, increas-

ing in 𝑘𝑧 from 0 to 0.2, the dynamic deflection increases significantly, and after that, dy-

namic deflection reduces by increasing the gradation index 𝑘𝑧 . The effect of gradation in-

dex in the axial direction on the dynamic deflection is increased significantly in the case 

of LTR relative to temperature-independent material, as seen from Figure 7. The maxi-

mum deflection increased from 2.1 to 6.1 as 𝑘𝑥 changed from 0 to 5 in the case of LTR. 

However, it increased from 0.9 to 1.2 as 𝑘𝑥 changed from 0 to 5 in the case of temperature-

independent material. 

 

Figure 6. Influence of the transverse gradient index on the variation in the maximum normalized 

central dynamic deflection with the velocity (𝑘𝑥 = 0.2); (__) temperature-independent, (- -) temper-

ature-dependent (Δ𝑇 = 80, 𝐿𝑇𝑅). 

 

Figure 7. Influence of the axial gradient index on the variation in the maximum normalized central 

dynamic deflection with the velocity (𝑘𝑧 = 0.2); (__) temperature-independent, (- -) temperature-

dependent (Δ𝑇 = 80, 𝐿𝑇𝑅). 
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6.2. Influence of Temperature Distribution 

The impact of temperature distribution type on the dynamic deflection of the SBDFG 

microbeam is described in this subsection. The temperature rise for linear temperature 

rise (LTR) and nonlinear temperature rise (NTR) distribution is assumed as Δ𝑇 =

100 [𝐾] by adjusting the initial temperature 𝑇0 to room temperature at 300 K. Figure 8 

shows that different temperature formulations and the moving velocity considerably 

affect the amplitude of dynamic deflection. Obviously, the temperature for the LTR type 

is larger than that for both the NTR type and temperature-independent material. As seen, 

by increasing the velocity, the profile of dynamic deflection vs. time 𝜏  is changed 

completely from oscillatory to parabolic to exponential functions. Thus, it can be 

concluded that the dynamic deflection profile response is dependent on the velocity of 

the moving mass. 

  

 

Figure 8. Influence of temperature distribution (temperature-independent, LTR and NTR with 𝛼𝑇 =

2) on the dimensionless central deflection vs. time under a uniform moving load (𝑘𝑥 = 𝑘𝑧 = 0.2) at 

𝑣̅ = 0.1, 0.4, and 0.8 and Δ𝑇 = 100. 
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6.3. Influence of the Moving Load Velocity 

Figure 9 shows that for both classical (CL) and couple stress (CS) formulations, the 

moving velocity considerably affects the amplitude of dynamic deflection. The shapes of 

the time history curves are strongly affected by the moving velocity. The number of vi-

bration cycles of the microbeam is enlarged at low velocities of the moving load because 

the ratio of moving load velocity to critical velocity becomes low. 

 

 

Figure 9. Influence of the dimensionless velocity on the variation in the dimensionless central de-

flection vs. the dimensionless time under a uniform moving load based on CL and CS formulations 

(Δ𝑇 = 80, 𝐿𝑇𝑅, 𝑘𝑥 = 𝑘𝑧 = 0.2). 

7. Conclusions 

A dynamic response in closed-form solutions for sigmoid bidirectional functionally 

graded microbeams excited by a moving harmonic mechanical load under a thermal en-

vironment was developed by considering the microstructure effect. Temperature-
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dependent thermomechanical materials with linear and nonlinear temperature profiles 

were considered. The nonclassical equations of motion and boundary conditions were de-

veloped and solved by Galerkin’s decomposition technique in conjunction with Laplace 

transform and the implicit Newmark time integration method. The main points can be 

drawn from this analysis as follows: 

✓ Fundamental frequencies of SBDFG microbeams reduce with a rise in temperature 

until it reaches the critical frequency temperature. This is because the geometrical 

stiffness decreases when the temperature rises without any variation in equivalent 

mass. 

✓ By increasing the gradation index through the thickness, the dynamic deflection in-

creases for temperature-independent material. However, in the case of temperature-

dependent material, increasing in 𝑘𝑧 from 0 to 0.2, the dynamic deflection increased 

significantly, and after that, dynamic deflection reduced with the increasing grada-

tion index 𝑘𝑧. 

✓ The effect of gradation index in the axial direction on the dynamic deflection is in-

creased significantly in the case of LTR relative to temperature-independent material. 

✓ The temperature for the LTR type is larger than that for both the NTR type and tem-

perature-independent material. As seen, by increasing the velocity, the profile of dy-

namic deflection vs. time 𝜏 is changed completely from oscillatory to parabolic to 

exponential functions. Therefore, the dynamic deflection profile response is depend-

ent on the velocity of the moving mass. 

✓ The shapes of the time history curves are strongly affected by the moving velocity. 

The number of vibration cycles of the microbeam is enlarged at low velocities of the 

moving load because the ratio of moving load velocity to critical velocity becomes 

low. 
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