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Abstract: Feature pyramid networks and attention mechanisms are the mainstream methods to
improve the detection performance of many current models. However, when they are learned
jointly, there is a lack of information association between multi-level features. Therefore, this paper
proposes a feature pyramid of the multi-level local attention method, dubbed as MLA-Net (Feature
Pyramid Network with Multi-Level Local Attention for Object Detection), which aims to establish a
correlation mechanism for multi-level local information. First, the original multi-level features are
deformed and rectified using the local pixel-rectification module, and global semantic enhancement is
achieved through the multi-level spatial-attention module. After that, the original features are further
fused through the residual connection to achieve the fusion of contextual features to enhance the
feature representation. Extensive ablation experiments were conducted on the MS COCO (Microsoft
Common Objects in Context) dataset, and the results demonstrate the effectiveness of the proposed
method with a 0.5% enhancement. An improvement of 1.2% was obtained on the PASCAL VOC
(Pattern Analysis Statistical Modelling and Computational Learning, Visual Object Classes) dataset,
reaching 81.8%, thereby, indicating that the proposed method is robust and can compete with other
advanced detection models.

Keywords: object detection; convolutional neural network; self-attention; feature pyramid network

MSC: 68Q04

1. Introduction

With the development of neural network, many detectors based on CNN and
Transformer-based architectures have been proposed in recent years [1,2]. Among them,
the feature pyramidal network (FPN) [3] has become an almost necessary and effective
component in current object detectors, which significantly improves the performance of
detectors by learning multi-scale features for objects of different scales.

In object-detection algorithms, pyramid feature-fusion networks enhance the expres-
siveness of features mainly on the backbone output, and FPN combines top-down branch
and lateral linking to fuse the semantic information of deep features and the location infor-
mation of shallow features, thereby, opening up the research on object detection through
multi-level features. Subsequently, PANet [4] investigated an additional bottom-up infor-
mation pathway based on FPN to further add deep location and semantic information.
Further, in 2020, EfficientDet [5] then proposed a weighted bi-directional FPN, which
achieves feature fusion by repeatedly stacking the same bi-directional BiFPN blocks mul-
tiple times. Clearly, the FPN-based approach greatly improves the performance of object
detection by increasing the information interaction between multi-scale features, which is
the key to further enhancing the model performance.
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However, these current multi-level information interactions based on pyramidal fea-
tures lack a focus on potentially salient objects when fusing them. Recently, the superior
performance of the self-attention algorithm [6] in the field of natural-language processing
has led to their widespread use and rapid development in the field of computer vision. In
particular, Non-Local [7] network with self-attention focuses on the connections within
a sequence of same-scale pixels. AC-FPN [8] introduced self-attention in the FPN part to
design CEM and AM to resolve the conflict between feature map resolution and perceptual
fields and to augment the discriminative power of feature-representation operations. How-
ever, this scales up the distance to the global level in the long-range correlation process and
ignores the ultra-long-range uncorrelated nature of the image features.

From the above, attention is more oriented towards feature interaction between multi-
level feature maps than in FPN, where attention and particularly self-attention is more
about finding the salience of pixels as weights and filtering the original features with a
mask composed of all pixel-corresponding weights. In addition, both channel attention and
spatial attention in the attention mechanism facilitate inter-feature information interaction
between pixels at the same scale.

Taken together, the current approaches based on FPN and the attention mechanism
have certain limitations: (1) a lack of effective communication between multi-level features,
(2) although self-attention is effective in improving FPN performance, the processed global
features undoubtedly contain more redundant features, and (3) the sequences processed
by self-attention contain only single-level features rather than multi-level features. There-
fore, how to joint learn between multi-level information interaction, multi-level feature
sequences, and local attention is necessary to improve the performance of detectors through
better feature representation.

In practical scenarios, the dependency between multi-level local features is more
extensive than that between same-scale features, and the semantics of surrounding multi-
level features need to be referred when deciding the importance of this feature [9], and the
aggregation of multi-level local features as attention units of action is more powerful for the
network to learn the salience of features. Inspired by Deformable DETR [10], we proposed
a feature pyramid networks with a multi-level local attention method that feeds the multi-
level feature maps from the residual backbone network into two parallel branches—a
top-down branch and an attention branch—the former being used to complement the
semantics lacking in the shallow information and the latter to build up the semantics for
multi-level local attention, dubbed as MLA-Net.

We propose a correlation mechanism for multi-level local information, and finally the
corresponding layer outputs of the two are fused to generate enhanced features as the de-
tection head input. The proposed approach in this paper can be easily plugged into existing
FPN-based models [9,11,12] and trained end-to-end without additional supervision.

2. Related Work
2.1. Advanced Detectors

With the development of deep-learning techniques, detection models are mainly
divided into two-stage [13–16], one-stage [2,17,18], and transformer-architecture-based
object-detection categories. The representative work of the two-stage detection method,
R-CNN [19], first, used selective search to generate region suggestions and then refined the
suggesting regions by extracting region features through convolutional networks, which
was the first implementation of a deep-learning-based object-detection method.

Later, in order to improve the speed of training and inference, Fast R-CNN [20]
extracted the feature map of the whole image using a convolutional network; then used
the spatial pyramid pool and the region-of-interest (ROI) pool to generate the region
features, respectively; and finally used the region features to refine the suggested regions
to improve the accuracy. Faster R- CNN [9] was proposed as a region-suggestion network
and developed an end-to-end trainable detector that significantly improved performance
and sped up inference, a milestone performance in the development of object-detection
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methods. More recently, Cascade R-CNN [17] introduced multi-stage refinement to the
faster R-CNN, further enabling more accurate object-location prediction.

One-stage detectors have higher inference speed compared to two-stage detectors.
SSD [2] and RetinaNet [12] places anchor frames densely on multi-level features and makes
predictions based on these anchors. FCOS [11] was proposed with the concept of being
anchor-free, which eliminated the design of anchor frames and resulted in certain problems,
such as the Intersection over Union (IoU) computation yet improved the performance.

Both detection models of two-stage and one-stage select the positive samples by
the assignment of anchor box, while DETR [18] based on the transformer architecture
dispensed with anchor box assignment, IoU computation, non-maximal suppression, and
other operations, and pioneered a new architecture for detection using learnable anchor
boxes and bipartite graph matching. Furthermore, SMCA-DETR [16] designed a plug-
and-play (Spatially Modulated Co-Attention) module to replace the existing co-attention
mechanism in DETR and achieved faster convergence and higher performance with simple
modifications. Deformable DETR [10] introduced the deformable attention module that
accepts multi-level feature inputs and makes several improvements to DETR to achieve
higher performance.

In summary, these works have made significant progress in different ways. This
paper continues to investigate how to better exploit multi-level features to solve the feature
representation problem in detection using the pipeline flow of the one-stage object detector
with the anchor box assignment approach.

2.2. Feature Fusion Networks

FPN [3] constructed an effective framework for solving the scale variation problem
by fusing features via a top-down path. The problem has since been widely applied and
further investigated. PANet [4] was investigated with an additional bottom-up path to
further exploit low-level information. NAS-FPN [13] uses a neural architecture search to
better learn all cross-scale connections. EfficientDet [5] was proposed with a weighted
BiFPN for simple and fast feature fusion. PSPNet [14] uses a pyramidal pooling approach
to extract hierarchical global contexts. The literature [15] proposed a contextual optimiza-
tion algorithm to optimize the proposals for each region. In this paper, we add a local
pixel-rectification module and multi-level spatial-attention module to enhance the feature
representation in the feature-fusion network part.

2.3. Attention

SE [21] compressed each 2D feature map by simply compressing it and, thus, efficiently
constructing interdependencies between channels. CBAM [22] took this idea further by
introducing spatial-information encoding through large scale kernel convolution. Later
studies, such as GENet [23] and GALA [24], extended this idea by employing different
spatial attention mechanisms and designing advanced attention blocks. Non-local [25]
or self-attention focuses on constructing feature correlation matrices to generate linear
transformation weights between two features. Typical examples include GCNet [7] and
CCNet [26], both of which used the self-attention mechanism to capture different types
of spatial information. The local pixel-rectification module and the multi-level spatial-
attention module proposed in this paper were inspired by self-attention and use multi-level
local feature sequences for correlation operations to, thus, enhance saliency features.

3. Our Method
3.1. General Framework

The general pipeline process for object detection is to extract features from an image
using a classification network as the backbone, to use a feature pyramid network to feature-
enhance the extracted features, and then the output multi-level feature map is fed to the
detection head to make predictions for each scale object. In the paper, we use RetinaNet, a
representative work of one-stage object detection, as a benchmark, and improve the feature
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pyramid part along with higher quality features to enable the downstream detection head
to better perform the classification and regression tasks.

To alleviate the information loss of salient features, based on the baseline model, we
propose two components in the attention branch, which are the local pixel-rectification
module and the multi-level spatial-attention module. The overall structure of the network
is shown in Figure 1. The feature-fusion network proposed in this paper mainly contains
two parallel branches—the top-down branch and the attention branch, where the top-
down branch inherits the traditional FPN, and the attention branch consists of the local
pixel-rectification module and the multi-scale spatial-attention module.

Given that the output layer of the backbone network is {C3, C4, C5} and the step size is
{8, 16, 32} compared to the input image, the method in this paper uses channel reduction to
form {F3, F4, F5}, after which the top-down branch simply fuses the deep information into
the shallow layer, and the attention branch uses attention to provide additional attention
to the salient features of F3, F4, and F5. Finally, the features from the two branches are
fused to generate the five-layer detection features {P3, P4, P5, P6, P7} in the Retina network,
where P6 is obtained by 3 × 3 convolution of P5 and P7 is obtained by 3 × 3 convolution
of P6.
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Figure 1. Model framework of our MLA-Net. The outputs C3, C4, and C5 of the backbone network
are changed to F3, F4, and F5 through channel reduction. F3, F4, and F5 are fused through two
parallel branches to generate a feature map that predicts all scale objects.

After that, we continue to use the detector head and loss function of the benchmark [12].
In short, the five-layer feature map deals with the prediction of objects of different scales,
which are then transmitted to the detection head. The model generates the prediction of
the category and the regression vector of the bounding box at the detection head. The final
loss calculation includes classification loss and regression loss. We use the CE function to
calculate the classification loss and the smooth L1 function to calculate the regression loss,
which are formulated as the following:

LOSS = ClsLoss + RegLoss (1)

ClsLoss =
1
N

ΣN
i Li (2)

Li = ΣM
c Lic (3)

Lic =

{
−(1− p)r × log(p), i f ct = 1

−pr × log(1− p), i f ct = 0
(4)

RegLoss =
1

N′
ΣN′

i |ri − rti| (5)

The loss calculation of each input picture is shown in Formula (1). This is composed
of the classification loss (ClsLoss) and regression loss (RegLoss). The classification loss is
the average of the classification loss of N selected anchor boxes as shown in Formula (2).
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The classification loss of each sample is the sum of the binary losses of M categories of
this sample as shown in Formula (3). Furthermore, Formula (4) is the expression of the
binary loss function, where ct is the supervision signal, p is the prediction signal, and r
is the manually set super parameter. Regression loss is a simple smooth L1 loss function,
such as Formula (5). This is the average loss of N′ samples, where N′ is the number of
positive samples for training, ri is the prediction signal of anchor regression, and rti is the
supervision signal of anchor regression.

3.2. Local Pixel-Rectification Module

In the pipeline flow of Figure 1, the three-level feature map (C3, C4, and C5) output by
the backbone network has a pyramidal structure. In this paper, we redesign a multi-level
sliding window on this multi-level feature map inspired by ACMix [27], and input the
sequence of pixels in the window at each slide into the attention module to obtain the
attention weight of each pixel in the window. The window is scanned at each slide not
at a single scale of the pyramid but at three scales. The local pixel-rectification module
is responsible for adapting the reduced tertiary features {F3, F4, F5} of the channel to the
sequence-based data format required by the multi-level spatial-attention module.

Specifically, as shown in Figure 2, given a batch size of C at training, the multi-level
(Hi ×Wi) feature map obtained after channel reduction is Fi, i ∈ [3, 4, 5], where a 2D
sliding window with step Si, kernel size PSi, hole rate DRi, and filled pixels Pi slides
over it synchronously, with each synchronous slide scanning PSi × PSi pixels and where
the sampling range varies according to the void rate. If the actual sampling range of the
window is denoted by WSi , then:

WSi = PSi + (PSi − 1)× (DRi − 1) (6)

Input Rectific Output

（B×C×40×40）

（B×C×20×20）

（B×C×10×10）
（B×C×1×20×20）

（B×C×9×20×20）

（B×C×25×20×20）

（B×C×35×10×10）

Upsample ×2

F5

F4

F3

SW5

SW4

SW3

...

Figure 2. Diagram of the local pixel-rectification operation. Three 2D windows slide synchronously
in different steps to simulate the sliding of 3D windows. During this period, the pixels from each
sliding scan are spliced and stored in additional dimensions.

After multiple sliding rectification in the horizontal and vertical directions, the output
feature map SWi has a data shape of C× (PSi × PSi)× H ×W, where H is equal to the
maximum number of vertical slides and W is equal to the maximum number of horizontal
slides according to the following formula.

H =
Wi + 2× Pi −WSi

Si
+ 1 (7)

W =
Hi + 2× Pi −WSi

Si
+ 1 (8)

The sequence of PSi × PSi pixels at the (m, n) position of SWi is denoted as SWi
m,n

and Fi
r,c is the pixel point in the rth row and cth column on the feature map Fi, and thus

their correspondence can be expressed as:
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SWi
m,n = {Fi

r,c}

r = i× Si +
k

Si × DRi ×WSi + K%Si × DRi

c = j× Si +
k
′

Si × DRi ×WSi + K′%Si × DRi

k′, k ∈ [0, psi]

(9)

This module uses the synchronous sliding of three 2D windows, which equate to a 3D
multi-level sliding window, and the sequence of features extracted from the multi-level
sliding window is fed into the sequence-based self-attention algorithm model at each
synchronous sliding.

3.3. Multi-Level Spatial Attention

Although the local pixel-rectification module in Section 3.1 extracts a large range of
features under different perceptual fields, not all features are beneficial to the model’s
classification and regression of the object. Feature information is prone to information
decay as the network depth increases, and too many redundant features will actually
degrade the detection performance. Therefore, in order to eliminate redundant information
and emphasize effective information, a multi-level spatial-attention module is inserted
after the local feature pixel rectification to further enhance the expressiveness of the feature
mapping, to suppress redundant information among many features, and to better exploit
the semantic correlation between two features to better establish the mapping.

The output of the local pixel-rectification module is processed by the self-attention
module and mapped into enhanced features at all levels in two ways—Type A mapping and
Type B mapping as shown in Figure 3. The multi-level spatial attention first adds position
encoding to the feature sequence, and then adds corresponding hierarchical encoding
for each feature scale, and after the self-attention processing, finally builds the FC (fully
connected mapping) on the one hand and also builds the mapping using the insertion of
Tokens (tokens) in ViT [28]. The mapped features are then summed, fused, and output.
Type B attention only builds mappings in the form of categorical tokens.

......

......

...... ......

××CC

 token

T

......

FC

×

Q

K

V

++

position encoding

......

++

++

++

CC

level encoding1

level encoding2

......

level encoding3

Type A

Type B

Softmax

Figure 3. Multi-level spatial attention Type A/B. The rectified features can be processed by an
attention algorithm based on the sequence. The processing flow as shown in the figure is the detailed
flow of attention. There are two processing methods at the end of processing.

As shown in Figure 1, attention components a, b, and c are responsible for the en-
hancement of Level 3, 4, and 5 features, respectively, with attention component a using
type-A mapping and attention component b and c using type-B mapping. Overall, this
module establishes semantic associations and spatial associations between each region-of-
interest feature and each level feature and features at the same level through the above two
approaches, thereby, allowing the network to actively aggregate contextual information of
sub-regions at each level for each region-of-interest feature, i.e., to establish semantic de-
pendencies for the features at each level generated by the rectifier module, thus, providing
the output features with clearer semantics.
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4. Experiments
4.1. Datasets

The PASCAL VOC dataset can be divided into four major categories and twenty
sub-categories. A total of 9963 images were used in PASCAL VOC2007, of which 5011
images were in the training set and 4952 images were in the test set; 122,216 images were
used in MS COCO, of which 117,266 images were in the training set with 4952 images in the
test set. In this paper, the ablation experiments were conducted on the MS COCO dataset
and PASCAL VOC. Furthermore, we compared the results with various algorithms on the
PASCAL VOC dataset in our experiments. We use python 3.8 and pytorch 1.7.1 to run all
our experiments. Two NVIDIA GeForce GTX 1080Ti GPUs were used for training, and only
one was used for evaluation.

4.2. Experimental Setup

The ResNet model, pre-trained on the ImageNet [28] dataset, was used as the backbone
feature extraction network, and the baseline RetinaNet and the proposed method were
trained by first pre-processing the input images with data enhancement operations, such
as image flipping, aspect warping, and color scrambling, using a SGD optimizer, and the
initial learning rate was set to 0.0025 during training. The total number of training epoches
for the experiments on MS COCO was 15 epoches, and the learning rate decreased to
one-tenth of the original rate in epoch 8 and 12. For Pascal VOC, the training epoches were
set to 16, and the learning rate decreased to one-tenth of the original rate in epoch 12.

4.3. Ablation Studies

In order to verify the effectiveness of the proposed method, extensive ablation ex-
periments were conducted on the MS COCO dataset and PASCAL VOC for the proposed
algorithm. Relevant experiments were conducted on the top-down branching effectiveness,
the method of fusion of the two major branches, the way of mapping the features after
attention, the importance of shared and independent linear mappings at each level of
attention, the number of attention heads, and the number of channels, and the experimental
results are shown in the following tables. In the tables, we use checkmarks to indicate
that the corresponding model of the current row is configured with the corresponding
network structure or algorithm of the current column. The horizontal bar indicates that the
corresponding network structure or algorithm of the current column cannot be installed in
the corresponding model of the current row. The best result in this experiment is shown
in bold.

The model described in Section 3.1 of this paper has two major parallel branches
compared to the original benchmark top-down fusion network—namely, the top-down
branch and the attention branch. The results in Table 1 show that the model lacking the
top-down branch performs slightly lower than the benchmark, indicating that the top-down
branch is a crucial structure.

Table 1. Comparison of top-down and attention branches.

Models Dataset Top-Down
Branch

Attention
Branch mAP

RetinaNet-base MS COCO
√

31.7
RetinaNet-ours MS COCO

√
31.5

RetinaNet-ours MS COCO
√ √

32.4

As show in Table 2, this paper explores the best way to fuse the two main branches,
where splicing fusion is the operation of stitching two features together and then reducing
them using a convolutional channel, which results in more computation and parameters,
but is less effective compared to summation fusion, which is not only simple but also very
effective.
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Table 2. Comparison of the branch-fusion approaches.

Models Dataset Cat Add mAP

RetinaNet-base MS COCO - - 31.7
RetinaNet-ours MS COCO

√
33.1

RetinaNet-ours MS COCO
√

32.4

After determining the basic branching and fusion methods, a series of experiments
were performed in this paper for the internal structure of the multi-level spatial-attention
module. As shown in Figure 1, attention components a, b, and c in the attention branch are
responsible for the enhancement of small, medium, and large scale features, respectively,
as can be seen from the results in Table 3: shallow features are responsible for small-object
detection, and small objects should focus more on the salience of the features associated
with them due to their lesser association with the environment. Finally, we conducted
experiments on the performance enhancement of the number of self-attention heads and
the number of channels per head. The experimental results in Table 4 demonstrate that
increasing the number of heads was more effective in improving the performance when
compared with increasing the number of channels per head.

Table 3. Comparison of the performance of attention components a, b, and c with type A/B.

Models Dataset Type A Type B mAP

RetinaNet-base MS COCO - - 31.7
RetinaNet-ours MS COCO - a, b, c 32.9
RetinaNet-ours MS COCO a, b, c - 32.9
RetinaNet-ours MS COCO b, c a 33.1

Table 4. Comparison of different numbers of attention heads and numbers of channels.

Models Dataset Number of
Heads

Number of
Channels mAP

RetinaNet-base MS COCO - - 31.7
RetinaNet-ours MS COCO 3 64 32.3
RetinaNet-ours MS COCO 6 32 33.1

In this paper, we next take the above configuration and apply it to the PASCAL VOC
dataset to investigate the improvement of detection performance with multi-level features
and attention mechanisms with local windows, respectively. For the effect of local windows
on attention, this paper set different window sizes in the local pixel-rectification module.
The corresponding window sizes for each level are shown in Table 5, and the corresponding
performance is as follows.

Local features with appropriate range sizes are clearly better, and it can be seen
that global attention is not the best choice. As for the effect of multi-level features on
attention, this paper controlled the scale of the features from the input of the local pixel-
rectification module underhand as shown in Table 6. In the attention with multi-level
features, each scale did not contribute equally to the attention, and the shallow features did
not contribute. No attention mechanism functioned well if the semantic information of the
feature was insufficient.
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Table 5. Comparison of different window sizes under Levels 3, 4, and 5 for the local pixel-
rectification module.

Models Dataset Window Size mAP

RetinaNet-base PASCAL VOC - 80.6
RetinaNet-ours PASCAL VOC 3, 3, 1 80.9
RetinaNet-ours PASCAL VOC 5, 5, 3 81.6
RetinaNet-ours PASCAL VOC 9, 9, 5 80.9

Combining the experiments of two datasets, the performance of our proposed method
for each backbone network and dataset is shown in Table 7 below. In general, the method in
this paper increases significantly the performance compared to the baseline on ResNet-18
but less on ResNet-50 and ResNet-101, and increases significantly the gain of mAP on
PASCAL VOC but less on MS COCO, which we will study in depth for improvements in
the future.

Table 6. Comparison of the performance based on each input of multi-level spatial attention.

Models Dataset Multi-Level Input of
Attention mAP

RetinaNet-base PASCAL VOC - 80.6
RetinaNet-ours PASCAL VOC F3 81.7
RetinaNet-ours PASCAL VOC F4 81.6
RetinaNet-ours PASCAL VOC F5 81.4
RetinaNet-ours PASCAL VOC F3, F4 81.2
RetinaNet-ours PASCAL VOC F3, F5 81.2
RetinaNet-ours PASCAL VOC F4, F5 81.8
RetinaNet-ours PASCAL VOC F3, F4, F5 81.6

Table 7. Comparison of the performance based on different backbone networks.

Models Dataset Training Strategies Backbone Network mAP

RetinaNet-ours MS COCO 1× ResNet-18 33.1 (+1.4)
RetinaNet-ours MS COCO 1× ResNet-50 36.8 (+0.5)
RetinaNet-ours MS COCO 1× ResNet-101 39.0 (+0.5)
RetinaNet-ours PASCAL VOC 1× ResNet-50 80.3 (+2.0)
RetinaNet-ours PASCAL VOC 1× ResNet-101 81.8 (+1.2)

4.4. Qualitative Analysis

As shown in Figure 4, to illustrate the detection performance of this paper’s algorithm,
the detection results of the original RetinaNet detection algorithm are compared with
this paper’s algorithm, and some of the clearly representative images were selected for
illustration. In the first row of the figure, the algorithm in this paper has no redundant pre-
diction results and detects the object with a higher confidence level; however, the object box
position of the algorithm in this paper is more accurate and has a higher confidence score.

In the second row of the figure, for people, the RetinaNet algorithm has no false
detection of people, and the algorithm in this paper is able to give better detection results.
In the third row of plots, the RetinaNet algorithm misdetects the bird as a sheep, while the
algorithm in this paper gives a high confidence level of correct judgment. In the fourth row,
the algorithm does not have low-quality redundant detection compared to RetinaNet.

The experiments show that the algorithm in this paper was generally able to detect
the object class and give a certain confidence score, and that the overall confidence score
and the accuracy of the object frame were higher than for the original algorithm.
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Figure 4. Experimental results on PASCAL VOC. Each row is a few representative pictures selected
by us. Columns (a–c) represent the ground truth, the prediction of the benchmark algorithm, and
the prediction of our algorithm. As shown in the figure, our algorithm had better performance. (a)
denotes the annotations of GT. (b) represents the detection result of RetinaNet. (c) illustrates the
result of ours.

4.5. Comparison with State-of-the-Art Models
4.5.1. Comparison of Performance on PASCAL VOC2007

The results of the comparison between the algorithm in this paper and the mainstream
object-detection algorithm on the PASCAL VOC dataset are shown in Table 8. The algo-
rithm in this paper achieves a detection accuracy of 81.8%, which is a 1.2% improvement
compared to the benchmark algorithm. Compared with the two-stage classical algorithms
Faster-RCNN (ResNet-101) and R-FCN, the detection accuracy of this algorithm was im-
proved by 5.4% and 2.3%, respectively. Compared with the one-stage detection algorithms
SSD, RetinaNet, YOLOv3, YOLOX-s, and DSSD, the detection accuracy was improved
by 5.0%, 2.3%, 2.5%, 0.8%, and 0.3%. Compared with the one-stage detection algorithm
CenterNet, the detection accuracy was improved by 3.1%.
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Table 8. Comparison of the mAP performance based on the PASCAL VOC2007 dataset with different
advanced models.

Models Dataset Network Resolution mAP (%)

Faster-RCNN VOC07+12 VGG-16 1000 × 600 73.2
Faster-RCNN VOC07+12 ResNet-101 1000 × 600 76.4

SSD VOC07+12 VGG-16 512 × 512 76.8
YOLOv3 VOC07+12 DarkNet-53 544 × 544 79.3

CenterNet VOC07+12 ResNet-101 512 × 512 78.7
DSSD VOC07+12 ResNet-101 513 × 513 81.5
R-FCN VOC07+12 ResNet-101 1000 × 600 79.5

RetinaNet VOC07+12 ResNet-50 (800,1333) 78.5
RetinaNet VOC07+12 ResNet-50 (600,1000) 77.3

ExtremeNet VOC07+12 Hourglass-104 512 × 512 79.5
YOLOX-S VOC07+12 DarkNet-53 640 × 640 81.0

RetinaNet+Ours VOC07+12 ResNet-50 (600,1000) 80.3
RetinaNet+Ours VOC07+12 ResNet-101 (600,1000) 81.8

4.5.2. Comparison of Single-Category Performance

The detection accuracy of each category of this paper’s algorithm applied to RetinaNet
was compared with other algorithms on the PASCAL VOC dataset, and the results are
shown in Table 9. The algorithm in this paper was able to reach the optimal level in all 10
categories, where seven categories increased by more than 1%.

Table 9. Comparison of the mAP performance based on the PASCAL VOC2007 dataset with different
advanced models.

Class Ours YOLOX-
S

Faster
R-CNN R-FCN SSD512 RetinaNet CenterNet-

DLA

aero 85.8 86.5 76.5 82.5 82.4 89.4 85.0
bike 87.9 89.5 79.0 83.7 84.7 86.6 86.0
bird 84.4 77.3 70.9 80.3 78.4 79.8 81.4
boat 74.7 73.9 66.5 69.0 73.8 67.8 72.8

bottle 72.2 71.6 52.1 69.2 53.2 70.8 68.4
bus 86.6 88.2 83.1 87.5 86.2 85.4 86.0
car 88.9 91.9 84.7 88.4 87.5 90.5 88.4
cat 89.4 87.4 86.4 88.4 86.0 88.8 86.5

chair 68.7 66.7 52.0 65.4 57.8 61.0 65.0
cow 86.2 82.0 81.9 87.3 83.1 75.6 86.3
table 72.0 79.6 65.7 72.1 70.2 65.8 77.6
dog 88.9 82.9 84.8 87.9 84.9 84.1 85.2

horse 87.2 89.1 84.6 88.3 85.2 84.4 87.0
mbike 84.9 86.7 77.5 81.3 83.9 84.9 86.1
person 85.5 88.7 76.7 79.8 79.7 85.7 85.0
plant 59.1 53.9 38.8 54.1 50.3 52.1 58.1
sheep 84.0 78.3 73.6 79.6 77.9 77.7 83.4
sofa 80.8 79.8 73.9 78.8 73.9 74.2 79.6
train 86.0 86.3 83.0 87.1 82.5 85.8 85.0

tv 83.9 79.0 72.6 79.5 75.3 79.6 80.3

4.5.3. Discussion

The method in this paper improved the performance substantially with the introduc-
tion of a small number of additional parameters. Furthermore, the method in this paper
was applied to RetinaNet (ResNet-50) with fewer parameters than RetinaNet (ResNet-101)
to obtain better performance. The results show that the improvement brought by the
method comes mainly from the fine-grained design rather than additional parameters.

To further evaluate the impact of multi-level contextual information on the attention
mechanism, we used different input tiers for the local pixel-rectification module with
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different kernels and expansion rates for individual inputs. Feature dependencies at large
scales had small improvements in the detection performance. This situation suggests that a
larger range of local features tends to introduce more redundant features, that appropriately
sized local regions can both highlight salient features using inter-feature associations and
avoid introducing redundant features, and that multiple feature tiers provide a significant
boost to the attention mechanism. We conclude that local attention is more effective than
global attention in FPN and that multi-level attention is more effective than single-scale.

5. Conclusions

In this paper, we proposed MLA-Net. The most significant processes are that the
pyramid features were scanned and extracted by a local rectification module, and were
subjected to multi-level spatial attention to output a feature map. While our approach was
effective on the PASCAL VOC dataset, it was not as effective on MS COCO. The effect
of semantic information on detection accuracy will be further investigated in subsequent
studies to obtain a more representative higher-order feature representation.
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