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Abstract: The ability to track the changes of the surrounding environment is critical for humans and
animals to adapt their behaviors. In high-dimensional environments, the interactions between each
dimension need to be estimated for better perception and decision making, for example in volatile or
social cognition tasks. We develop a hierarchical Bayesian model for inferring and decision making
in multi-dimensional volatile environments. The hierarchical Bayesian model is composed of a
hierarchical perceptual model and a response model. Using the variational Bayes method, we derived
closed-form update rules. These update rules also constitute a complete predictive coding scheme.
To validate the effectiveness of the model in multi-dimensional volatile environments, we defined
a probabilistic gambling task modified from a two-armed bandit. Simulation results demonstrated
that an agent endowed with the proposed hierarchical Bayesian model is able to infer and to update
its internal belief on the tendency and volatility of the sensory inputs. Based on the internal belief
of the sensory inputs, the agent yielded near-optimal behavior following its response model. Our
results pointed this model a viable framework to explain the temporal dynamics of human decision
behavior in complex and high dimensional environments.

Keywords: Bayesian inference; filtering; free energy; decision making; predictive coding; volatility

MSC: 62C10; 62C12; 62M45; 68T07

1. Introduction

Natural environments are volatile, with ever changing sensory distributions and
reward contingencies [1]. In a volatile environment, a biological agent must maintain
stable internal states and be able to efficiently capture effective sensory information at the
same time [2,3]. These seemingly contradictory requirements are unified into Bayesian
inference [4], an optimal probability inference process.

Neuroscience research has shown that Bayesian inference underlies brain functions, such
as perception, memory and decision-making, and resulting adaptive animal behaviors [3,5–11].
Adaptive behaviors are rooted in perceptual inferences and adaptive behavioral
responses [12–16]. To understand the mechanisms of adaptive behaviors, one basic ap-
proach is to employ a generative model to infer the probabilistic distribution of sensory
information and reproduce the temporal dynamics of human perception and decision-
making in dynamic environments [17,18]. In this view, a Bayesian agent with a generative
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model is able to transform sensory inputs into behavioral responses [19]. With appropriate
choice of parameters, a Bayesian agent could account for human decision behaviors.

“Observing the observer” is a meta Bayesian framework to simulate the perception
processes of humans [20,21]. Perceptual and response models are two key components of
this framework. According to this theoretic framework, inversion of the perceptual and
response models can map from sensory inputs to response actions based on variational free
energy principle [15,22,23] or Bayes’ rule.

To deal with volatile environments, volatility models, such as Hierarchical Gaussian
Filtering [23], are developed to deliver an estimation of the changes of the environment.
Accumulating evidences from the research on human learning and perception have shown
that volatile Bayesian models (e.g., Hierarchical Gaussian Filtering) well explain human
behaviors, especially, in changing environments. For example, saccadic response speed can
be modulated by prediction precision of the belief on sensory inputs [24]. The volatility
of the sensory environment and changes in sensory inputs are overestimated by adults
with autism spectrum disorders [14]. This overestimation of volatility leads to the reduced
precision of prior belief on sensory inputs. In human social learning, hierarchical prediction
errors are encoded by midbrain and septum activity [25]. These evidences manifest that
hierarchical Bayesian inference provides an optimal scheme to diminish surprise and
reduce uncertainty in a volatility world.

To gain theoretical understandings of decision making under uncertainty with finite
resource, the multi-armed bandit problem has been formulated as an abstraction [26–29].
The goal of the multi-armed bandit problem is to maximize the overall rewards through a
series of choices. In neuroscience, multi-armed bandit problem is widely used to investi-
gate economic decision making, contingent learning and human social behavior [30–35].
Animals and humans often have to make perceptual inference and settle on a series of
decisions in a complex volatility environment. In general, the state space of decision mak-
ing is high-dimensional. For example, in social interactions, the behaviors of multi-agents
play important roles in the decisions of each individual. In a particular situation, agents
employ internal models to observe other agents’ behaviors and to simulate their belief
about actions [34,35]. The interactions between agents result in complex and correlated
behaviors such as competition, cooperation, prediction and judgment. To describe multi-
agents’ behaviors in social tasks, models that are able to capture dynamic information and
noisy correlation in multi-dimensional state space need to be developed [36].

Bayesian networks are widely used for the inference of features from observed data [37–40].
In recent years, hierarchical Bayesian networks are developed to model the compositional
nature of complex features for recognition tasks [41,42]. To solve perceptual inference and
decision making problems in high-dimensional volatile binary environments, in this paper,
we develop a hierarchical Bayesian model to infer time-varying hidden states of multi-
armed bandits and maximize rewards given uncertain high-dimensional sensory inputs.

In summary, our model is promising to solve complex inference and decision making
problems in realistic environments, which are intrinsically dynamic and high dimensional.
In addition, our model could be applied to reveal computational mechanisms underlying
human cognition and behaviors [43,44].

The rest of this paper is structured as follows. Section 2 introduces the hierarchical
Bayesian perceptual model in high-dimensional volatile binary environment. Section 3
derives a set of closed form update equations for perceptual inference. Section 4 develops
a response model for reward maximization in volatile multi-armed bandits as a typical
example. Experimental results are given in Section 5. Finally, the paper is concluded
with discussions.

2. Hierarchical Bayesian Perceptual Model
2.1. Beyond Independency

As a classic task in neuroscience and reinforcement learning, a multi-armed bandit
challenges the agent with uncertain reward distribution, revealing rewards probabilis-
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tically. Since the agent has to estimate both the mean reward (for exploitation) and the
precision of mean reward (for exploration), the multi-armed bandit captures the explo-
ration–exploitation tradeoff dilemma in reward maximization under uncertainty [26,45].

Put simply, a one-armed bandit can be considered as a random binary number genera-
tor described by a Bernoulli distribution

Bern(x0; µ0) = µx0
0 (1− µ0)

1−x0 , (1)

where x0 ∈ {0, 1}, the state of the one-armed bandit, represents “reward” (x0 = 1) or
“no reward” (x0 = 0). µ0 ∈ [0, 1] is the probability of being in the reward state. For a
multi-armed bandit, x(i)0 and µ

(i)
0 denote the observation and expectation of reward in

the i-th arm. The binary vector x0 = [x(1)0 , x(2)0 , · · · , x(d0)
0 ]T constitutes a binary pattern

corresponding to the state of rewarding or non-rewarding of the arms at time t, with d0
being the total number of the arms. Throughout the paper we use the notation (i) in the
superscript to indicate the i-th element of a vector.

Assuming independence between the reward distributions of the arms, the joint
probability of being in state x0 is given by the product of reward probabilities of the arms,
equivalent to

p(x0) = exp(
d0

∑
i=1

[x(i)0 ln µ
(i)
0 + (1− x(i)0 ) ln(1− µ

(i)
0 )]). (2)

However, this independent model is not able to capture possible interaction structure of
the arms.

In volatile environments, the reward distributions are non-stationary and often evolve
dependently on each other, showing time-variant interaction strength. To quantitatively
describe the interactions among the arms of a multi-armed bandit, we introduce the concept
that there are low-order interactions among the natural parameters of the underlying mul-
tivariate Bernoulli distribution. Denoted by x1, the natural parameter vector is mapped to
a point µ0 in the probability space through a multivariate element-wise sigmoid function s

µ0(t) = s(x1(t), ζ1), (3)

with the i-th element of µ0(t) being

µ
(i)
0 (t) =s(x(i)1 (t), ζ

(i)
1 )

=
1

1 + exp(−ζ
(i)
1 x(i)1 (t))

, (4)

i ∈ {1, 2, · · · , d1}.

d1 = d0 is the dimension of x1. s(x1, ζ1) is a vector-valued function defined by

[s(x(1)1 , ζ
(1)
1 ), s(x(2)1 , ζ

(2)
1 ), · · · , s(x(d1)

1 , ζ
(d1)
1 )]T .

The parameter vector
ζ1 = [ζ

(1)
1 , ζ

(2)
1 , · · · , ζ

(d1)
1 ]T

is the inverse temperature, with positive elements (ζ(i)1 > 0).

2.2. Perceiving Tendency and Volatility

In volatile environments, variables of interest, such as reward, are subject to changes.
The changes of a variable are again subject to changes, and so forth. The nested nature
of volatility is a hallmark of collective phenomena as observed in animal swarms, the
financial market and social behavior. To quantitatively describe volatility and pairwise
correlations of high dimensional variables, we have developed a hierarchical volatility
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model, called General Hierarchical Brownian Filter (GHBF), based on the idea of nested
Brownian motions [46]. Following this framework, we develop here a hierarchical percep-
tual model to estimate both the tendency and volatility in the states of a multi-armed bandit
(Figure 1). More specifically, the natural parameters x1 of the underlying multivariate
Bernoulli distribution is modeled by a general Brownian motion with pervasion matrix
Σ1 ∈ Rd1×d1

x1 = B(t; Σ1). (5)

This Brownian motion captures the tendency of the learned parameter vector x1. The
volatility (i.e., uncertainties and pairwise correlations) in x1 is given by Σ1 ∈ Rd1×d1 , which
is a symmetric positive definite matrix by definition.

u(t)

Bern(x0(t); s(x1(t)); ζ1)

x1(t) = B(t;Σ1)

L1

W 2 b2
F 2

x2(t) = B(t;Σ2)

L2

λtop

Figure 1. Overview of the hierarchical perceptual model.

Considering the fact that the pervasion intensity Σ1 is a symmetric positive definite
matrix, it could be uniquely represented by a lower triangular matrix L1 ∈ Rd1×d1 according
to Cholesky decomposition

Σ1 = L1L1
T .

To further evaluate the volatility Σ1 (i.e., uncertainties and pairwise correlations) in
x1, we assume that its decomposition L1 is modeled by a general Brownian motion in its
parameterized space. To be exact, the elements of L1 is parametrized by a d2 = d1(d1 + 1)/2
dimensional vector y2, which results from concatenating the lower triangle elements of L1
in a column-wise fashion. The element in i-th row and j-th column of L1 is given by

L1
(i,j) = l(i,j)1 =2 sinh(y(

(2d1−j+2)(j−1)
2 +i−j+1)

2 ), 1 ≤ j < i ≤ d1

exp(y(
(2d1−i+2)(i−1)

2 +1)
2 ), j = i

(6)

where sinh(·) denotes a hyperbolic sine function. The vector y2 gives the logarithm of
volatility in the second level

y2 = W2x2 + b2. (7)
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The coefficient matrix W2 is a d2-by-d2 diagonal matrix and represents the coupling
strength from level two to level one. Here, W2 can simply take the form of a diagonal
matrix spanned from a column vector w2 with all positive elements

W2
(i,i) = w(i)

2 .

b2 and x2 ∈ Rd2 represents trend and time-varying fluctuation in log-volatility of the natural
parameter respectively. We may further assume that x2 evolves as a general Brownian
motion with pervasion matrix Σ2 ∈ Rd2×d2

x2 = B(t; Σ2). (8)

We can rewrite the coupling (Equations (6) and (7)) as

L1 = F2(x2; w2, b2). (9)

In the second level, the pervasion matrix Σ2 is chosen as a diagonal matrix. Let
L2 ∈ Rd2×d2 be the unique Cholesky decomposition of Σ2. We simply assume that L2 is a
constant diagonal matrix spanned by vector λtop ∈ Rd2 with all positive components.

Figure 1 shows an overview of the hierarchical perceptual model. With this model, a Bayesian
agent receives a series of sensory inputs or observations us = {u(t1), u(t2), · · · , u(tK)}. K is
the total number of trials. At time tk, the sensory input u(tk) to the agent is determined by
the state x0(tk) of the bandit deterministically, i.e., with a delta distribution δ(·)

P(u(tk) | x0(tk)) = δ(u(tk) = x0(tk)). (10)

In summary, the hierarchical perceptual model constitutes a generative model for
sensory observations u(t) based on hidden representations of the tendency (x1) and the
volatility (x2) of the observations.

3. Perceptual Inference Approximated by Variational Approximation

The aforementioned hierarchical perceptual model is constructed based on general
continuous Brownian motions. It remains to develop update rules to estimate the posterior
distributions for the hidden representations x1 and x2. In order to derive a family of ana-
lytical and efficient updates, we discretize the continuous Brownian motions by applying
Eulerian method. Sampling interval (SI) ε(tk) = tk− tk−1 is defined by the time that elapses
between the arrival of consecutive sensory inputs u(tk−1) and u(tk).

We use the variational Bayesian method [15,20,22,23] to reach an approximation to the
posterior distributions of x1(t) and x2(t) given the sensory input u(t) (i.e., observation). To
this end, we maximize the negative free energy, which is the lower bound of log-model
evidence, to yield a variational approximation posterior (cf. Appendices A and B)

q(xh(tk)) =
1
Zh

exp(Vh(xh(tk))), h = 1, 2,

where Zh is a normalization constant. Vh(xh(tk) is the variational energy given by

Vh(xh(tk) = Eq(xs\{xh}(tk))
[ln p(xs(tk), u(tk) | ψs, ε(tk))]. (11)

Here we introduced the notation xs = {x0, x1, x2} to denote the set of all hidden states,
ψs =

{
w2, b2, λtop, ζ1

}
for the hyperparameters of the model, xs\{xh} for excluding xh

from the set xs, Eq(x)(v) for the expectation of v under the distribution q(x).
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In order to complete the derivations, Gaussian quadratic form approximation is used
as in [46]. In general, the variational energy Vh(xh(tk)) will deviate from a Gaussian
quadratic form. We have to use a Gaussian quadratic form

V̄h(xh(tk)) = −
1
2
(xh(tk)− µh(tk))

TPh(tk)(xh(tk)− µh(tk))

as an efficient approximation of Vh(xh(tk)). Ph(tk) is given by the inverse of the Hessian
matrix at the last state µh(tk−1), Ph(tk) = (Ch(tk))

−1 = −∇2V(µh(tk−1)), and then a local
maximum point µh(tk) is found as the mode of the posterior Gaussian distribution. This
approximation is made by neglecting higher order terms of the logarithm of q(xh(tk)), and
assuming Gaussian quadratic forms

xh(tk) | u(tk), ψs ∼ N (µh(tk), Ch(tk)).

h = 1, 2
(12)

Under this approximation, the inference of the posterior distributions of xh is reduced
to the estimation of the mean µh(tk) and the covariance matrix Ch(tk) , or equivalently the
precision matrix Ph(tk) ≡ (Ch(tk))

−1. Following [46], the update rules for the posterior
distributions of x1 and x2 are derived.

At the bottom (zeroth) level of the hierarchical perceptual model, we can directly
determine multivariate Bernoulli distribution q(x0(tk)) with expectation:

µ0(tk) = u(tk). (13)

At the first level, following Equation (11), V1(x1) can be calculated as

V1(x1(tk)) = Eq(xs\{x1}(tk))
[ln p(xs(tk), u(tk) | ψs, ε(tk))]

= ln p(u(tk) | x0(tk)) + Eq(x0(tk))
[ln p(x0(tk) | x1(tk))]

+ Eq(x1(tk),x2(tk))
[ln p(x1(tk) | x2(tk), W2, b2, ε(tk))]

≈µT
0 (tk) ln s(x1(tk); ζ1) + (1− µ0(tk))

T ln(1− s(x1(tk); ζ1))

− 1
2
(x1(tk)− µ1(tk−1))

T(ε(tk)Σ̂1(tk) + C1(tk−1)
)−1

(x1(tk)− µ1(tk−1)).

where 1 is a d0 dimensional column vector in which all elements are 1. Here we use
the approximation

(ε(tk)Σ1(tk) + C1(tk−1))
−1 ≈

(
ε(tk)Σ̂1(tk) + C1(tk−1)

)−1, (14)

with Σ̂1(tk) computed from the second level

Σ̂1(tk) = L̂1(tk)L̂T
1 (tk)

L̂1(tk) = F2(µ2(tk−1); w2, b2).
(15)

The variational energy V1(x1(tk)) is not a standard Gaussian quadratic form, so we have to
employ a Gaussian quadratic form V̄1(x1(tk)) to approximate it. To obtain this approxima-
tion form, we give the gradient and Hessian matrix of V1(x1(tk)) as follows:

∇V1(x1(tk)) = µ0(tk)− s(x1(tk); ζ1)

− 1
2
(
ε(tk)Σ̂1(tk) + C1(tk−1)

)−1
(x1(tk)− µ1(tk−1)) (16)



Mathematics 2022, 10, 4775 7 of 35

and

∇2V1(x1(tk)) = −diag(s(x1(tk); ζ1)� (1− s(x1(tk); ζ1)))

− 1
2
(
ε(tk)Σ̂1(tk) + C1(tk−1)

)−1 (17)

where the operator � is the Hadamard product. The operation diag(v) is to transform a
vector v into a diagonal square matrix with the elements of v on the principal diagonal.

Under the Gaussian quadratic form approximation which is based on a single-step
Newton method, the tendency of x0(tk) is captured by

µ1(tk) = µ1(tk−1) + diag(ζ1)C1(tk)PE0(tk) (18)

where PE0(tk) is the prediction error

PE0(tk) = µ0(tk)− µ̂0(tk), (19)

where µ̂0(tk) ≡ [µ̂
(1)
0 (tk), µ̂

(2)
0 (tk), · · · , µ̂

(d0)
0 (tk)]

T is the prediction according to Equation (3)

µ̂0(tk) = s(µ1(tk−1), ζ1). (20)

In Equation (18), the prediction error is scaled by the covariance matrix C1(tk) of the
approximate Gaussian distribution, which is converted from the precision matrix

C1(tk) ≡(P1(tk))
−1

P1(tk) =Π̂1(tk) + diag(ζ1)
2Ĉ0(tk).

(21)

Here Ĉ0(tk) = diag(σ̂0(tk)) is the diagonal square matrix containing the observed variance

σ̂0(tk) =


µ̂
(1)
0 (tk)(1− µ̂

(1)
0 (tk))

µ̂
(2)
0 (tk)(1− µ̂

(2)
0 (tk))

...
µ̂
(d0)
0 (tk)(1− µ̂

(d0)
0 (tk))

. (22)

Prediction precision Π̂1(tk) is given by

Π̂1(tk) = (ε(tk)Σ̂1(tk) + C1(tk−1))
−1. (23)

At the second level, the volatility, consisting of the uncertainties and pairwise correla-
tions in natural parameters, is inferred by similar variational approximation method [46].
The mean is updated by

µ2(tk) = µ2(tk−1) + ε(tk)C2(tk)W
T
2

· L̂g1(tk)
(
Ω1(tk)⊗ Id1

)
vec
(

∆T
1 (tk)

)
.

(24)

Here the function vec(Mm×n) is the vectorization of a matrix M, a linear operation, to
obtain a column vector of length m × n by concatenating the columns of the matrix M
consecutively from column 1 to column n. The operator ⊗ is Kronecker product. ∆1(tk) is
given by

∆1(tk) =
[
C1(tk) + PE1(tk)PET

1 (tk)
]
Π̂1(tk)− Id1 . (25)
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The constant matrix Id is a d-by-d unit square matrix. PE1(tk) is the prediction error on the
hidden state x1

PE1(tk) = µ1(tk)− µ1(tk−1). (26)

L̂g1(tk) is given by

L̂g1(tk)

=



exp
(
(W (1)

2 )Tµ2(tk−1) + b(1)2

)
eT

2 (1)

2 cosh
(
(W (2)

2 )Tµ2(tk−1) + b(2)2

)
eT

2 (2)

exp
(
(W (3)

2 )Tµ2(tk−1) + b(3)2

)
eT

2 (3)

2 cosh
(
(W (4)

2 )Tµ2(tk−1) + b(4)2

)
eT

2 (4)
...

exp
(
(W (d2)

2 )Tµ2(tk−1) + b(d2)
2

)
eT

2 (d2)


, (27)

where the constant vector e2(d2) is a d2
1-dimension column vector. The j-th component in

eT
2 (d2) is 1 if j = i or 0 if j 6= i. The column vector W (i)

2 is the i-th row in the coefficient
matrix W2. Ω1(tk) is

Ω1(tk) = L̂T
1 (tk)Π̂1(tk). (28)

The precision matrix is updated by

P2(tk) = Π̂2(tk) + W T
2 L̂g1(tk){

ε(tk)
2Kd1d1

[
ΩT

1 (tk)⊗ [Ω1(tk)∆1(tk)]

+ [∆T
1 (tk)Ω

T
1 (tk)]⊗Ω1(tk)

+ΩT
1 (tk)⊗Ω1(tk)

]
+ε(tk)

2
[
[LT

1 (tk)∆
T
1 (tk)Ω

T
1 (tk)]⊗ Π̂1(tk)

+ [LT
1 (tk)Ω

T
1 (tk)]⊗ [Π̂1(tk)∆1(tk)]

+[LT
1 (tk)Ω

T
1 (tk)]⊗ Π̂1(tk)

]
−ε(tk)

[
Id1 ⊗ [Π̂1(tk)∆1(tk)]

]
}L̂T

g1(tk)W2

−W T
2 diag(lvec(δ1(tk)))W2

(29)

where the function lvec(L) is to transform a lower triangular matrix L into a column vector
obtained by column stacking except all constant zero elements in the upper triangle part of
the matrix. The prediction precision matrix Π̂2 at the second level is given by

Π̂2(tk) = (ε(tk)Σ2 + C2(tk−1))
−1. (30)

The notation Kmn denotes a mn-by-mn commutation matrix. δ1(tk) is defined as

δ1(tk) = ε(tk)[∆
T
1 (tk)Ω

T
1 (tk)]� L̂1(tk). (31)

4. Decision Making in Volatile Multi-Armed Bandits

To illustrate decision making on the basis of perceptual inference in volatile environ-
ments, we introduce, as a toy example, a two-armed bandit problem, which is a complex
variant of a one-armed bandit gambling task in [30,47]. In this task, a cautious gambler
is asked to bet on the outcomes of a two-armed bandit, and to maximize its overall score
(Figure 2). We use upper-case letters A and B to denote the two arms of the bandit, and the
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notations x(1)0 and x(2)0 for the states of arm A and B respectively. On each trail, the states

of the two arms, i.e., the binary vector x0 = [x(1)0 , x(2)0 ]T , will be revealed to the gambler
at the same time after the gambler makes a choice. There are two options available for
the gambler to choose from. The first option “Same” represents the congruent states of
the two arms, i.e., [0, 0]T or [1, 1]T . The second option “Different” represents incongruent
states of the two arms, i.e., [1, 0]T or [0, 1]T . Once the gambler makes a decision (to choose
“Same” or “Different”), the two arms would randomly generate their states by employing
two univariate Bernoulli distributions (Equation (1)). To model a volatile environment, the
state distributions of the arms are time-varying (Figure 3).

Figure 2. A gambling task. Cautious gamblers participated in a simple decision-making task in a
volatile environment. There were four phases in a trial. (1) Cue: Two options and their rewards were
presented; (2) Decision. Once the gambler had made a choice, the choice was displayed bigger and
was highlighted; (3) Outcome. Once the two arms (denoted by letters A,B) had randomly generated
their states, the outcome of the choice was output and then made an increment of the score only if the
choice was right. (4) Fixation. This phase was the interval between trials. The screen only presented
the score until the beginning of the next trial.

The gambler’s response a is encoded as:

a =

{
0, for choice ‘Different’
1, for choice ‘Same’

. (32)

The gambler is rewarded if its choice matches the outcome of the bandit. To include
volatility also in rewards, the magnitude of reward is varied from trial to trial. The reward
is sampled from a reward set Sr = {1, 2, 3, · · · , Nr}, with equal probability of each reward
being chosen P(k) = 1/Nr, ∀k ∈ Sr.

The gambler starts the experiment with zero score. On each trial, once the chosen
option turns out to be correct, the corresponding reward associated to the choice will be
added to its overall score.

To maximize reward, a response model has to be defined. To this end, we first
denote the rewards obtained for the correct choice of “Different” and “Same” as r0 and r1,
respectively, can construct a reward table for each trial (Table 1).

Then we write a reward (utility) function r(x0, a) on a trial basis according to the
reward table

r(x0, a) = (1− (x(1)0 − x(2)0 )2)[a− (x(1)0 − x(2)0 )2]2r1

+ (x(1)0 − x(2)0 )2[a− (x(1)0 − x(2)0 )2]2r0. (33)
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Table 1. Reward table.

a
0 1

x0

(0,0) 0 r1

(1,1) 0 r1

(1,0) r0 0

(0,1) r0 0

Figure 3. Expected states of the two-armed bandit. (a) Expected states of arm A. The mean of the
state of arm A changes over time in a block fashion (black line). (b) Expected states of arm B. The
mean of the state of arm B evolves over time (black line), showing variable correlations with that
of arm A. By manipulating the expectations of the states of the two arms, we constructed a volatile
environment. There were 17 blocks in the experiment. Each block consists of 15 trials.

Given the predicted state µ̂0 (Equation (20)), the expected reward of decision a under
the corresponding predicted distribution q(x0, µ̂0) is given by the value function

Q(a, µ̂0) = ∑
x0

r(x0, a)Bern(x0; µ̂0)

=∑
x0

r(x0, a)Bern(x(1)0 ; µ̂
(1)
0 )Bern(x(2)0 ; µ̂

(2)
0 )

=a2r1[(1− µ̂
(1)
0 )(1− µ̂

(2)
0 ) + µ̂

(1)
0 µ̂

(2)
0 ]

+ (a− 1)2r0[(1− µ̂
(1)
0 )µ̂

(2)
0 + µ̂

(1)
0 (1− µ̂

(2)
0 )]

=

{
r1[(1− µ̂

(1)
0 )(1− µ̂

(2)
0 ) + µ̂

(1)
0 µ̂

(2)
0 ], a = 1

r0[(1− µ̂
(1)
0 )µ̂

(2)
0 + µ̂

(1)
0 (1− µ̂

(2)
0 )], a = 0

(34)

The agent makes decisions according to a Boltzmann distribution constructed from
the value function. The probability of choosing action a is defined by

Pa =
exp(Q(a, µ̂0))

∑b exp(Q(b, µ̂0))
. (35)
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For the binary decision-making task considered here, the probability of choosing action
a = 1 is reduced to a sigmoid function

P1 =
1

1 + exp(−(Q(1, µ̂0)−Q(0, µ̂0)))

=s(Q(1, µ̂0)−Q(0, µ̂0), 1), (36)

where s(·, ·) the sigmoid function defined in Equation (4).
In fact, a biological agent maximizes long-term rewards, instead of immediate rewards,

using decision noise as a mechanician to tradeoff exploration and exploitation. We introduce
a probability weighting function [47,48] with a noise parameter ζa > 0 to include decision
noise. The probability of choosing action a = 1 is

P(a = 1 | µ̂0, ζa) =
Pζa

1

Pζa
1 + (1− P1)ζa

. (37)

Up to now, we have defined a response model (Equations (33)–(37)) based on Bayesian
decision theory to maximize expected rewards. The response model is a function of the
decision evidence (Q(1, µ̂0)−Q(0, µ̂0)), i.e., the difference between expected rewards for
the two options (“Different”, “Same”). If the decision evidence is positive, the probability
of choosing “Same” exceeds 0.5, and the optimal action is to choose “Same” or a = 1. If the
decision evidence is a negative number, the probability of choosing “Different” exceeds 0.5
and the optimal action is the option “Different” or a = 0.

5. Simulation Results

The combination of the perceptual model (Equations (5)–(10)) and the response model
(Equations (33)–(37)) constitute a Bayesian model (denoted byM1) for decision making
in volatile multi-armed bandits. To assess the model’s ability to adapt to volatility, we
simulated a gambler with the proposed Bayesian decision model to solve the two-armed
bandit task (Figure 2). In the simulation, trials are organized into seventeen blocks, each of
which contains 15 trials (Figure 3). The state expectations of the bandit change across blocks,
resulting in volatility in sensory inputs. The reward set is specified as Sr = {1, 2, 3, 4}.

For an ideal observer, it has the access to the actual state u(t) = [u(1)(t), u(2)(t)]T

generated by the bandit at each time t (Figure 3). Given this ideal information, the ideal
observer could make the ideal actions aideal(t)

aideal(t) =

{
0, if u(1)(t) 6= u(2)(t)
1, if u(1)(t) = u(2)(t)

. (38)

Based on this series of ideal actions, the cumulative reward obtained by the ideal observer
could be computed.

To measure the performance of decision making behavior in the above gambling
task, we define a probabilistically optimal reference for comparison. For this purpose,
we consider an informed agent, who is given the expectation of the states of the volatile
bandit [P(x(1)0 (t) = 1), P(x(1)0 (t) = 1)]T . The informed agent needs not learn the states of
the bandit, and it uses the same action selection mechanism (Equations (34)–(37)) of the
response model πr to obtain the probabilistically optimal expectation of response action a(t),
denoted by P∗(a(t) = 1). For a decision-making agent, only if the agent fully understands
the volatile environments, the expectation of its action a(t) can completely coincide with
the probabilistically optimal expectation of response action P∗(a(t) = 1). Overestimating
or underestimating the environmental states will lead to the expectation of the agent’s
action a(t) to deviate from the optimal behavior. Therefore, P∗(a(t) = 1) constitutes the
optimal decision making behavior of a learning agent could reach. The deviation of a
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learning agent with sensory inputs us, actions as and rewards rs from the informed agent
in decision making behavior is measured by regret R(P(a(tk) = 1)|us, as, rs), defined by

R(P(a(tk) = 1)|us, as, rs) =
K

∑
k=1
|P(a(tk) = 1)− P∗(a(tk) = 1)|, (39)

where P(a(tk) = 1) is generated by the learning agent.

5.1. Dynamics of Bayesian Decision Making

We employed a Bayesian agentM1, which is endowed with the proposed hierarchical
perceptual model and binary response model (Figure 4), to perform the above gambling
task (Figure 2). All free parameters of our Bayesian agentM1 is defined in Appendix C,
and forms a random variable vector denoted by ξ1. Their initial sufficient statistics of all
parameters are listed in Table 2. In details, the optimization of the free parameters was
carried out in three steps as follows before the model was used for the gambling task.

u(t)

Bern(x0(t); s(x1(t); ζ1))

x1(t) = B(t;Σ1)

L1

W 2 b2

F 2

x2(t) = B(t;Σ2)

L2

λtop

Hierarchical Perceptual Model

ζa

Bern(a(t);P (a = 1))

a(t)

×Bayesian Decision

r(t)

Response Model

Figure 4. A Bayesian agent consists of the proposed hierarchical perceptual model and a binary
response model based on Bayesian decision theory. The reward r(t) = [r0(t), r1(t)]T is drawn
uniformly from a set on each trial.

(1) Generating synthetic data. According to the expected states of the arms (Figure 3),
we randomly generated a sequence of multivariate binary inputs

us = {u(t1), u(t2), u(t3), · · · , u(tK)}, (K = 255).

Then the series of ideal actions as = {aideal(t1), aideal(t2), · · · , aideal(tK)} is computed
by Equation (38).The random reward sequence rs = {r(t1), r(t2), r(t3), · · · , r(tK)} is
generated from uniform distribution U (1, 4) based on the reward set Sr = {1, 2, 3, 4}.

(2) Initializing sufficient statistics of all random parameters. To allow our model to
work well for sensory inputs, we choose particular initial sufficient statistics of the
random parameter vector ξ1, and determined the prior distribution of ξ1. The configu-
ration for the parameters of the Bayesian agent (Figure 4) is shown in Table 2.
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(3) Maximizing negative free energy. To obtain the optimal prior parameters
(

µ∗ξ1
, C∗ξ1

)
of the parameter ξ1, we maximize negative free energy (Equations (A19)–(A21)) by
using the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno method based on a line
search framework [49].

Table 2. Parameters of our hierarchical Bayesian model. Parameters labeled by ‘Free’ are optimized
by the inversion of the model. Fixed parameters are constant and not optimized. The notation 1 is
a constant column vector with all components being 1. The notation 0 is a zero vector. The matrix
Od is a d by d constant matrix in which all elements are 0. The notation logit(·) denotes a logistic
function logit(x) = ln( x

1−x ). Given all initial priors, we search for the optimal priors on all optimized
parameters µξ according to the free energy principle (Equations (A19) and (A21)).

Name Description Initial Value Fixed or Free

Parameters of our Bayesian perceptual model

d0 = du Dimension of sensory input u 2 constant

d1 Dimension of x1 2 constant

d2 Dimension of x2 3 constant

ε(tk) Sampling interval ε(tk) 1 constant

αλtop Upper bound on λtop
√

0.1 · 1 constant
λtop Volatility of x2 Free
µ

λG
top

Mean of λG
top logit(0.1) · 1

C
λG

top
Covariance of λG

top 1× 10−2 Id2

αw2 Upper bound on w2 1 · 1 constant
w2 Coupling strength Free
µwG

2
Mean of wG

2 logit(0.25) · 1
CwG

2
Covariance of wG

2 1× 10−2 · Id2

b2 Coupling bias 0 Fixed
µb2

Mean of b2 0
Cb2 Covariance of b2 O3

µ2(t0) Prior mean of x2 Free
µµ2(t0)

Mean of µ2(t0) ln(0.16) · 1
Cµ2(t0) Covariance of µ2(t0) 1× 10−2 · I3

C2(t0) Prior covariance of x2 Free
µcG

2
Mean of cG

2 ln(1)
CcG

2
Covariance of cG

2 Id2

µ1(t0) Prior mean of x1 Free
µµ1(t0)

Mean of µ1(t0) 0
Cµ1(t0) Covariance of σG

1 Od2

C1(t0) Prior covariance of x1 Free
µσG

1
Mean of σG

1 ln(0.16) · 1
CσG

1
Covariance of σG

1 0.1Id1

ζ1 Coefficient Fixed
µ

ζG
1

Mean of ζG
1 0

C
ζG

1
Covariance of ζG

1 O2

Parameters of our response model

da Dimension of a 1 Fixed

ζa Coefficient Fixed
µζG

a
Mean of ζG

a ln(2)
CζG

a
Covariance of ζG

a 0
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In order to reveal the dynamic interaction between the natural parameters of the
two-armed bandit, we show one example gambling process performed by the Bayesian
agent characterized by the optimal parameters. The Bayesian agent tracked online the
tendency µ1 of the natural parameters x1 associated to the bandit (Figure 5), so that it is able
to make decisions based on the estimated decision evidence. The evolution of µ1 follows
well of the trend of expected states of the bandit (Figure 3), generating good prediction of
the states (Figure 6b,c).

After the observation of the tentative rewards (Figure 6a) during the cue phase of a
trial, the Bayesian agent makes a choice in the decision phase according to the perceptual
model and the response model. In the first block of the simulation (trial 1 to 15, Figure 3),
the two arms have the same expected states of maximal uncertainty, i.e., P(x(1)0 = 1) =

P(x(2)0 = 1) = 0.5, and the binary state patterns of the two-armed bandit are equal probable.

Both of the belief states µ
(1)
0 , µ

(2)
0 of two arms fluctuates around 0.5 (Figure 6). During this

block, the prediction correlation ρ̂1 fluctuates and decreases slightly towards zero, reflecting
the fact that the states of the two arms are uncorrelated. From the second block to the
tenth block (trial 16 to 150, Figure 3), the expected states of the two arms are incongruent.
Therefore, the changes in the prediction tendency µ̂

(1)
1 (Figure 5a, as well as in the predicted

mean µ̂
(1)
0 of arm A in Figure 6b) are on average in opposite directions as the changes in

the prediction tendency µ̂
(2)
1 (Figure 5b, as well as in the predicted mean µ̂

(2)
0 of arm B in

Figure 6c). Meanwhile, the prediction correlation ρ̂1 continues to decrease during this stage
(Figure 6d), manifesting the incongruency of the two arms. From the eleventh block to the
seventeenth block (trial 151 to 255, Figure 3), the changes in µ̂

(1)
1 and µ̂

(2)
1 share the same

trend (Figure 5), so do the changes in µ̂
(1)
0 and µ̂

(2)
0 (Figure 6b,c), due to the fact that the two

arms have the same expected states. Consequently, the prediction correlation ρ̂1 continues
to increase during this stage (Figure 6d).

Figure 5. Temporal dynamics of the tendency µ1 of the natural parameter at the first level. (a) The

evolution of µ
(1)
1 , the first component of µ1, is shown in red. The time-varying trajectory of the

prediction error PE(1)
1 is shown in blue. (b) The evolution of µ

(2)
1 , the second component of µ1, is

shown in red. The time-varying trajectory of the prediction error PE(2)
1 is shown in blue. Light-red

shaded area represents the uncertainty of each quantity (i.e., µ
(i)
1 (t)±

√
C(i,i)

1 (t), i ∈ {1, 2}). The red
markers4, ◦ represent the priors on the standard deviation and mean of each quantity.

The log-volatility in the natural parameters (µ(1)
2 and µ

(3)
2 , i.e., internal representation

of the expected states) of the two arms has notable changes from the third block to the
fourteenth block (trial 31 to 210, Figure 7a,c). The changes are more evident from the
sixth block to the fourteenth block, during which volatility is more vigorous. From the
second to the tenth blocks (trial 31 to 150), the expected states of the two arms are not equal.
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Instead, they become incongruent (Figure 3). During this period, the log-volatility state
µ
(2)
2 , corresponding to the prediction correlation ρ̂1, decreased and kept a descending trend

(Figure 7b). This is consistent with the fact that the two arms are incongruent at the time.
As a contrast, from the eleventh block to the seventeenth block, the expected states of the
two arms are equal (trial 151 to 255, Figure 3), therefore, the Bayesian learner discovered an
increasing log-volatility state µ

(2)
2 during this stage (Figure 7b).

Figure 6. Temporal dynamics of the posterior states in a gambling task. (a) Rewards for two choices
“Different’ and “Same” were randomly generated by a discrete uniform distribution U (1, 4). Blue
dots represent the reward value for option “Same” on each trial, and red dots for option “Different”.
(b) The green dots are the sensory inputs of u(1) (i.e., states of arm A). The red line represents the

estimated probability µ̂
(1)
0 (tk) = s(µ(1)

1 (tk−1), ζ
(1)
1 ). (c) The green dots are the sensory inputs of u(2)

(i.e., states of arm B). The red line represents the estimated probability µ̂
(2)
0 (tk) = s(µ(2)

1 (tk−1), ζ
(2)
1 ).

(d) Prediction correlation ρ̂1(t) is extracted from the inverse prediction precision Π̂1(t) generated by
the second (log-volatility) level. (e) Blue dots denote the optimal choice aideal on each trial. The red
line is the trajectory of the expectation probability that the states of two arms of the bandit are the
same (i.e., P(a = 1)). The orange dots are the response action a generated by the agent on each trial.
(f) The green dashed line is the cumulative reward of the ideal observer taking the ideal actions aideal .
The red line shows the cumulative reward obtained by the Bayesian agent.

In Figure 8, our Bayesian agentM1 is compared with the informed agent. In our Bayesian
decision model, the evidence for decision-making is quantified by the probability P(a(t) = 1)
(red solid line in Figure 8a). It is close to the probabilistically optimal expectation of response
action P∗(a(t) = 1) given by the informed agent (blue dashed line in Figure 8a). The action
selection behavior of our Bayesian agent was similar to the optimal probability decision
pattern. In this experiment, the regret R(P(a(tk) = 1)|us, as, rs) is worked out by substituting
P(a(t) = 1) generated by our Bayesian agent into Equation (39), and is 27.3588.

Since the Bayesian agent made decisions based on the estimated decision evidence, it
may be distracted by high rewards associated to the wrong action. In the third block (trial
31 to 45), the rewards of the option “Same” were higher than the option “Different”, the
Bayesian agent were biased towards choosing “Same”, reflexing the fact that less likely
but highly rewarded actions are worth to be tried (Figure 6e). This phenomenon was
also evident in the beginning of the eleventh block (trial 151 to 155), where high rewards
were more often assigned to the option “Different”. The Bayesian agent from time to time
reduced the probability of choosing the option “Same”, leading to select “Different” more
often (Figure 6e). The cumulative reward obtained by the Bayesian agent maintains a linear
increasing trend irrespective of the volatility (red line in Figures 6f and 8b), keeping close
to the reward gained by the informed agent (blue line in Figure 8b).
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Figure 7. Temporal dynamics of the expectation of the logarithm of volatility µ2 in the natural
parameter x1 at the second level. Each panel shows the evolution of one element of µ2 in red and
the corresponding element of PE2 in blue. Light-red shaded area represents the uncertainty of each

quantity (i.e., µ
(i)
2 (t) ±

√
C(i,i)

2 (t), i ∈ {1, 2, 3}). The red markers 4, ◦ represent the priors of the
standard deviation and mean of each quantity.

Figure 8. Temporal dynamics of the expectation of response action P(a(t) = 1) . (a) The expectation
of response action P(a(t) = 1) generated by our Bayesian agentM1 (red solid line) match closely to
the probabilistically optimal expectation of response action P∗(a(t) = 1) (blue dashed line). (b) The
cumulative reward obtained by our Bayesian agent (red solid line) tightly follows the cumulative
reward of the probabilistically optimal expectation of response action P∗(a(t) = 1) given by the
informed agent (blue dashed line). The ideal observer, who knows the actual outcomes of the bandit
in advance, has the highest cumulative reward of the task.
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5.2. Bayesian Model Selection

In order to evaluate the proposed hierarchical Bayesian model for inferring and de-
cision making, we adopt the Bayesian model selection methodology [50]. It is a general
principle to favor a model that achieves balanced tradeoff between complexity and flex-
ibility. The proposed hierarchical Bayesian model has the sophisticated complexity to
capture volatility in a multiscale fashion. We compare it with a well-known baseline
model in psychology and Reinforcement Learning (RL), namely the Rescorla–Wagner
(RW) model [26,51]. As a special case of the Temporal-Difference Learning method, the
Rescorla–Wagner model updates value estimations based on prediction errors [26].

To perform fair comparisons, we construct a variant of the RW model using the same
response model as the proposed hierarchical Bayesian model (cf. Appendix G). The agent
with the RW model and the above response model is denoted byM2. Under the same
variational Bayesian learning scheme, we search the optimal parameters forM2 on each
sequence of sensory inputs (Appendix D).

We conducted a Bayesian model selection experiment to compare the proposed
Bayesian agent M1 based on a variant of GHBF with the agent M2 based on the RW
model. The detailed simulation was performed as the following steps.

(1) Generating synthetic dataset D. According to Figure 3, we randomly generated 100 se-
quences of multivariate binary inputs us = {u(t1), u(t2), u(t3), · · · , u(tK)} (K = 255).
Then the series of ideal actions as = {aideal(t1), aideal(t2), · · · , aideal(tK)} are computed ac-
cording to Equation (38). Random reward sequences rs = {r(t1), r(t2), r(t3), · · · , r(tK)}
are generated from uniform distribution U(1, 4) based on the reward set Sr. Here we
used the notation D to denote the set of sensory and action sequences

D = {us, rs, as|us and rs are repeatedly generated}.

(2) Initializing sufficient statistics of all random parameters in our Bayesian agentM1.
We choose particular initial sufficient statistics of a parameter vector ξ1 to allow
the Bayesian agentM1 to work well on all sequences of sensory inputs. Then we
determined the prior distribution of ξ1. All configurations for parameters of the agent
based on GHBF (Figure 4) are shown in Table 2 .

(3) Initializing sufficient statistics of all random parameters in the RW-agentM2. We
determined a particular initial value of a parameter vector ξ2 (Table A2) for the
agentM2. All configurations for parameters of the agent based on Rescorla–Wagner
model were shown in Table A2. The response model of the RW model uses the same
parameter configuration as in the Bayesian agent in step 2.

(4) Maximizing negative free energy. On each sequence of sensory inputs, we per-

formed an optimization method to obtain the optimal prior parameters
(

µ∗ξ1
, C∗ξ1

)
of

the parameter ξ1 for the agentM1 and the optimal prior parameters
(

µ∗ξ2
, C∗ξ2

)
of the

parameter ξ2 for the agentM2 according to Equation (A21) respectively. In this pa-
per, we implemented the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno method
based on a line search framework [49] to obtain negative free energy maximization
(Equations (A19)–(A21)).

(5) Evaluating negative free energy. On each sequence of sensory inputs, we can eval-
uate the maximum negative free energies F ∗ξ1

for the agent M1 and F ∗ξ2
for the

agent M2 according to Equation (A22). Then Bayesian Factors are evaluated by
Equations (A33) and (A34).

In each gambling task, two agentsM1,M2 generate their time-courses of the predicted
states µ0(t) on the expectation of the states of the two-armed bandit. The predicted states
are recorded into a d0 × K matrix T

T = [µ0(t1), µ0(t2), · · · , µ0(tK)] ∈ Rd0×K.
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Given any pair of sequences (randomly generated in step 1) (us, as, rs) ∈ D, our Bayesian
agentM1 and the RW agent dynamically infer the states, and form inference trajectories
T1(us, as, rs) and T2(us, as, rs) respectively. The mean dynamic inference trajectory T̄i and
the standard deviation σT i are computed as

T̄ i =
1
|D| ∑

(us ,as ,us)∈D
T i(us, as, rs)

σT i =

√√√√ 1
|D| − 1 ∑

(us ,as ,rs)∈D
[Ti(us, as, rs)− T̄i]

2,
(40)

where the notation |D| is the number of elements in the dataset D (e.g., |D| = 100).
Figure 9 shows that both the Bayesian agent (red lines) and the RW agent (blue dashed

lines) are able to track the ground truth or real probabilities well, showing quick jumps
at the points where the ground truth undertakes remodeling. However, the RW agent
produces more variable predictions, as shown by larger standard deviation (blue shaded
areas vs. red shaded areas). The RW agent often overshoots its estimation (blue dashed
lines vs. black lines). These results demonstrate that the RW agent overfits observations.

Figure 9. The mean inference trajectory T̄i(i = 1, 2) of the predicted states of the two-armed bandit

x0. (a) The evolution of mean inference trajectories corresponding to µ
(1)
0 over the dataset D. (b) The

evolution of mean inference trajectories corresponding to µ
(2)
0 over the dataset D. In both panels, the

groundtruth is shown by black lines. The mean inference trajectories given by the Bayesian agent
and the RW agent are in red and blue, respectively. The shaded areas correspond to the standard
deviations ±σT i .

In each gambling task, given the sensory inputs us, actions as and rewards rs, two agents
M1,M2 generate their series of the expectations of the response action P(a(t) = 1), de-
noted by {P1(a(tk) = 1)|k = 1, 2, · · · , K} and {P2(a(tk) = 1)|k = 1, 2, · · · , K} respectively.
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Their regrets can be evaluated by substituting Pi(a(tk) = 1) into Equation (39). The mean
regret R̄i and the standard deviation σT i on the synthetic dataset D are computed as

R̄i =
1
|D| ∑

(us ,as ,rs)∈D
R(Pi(a(tk) = 1)|us, as, rs)

σRi =

√√√√ 1
|D| − 1 ∑

(us ,as ,rs)∈D
[R(Pi(a(tk) = 1)|us, as, rs)− R̄i]

2.
(41)

The mean R̄1 and standard deviation σR1 of our Bayesian agent (based on GHBF)M1
are smaller than the mean R̄2 and standard deviation σR2 of the RW-agent (based on the
RW model)M2 (Figure 10).

To evaluate the two models more formally, given the three sequences (us, rs, as), we
computed Bayesian Factor BF without Bayesian Information Criterion (BIC)

BF :=
p(us, rs, as|M1)

p(us, rs, as|M2)

≈ exp(F ∗ξ1
−F ∗ξ2

),
(42)

and Bayesian Factor BFBIC with BIC (cf. Appendices E and F)

BFBIC := exp
(
F ∗ξ1
−F ∗ξ2

− dξ1
− dξ2

2
ln(K)

)
, (43)

where dξi
is the number of free parameters estimated by the model. The notations F ∗ξ1

,F ∗ξ2
are respectively the maximal negative free energies of the two agentsM1,M2 on the given
pair of the sequences (us, rs, as). Under both measures, Bayesian Factors on the observation
dataset D are concentrated on the range larger than 100 (i.e., BF > 100, BFBIC > 100)
(Figure 11a,b), meaning decisive evidence for the Bayesian agent outperforming the RW
agent according to Table A1.

GHBF RW
0
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10

15

20

25

30

35

Figure 10. The statistic mean R̄i and standard deviation σRi of the regrets on the synthetic dataset D.
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Figure 11. Histogram of Bayesian Factor. (a) Bayesian Factor without the Bayesian Information
Criterion BF. (b) Bayesian Factor with the Bayesian Information Criterion BFBIC.

6. Discussion
6.1. Contributions of This Work

In this article, we have introduced a hierarchical Bayesian model that describes how
to infer volatility (i.e., environmental uncertainty and correlations) in a multi-dimensional
space. In this model, the bottom level is to learn the state expectation of a multi-armed ban-
dit, which is described by a multivariate Bernoulli distribution. The natural parameter x1
of the Bernoulli distribution is learned by the first level. Under the Brownian and Gaussian
assumption on x1, volatility can be strictly determined by the Cholesky Decomposition of
pervasion intensity of Brownian motion x1 [46]. Therefore, we can define the volatility in
x1 as the Cholesky Decomposition of pervasion intensity of x1. Next, the volatility in x1
can be represented by x2, with evolves as a Brownian motion. The low-order interactions
between the dimensions of the Bernoulli distribution and the environmental uncertainties
are captured in the second level, corresponding to x2.

The hierarchical Bayesian model assumes that the tendency of a binary pattern
evolves as a general Brownian motion at the first level. The tendency can be updated by
Equation (18), where prediction error PE0(tk) is the information gap between the agent’s
belief and sensory input. This quantity is a target that the agent should learn to diminish.
The parameter vector ζ1 functions as weighting vector to weight prediction error PE0(tk).
The covariance C1(tk) plays the role of complex adaptive learning rate in Equation (18).

In principle, the proposed model could be easily generalized to a Bayesian framework
for decision making in high-dimensional multinary environments, by defining appropriate
forms of perceptual models and response models. In this study, the input space was
assumed to be binary. For multinary environments, the representations of the tendency
of the inputs could be defined accordingly to form a hierarchical perceptual model. Here
we derived a response model from Bayesian decision theory with the goal of maximizing
expected rewards or minimizing expected risk or loss [47,52]. For other problems of
interest, it is sufficient to construct a compatible response model addressing the particular
optimization criteria of the question. For example, recognition and navigation tasks could
be formulated in the proposed Bayesian framework to cope with the interactions between
multimodal information [53,54].

In summary, the main contributions of this work are twofold. First, the model captures
the correlations between the dimensions of the sensory space, and is able to make decisions
contingent on the structure of the sensory inputs. Simulations show that our model is
applicable to complex inference and decision making tasks that could not be tackled by
methods with independence assumptions of the high dimensional input features. Second,
the model represents the tendency and volatility of the sensory inputs in a hierarchical



Mathematics 2022, 10, 4775 21 of 35

manner based on the idea of nested Brownian motions. The resulting hierarchical computa-
tional framework naturally allows the interactions between layers, and is able to track the
dynamics of the environment.

6.2. Related Works

The proposed hierarchical Bayesian model is most related to the Rescorla–Wagner
model [35,51,55,56]. Equation (18) has the form of a generalized form of the Rescorla–Wagner
equation in reinforcement learning [26]

µ1(tk) = µ1(tk−1) + Γ∆µ1(tk),

where ∆µ1(tk) is an error signal (or learned target) at time tk. In the cognitive neuroscience
field, some variants of the RW model have been introduced for the behavioral paradigm
of multi-armed bandits. However, due to the limitation of the RW model, it is difficult to
capture the volatility of the signal. More importantly, since the learning rate in RW model
is constant, it is difficult to interpret the subject’s dynamic process of capturing effective
information during the experiment. As an example, given the reward R(tk−1) at time tk,
the standard RW model estimates the value state variable V by

V(tk) = V(tk−1) + αPE(tk)

PE(tk) = R(tk−1)−V(tk−1),
(44)

which is simplified to

V(tk) = (1− α)V(tk−1) + αR(tk−1). (45)

It is clear to see that the learning rate α plays a role of a moving average, weighting initial
value V(t0) and a reward sequence R(t1), R(t2), · · · , R(tk). This is an inflexible filtering
method to cope with volatility. For small learning rate α, the RW model prefers to predict
based on the input history, a good scenario for slow changing signals. The RW model with
large learning rate prefers to rely on most recent rewards, a good scenario for fast changing
signals. However, the RW model did not unify the two learning processes (i.e., the learning
rate is not able be adapted depending on the environment and agent state). In this sense,
our hierarchical Bayesian model provides a theoretically justified mechanism to adapt
learning rate dynamically according to the volatility of the environment and the states of
the agent.

For a single-step update, the time complexity of our hierarchical Bayesian model is
O(d4

0) (Equations (13)–(31)), while the time complexity of the RW model is O(d0). In our
model, capturing volatility to form adaptive learning rate leads to a higher computational
cost. Experiments show that this computational cost is necessary for the model to flexibly
adapt to volatile environments. On the synthetic dataset D, the trajectories of the state
estimation formed by our hierarchical Bayesian model (light red shadow area in Figure 9)
are distributed narrower than those of the RW model (light blue shadow area in Figure 9),
indicating the stability and robustness of the proposed model.

6.3. Strengths and Limitations

Our hierarchical Bayesian model is general enough to be easily applied in high-
dimensional environments. The number of parameters of the model scales quadratically
with respect to the dimension of the input space. Given the number of dimensions d0,
corresponding to the dimension of x0(t) at the bottom level (i.e., sensory input u(t)), the
dimension of the parameter ξ1 of our perceptual model is d0 + 2d1 + 5d2 = d0(d0+5)

2 (cf.
Appendix C). In the Bayesian learning process, the optimization algorithm (i.e., quasi-
Newton Broyden–Fletcher–Goldfarb–Shanno method) needs to numerically evaluate the
gradient of the negative free energy with respect to each component of the model pa-
rameter ξ1. For a large number of dimensions d0, parallel computing framework based
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on CPU and GPU need to be developed in order to improve the evaluation efficiency of
numerical gradients.

6.4. Future Work

In this paper, we construct a hierarchical Bayesian model for inferring and decision-
making in multivariate volatile binary environment, and test and validate it on a synthetic
dataset. We plan to use this model to explain human decision-making behaviors and brain
activities. To this end, we need to collect behavior and neuroimaging data while human
subjects are performing the same task of multi-armed bandit as defined in this paper. For
theoretical interest, the mechanism of the adaptive learning rate and correlation among
natural parameters are worthy for further clarification in our hierarchical model, and we
look forward to analyzing these critical mechanisms in future investigation.

7. Conclusions

We have introduced a hierarchical Bayesian model for decision making in high-
dimensional volatile environments, and derived a family of interpretable closed form
update rules. Based on this framework, we define a Bayesian agent endowed with the
proposed hierarchical Bayesian model, as a mentalizing model of a biological agent, to per-
form an abstract multi-armed bandit task. Simulations show that our model is applicable to
complex tasks that could not be tackled by models with independency assumptions. Cru-
cially, the proposed model contains a hierarchical perceptual model that is able to capture
different covariances (e.g., prediction covariance, posterior covariance, likelihood covari-
ance). As an important indicator of mental process, prediction correlation is dynamically
estimated in the second level of the hierarchical perceptual model. Prediction correlation
describes quantitatively (weak) pairwise interactions among different perception quantities
(e.g., natural parameters of multi-armed bandits). In conclusion, the proposed hierarchical
Bayesian model provides a powerful tool to solve complex perception and decision making
problems in high-dimensional volatile environments [57], as well as to quantify complex
phenomena such such as perceptual decision making, spatial navigation, social interactions
and exploratory behaviors [58–63].
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Appendix A. Bayesian Agent

A Bayesian agent summarizes its past experience of perceptions and decisions to adapt
to the external environment. After observing sensory input u, the agent integrates internal
salability priors obtained from past experience with the current information provided by
sensory input. Then it yields inferences and predictions of about the external environment.
Based on the estimated states of the external environment, the agent makes a decision to
manipulate the external environment. Bayes’ rule subserves optimal probability inferences
and calculus for representing beliefs and acting in external environment in an efficient and
consistent manner [22,23,64,65].

More specifically, a Bayesian agentM is defined by the likelihood p(u|x,M) and a
priori p(x|M) on the hidden state x. After recieving sensory input u, the agent infers a
posterior distribution p(x|u,M) according to Bayes’ rule for future perception and action

p(x|u,M) =
p(x|M)p(u|x,M)∫
p(x|M)p(u|x,M)dx

. (A1)

To act in the external environment, the agent selects an action a∗ from an action set A
according to the prediction or posterior distribution of hidden states p(x|u,M) ≈ q(x; χ),
with χ being the sufficient statistics of posterior hidden states x. q(x; χ) is an approximation
for the true posterior p(x|u,M). In general, a response model πr is defined to map hidden
states into actions, which can be a deterministic or stochastic mapping.

External Environment

p(x|M)

External states

Agent

q(x;χ)
a∗ = πr(q(x;χ))

Internal states

p(u|x,M)

Sensation

a∗ ∈ A

Action

argmax
q

F (q(x,χ),u)

Figure A1. Interaction between an agent and the external environment.

Unfortunately, the integral in Equation (A1) is intractable to compute. To calculate the
above posterior p(x|u,M), we resort to variational Bayesian methods [22] to approximate
Bayesian inference efficiently. This is done by finding a lower bound on the logarithm of
model evidence ln p(u|M), called negative free energy F (q(x; χ), u)

ln p(u|M)

= ln
∫

q(x; χ)
p(u, x|M)

q(x; χ)
dx

≥
∫

q(x; χ) ln
p(u, x|M)

q(x; χ)
dx

=
∫

q(x; χ) ln p(u, x|M)dx

−
∫

q(x; χ) ln q(x; χ)dx

=H(x; χ)−U(x; χ)

= ln p(u|M)− DKL[q(x; χ)||p(x|u,M)]

=F (q(x; χ), u)

, (A2)
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where H(x; χ) = −
∫

q(x; χ) ln q(x; χ)dx is the entropy, and

U(x; χ) = −
∫

q(x; χ) ln p(u, x|M)dx

is the internal energy. Equation (A2) tells that the lower bound is negative free energy, i.e.,
the entopy H(x; χ) minus the internal energy U(x; χ).The Kullback–Leibler divergence
DKL[q(x; χ)||p(x|u,M)] ≥ 0 measures the difference between the approximation and
the true posterior. The better the approximation q(x; χ) is, the smaller the divergence
is. The minimal divergence 0 occurs when the ideal approximation q(x; χ) is equal to
p(x|u,M). The agent therefore could obtain the optimal approximation posterior q(x; χ)
by maximizing negative free energy F (q(x; χ), u)

q(x; χ0) = arg max
q
F (q(x; χ), u). (A3)

We use the Lagrange method to solve this maximization problem. The Lagrangian func-
tional is defined as

F̄ (q(x; χ), u)

= F (q(x; χ), u) + υ[
∫

q(x; χ)dx− 1]
, (A4)

where υ is a Lagrange multiplier. The solution of the optimal problem (Equation (A3)) is
also the solution of the variational equation (Equation (A5))

δF̄(q(x; χ), u)
δq

= 0. (A5)

Appendix B. Variational Bayesian Inference

Given a Bayesian perceptual model p(xs, u|ψ, ε), where ψ and ε are parameters,
the model evidence p(u|ψ, ε) is often analytically intractable. Therefore, exact Bayesian
posteriors could not be analytically calculated. We apply variational Bayesian methods to
transform the calculation of exact Bayesian posteriors p(xs|u, ψ, ε) into finding the optimal
variational posteriors q(xs) (cf. Equations (A2)–(A5) in Appendix A). The lower bound on
the logarithm of the model evidence p(u|ψ, ε) is given by

ln p(u|ψ, ε)

= ln
∫

q(xs)
p(u, xs|ψ, ε)

q(xs)
dxs

≥
∫

q(xs) ln
p(u, xs|ψ, ε)

q(xs)
dxs

=
∫

q(xs) ln p(u, xs|ψs, ε)dxs

−
∫

q(xs) ln q(xs)dxs

=−U(xs) + H(xs)

=F (q(xs)).

(A6)

Then we use an important assumption that marginal variational posteriors over latent
variables are independent, i.e., the joint variational posterior distribution factorizes with
respect to all marginal posteriors

q(xs) = ∏
xh∈xs

q(xh), (A7)
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where xh is one element of xs. The factorized form in Equation (A7) corresponds to the so-
called mean field approximation, an approximation scheme developed in statistical mechanics.

It should be noted that we now wish to maximize the negative free energy F (q(xs))
with respect to each approximation posterior q(xh) under the constraint of normalized
probability

∫
q(xh)dxh = 1, ∀h. The Lagrangian functional F̄(q(xs)) is defined as

F̄ (q(xs)) = F̄ (q(xs\h), q(xh))

,F (q(xs)) +
H

∑
h=1

κh

(∫
q(xh)dxh − 1

)
=−

∫
q(xs) ln p(xs, u|ψs, ε)dxs

+
∫

q(xs) ln q(xs)dxs

+
H

∑
h=1

κh

(∫
q(xh)dxh − 1

)
=−

∫
q(xs\h)q(xh) ln p(xs, u|ψs, ε)dxs\hdxh

+
∫

q(xs\h)q(xh) ln q(xs\h)q(xh)dxs\hdxh

+ ∑
i∈H\{h}

κi

(∫
q(xi)dxi − 1

)

+ κh

(∫
q(xh)dxh − 1

)
,

(A8)

where κh is a Larangian multiplier. We use xs\h to denote the set defined by the subtraction
of two sets xs − {xh}, the notation H for an index set {1, 2, 3, . . . , H}, and the notation
H\{h} for the subtraction of two sets H− {h}. The variation of Equation (A8) with respect
to q(xh) is

δF̄ (q(xs))

δq(xh)
=

δF̄ (q(xs\h), q(xh))

δq(xh)

=−
∫

q(xs\h) ln p(xs, u|ψs, ε)dxs\h

+
∫

q(xs\h) ln q(xs\h)dxs\h

+ ln q(xh) + κh + 1

=0.

(A9)

The optimal variational approximation posterior q(xh) is of the form of Boltzmann distribution

q(xh) =
1
Zh

exp(Vh(xh))

Vh(xh) =
∫

q(xs\h) ln p(xs, u|ψs, ε)dxs\h

He(xs\h) =−
∫

q(xs\h) ln q(xs\h)dxs\h

Zh = exp(−He(xs\h) + κh + 1),

(A10)

where Vh(xh) =
∫

q(xs\h) ln p(xs, u|ψs, ε)dxs\h corresponds to negative internal energy
over the hidden variable xh. The quantity Vh(xh) is often called variational energy.
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Appendix C. Probabilistic Representation of Parameters

In a Bayesian model, an unknown parameter can be treated as a random variable.
Probability models could be employed to determine the parameters. Put simply, the
probability density function of each random parameter is modeled by a delta-function
at each time, and their values follow various multivariate Gaussian distributions [22,23].
In addition, different parameters may have different constraints, therefore we introduce
parameterizations to represent these constrained parameters [46].

The coupling mapping F2 contains bias b2 and coupling strength w2 as parameters
(Equation (9)). We make an assumption on b2 that it is a multivariate Gaussian distribution
with the mean µb2

and the variance Cb2

q(b2) = N (b2; µb2
, Cb2). (A11)

In principle, there should not be any constraints on the coupling strength w2. However,
there is no reason to choose w2 to be a negative element, since the negativity in w2 could
be counterbalanced by the negativity in x2. Therefore, the lower bound on each component
w(i)

2 is chosen to be 0. In addition, considering the fact that w2 is involved in the update

of the positive definite precision matrix P2 (Equation (29)), each component w(i)
2 (i =

1, 2, . . . , d2) should have a upper bound. If the value of w(i)
2 is too large, P2 would be

degenerated. To avoid such violations, we set the upper bound of w(i)
2 to be a constant value

α
(i)
w2 > 0, i.e., the i-th component of a constant column vector αw2 . We use a sigmoid function

to map a multivariate Gaussian variable into a bounded variable w2. This transformation
and the priors on w2 are given as

w(i)
2 = W (i,i)

2 =
α
(i)
w2

1 + exp(−w(i)G
2 )

, ∀i ∈ {1, 2, · · · , d2}

w2 = αw2 � s(wG
2 , 1)

q(w2) = q(wG
2 ) = N (wG

2 ; µwG
2

, CwG
2
).

(A12)

The parameter λtop naturally has a lower bound 0 constrained by variances, but if λtop
is not bounded from above, it may cause some violations: for a large λtop, it yields small
prediction precision Π̂2 where all variances are close to 0 and causes the posterior precision
P2 not to be a positive definite matrix. That is to say, an unbounded vector λtop violates the
conditions of the update equations, yielding an improbable perceptual inference. Therefore,
we set an upper bound αλtop on λtop, through a bounded sigmoid function similar as in
Equation (A12)

λ
(i)
top =

α
(i)
λtop

1 + exp(−λ
(i)G
top )

, ∀i ∈ {1, 2, · · · , d2}

λtop = αλtop � s(λG
top, 1)

q(λtop) = q(λG
top) = N (λG

top; µ
λG

top
, C

λG
top
).

(A13)

In the hierarchical model, we have introduced sensory noise parameters ζ1, with all
positive components. We represent these parameters in logarithmic space to preserve
nonnegativity. More specifically, ζ1 is expressed in its log-space by a Gaussian random
vector ζG

1
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ζ
(i)
1 = exp(ζ(i)G1 ), ζ

(i)G
1 ∈ R

ζ1 = exp(ζG
1 )

q(ζ1) = q(ζG
1 ) = N (ζG

1 ; µ
ζG

1
, C

ζG
1
).

(A14)

Here, we employ an element-wise exponential function exp(·) to map a multivariate
Gaussian random variable ζG

1 into ζ1.
Aside from these structural parameters, the initial priors on all hidden states are also

determined following similar way. In details, we use a Gaussian random variable to express
the initial mean µh(t0)

q(µh(t0)) = N (µh(t0); µµh(t0)
, Cµh(t0)

)

∀h ∈ {1, 2}.
(A15)

Each of the initial prior covariances {Ch(t0)|h = 1, 2} is restricted to a principal diagonal
and positive definite matrix. All principal diagonal elements in Ch(t0) form a column
vector ch. Since the components in ch are positive, they are represented by multivariate
Gaussian random variables in log-space

ch = exp(cG
h )

q(Ch) = q(cG
h ) = N (cG

h ; µcG
h

, CcG
h
)

∀h ∈ {1, 2}.
(A16)

For the response model expressed by Equations (34)–(37), there is only one inverse
temperature parameter ζa, which is also restricted to be positive. We can use the same
representation method as ζ1 to express ζa.

ζa = exp(ζG
a )

q(ζa) = q(ζG
a ) = N (ζG

a ; µζG
a

, CζG
a
)

(A17)

where µζG
a

, CζG
a

are the mean and variance of a Gaussian random variable ζG
a respectively.

Appendix D. Variational Bayesian Learning

A Bayesian agent receives and encodes sensory input u(t), and then makes a percep-
tual decision (i.e., action) a(t) ∈ A based on random reward r(t) and perceptual evidence.
These two successive processes correspond to the two main functional models of an agent:
a perceptual model to encode sensory inputs and a response model to make perceptual
decisions [20,21,23]. Here, we employ a GHBF as the perceptual modelMp with perceptual
parameter vector ψ and a simple response model defined by Equations (34)–(37) as the
response model πr with the response parameter vector ψr. The combined model is denoted
byM = (Mp, πr). All its parameters are denoted by ξ.

We introduce the following mean field approximation to fit the parameters of the
combined model with the sensory inputs us = {u(t1), u(t2), · · · , u(tK)}, actions as =
{a(t1), a(t2), · · · , a(tK)} and random rewards rs = {r(t1), r(t2), · · · , r(tK)}

q(ξ) ≈ q(ψ)q(ψr)

=q(λtop)q(σu)

(
H

∏
h=2

q(wh)p(bh)

)(
H

∏
h=1

q(µh(t0))q(Ch(t0))

)
.

(A18)
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Then

ln p(us, rs, as|M) = ln
∫

p(us, rs, as, ξ|M)dξ

= ln
∫ p(us, rs, as, ξ|M)q(ξ)

q(ξ)
dξ

≥
∫

q(ξ) ln(
p(us, rs, as, ξ|M)

q(ξ)
)dξ

=
∫

q(ξ) ln p(us, rs, as, ξ|M)− q(ξ) ln q(ξ)dξ

, F (q(ξ))

(A19)

We use the Lagrange multiplier method to work out the optimal variational posterior
as below

q(ξ) =
1
Zξ

exp(V(ξ))

V(ξ) = ln p(us, rs, as, ξ|M).
(A20)

Then we execute Laplace’s approximation to determine a Gaussian approximation of the
variational posterior solution (Equation (A21))

ξ∗ = arg max
ξ

V(ξ) = arg max
ξ

ln p(us, rs, as, ξ|M)

= arg max
ξ

ln p(ξ, as|us, rs,M)p(us)

= arg max
ξ

ln p(ξ, as|us, rs,M)

= arg max
ξ

ln p(as|ξ, us, rs,M) + ln p(ξ)

= arg max
ξ

K

∑
k=1

ln p(a(tk)|u(tk), r(tk), ξ,M) + ln p(ξ)

= arg max
ξ

K

∑
k=1

ln p
(
a(tk)|r(tk), χs(tk) =Mp(u(tk), ψ), ψr

)
+ ln p(ψ)

µ∗ξ =ξ∗

C∗ξ =− ∂2V(ξ∗)
∂ξ∂ξT ,

(A21)

where p
(
a(tk)|χs(tk) =Mp(u(tk), ψ), ψr

)
is given by a particular response model. χs(tk)

is the set of sufficient statistics of posterior hidden states in our hierarchical Bayesian
perceptual model at time tk

χs(tk) = {µ1(tk), C1(tk), µ2(tk), C2(tk)}.

Finally, the maximum value F ∗ξ of the negative free energy Fξ is given by

Fξ ≤ F ∗ξ = V(µ∗ξ) +
dξ

2
ln 2πe +

1
2

ln det(C∗ξ). (A22)
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Appendix E. Evaluating Negative Free Energy

For a Bayesian agentMwith parameters ξ, the posterior p(ξ|us, rs, as,M) on parameters ξ
is approximated by a multivariate Gaussian distribution q(ξ) under the Laplacian approximation

p(ξ|us, rs, as,M) ≈ q(ξ) = N (ξ; µξ , Cξ),

where Cξ is a covariance matrix. The mean µξ is determined by maximizing the quantity
p(ξ|us, as,M)

µ∗ξ = arg max
ξ

p(ξ|us, rs, as,M)

= arg max
ξ

p(ξ, us, rs, rs, as|M)

p(us, rs, as|M)

= arg max
ξ

p(ξ, us, rs, as|M).

(A23)

The optimal q(ξ) is determined by maximizing the negative free energy Fξ

max
ξ

ln p(us, rs, as|ξ,M)

≥max
q(ξ)
Fξ = max

q(ξ)

∫
q(ξ) ln p(us, rs, as, ξ|M)− q(ξ) ln q(ξ)dξ

(A24)

We use the notation V(ξ) to denote the quantity ln p(us, rs, as, ξ|M) and then use Taylor’s
theorem to expand V(ξ) at the point µ∗ξ

V(ξ) ≈V(µ∗ξ)

+
∂V(µ∗ξ)

∂ξ
(ξ − µ∗ξ)

+
1
2
(ξ − µ∗ξ)

T
∂2V(µ∗ξ)

∂2ξ
(ξ − µ∗ξ).

(A25)

The first term
∫

q(ξ)V(ξ)dξ in the negative free energy Fξ is evaluated by∫
q(ξ)V(ξ)dξ

≈V(µ∗ξ) +
∂V(µ∗ξ)

∂ξ
Eq(ξ|µ∗ξ ,Cξ)

[ξ − µ∗ξ ]

+
1
2

Eq(ξ|µ∗ξ ,Cξ)
[(ξ − µ∗ξ)

T
∂2V(µ∗ξ)

∂2ξ
(ξ − µ∗ξ)]

=V(µ∗ξ) +
1
2

tr

(
Cξ

∂2V(µ∗ξ)
∂2ξ

)
(A26)
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The last term He(ξ) = −
∫

q(ξ) ln q(ξ)dξ is given by

He(ξ) = −
∫

q(ξ) ln q(ξ)dξ

= −Eq(ξ|µ∗ξ ,Cξ)

[
ln q(ξ|µ∗ξ , Cξ)

]
= −Eq(ξ|µ∗ξ ,Cξ)

[

− dξ

2
ln 2π − 1

2
ln det(Cξ)

− 1
2
(ξ − µ∗ξ)

TC−1
ξ (ξ − µ∗ξ)

]

=
dξ

2
ln 2π +

1
2

ln det(Cξ) +
1
2

tr(Idξ
)

=
dξ

2
ln 2πe +

1
2

ln det(Cξ)

(A27)

Therefore, the negative free energy Fξ is calculated as

Fξ = Eq(ξ)[V(µ∗ξ)] + He(ξ)

= V(µ∗ξ) +
1
2

tr

(
Cξ

∂2V(µ∗ξ)
∂2ξ

)

+
dξ

2
ln 2πe +

1
2

ln det(Cξ)

(A28)

Fξ is a scalar function of the covariance Cξ . The optimal point or a stationary point C∗ξ
is found where Fξ reaches the maximum. This is done by making the partial derivative
∂Fξ

∂Cξ
to be a zero matrix O.

∂Fξ

∂Cξ
=

1
2

∂2V(µ∗ξ)
∂2ξ

+
1
2

C−1
ξ = O

=⇒C∗ξ = −
(

∂2V(µ∗ξ)
∂2ξ

)−1 (A29)

At the optimal point C∗ξ , the maximal value of Fξ is

F ∗ξ = V(µ∗ξ) +
dξ

2
ln 2πe +

1
2

ln det(C∗ξ)

≈max
ξ

ln p(us, rs, as|ξ,M)

= ln p(us, rs, as|µ∗ξ ,M).

(A30)

Appendix F. Bayesian Model Selection

Grounded on probability theory, Bayesian model selection is to evaluate different
models based on the observed data, favoring the model with balanced tradeoff between
complexity and flexibility. Given a series of sensory inputs us = {u(t1), u(t2), · · · , u(tK)},
a series of actions as = {a(t1), a(t2), · · · , a(tK)} and a series of random rewards rs =
{r(t1), r(t2), · · · , r(tK)}, Bayesian model selection is to select the optimal agentM∗ to best
interpret sensory inputs and actions

M∗ = arg max
M

p(M|us, as, rs). (A31)
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Taking two different agentsM2,M1 into account, we can define Bayesian Factor as

p(M2|us, as, rs) =
p(M2)p(us, as, rs|M2)

p(us, as, rs)

p(M1|us, as, rs) =
p(M1)p(us, as, rs|M1)

p(us, as, rs)

p(M1|us, as, rs)

p(M2|us, as, rs)
= BF

p(M1)

p(M2)

BF =
p(us, as, rs|M1)

p(us, as, rs|M2)
,

(A32)

where p(Mi) is the prior distribution ofMi. Here, we make a general assumption that
the prior distribution of an agent is a non-informative prior. Under the assumption of
non-informative priors, the prior distribution is equivalent to a uniform distribution
p(M1)
p(M2)

= 1. Then the ratio of the posterior distributions p(M1|us ,as ,rs)
p(M2|us ,as ,rs)

is simply given
by the Bayesian Factor.

Bayesian model selection problem is reduced to selecting an agent with maximal
model evidence p(us, as, rs|Mi). In the Bayesian learning framework, log-model evidence
ln p(us, as, rs|M) can be approximated by the optimal negative free energy

F ∗ξ ≈ ln p(us, rs, as|µ∗ξ ,M)

defined in Equation (A30). By computing the negative free energies of two different agents
F ∗ξ1

,F ∗ξ2
, Bayesian Factor is given by

BF =
p(us, as, rs|M1)

p(us, as, rs|M2)

= exp(ln p(us, as, rs|M1)− ln p(us, as, rs|M2))

≈ exp(F ∗ξ1
−F ∗ξ2

).

(A33)

For the ease of using Bayesian Factor, Harold Jeffreys gave a scale for the interpretation of
Bayesian Factor (Table A1) [66]. If BF > 1, the agentM1 is more strongly supported by the
observed date, and vice versa (if BF < 1 , the agentM2 is more strongly supported).

Table A1. Bayes Factors and interpretations.

Bayesian Factor BF Interpretations

0 < BF < 1
100 Decisive evidence forM2

1
100 < BF < 1

10 Strong evidence forM2
1

10 < BF < 1
3 Moderate evidence forM2

1
3 < BF < 1 Weak evidence forM2
1 < BF < 3 Weak evidence forM1

3 < BF < 10 Moderate evidence forM1
10 < BF < 100 Strong evidence forM1

BF > 100 Decisive evidence forM1

According to the Bayesian Information Criterion (BIC) [67], log-model evidence
ln p(us, as, rs, |Mi) can be approximated by

ln p(us, as, rs|Mi) ≈ ln p(us, as, rs|µ∗ξi
,Mi)−

dξi

2
ln(K)

⇒ ln p(us, as, rs|Mi) = F ∗ξi
− dξi

2
ln(K),

(A34)
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where K is the number of sensory inputs in us. dξi
is the number of free parameters

estimated by the model. Therefore, Bayesian Factor is modified by

BFBIC =
p(us, as, rs|M1)

p(us, as, rs|M2)

= exp(ln p(us, as, rs|M1)− ln p(us, as, rs|M2))

≈ exp
(
F ∗ξ1
−F ∗ξ2

− dξ1
− dξ2

2
ln(K)

)
.

(A35)

Appendix G. Rescorla–Wagner Model

The Rescorla–Wagner (RW) model is a basic model in reinforcement learning (RL)
field and cognitive neuroscience field [26,51]. As a baseline model for comparison, we
construct a two dimensional RW model to capture the dynamic expectation µ0 = E[x0] of
the two armed bandits in the above gambling task

µ
(i)
0 (tk) = µ

(i)
0 (tk−1) + α∆µ

(i)
0 (tk)

∆µ
(i)
0 (tk) = u(i)(tk)− µ

(i)
0 (tk)

∀tk, µ
(i)
0 (tk) ∈ [0, 1]

i = 1, 2,

(A36)

where α ∈ (0, 1) is a positive learning rate. To yield a prediction µ̂0(tk) on x0(tk) before
receiving the actual sensory input u(tk) at time tk, the RW model uses its most recent state
i.e., µ0(tk−1) as the prediction

µ̂0(tk) := µ0(tk−1).

To produce an action based on the predicted state µ̂0 = [µ̂
(1)
0 , µ̂

(2)
0 ]T , the RW model

needs a response model to work with. We use the same response model based on Bayesian
decision theory (Section 4) for fair comparison.

To perform the variational Bayesian learning scheme (cf. Appendix D), we assume
that all parameters of the RW model are random variables. Following similar treatmeants
as in Appendix C, the initial prior state µ0(0) = [µ

(1)
0 (0), µ

(2)
0 (0)]T is represented in

logit-space µµG
0 (0)

µ0(0) = s(µG
0 (0), 1), (A37)

where µµG
0 (0)

is a two-dimensional Gaussian distribution with mean µµG
0 (0)

p(µG
0 (0)) = N (µG

0 (0); µµG
0 (0)

, CµG
0 (0)

). (A38)

Since the learning rate α is a value between 0 and 1, it is represented by a random
variable αG in the logit-space. We further assume that αG is a Gaussian random variable
with mean µαG and variance CαG

α = s(αG, 1) (A39)

p(αG) = N (αG; µαG , CαG ). (A40)

In this paper, all parameter configurations for the RW model are listed in Table A2.
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Table A2. Parameters of the Rescorla–Wagner model. Parameters labeled by ‘Free’ are optimized by
the inversion of the model. Fixed parameters are constant and not optimized. The notation 0 is a zero
vector. Given all initial priors, we search the optimal priors on the free parameters µξ according to
the free energy principle (Equations (A19) and (A21)).

Name Description Initial Value Fixed or Free

Parameters of Rescorla–Wagner model

du Dimension of u 2 constant

d0 Dimension of µ0 2 constant

µ0(t0) Prior initial state Fixed
µµG

0 (t0)
Mean of µG

0 (t0) 0
CµG

0 (t0)
Covariance of µG

0 (t0) Id0

α Learning rate α Free
µαG Mean of αG 0
CαG Covariance of αG 0.01
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