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Abstract: The current manuscript develops a novel mathematical formulation to portray the static
deflection of a bi-directional functionally graded (BDFG) porous plate resting on an elastic foundation.
The correctness of the static response produced by middle surface (MS) vs. neutral surface (NS)
formulations, and the position of the boundary conditions, are derived in detail. The relation
between in-plane displacement field variables on NS and on MS are derived. Bi-directional gradation
through the thickness and axial direction are described by the power function; however, the porosity
is depicted by cosine function. The displacement field of a plate is controlled by four variables
higher order shear deformation theory to satisfy the zero shear at upper and lower surfaces. Elastic
foundation is described by the Winkler–Pasternak model. The equilibrium equations are derived by
Hamilton’s principles and then solved numerically by being discretized by the differential quadrature
method (DQM). The proposed model is confirmed with former published analyses. The numerical
parametric studies discuss the effects of porosity type, porosity coefficient, elastic foundations
variables, axial and transverse gradation indices, formulation with respect to MS and NS, and
position of boundary conditions (BCs) on the static deflection and stresses.

Keywords: static deflection of BDFG porous plates; middle and neutral surfaces; a four variables
high shear deformation theory; movable and immovable BCs; numerical solution

MSC: 74G15

1. Introduction

Flexural structures such as beams, plates, shells are extensively used in numerous
engineering applications such as in aerospace vehicles, naval, ships, constructions and
so on. Through services, maintenances and repairs, these structures may be subjected
to static, buckling, dynamic and impact loads, which will cause serious damage and
failure [1], because of the excellent mechanical performances of the functionally graded
material (FGM), which was invented in 1984 through the Japanese spaceplane project [2]
and has a smooth change in compositions across the volume. Its use is being more widely
investigated by scientists worldwide, where thousands of research papers on this material
can be found in the open literature [3].

The gradation of materials in specific applications such as aerospace, nuclear, and shut-
tles needs two/three directional distributions of FGM rather than conventional 1D FGMs
to overcome the stress concentration and thermal stresses, [4,5]. Nemat-Alla [6] suggested

Mathematics 2022, 10, 4784. https://doi.org/10.3390/math10244784 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244784
https://doi.org/10.3390/math10244784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3116-2101
https://doi.org/10.3390/math10244784
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244784?type=check_update&version=2


Mathematics 2022, 10, 4784 2 of 25

two directional functionally graded materials that can endure super-high temperature and
reduce thermal stresses. Lu et al. [7] developed semi-analytical 3D elasticity solutions by
using a state space differential quadrature method in analyzing the mechanical response of
orthotropic FG plates. In 2018, Bediz [8] studied a free vibration response of BDFGM curved
parallelepipeds by using the numerical finite element method. Esmaeilzadeh et al. [9,10]
used the dynamic relaxation method in exploring the dynamic response of stiffened BDFG
porous plates exposed to a moving load. Ghatage et al. [11] developed a comprehensive
literature survey on the modelling techniques and analysis of multi-directional FG struc-
tures such as beam, plate, and shell. Do et al. [12] used a non-uniform rational B-spline
function to describe the variation of material distribution through three-dimensional spatial
directions of FG plates and used it to evaluate the optimum gradation based on the natural
frequency and buckling load as the objective function. Qin et al. [13–15] presented the effect
of nonclassical boundary conditions on free vibrations of rotating functionally graded CNT-
reinforced composite cylindrical shells. Karamanli et al. [16] utilized a finite element model
to examine mechanical responses of multi-directional FG-strain gradient microplates.

During the fabrication process of FGMs, it is inevitable to create some porosities inside
the material. The addition of porosities will result in different properties from the original
FGM. Therefore, fully investigating the impact of porosity on the mechanical behaviors
of FGM is essential [17,18]. Today, the mechanical responses of porous FG structures
have attracted researchers and scientists, and most research has been conducted on static,
vibration, and buckling problems of porous FG structures, [19,20]. Li et al. [21] studied the
mechanical response of porous BDFG plates based on the first-order shear deformation
theory and isogeometric analysis. Gao et al. [22] developed a mathematical model to study
wave propagation in graphene platelets (GPLs)-reinforced FG metal foam plates integrated
with piezoelectric actuator and sensor layers resting on an orthotropic visco-Pasternak
medium in a magneto-electro-thermo environment. Based on the Navier series solution,
Bekkaye et al. [23] examined analytically the bending and buckling of porous FG plates.
Akbaş et al. [24,25] analyzed the dynamic response of thick FG porous sandwich beams
resting on viscoelastic support by using the 2D plane stress finite element method. Ramteke
et al. [26] investigated the nonlinear eigenfrequency characteristics of the doubly curved
multi-directional FG porous panels by using the finite element technique. Ghandourah
et al. [27] and Khadir et al. [28] studied the bending and buckling of FG-GRNC laminated
plates via quasi-3d nonlocal strain gradient theory. Kabouche et al. [29] investigated
the mechanical stability of BDFG porous sandwich plates by using a quasi-3D solution.
Thi [30] analyzed numerically by finite element method the free vibration responses of
porous FG plate with varying thickness resting on two-parameter elastic foundations in
temperature conditions.

For elastic foundation analysis, Mohamed et al. [31] exploited the differential integral
quadrature method to investigate nonlinear free and forced vibrations of buckled curved
beams resting on nonlinear elastic foundations. Nguyen et al. [32] investigated the free
vibration and static bending analysis of piezoelectric FGM plates resting on one area of the
two-parameter elastic foundation. Phuc and Kim [33] examined free and forced vibration
of piezoelectric FGM plates resting on two-parameter elastic foundations placed in ther-
mal environments. Mohamed et al. [34] studied the snap-through instability of helicoidal
composite curved beams surrounded by nonlinear elastic foundation by using Bernstein
polynomials. Almitani et al. [35] and Mohamed et al. [36] developed exact solution of
nonlinear behaviors of imperfect bioinspired helicoidal composite beams resting on elastic
foundations. Hashemi et al. [37] studied nonlinear free vibration analysis of BDFG rect-
angular plate with porosities which are resting on Winkler–Pasternak elastic foundations.
Van Vinh et al. [38] studied static bending and buckling analysis of BDFG porous plates
resting on elastic foundations using an improved first-order shear deformation theory and
FEM. Assie et al. [4] presented a mathematical model to investigate the static buckling of
BDFG porous plates resting on elastic foundation based on unified shear theories.
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Various studies were applied both to mid-surface and neutral surface formulations
and their results compared; however, they come to conflicting conclusions. Larbi et al. [39]
calculated the frequencies of movable simply supported beams based on the neutral
plane and showed that the calculated frequencies were in very close agreement with the
frequencies obtained from the mid-plane formulation. Eltaher et al. [40,41] studied FGM
beams and showed that the vibration frequencies obtained from mid-plane and neutral
plane formulations are different up to about 10%. Van Do et al. [42] proved that the
deviation in thermal buckling for simply supported FG plate between neutral surface and
mid-surface may reach 15%. Wang et al. [43] discussed the controversial conclusion in
some research that the FGM beam must be based on the neutral plane formulation rather
than the mid-plane one for correct solutions. They showed that, for FGM beams with
clamped ends and movable simply supported ends, both formulations furnish the same
frequency results. Fernando et al. [44] adopted a formulation based on a reference plane
where the end supports are applied. The proposed formulation was used to calculate the
vibration frequencies of laminated beams where the end immovable supports were placed
at different heights.

The mentioned works indicate that there is no available study on the static deflection
of BDFG porous plate resting on the elastic foundation based on middle surface (MS) and
neutral surface (NS) formulations. Therefore, it will presented in the current article. A four
variables higher order shear deformation theory is developed to describe the kinematic field.
Bi-directional gradations through the thickness and axial direction are described by the
power function; however, the porosity is depicted by the cosine function. The equilibrium
equations are derived by Hamilton’s principles and then solved numerically by being
discretized by the differential quadrature method (DQM). The rest of the following article
is organized as follows. Section 2 presents a mathematical formulation for the static porous
BDFG plate resting on elastic foundation including constitutive equations, displacement
field, gradation function, and porosity function relative to mid-surface and neutral surface.
Numerical differential quadrature method (DQM) implementation and discretization for
solving the partial differential equation are presented in Section 3. Problem validations
are presented in Section 4 and numerical results and parametric studies are discussed
in Section 5.

2. Theory and Formulation
2.1. A General Kinematic Field

Consider a rectangular plate of thickness h, length a in the x− direction and width
b in the y− direction as shown in Figure 1. As known, the mid-plane is the plane at the
mid-thickness and the neutral plane is the plane where the total axial internal force is
equal to zero [41]. The displacement field based on a neutral physical surface and a four
variables high shear deformation theory with no shear correction factors can be expressed
as in [45–49].

u(x, y, z) = uo(x, y)− (z− zo)
∂wb
∂x
− (F(z)− co)

∂ws

∂x
(1)

v(x, y, z) = vo(x, y)− (z− zo)
∂wb
∂y
− (F(z)− co)

∂ws

∂y
(2)

w(x, y, z) = wb(x, y) + ws(x, y) (3)

where:

• uo , vo , wb and ws are the displacements defined at the midplane.
• wb and ws stand for bending and shear parts, respectively
• zo and co are variables defining the neutral surface and are evaluated by

zo = µ

∫ h/2
−h/2 zE(x, z, φo)dz∫ h/2
−h/2 E(x, z, φo)dz

, co = µ

∫ h/2
−h/2 F(z)E(x, z, φo)dz∫ h/2
−h/2 E(x, z, φo)dz

(4)
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where E(x, z, φo) is the equivalent Young’s modulus that will be identified by Equation (5).

• µ is defined as a factor equals one for neutral plane and zero for geometrical mid-plane.
• F(z) is a shape function that estimates the distribution of transverse shear stress/strain(

τxz, τyz
)

and may take several forms such as [50–54]:

F(z) = z−
(

h
π

)
sin
(πz

h

)
(5)

F(z) = z
(

1− e−2( z
h )

2)
(6)

F(z) =
4z3

3h2 (7)

F(z) = z
(
−1

4
+

5
3

z2

h2

)
(8)

F(z) =
h
π sinh

(
πz
h
)
− z

cos h
(

π
2
)
− 1

(9)
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Figure 1. Schematic diagram of BDFG plate geometry with Winkler–Pasternak foundations. 
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Figure 1. Schematic diagram of BDFG plate geometry with Winkler–Pasternak foundations.

The normal and shear strains associated with the displacement field in Equation (1)
are expressed as follows [18,50]:

εx = εo
x − (z− zo)

∂2wb
∂x2 − (F(z)− co)

∂2ws

∂x2 (10)

εy = εo
y − (z− zo)

∂2wb
∂y2 − (F(z)− co)

∂2ws

∂y2 (11)

γxy = γ0
xy − (z− zo)

(
2

∂2wb
∂x∂y

)
− (F(z)− co)

(
2

∂2ws

∂x∂y

)
(12)

γyz = G(z)
∂ws

∂y
(13)

γxz = G(z)
∂ws

∂x
(14)
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in which
εo

x = εo
x + zo,x

∂wb
∂x

+ co,x
∂ws

∂x
, εo

x =
∂u0

∂x
(15)

εo
y = εo

y =
∂v0

∂y
(16)

γ0
xy = γo

xy + zo,x
∂wb
∂y

+ co,x
∂ws

∂y
, γo

xy =
∂uo

∂y
+

∂vo

∂x
(17)

F(z) = z− f (z), G(z) = 1− F′(z) = f ′(z) (18)

2.2. Constitutive Equations

The stress–strain relations for 2D shear deformation theory (εz = 0), under isothermal
conditions can be represented by:

σx
σy
τxy
τyz
τxz

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55




εx
εy

γxy
γyz
γxz

 (19)

where the plane stress stiffnesses for isotropic material are:

Q11 = Q22 =
E

1− v2 , Q12 =
νE

1− v2 (20)

Q44 = Q55 = Q66 =
E

2(1 + ν)
(21)

Assuming that the material properties are gradated through the thickness (z − axis)
and axial (x − axis) according to the power law function including porosity as:

P(x, z, φo) = [Pm + Pcm

(
1
2
+

z
h

)nz( x
a
)nx
]
[1−Φ(z)] (22)

Pcm = Pc − Pm (23)

in which P denotes a generic material property like Young’s modulus (E), and density (ρ)
through z− and x− directions according to power laws with indices, nz and nx, respec-
tively, [15,18,55]. Subscripts c and m donate the ceramic and metal phases. h and a are the
thickness of plate and length in x-direction, respectively. Φ(z) is a porosity distribution
function having the following three different types [56–58]:

Type 1 (center enhanced) : Φ(z) = φo cos
(π

h
z
)

(24)

Type 2 (top enhanced) : Φ(z) = φo cos
(

π

2

(
z
h
+

1
2

))
(25)

Type 3 (bottom enhanced) : Φ(z) = φo cos
(

π

2

(
z
h
− 1

2

))
(26)

where φo is the porosity coefficient.

2.3. Hamilton’s Principles and Governing Equations

The governing equations of equilibrium and associated boundary conditions of the
developed model are derived using Hamilton’s Principles, which can be described as∫ T

0
δ
(

U + V + Ue f

)
dt = 0 (27)
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where the virtual potential work of applied loads can be expressed in the form δV:

δV = −
∫
A

qδ(wb + ws)dA (28)

and the variation of potential energy of the elastic foundation (Winkler–Pasternak type)
can be expressed as:

δUe f =
∫
A

[Kw(wb + ws)− Kp∇2(wb + ws)]δ(wb + ws)dA (29)

where : ∇2(wb + ws) =
∂2(wb + ws)

∂x2 +
∂2(wb + ws)

∂y2

The virtual strain energy δU can be evaluated by

δU =
∫

V

(
σxδεx + σyδεy + τxyδγxy + τxzδγxz + τyzδγyz

)
dV (30)

The virtual strain energy δU in terms of stress resultants is derived as: -

δU =
∫

A

[
Nxδε0

x + Nyδε0
y + Nxyδγ0

xy −Mb
x

∂2δwb
∂x2 −Mb

y
∂2δwb

∂y2

−Mb
xy

(
2

∂2δwb
∂x∂y

)
−Ms

x
∂2δws

∂x2 −Ms
y

∂2δws

∂y2 −Ms
xy

(
2

∂2δws

∂x∂y

)
+Ss

yz
∂δws

∂y
+ Ss

xz
∂δws

∂x

]
dA

(31)

Substituting Equations (28)–(31) for δV, δUe f and δU, respectively, into Equation (27)
and performing integration by parts, the equations of the FGM porous plate in terms of
stress resultants are obtained as:

δuo :
∂Nx

∂x
+

∂Nxy

∂y
= 0 (32)

δvo :
∂Nxy

∂x
+

∂Ny

∂y
= 0 (33)

δwb :
∂2Mb

x
∂x2 + 2

∂2Mb
xy

∂x∂y
+

∂2Mb
y

∂y2 + q + KP∇2(wb + ws)− Kw(wb + ws) = 0 (34)

δws : ∂2 Ms
x

∂x2 + 2
∂2 Ms

xy
∂x∂y +

∂2 Ms
y

∂y2 +
∂Ss

yz
∂y + ∂Ss

xz
∂x + q + KP∇2(wb + ws)−

Kw(wb + ws) = 0
(35)

Associated with the following boundary conditions:

δvo :
(

Nxynx + Nyny
)
δvo = 0 (36)

δvo :
(

Nxynx + Nyny
)
δvo = 0 (37)

δwb :
((

Mb
x,x + Mb

xy,y

)
nx +

(
Mb

xy,X + Mb
y,y

)
ny

)
δwb = 0 (38)

∂δwb
∂x

:
(

Mb
xnx + Mb

xyny

)∂δwb
∂x

= 0 (39)

∂δwb
∂y

:
(

Mb
xynx + Mb

yny

)∂δwb
∂y

= 0 (40)

δws :
((

Ms
x,x + Ms

xy,y + Ss
xz

)
nx +

(
Ms

xy,X + Ms
y,y + Ss

yz

)
ny

)
δws = 0 (41)
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∂δws

∂x
:
(

Ms
xnx + Ms

xyny

)∂δws

∂x
= 0 (42)

∂δws

∂y
:
(

Ms
xynx + Ms

yny

)∂δws

∂y
= 0 (43)

where nx and ny are the components of the outward normal at boundaries.
The stress resultants can be expressed in terms of generalized displacement (uo, vo, wb, ws)

in a matrix form as:

Nx
Ny
Nxy
Mb

x
Mb

y
Mb

xy
Ms

x
Ms

y
Ms

xy


=



A11
A12
0
B11
B12
0

Bs
11

Bs
12
0

A12
A22
0
B12
B22
0

Bs
12

Bs
22
0

0
0

A66
0
0

B66
0
0

Bs
66

B11
B12
0

D11
D12

0
Ds

11
Ds

12
0

B12
B22
0

D12
D22

0
Ds

12
Ds

22
0

0
0

B66
0
0

D66
0
0

Ds
66

Bs
11

Bs
12
0

Ds
11

Ds
12
0

Hs
11

Hs
12

0

Bs
12

Bs
22
0

Ds
12

Ds
22
0

Hs
12

Hs
22

0

0
0

Bs
66
0
0

Ds
66
0
0

Hs
66





ε0
x

ε0
y

γ0
xy

−∂2wb/∂2x
−∂2wb/∂2y
−2∂2wb/∂x∂y
−∂2ws/∂2x
−∂2ws/∂2y
−2∂2ws/∂x∂y


(44)

[
Ss

yz
Ss

xz

]
=

[
As

44 0
0 As

55

][
∂ws/∂y
∂ws/∂x

]
(45)

By substituting Equations (5)–(9), (10)–(18), (44) and (45) into Equations (32)–(35), the
above governing equations can be acquired in terms of displacements as the following:

δuo : A11(x)
(

∂2uo
∂x2 + zo,xx

∂wb
∂x + zo,x

∂2wb
∂x2 + co,xx

∂ws
∂x + co,x

∂2ws
∂x2

)
+ (A12(x)+

A66(x)) ∂2vo
∂x∂y + A66(x)

(
∂2uo
∂y2 + zo,x

∂2wb
∂y2 + co,x

∂2ws
∂y2

)
+ A11,x(x)ε0

x + A12,x(x)ε0
y−

( B12(x) + 2B66(x) ) ∂3wb
∂x∂y2 −

(
Bs

12(x) + 2Bs
66(x)

) ∂3ws
∂x∂y2 − B11(x) ∂3wb

∂x3 − Bs
11(x) ∂3ws

∂x3 −

B11,x(x) ∂2wb
∂x2 − B12,x(x) ∂2wb

∂y2 − Bs
11,x(x) ∂2ws

∂x2 − Bs
12,x(x) ∂2ws

∂y2 = 0

(46)

δvo : (A12(x) + A66(x))
(

∂2uo
∂x∂y + zo,x

∂2 wb
∂x∂y + co,x

∂2 ws
∂x∂y

)
+ A22(x) ∂2vo

∂y2

+A66(x)
(

∂2vo
∂x2 + zo,xx

∂wb
∂y + co,xx

∂ws
∂y

)
+ A66,x(x)γ0

xy

−( B12(x) + 2B66(x) ) ∂3wb
∂x2∂y−

(
Bs

12(x) + 2Bs
66(x)

) ∂3ws
∂x2∂y

−B22(x) ∂3wb
∂y3 − Bs

22(x) ∂3ws
∂y3 − 2 B66,x(x) ∂2 wb

∂x∂y −2Bs
66,x(x) ∂2 ws

∂x∂y

(47)

δwb :B11(x)( ∂3uo
∂x3 + zo,xxx

∂wb
∂x + 2zo,xx

∂2wb
∂x2 + zo,x

∂3wb
∂x3 + co,xxx

∂ws
∂x +

2co,xx
∂2ws
∂x2 + co,x

∂3ws
∂x3 ) + B22(x) ∂3vo

∂y3 + ( B12(x) + 2B66(x))
(

∂3uo
∂x∂y2 +

∂3vo
∂x2∂y + zo,x

∂3 wb
∂x∂y2 + co,x

∂3 ws
∂x∂y2

)
+2B66(x)

(
zo,xx

∂2wb
∂y2 + co,xx

∂2ws
∂y2

)
+ 2(B12,x(x)+

B66,x(x)) ∂2vo
∂x∂y + 2B66,x(x)

(
∂2uo
∂y2 + zo,x

∂2wb
∂y2 + co,x

∂2ws
∂y2

)
+2B11,x(x)

(
∂2uo
∂x2 + zo,xx

∂wb
∂x +

zo,x
∂2wb
∂x2 + co,xx

∂ws
∂x + co,x

∂2ws
∂x2

)
+B11,xx(x)ε0

x + B12,xx(x)ε0
y − D11(x) ∂4wb

∂x4 −

D22(x) ∂4wb
∂y4 − 2(D12(x) + 2D66(x)) ∂4 wb

∂x2∂y2 − Ds
11(x) ∂4ws

∂x4 −Ds
22(x) ∂4ws

∂y4 −

2
(

Ds
12(x) + 2Ds

66(x)
) ∂4 ws

∂x2∂y2 − 2D11,x(x) ∂3wb
∂x3 − 2(D12,x(x) + 2D66,x(x)) ∂3 wb

∂x∂y2−

2Ds
11,x(x) ∂3ws

∂x3 − 2(D12,x(x) + 2D66,x(x)) ∂3 wb
∂x∂y2 − D11,xx(x) ∂2wb

∂x2 − D12,xx(x) ∂y
∂x−

Ds
11,xx(x) ∂2ws

∂x2 − Ds
12,xx(x) ∂2ws

∂y2 + q + KP∇2(wb + ws)− Kw(wb + ws) = 0

(48)
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δws :Bs
11(x)( ∂3uo

∂x3 + zo,xxx
∂wb
∂x + 2zo,xx

∂2wb
∂x2 + zo,x

∂3wb
∂x3 + co,xxx

∂ws
∂x +

2co,xx
∂2ws
∂x2 + co,x

∂3ws
∂x3 ) + Bs

22(x) ∂3vo
∂y3 +

(
Bs

12(x) + 2Bs
66(x)

)( ∂3uo
∂x∂y2 +

∂3vo
∂x2∂y + zo,x

∂3 wb
∂x∂y2 + co,x

∂3 ws
∂x∂y2

)
+ 2Bs

66(x)
(

zo,xx
∂2wb
∂y2 + co,xx

∂2ws
∂y2

)
+2
(

Bs
12,x(x)+

Bs
66,x(x)

)
∂2vo
∂x∂y + 2Bs

66,x(x)
(

∂2uo
∂y2 + zo,x

∂2wb
∂y2 + co,x

∂2ws
∂y2

)
+ 2Bs

11,x(x)
(

∂2uo
∂x2 + zo,xx

∂wb
∂x +

zo,x
∂2wb
∂x2 + co,xx

∂ws
∂x + co,x

∂2ws
∂x2

)
+Bs

11,xx(x)ε0
x + Bs

12,xx(x)ε0
y−

Ds
11(x) ∂4wb

∂x4 − Ds
22(x) ∂4wb

∂y4 − 2
(

Ds
12(x) + 2Ds

66(x)
) ∂4 wb

∂x2∂y2−Hs
11(x) ∂4ws

∂x4 − Hs
22(x) ∂4ws

∂y4 −

2
(

Hs
12(x) + 2Hs

66(x)
) ∂4 ws

∂x2∂y2 − 2Ds
11,x(x) ∂3wb

∂x3 −2
(

Ds
12,x(x) + 2Ds

66,x(x)
)

∂3 wb
∂x∂y2−

2Hs
11,x(x) ∂3ws

∂x3 −2
(

Hs
12,x(x) + 2Hs

66,x(x)
)

∂3 ws
∂x∂y2 − Ds

11,xx(x) ∂2wb
∂x2 − Ds

12,xx(x) ∂2wb
∂y2 −(

Hs
11,xx(x)− As

55(x)
)

∂2ws
∂x2 −

(
Hs

12,xx(x)− As
44(x)

)
∂2ws
∂y2 + As

55,x(x) ∂ws
∂x + q+

KP∇2(wb + ws)− Kw(wb + ws) = 0

(49)

Note that: The subscripts x, ,xx , and ,xxx denote first, second, and third derivative
with respect to x, respectively.

2.4. Equivalent Stiffnesses Based on Geometrical Midplane (MS)

To consider the geometric middle surface of the plate, put zo and co as zero-valued
(µ = 0) in displacement and strain fields of Equations (1)–(18); where rigidities terms are
obtained as functions of x as:[

(Aij(x), Bij(x), Dij(x), Bs
ij(x), Ds

ij(x), Hs
ij(x))

]
=∫ h/2

−h/2 Qij(x, z, φo)
[
1, z, z2, F(z), zF(z), (F(z))2

]
dz, ij = 11, 12, 22, 66

(50)

As
ij(x) =

∫ h/2

−h/2
Qij(x, z, φo)(G(z))2dz, ij = 44, 55 (51)

Qij(x, z, φo) and E(x, z, φo) are defined by Equations (19) and (22), respectively.

2.5. Equivalent Stiffnesses Based on Neutral Physical Surface (NS)

Due to the use of zo and co (µ = 1) defined by Equation (4) in the displacement field
of Equation (1), the plate stiffnesses Bij(x) and Bs

ij(x) are zero-valued. Subsequently,
stretching–bending couplings in Equation (44) die out. Therefore, rigidity terms are modi-
fied as functions of x to:

(Aij(x), Dij(x), Ds
ij(x), Hs

ij(x)) =
∫ h/2
−h/2 Qij(x, z, φo)(1, (z− zo)

2, (z− zo)(F(z)− co), (F(z)− co)
2)dz,

ij = 11, 12, 22, 66
(52)

As
ij(x) =

∫ h/2

−h/2
Qij(x, z, φo)(G(z))2dz, ij = 44, 55 (53)

The equations of motion based on the physical neutral surface can be obtained by modify-
ing Equations (32)–(35) and (46)–(49) utilizing rigidity terms defined by Equations (52) and (53)
instead of those employing the geometric midplane. It is worth noting that stretching–bending
couplings vanish in these adjusted equations because of the disappearance of the stiffnesses
Bij(x) and Bs

ij(x).

3. Numerical Technique

The differential quadrature method (DQM) is a powerful discretization method for
the numerical solution of partial differential equations (PDE) appearing in engineering [59].
As compared to the conventional finite element and finite difference methods, DQM can
obtain very accurate numerical results using a considerably smaller number of grid points
and hence, requiring relatively little computational cost. Another advantage of DQM is
that discretization of boundary conditions, even those involving higher order derivatives,
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is easy and accurate (Shu [59], Shanab et al. [60]). These advantages make this method
preferable especially for problems with sufficiently smooth solutions such as the ones
considered in the present study.

A set of four partial differential governing equations and associated boundary condi-
tions were developed based on stress resultants to model the static response of BDFG plates
in Equations (11) and (12), respectively. The assumption that the material properties change
in the x− direction complicates the governing equations since they become variable coeffi-
cients and consequently, no analytical solution can be found. In addition, derivatives of z0
and c0 with respect to x are to be neglected. In this work, the Differential/Integral Quadra-
ture Method (DIQM) [61,62] is developed to numerically solve the governing equations of
a rectangular plate (0 ≤ x ≤ a, 0 ≤ y ≤ b) with the following boundary conditions:

Clamped BCs:

u0 = v0 = wb = ws =
∂wb
∂x

=
∂ws

∂x
= 0 at x = 0, x = a (54)

u0 = v0 = wb = ws =
∂wb
∂y

=
∂ws

∂y
= 0 at y = 0, y = b (55)

Simply supported BCs
Type 1 (Sm) (movable normal in-plane displacement)

Nx = v0 = wb = ws = Mb
x = Ms

x = 0 at x = 0, x = a (56)

u0 = Ny = wb = ws = Mb
y = Ms

y = 0 at y = 0, y = b (57)

Type 2 (Sim) (immovable normal in-plane displacement)

u0 = v0 = wb = ws = Mb
x = Ms

x = 0 at x = 0, x = a (58)

u0 = v0 = wb = ws = Mb
y = Ms

y = 0 at y = 0, y = b (59)

If NS formulation is considered, i.e., z0 6= 0, c0 6= 0, the appreciations Sim−NS and
Sm−NS are used. If MS formulation is considered, i.e., z0 = c0 = 0, the appreciations
Sim−MS and Sm−MS are used. For CCCC, it is CNS (immovable with NS formulation) and
CMS (immovable with MS formulation).

3.1. DQM Implementation for PDE

The DIQM was employed by [62] to solve linear and nonlinear integro-differential
equations. It was found that DIQM provides highly accurate results using only a few grid
points. It transforms the integro-differential equations into a system of algebraic equations.
In this section, the details of DIQM for partial differential equations are presented. Consider
a partial differential equation in the unknown function u(x, y). The 2D domain of the
independent variables 0 < x < a, 0 < y < b is discretized by n and m points, respectively.
The unknowns uij = u

(
xj, yi

)
, i = 1, · · · , m, j = 1, · · · , n defined on the rectangular

domain are rearranged vector after vector to form the whole unknown vector

U = [u11, u21, · · · um1, u12, u22, · · · um2, · · · , · · · , u1n, u2n, · · · umn ]T (60)

Using classical definitions for DQM in one dimension [59], let Dx be the first order
derivative matrix with respect to x of dimension n × n and let Dy be the first order
derivative matrix with respect to y of dimension m × m. To be consistent with the
arrangement of unknowns given in Equation (60) for vector U, the Kronecker product is
used to construct global derivative matrices of dimension (mn×mn ) as

Dx = Kronecker(Dx, I(m))

Dy = Kronecker
(

I(n), Dy
)

(61)
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where I(n) and I(m) are the identity matrices of dimensions (n× n) and (m×m), respec-
tively. Based on Equation (61), DQM can approximate higher and mixed partial derivatives
such as ∂2u/∂x2, ∂2u/∂y2, ∂2u/∂x∂y by DxxU, Dyy U and DxyU, respectively, where
Dxx = D2

x, Dyy = D2
y, and Dxy = DxDy.

3.2. DQM Discretization for PDF

The governing equations for the BDFG plate consist of four variable-coefficient partial
differential equations in the unknowns u0(x, y), v0(x, y), wb(x, y), and ws(x, y). They are
discretized by DQM as the unknown vectors U, V, Wb and Ws each of dimension (nm× 1).
Moreover, the variable coefficients Aij(x), Bij(x), Dij(x), Bs

ij(x), Ds
ij(x), Hs

ij(x), ij = 11,12,22,66,
and As

ij(x), ij = 44, 55 are defined for MS and NS formulations in Equations (50)–(53),
respectively. These coefficients are computed by IQM and arranged as (nm× 1) vectors
Aij, Bij,Dij,Bs

ij,Ds
ij,Hs

ij, ij = 11, 12, 22, 66, and As
44, As

55. For the convenience of applying
DQM to discretize the variable-coefficient partial differential equations, a special matrices
multiplication operator is introduced. The operator ‘◦’ is defined such that for a vector V
of dimensions (n× 1) and a matrixM of dimensions (n×m) (i.e., each of V andMmust
have the same number of rows), V ◦M = Y , implies that Y is a (n×m) matrix such that
Yij = ViMij.

Applying the DIQM as described in Section 3.1, the stress resultants can be written as



Nx
Ny
Nxy
Mb

x
Mb

y
Mb

xy
Ms

x
Ms

y
Ms

xy


=



KNx

KNy

KNxy

KMb
x

KMb
y

KMb
xy

KMs
x

KMs
y

KMs
xy


X (62)

where each of {KNx ,KNy , · · · ,KMs
xy

}
is (nm× 4nm) matrix,

X =
[
UT , VT , WT

b , WT
s

]T
, (63)

KNx

KNy

KNxy

KMb
x

KMb
y

KMb
xy

KMs
x

KMs
y

KMs
xy


=
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

A11 ◦Dx A12 ◦Dy
A12 ◦Dx A22 ◦Dy
A66 ◦Dy A66 ◦Dx
B11 ◦Dx B12 ◦Dy
B12 ◦Dx B22 ◦Dy
B66 ◦Dy B66 ◦Dx
Bs

11 ◦Dx Bs
12 ◦Dy

Bs
12 ◦Dx Bs

22 ◦Dy
Bs

66 ◦Dy Bs
66 ◦Dx

−(B11 ◦Dxx + B12 ◦Dyy) −(Bs
11 ◦Dxx + Bs

12 ◦Dyy)
−(B12 ◦Dxx + B22 ◦Dyy) −(Bs

12 ◦Dxx + Bs
22 ◦Dyy)

−2B66 ◦Dxy −2Bs
66 ◦Dxy

−(D11 ◦Dxx +D12 ◦Dyy) −(Ds
11 ◦Dxx +Ds

12 ◦Dyy)
−(D12 ◦Dxx +D22 ◦Dyy) −(Ds

12 ◦Dxx +Ds
22 ◦Dyy)

−2D66 ◦Dxy −2Ds
66 ◦Dxy

−(D11 ◦Dxx +D12 ◦Dyy) −(Hs
11 ◦Dxx +Hs

12 ◦Dyy)
−(D12 ◦Dxx +D22 ◦Dyy) −(Hs

12 ◦Dxx +Hs
22 ◦Dyy)

−2D66 ◦Dxy −2Hs
66 ◦Dxy


substituting Equation (22) into Equation (11) and applying DQM to discretize the governing
differential equations into the following linear algebraic system

Dx KNx +Dy KNxy

Dx KNxy +Dy KNy

Dxx KMb
x
+ 2Dxy KMb

xy
+Dyy KMb

y
+ Kp(Dxx +Dyy)− Kw I

Dxx KMs
x + 2Dxy KMs

xy +Dyy KMs
y +Dy Ss

yz +Dx Ss
xz + Kp(Dxx +Dyy)− Kw I


4mn×4mn

X = F (64)

where F is the force vector and

Ss
yz =

[
O As

44 ◦Dy
]
, Ss

xz = [O As
55 ◦Dx] (65)

in which O and I are the zero and identity matrices of dimensions (mn×mn), respectively.

4. Problem Validation

The effect of the gradation index on the maximum static defection and normal stress
for the BDFG plate under uniform/sinusoidal transversal load based on neutral surface for-
mulation (NS) is presented in Table 1. As shown, by increasing nz, the material constituent
changes from the ceramics phase (high stiffness) to graded phases to metal phase (low stiff-
ness), hence, the static deflection and normal stress are increased. The same observations
are predicted by Singha et al. [63] and Zenkour [64] as presented in Table 1. The obtained
maximum deflection and normal stresses results are very close to that obtained by [63,64]
for both uniform and Lateral sinusoidal loads.

Table 1. Comparison of the non-dimensional maximum deflection (w = wmax
10Ech3

q0a4 ) and (σx = h
aq0

σx

and (σx = h
aq0

σx) of BDFG Al/Al2O3 square plate (a/h = 10) under uniform/sinusoidal transversal
load based on neutral surface formulation (NS).

Sim−NS Cim−NS

w σx w
zo/h

nz

Present Ref. [63] Ref. [64] Present Ref. [63] Ref. [64] Present Ref. [63] Present Ref. [63]
Uniformly distributed load

ceramic 0.4665 0.4666 0.4665 2.8917 2.8688 2.8932 0.0013 0.0013 0 0
1 0.9287 0.9290 0.9287 4.4720 4.4303 4.4745 0.0025 0.0025 0.1148 0.1148
2 1.1939 1.1952 1.1940 5.2263 5.1689 5.2296 0.0033 0.0033 0.1490 0.1490
4 1.3882 1.3908 1.3890 5.8870 5.8035 5.8915 0.0037 0.0037 0.1566 0.1566

Metal 2.5326 - 2.5327 2.8917 - 2.8932 0.0069 0.0069 0 0
Lateral sinusoidal load

ceramic 0.2961 0.2961 0.2960 1.9943 1.9679 1.9955 - - 0 0
1 0.5890 0.5891 0.5889 3.0850 3.0389 3.0870 - - 0.1148 0.1148
2 0.7573 0.7582 0.7573 3.6067 3.5456 3.6094 - - 0.1490 0.1490
4 0.8815 0.8831 0.8819 4.0655 3.9813 4.0693 - - 0.1566 0.1566

Metal 1.6072 1.6072 1.6070 1.9943 1.9679 1.9955 - - 0 0

Figure 2 shows the variation of a transverse shear stress τxz along the thickness
direction for different elasticity ratios. As seen, the shear stress distribution has a parabolic
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variation with zero values at the top and bottom surfaces. The results are identical with
those obtained by [3], which confirms and validates the current model.
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Figure 2. Non-dimensional stress ( τxz = τxzh2/a2q0) at different Young’s modulus of ceramic and
metal, Ec/Em at (a/h = 10).

To verify the movable boundary conditions formulation, the current model is com-
pared of the non-dimensional maximum deflection (w) and stresses

(
σx, σy, τxy, τxz

)
of

movable simply-supported BDFG Al/Al2O3 square plate (a/h = 10) under sinusoidal
load based on neutral surface formulation (NS) with Mohamed et al. [65] as in Table 2.
As concluded, the results for deflection and stresses at different gradation indices are very
close to Mohamed’s results.

Table 2. Comparison of the non-dimensional maximum deflection
(

w = wmax
10Ech3

q0a4

)
and stresses(

σx, σy, τxy, τxz
)

of movable simply-supported (Sm−NS) BDFG Al/Al2O3 square plate (a/h = 10)
under sinusoidal load based on neutral surface formulation (NS).

w σx σy τxy τxz
nz Present Ref. [65] Present Ref. [65] Present Ref. [65] Present Ref. [65] Present Ref. [65]

ceramic 0.2961 0.2960 1.9943 1.9952 1.3124 1.3122 0.7067 0.7066 0.2386 0.2441
0.2 0.3632 0.3599 2.2739 2.2600 1.3940 1.3871 0.7304 0.7205 0.2430 0.2481
0.5 0.4546 0.4537 2.6217 2.6193 1.4603 1.4586 0.6930 0.6912 0.2441 0.2495
1 0.5890 0.5889 3.0850 3.0864 1.4898 1.4895 0.6111 0.6111 0.2386 0.2441
2 0.7573 0.7573 3.6067 3.6086 1.3960 1.3956 0.5442 0.5441 0.2186 0.2243
5 0.9113 0.9117 4.2447 4.2476 1.1041 1.1033 0.5757 0.5755 0.1929 0.1992

Metal 1.6072 1.6071 1.9943 1.9952 1.3124 1.3122 0.7067 0.7066 0.2386 0.2441

Table 3 demonstrates the influences of elastic foundation parameters on the maximum
deflection, normal stress, and shear stress of BDFG simply supported plates. As shown, by
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increasing the shear stiffness of the elastic foundation from 0 to 100, the deflection, normal
stress, and shear stress decreased by 11.2%, 11.5%, and 8.7%, respectively. This was due to
increasing the stiffness of the structure by adding an elastic foundation constant. Results
are very close to those obtained by Thai and Choi [66] and Zenkour and Sobhy [67] and
deviated by 0.8% (for deflection), 3.3% (for normal stress), 2.0% (for shear stress) from the
results obtained by Benahmed et al. [68] at ks = 100 and nz = 0.5.

Table 3. Comparison of the non-dimensional maximum deflection
(

w = wmax
100Ech3

12(1−ν2)q0a4

)
and

stresses
(
σx, τxy,

)
of movable simply supported (Sm−NS) BDFG Al/Al2O3 square plate (a/h = 10)

under uniform load based on neutral surface formulation (NS) and foundations (kw = KW a4/E0h3,
ks = KSa2/E0h3ν) and E0 = 1GPa.

nz kw ks w σx τxy

100 0

Present (Sm−NS) 1.8624 0.2247 0.0911
Ref [66] 1.8590 0.2242 0.0916
Ref [67] 1.8591 0.2242 0.0917
Ref [68] 1.8296 0.2299 0.0877

100 100

Present (Sm−NS) 1.6544 0.1988 0.0832
Ref [66] 1.6640 0.1999 0.0850
Ref [67] 1.6640 0.1999 0.0850

0.5

Ref [68] 1.6414 0.2054 0.0815

100 0

Present (Sm−NS) 3.5618 0.4816 0.1980
Ref [66] 3.5620 0.4816 0.1996
Ref [67] 3.5630 0.4817 0.1998
Ref [68] 3.4286 0.4913 0.1845

100 100

Present (Sm−NS) 2.8689 0.3851 0.1678
Ref [66] 2.9046 0.3897 0.1740
Ref [67] 2.9052 0.3897 0.1741

5

Ref [68] 2.8179 0.4006 0.1616

5. Numerical Results

The influence of (Ec/Em) elasticity ratio on deflection and stresses for movable and
immovable plates with different gradation indices and slenderness ratios are presented
in Tables 4–6. As seen from Table 4, by increasing the gradation index or elasticity ratio,
the deflection increases for both movable and immovable boundary conditions. However,
increasing the slenderness ratio tends to decrease the deflection.

Table 4. Influence of Young’s modulus ratio (Ec/Em) on the non-dimensional maximum deflection(
w = wmax

100Ech3

12(1−ν2)q0a4

)
of movable/immovable simply-supported BDFG Al/Al2O3 square plate

(a/h = 10, 100) sinusoidal load based on neutral surface formulation (NS) at nx = 1.

Ec/Em=2 Ec/Em=4 Ec/Em=6
nz

a/h Sm−MS Sm−NS Sim−MS Sim−NS Sm−MS Sm−NS Sim−MS Sim−NS Sm−MS Sm−NS Sim−MS Sim−NS

0.0

10

0.3657 0.3657 0.3657 0.3657 0.4528 0.4528 0.4528 0.4528 0.5022 0.5022 0.5022 0.5022
1 0.4417 0.4417 0.4379 0.4417 0.6709 0.6710 0.6472 0.6710 0.8259 0.8262 0.7791 0.8262
2 0.4615 0.4615 0.4569 0.4615 0.7487 0.7488 0.7137 0.7488 0.9716 0.9721 0.8930 0.9721
5 0.4819 0.4819 0.4790 0.4819 0.8202 0.8203 0.7924 0.8203 1.1021 1.1023 1.0297 1.1023
10 0.4982 0.4982 0.4968 0.4982 0.8762 0.8762 0.8608 0.8762 1.1951 1.1952 1.1505 1.1952
0.0

100

0.3464 0.3464 0.3464 0.3464 0.4280 0.4280 0.4280 0.4280 0.4745 0.4745 0.4745 0.4745
1 0.4187 0.4187 0.4149 0.4187 0.6376 0.6377 0.6139 0.6377 0.7865 0.7868 0.7397 0.7868
2 0.4366 0.4366 0.4320 0.4366 0.7088 0.7090 0.6738 0.7090 0.9217 0.9222 0.8430 0.9222
5 0.4547 0.4547 0.4518 0.4547 0.7706 0.7707 0.7428 0.7707 1.0335 1.0337 0.9611 1.0337
10 0.4703 0.4703 0.4689 0.4703 0.8225 0.8225 0.8072 0.8225 1.1173 1.1174 1.0729 1.1174
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Table 5. Influence of Young’s modulus ratio (Ec/Em) on the non-dimensional stress(
σx = h2

a2q σx

(
a
2 , b

2 , h
2

))
of movable/immovable simply-supported BDFG Al/Al2O3 square plate

(a/h = 10,100) sinusoidal load based on neutral surface formulation (NS) at nx = 1.

Ec/Em=2 Ec/Em=4 Ec/Em=6
nz

a/h Sm−MS Sm−NS Sim−MS Sim−NS Sm−MS Sm−NS Sim−MS Sim−NS Sm−MS Sm−NS Sim−MS Sim−NS

0.0

10

0.1981 0.1981 0.1981 0.1981 0.1948 0.1948 0.1948 0.1948 0.1925 0.1925 0.1925 0.1925
1 0.2266 0.2266 0.2311 0.2273 0.2605 0.2605 0.2672 0.2641 0.2816 0.2817 0.2878 0.2880
2 0.2355 0.2355 0.2406 0.2360 0.2838 0.2838 0.2918 0.2876 0.3178 0.3180 0.3245 0.3259
5 0.2499 0.2499 0.2545 0.2501 0.3182 0.3182 0.3283 0.3206 0.3659 0.3659 0.3775 0.3719
10 0.2637 0.2637 0.2672 0.2638 0.3573 0.3573 0.3673 0.3584 0.4238 0.4238 0.4384 0.4271
0.0

100

0.1963 0.1963 0.1963 0.1963 0.1932 0.1932 0.1932 0.1932 0.1910 0.1910 0.1910 0.1910
1 0.2244 0.2244 0.2290 0.2252 0.2580 0.2581 0.2647 0.2616 0.2790 0.2791 0.2852 0.2854
2 0.2331 0.2331 0.2382 0.2337 0.2808 0.2808 0.2888 0.2846 0.3145 0.3147 0.3211 0.3226
5 0.2474 0.2474 0.2520 0.2476 0.3146 0.3146 0.3247 0.3169 0.3614 0.3614 0.3730 0.3674
10 0.2612 0.2612 0.2647 0.2613 0.3535 0.3535 0.3635 0.3546 0.4189 0.4190 0.4335 0.4222

Table 6. Influence of Young’s modulus ratio (Ec/Em) on the non-dimensional stress(
τxz = h2

a2q τxz

(
0, b

2 , 0
))

of movable/immovable simply-supported BDFG Al/Al2O3 square plate
(a/h = 10,100) sinusoidal load based on neutral surface formulation (NS) at nx = 1.

Ec/Em=2 Ec/Em=4 Ec/Em=6
nz

a/h Sm−MS Sm−NS Sim−MS Sim−NS Sm−MS Sm−NS Sim−MS Sim−NS Sm−MS Sm−NS Sim−MS Sim−NS

0.0

10

0.2054 0.2054 0.2054 0.2054 0.1699 0.1699 0.1699 0.1699 0.1488 0.1488 0.1488 0.1488
1 0.2196 0.2196 0.2196 0.2196 0.1941 0.1941 0.1941 0.1941 0.1768 0.1768 0.1768 0.1768
2 0.2269 0.2269 0.2269 0.2269 0.2091 0.2091 0.2091 0.2091 0.1956 0.1956 0.1956 0.1956
5 0.2349 0.2349 0.2348 0.2349 0.2281 0.2281 0.2280 0.2281 0.2221 0.2221 0.2218 0.2221
10 0.2375 0.2375 0.2375 0.2375 0.2354 0.2354 0.2353 0.2354 0.2334 0.2334 0.2331 0.2334
0.0

100

0.2057 0.2057 0.2057 0.2057 0.1703 0.1703 0.1703 0.1703 0.1494 0.1494 0.1494 0.1494
1 0.2198 0.2198 0.2198 0.2198 0.1944 0.1944 0.1944 0.1944 0.1772 0.1772 0.1772 0.1772
2 0.2271 0.2271 0.2265 0.2271 0.2094 0.2094 0.2095 0.2094 0.1959 0.1959 0.2027 0.1959
5 0.2350 0.2350 0.2354 0.2350 0.2283 0.2283 0.2229 0.2283 0.2224 0.2224 0.2099 0.2224
10 0.2377 0.2377 0.2392 0.2377 0.2356 0.2356 0.2366 0.2356 0.2336 0.2336 0.2286 0.2336

From Table 4, due to bending–stretching uncoupling, one can notice that the transverse
deflection of Sm−NS is identical with Sim−NS. For MS-formulation (the neutral is not
included), the deflection of the immovable simply supported is less than the deflection of
the NS formulation. This means that ignoring the effect of the neutral axis may result in
underestimated deflections. However, from Table 5, the transverse deflection of Sm−NS
is identical with Sim−NS, the stress σx, which depends also on the values of u0 and is
not the same movable and immovable plates. In the immovable simply supported plate,
u0 = v0 = 0, while in the movable plate, the plate has nonzero longitudinal deflections.
It is noted that the normal and shear stresses are decreased by increasing the elasticity
ratio (Tables 5 and 6). However, the slenderness ratio has no effect on the normal and
shear stresses.

The effect of the elasticity ratio on the variables of the neutral axis with the variation
of gradation index through the thickness direction is presented in Table 7. As shown, by
increasing the gradation index from 0 to 2, the values of zo/h and co/h are increased due to
the variation from the ceramics (isotropic phase) to the FGM constituent. By increasing nz
from 2 to 10, the phase changes from FGM to metal (isotropic phase), hence, the mid-plane
will be identical with the neutral and the neutral axis variables will be diminished until a
value of zero.
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Table 7. Maximum values of z0/h and c0/h at different nz and Ec/Em ratios ( nx = 1).

Ec/Em=2 Ec/Em=4 Ec/Em=6
nz

zo/h co/h zo/h co/h zo/h co/h
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.0214 0.0047 0.0337 0.0074 0.0381 0.0083
0.5 0.0401 0.0083 0.0669 0.0138 0.0772 0.0160
1 0.0556 0.0111 0.1000 0.0200 0.1190 0.0238
2 0.0625 0.0125 0.1250 0.0250 0.1563 0.0313
4 0.0556 0.0119 0.1250 0.0268 0.1667 0.0357
5 0.0510 0.0113 0.1190 0.0265 0.1623 0.0361

10 0.0347 0.0088 0.0893 0.0226 0.1303 0.0330

The variation of neutral axis variables with elastic ratio is presented in Figure 3 at
nz = 2 and nx = 1. The parabolic increasing of zo/h and co/h are observed by increasing
the elasticity ratio. So that, the distance between mid-plane and neutral axis increased.
Hence, the accurate results should be evaluated with respect to neutral surface rather than
mid-plane specially for higher elasticity ratio. The same observations are predicted for the
variation of gradation indices nz and nx as seen in Figures 4 and 5, respectively.

Influences of the gradation nx and nz for a different a/h− ratio on w, σx, τxy, τxz for
immovable BDFG Al/Al2O3 square plate at specified points a uniform distributed load
are presented in Table 7. The quantitative analysis of Table 8 is portrayed in the 3D plots
shown in Figure 6. As shown, the highlights deflection and shear stresses are obtained
for higher gradation indices; however, the higher normal stress is obtained at nz = 3 and
nx = 0, as seen in Figure 6.
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Table 8. Influence of gradation indices on the non-dimensional maximum deflection(
w = wmax

100Ech3

12(1−ν2)q0a4

)
and different stresses of immovable BDFG Al/Al2O3 square plate

(a/h = 10, 100) uniform load based on neutral surface formulation (NS) formulation.σx =
h2

a2q2 σx

(
a
2 , b

2 , h
2

)
, τxy = h2

a2q τxy

(
0, 0,− h

3

)
, τxz = h2

a2q τxz

(
0, b

2 , 0
)

.

nz w σx τxy τxz w σx τxy τxz

a/h = 10

nx = 0.5 nx = 1
0.5 0.8359 0.3876 0.0556 0.2630 1.0313 0.3630 0.0737 0.3625
1 0.9925 0.4481 0.0636 0.2987 1.1752 0.4111 0.0802 0.3848
2 1.1584 0.5105 0.0709 0.3530 1.3299 0.4599 0.0864 0.4163
5 1.3570 0.5983 0.0799 0.4302 1.5183 0.5316 0.0946 0.4578

nx = 2 nx = 5
0.5 1.3514 0.3202 0.0943 0.3989 1.7829 0.2707 0.1122 0.4430
1 1.4691 0.3517 0.0991 0.4150 1.8690 0.2803 0.1148 0.4508
2 1.5898 0.3820 0.1034 0.4374 1.9466 0.2887 0.1171 0.4616
5 1.7444 0.4268 0.1087 0.4663 2.0361 0.2993 0.1197 0.4750

a/h = 100

nx = 0.5 nx = 1
0.5 0.7977 0.3852 0.0561 0.2540 0.9809 0.3609 0.0745 0.3536
1 0.9464 0.4452 0.0643 0.3001 1.1198 0.4086 0.0811 0.3862
2 1.0981 0.5069 0.0718 0.3724 1.2607 0.4568 0.0874 0.4264
5 1.2704 0.5933 0.0811 0.4139 1.4261 0.5273 0.0957 0.4413

nx = 2 nx = 5
0.5 1.2851 0.3184 0.0952 0.3903 1.6984 0.2687 0.1132 0.4323
1 1.3958 0.3494 0.1001 0.4160 1.7793 0.2783 0.1158 0.4519
2 1.5088 0.3793 0.1044 0.4468 1.8497 0.2866 0.1181 0.4811
5 1.6458 0.4235 0.1098 0.4561 1.9300 0.2972 0.1208 0.4722

The variations of normal and shear stresses across the thickness direction with respect
to the gradation indices nz and nx are illustrated in Figures 7 and 8. As shown, the
gradation index nz tends to change the distribution profiles of the stresses along the
thickness dictions; however, the gradation index nx has no effect on the distribution
profiles but has an effect on the peaks.
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Figure 6. Effect of gradation indices on the non-dimensional maximum deflection(
w = wmax

100Ech3

12(1−ν2)q0a4

)
and stresses of (Sim−NS) BDFG under sinusoidal load (a/h = 10). (a) Maxi-

mum deflection. (b) Normal stress σx. (c) Shear stress τxy. (d) Shear stress τxz.
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Figure 7. Non-dimensional stresses of (Sim−NS) BDFG at different nz (a/h = 10, nx = 0). (a) Normal
stress σx. (b) Shear stress τxy. (c) Shear stress τxz.
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Figure 8. Non-dimensional stresses of (Sim−NS) BDFG at different nx (a/h = 10, nz = 0). (a) Normal
stress σx. (b) Shear stress τxy. (c) Shear stress τxz.

The variation of the deflection with plate aspect ratio b/a for both simply supported
and clamped boundary conditions under a uniform load is presented in Figure 9. The
movable/immoveable boundary conditions and mid-plane/neutral surface are considered.
As shown, the maximum deflection increased linearly with an increasing plate aspect
ratio b/a for simply supported boundary conditions. However, in the case of a clamped
boundary condition, the deflection increased linearly in as b/a changes from 0.5 to 1.5, and
after that, the effect of the aspect ratio on the maximum deflection decreased.
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Figure 9. Non-dimensional maximum deflection
(

w = wmax
100Ech3

12(1−ν2)q0a4

)
of BDFG under uniform

load at different aspect ratio b/a, (a/h = 10, nx = nz = 1). (a) Simply supported. (b) Fully Clamped.

The effect of the porosity coefficient of a type one on the deflection for both simply
supported and clamped boundary conditions is presented in Figure 10. As shown, by
increasing the porosity parameter, the deflection increases due to reducing the overall
stiffness of the structure. The immovable boundary condition relative to MS is smaller than
Sm−NS, Sm−MS, and Sim−NS cases for simply supported boundary conditions.
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Figure 10. Non-dimensional maximum deflection
(

w = wmax
100Ech3

12(1−ν2)q0a4

)
of BDFG under uniform

load at a different porosity parameter φ (type 1), (a/h = 10, nx = nz = 1). (a) Simply Supported.
(b) Fully clamped.

Effects of elastic foundation parameters (Kw and Ks) on w, σx, τxy, τxz at specified
points for A movable/immovable, Al/Al2O3, (FGM), square plate, subjected to uniform
loading, using NS formulation, nx = nz = 1, a/h = 10 are presented in Figures 11–14. As
seen, by increasing the elastic foundation constants, the deflection, normal stress, and shear
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stresses are decreased linearly with respect to kw and parabolically with respect to kp for
simply supported BCs. It is also noted that the effects of MS/NS and movable/immovable
boundary conditions have significant influences on the stresses and maximum deflection.
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Figure 11. Maximum deflection w of BDFG under uniform load at (a/h = 10, nx = nz = 1) for
different kw and kP. (a) For different kw. (b) For different kP.
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of BDFG under uniform load at a/h = 10, nx = nz = 2
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Mathematical and numerical formulations are developed to investigate the bending
and the stress variation of the BDFG porous plate with elastic foundations. Bi-directional
gradations are defined by power function; however, porosity distribution is defined by
cosine function. The influence of middle surface (MS), neutral surface (NS), movable BCs,
and immovable BCs are considered in the formulation. Elastic foundation is portrayed
by the Winkler–Pasternak model. The equilibrium equations are derived by Hamilton’s
principles and then solved numerically by using the discretized by differential quadrature
method (DQM). The main points of the present study can be stated as follows:

â By increasing the gradation index or elasticity ratio, the deflection increases for both
movable and immovable boundary conditions.
â Increasing of the slenderness ratio tends to decrease the deflection.
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â It is expected that due to bending–stretching uncoupling, the transverse deflection of
Sm−NS is identical with Sim−NS.
â For MS formulation (the neutral is not included), the deflection of immovable simply
supported is less than the deflection of NS formulation.
â By increasing the gradation index from 0 to 2, the values of zo/h and co/h are increased
due to the variation from ceramics (isotropic phase) to FGM constituent.
â By increasing nz from 2 to 10, the phase changes from FGM to metal (isotropic phase),
hence, the mid-plane will be identical with the neutral and the neutral axis variables will
be diminished until a value of zero.
â The parabolic increasing of zo/h and co/h are observed by increasing the elasticity ratio.
â The gradation index nz tends to change the distribution profiles of the stresses along
the thickness dictions, however, the gradation index nx has no effect on the distribution
profiles but influences the peaks.
â By increasing the porosity parameter, the deflection increases due to reducing the overall
stiffness of the structure.
â By increasing the elastic foundation constants, the deflection, normal stress, and shear
stresses are decreased linearly with respect to kw and parabolically with respect to kp.
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