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Abstract: Analysis of the properties of the aorta was carried out by numerous researchers using
several parameters. However, the general laws of change in the dynamic geometry of the aortic
flow channel in connection with the hydrodynamics of the swirling blood flow have not been
studied properly. Therefore, at present, attempts to correct various diseases are carried out based
on the location of the aneurysm, and not in accordance with the general patterns of changes in
the dynamic geometry of the entire aortic channel. For a proper understanding of the aortic flow
channel remodeling mechanisms, it is necessary to determine the quantitative parameters that
formalize the geometry of this channel. The geometric shape of the aorta primarily depends on the
hydrodynamics of the flow inside the aortic flow channel, which is the only source of force impact on
its walls. The main result of the present study was that we obtained the new quantitative parameters
that characterize the normal aorta and the degree of its shape deviations caused by pathological
changes of the aortic duct. These parameters were calculated based on the software processing of the
three-dimensional aortic reconstruction in normal conditions and in the case of differently localized
aortic aneurysm.

Keywords: potential swirling flow; navier-stokes equations; unsteady swirling flow; tornado-like jets

MSC: 76Z05

1. Introduction

Any perturbations in the blood stream, which is a biologically active fluid flowing
in a channel with biologically active walls, inevitably lead to the activation of the body’s
defense systems and/or damage to the walls of the flow channel. Therefore, the main
hypothesis is that the blood flow in the central parts of the circulatory system (heart and
great vessels) is carried out without the formation of separation and stagnant zones, that is,
it is a potential flow. In such a flow, by definition, any types of interaction are minimized
both in the flow core and on the walls of the flow channel.

The cellular composition of the walls [1,2], their biomechanical properties [1], the
distribution of velocities and shear stresses [3,4], and metabolism [5,6] were studied. Many
model studies of the aorta have been carried out [7]. However, by present days there
are no proper quantitative criterions that allow one to formalize the degree of aortic duct
pathological remodeling. In the present study these parameters have been obtained by
considering analytical solutions for the velocity vector of swirling blood flow in the heart
and great vessels.

2. Materials and Methods

In previously published works [8–10], it has been shown that the dynamic geometry
of the heart and great vessels corresponds with a high degree of accuracy to the direction
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of streamlines of swirling flows described by exact solutions of the Navier-Stokes and
continuity equations for a class of self-organizing tornado-like flows of a viscous fluid.
These solutions were obtained in 1986 by G.I. Kiknadze and Yu.K. Krasnov [11] and are
generally expressed by relation (1).

ur = C0(t)r +
C1
r

uz = −2C0(t)z + C2(t)
uϕ(r, t) = 1

r ∗
(

A1 + A2Γ
(

1 + C1
2υ , α(0) ∗ r2

))
,

(1)

Here C0(t) and C2(t) are time-dependent functions, A1, A2, and C1 are constants, and
α(t) is a function that has the following form:

α(t) =
e−2

∫ t
0 C0(τ1)dτ1

B1 − A
∫ t

0 e−2
∫ τ

0 C0(τ2)dτ2 dτ1

Here B1—is the arbitrary constant.
In the steady state, the swirling flow under consideration can be described by the

relations for the Burgers vortex [12]:
ur = −C0 ∗ r
uz = 2C0 ∗ z

uϕ = Γ0
2πr ∗

(
1− e−

C2
0∗r
2ν

) (2.1)

However, it is known that the blood flow is roughly unsteady and occurs in a pulsating
regime. Previously, it has been shown [13,14] that the geometry of the flow channel during
the entire cardiac cycle corresponds to the direction of the streamlines described by these
solutions. Therefore, we used these solutions as quasi-stationary, if only C0(t) and Γ0(t)
depend on time. In this case, relation (2.1) may be transformed as follows:

ur = −C0(t) ∗ r
uz = 2C0(t) ∗ z

uϕ = Γ0(t)
2πr ∗

(
1− e−

C2
0 (t)∗r

2ν

) (2.2)

Here, only the azimuthal velocity component depends on the viscosity; therefore, the
modulus of this component decreases with the evolution of the flow.

The geometry of the flow channel must correspond to the direction of the streamlines
of the swirling flow inside. Expression (2.2) includes two functions of time—C0(t) and
Γ0(t). To use these solutions as quasi-stationary in a non-stationary pulsating flow, the
cardiac cycle was considered as a sequence of discrete states, in each of which the flow is
described by relations (2.1). In this case, the instantaneous values of C0(t) and Γ0(t) are
described by the measured geometric characteristics of the flow channel.

The instantaneous position of the streamlines of the considered flow in the longitudinal-
radial projection is described by the following relation:

zr2 = β(t) (3)

β(t)—a time-dependent function, the instantaneous value of which is determined by
the choice of values C0 and Γ0 at a given time.
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Streamlines in a fixed position of the flow channel of the heart and aorta in the axial-
radial projection are described by the following expression:

ϕ =
Γ0

2πC0
∗

1
r
+

√
πC0

2υ
∗

√
C0
2υ r∫

0

e−t2
dt− 1

r
∗ e−

C0r2

2υ

+ ϕ0 (4)

As has been shown already, the aorta retains the shape of a converging canal through-
out the entire cardiac cycle [13]. According to our assumptions, the pulse oscillations of
the aortic wall are much less than the geometric transformations that occur in the process
of remodeling. Therefore, the aortic flow channel was normally considered as a tube with
almost constant geometric characteristics. As a result, fluctuations in the values of the
characteristics C0 and Γ0 were considered negligible.

Since the streamlines are an evolution of the hyperbolic helix (4), continuous flow
along such streamlines is possible only in a channel that has the form of a lower order
hyperbolic right-handed helix (with fewer turns per aortic length). To approximate the
shape of the aortic flow channel, a flat hyperbolic spiral of the following form was used:

r =
(

a
ϕ

)power
+ bias

Here (r, φ) are the radial and longitudinal coordinates, and (a, power, bias) are the
parameters by which the approximation is carried out.

As a result, the obtained quantitative characteristics of the shape of the aorta are
composed of two components, which are the values taken by the constants C0 and Γ0 and
the parameters describing the helical properties of the aortic flow channel.

Let us consider 2 sections of the aortic flow channel outlying at a distance z1 and z2
respectively from the plane of the aortic valve. The corresponding aortic radiuses on these
sections are r1 and r2. For z1 < z2 it follows that r1 > r2 due to the convergence of the flow
channel. Since the specific spatial location of the point of origin of the cylindrical coordinate
system in which the parameters of the aortic flow channel were calculated is unclear, a
fictitious point of origin was introduced into consideration, which is located at a distance
z0 from the plane of the aortic valve inside the cavity of the left ventricle. This point can
change its position during the entire cardiac cycle, however, within the framework of this
work, it was assumed to be immobile. It can be considered as the point of origin of the
swirling blood flow. Then relation (3) for the sections under consideration can be written
as follows:

(z0 + z1) ∗ r2
1 = (z0 + z2) ∗ r2

2 ⇔ z0 =
z2r2

2 − z1r2
1

r2
1 − r2

2
(5)

From (2.2) it can be derived that the contribution of the azimuthal component in the
total swirling flow velocity vector decreases with the distance from the origin point. Thus, if
a certain section of the aortic flow channel S1 is closer to the point of origin than the section
S2, the corresponding value of the modulus of the azimuth component can be expressed as
follows: uφ,1 > uφ,2. Accordingly, the minimum value of

∣∣uφ

∣∣ occurs near the end of the
aorta. For simplicity it can be stated as

∣∣uφ

∣∣ = 0. Then the total velocity vector through the
section S2 at the end of the aorta will be written as follows:

u2 =
√

u2
z + u2

r = C0

√
4(z0 + z2)

2 + r2
2 ⇔ C0 =

u2√
4(z0 + z2)

2 + r2
2

(6)
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Considering the section S1, the derived expression for the linear velocity of the swirling
flow through this section can be written as follows:

u1 =
√

u2
z + u2

r + u2
ϕ ⇔ u2

ϕ = u2
1 − u2

z − u2
r ⇔

(
Γ0

2πr ∗
(

1− e−
C2

0∗r1
2ν

))2

= u2
1 − 4C2

0(z0 + z1)
2 − C2

0r2
1

Expanding the brackets and simplifying the expression above, we get:

Γ0 =

√
4πr2

1u2
1 − 4πr2

1C2
0

(
4(z0 + z1)

2 + r2
1

)
(

1− e−
C2

0∗r1
2ν

) (7)

For the correct reconstruction of a parametric spatial curve approximating the shape
of the aortic flow channel, it is necessary to reconstruct the central line of the aorta first.

The central line is a spatial curve drawn between two planes cutting through an
extended cavity in such a way that the distance from this line to the boundaries of the
cavity is the maximum.

To construct the central line, 2 planes were used that cut the aortic flow channel
perpendicular to the direction of the swirling blood flow. For all studied aortas, one of
these planes is the plane that includes the aortic valve. The algorithm for choosing another
plane depends on the type of aorta. For a relatively healthy aorta, the second plane should
coincide with the section of the aorta in a bifurcation zone; for an aorta with a pathological
disorder of the vascular bed, the plane was chosen approximately at the level of 2/3 of
the aorta length, counting from the aortic valve. This is due to a large distortion of the
geometry of the aortic flow channel in the abdominal region, which is associated with
serious errors in the reconstruction of the required central line. Then, points were fixed on
the selected planes in the central region of the cutting planes (one for each plane). These
points (labeled as p1 and p2) were used to construct the required center line.

To determine the central line, it is necessary to determine the trajectory C = C(s)
connecting the selected points p1 and p2. This trajectory should ensure the minimization of
the value of the following functional:

Icenterline(C) =
∫ C−1(p2)

C−1(p1)
F(C(s))ds (8)

In the written expression, F(x) is a certain scalar field, the value of which at points
lying closer to the center of the cavity is less than at points far from the center. The simplest
example is a function whose value at a point is inversely proportional to the distance from
this point to the boundary of the cavity. Such a function can be represented by the following
relation:

DT(x) = min
y∈dΩ

(|x, y|) (9)

In this relation, |(x, y)| is the Euclidean distance from the point x to the point y, dΩ
is the boundary of the cavity Ω, corresponding to the radius of the channel at this point.
Choosing the scalar field F(x) = DT−1(x) defined by expression (8), the central lines
will need to be located on the medial axis of the given cavity Ω. The medial axis of the
cavity is defined as the set of ball centers inscribed in a given cavity, where the size of the
inscribed ball will be the maximum only if it in turn is not inscribed in another such ball.
The construction of such a medial axis and the central line associated with it is carried
out using the Voronoi diagram [15]. In the three-dimensional case, the Voronoi diagram is
a surface composed of convex polygons whose vertices are the centers of the maximum
inscribed balls.
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The construction of the Voronoi diagram was performed by Delaunay triangula-
tion [16], which was accompanied by the removal of polygons that partially fell out of the
given cavity. This method allowed us to reformulate the problem described by expression
(6) in the form of an eikonal equation, a non-linear partial differential equation:

|∇T(x) = F(x)| (10)

The boundary condition for the written equation is T(p1) = 0. Such an equation
can be solved using the fast sweep method. As soon as the solution of equation (8) was
obtained for the entire Voronoi diagram, the backpropagation method was used to construct
a trajectory from point p1 to point p2 in the direction of the maximum decrease in the value
of the scalar field (i.e., in the direction of the medial axis of the cavity).

Central lines have been constructed using The Vascular Modelling Toolkit (vmtk).
All required data engineering and math computations has been done using standard

python packages—pandas, numpy, scipy, scikit-learn and vmtk.

3. Results
3.1. Computation of C0 and Γ0

Eighteen aortic conditions were studied in 14 patients, of which 4 had normal aortas, 6
had lesions located in the proximal regions, and 4 had lesions localized in the distal regions.
Three-dimensional reconstructions of the aortas were obtained using MSCT.

Each reconstruction is a surface in STL format. The surfaces presented in this format
are a set of conjugated triangles with indication of the normal to them. The following
algorithm was used to calculate the C0 and Γ0 values for these reconstructions:

1. The initial matrix with the coordinates of the triangles that make up the surface of
the aortic duct was presented as a matrix A with dimensions [num_rows, num_features].
Here num_rows is the total number of triangles that make up the surface, and num_features
is the number of points representing each such triangle (num_features = 9 for 3D space).

2. The computed matrix A was projected onto a plane by the PCA method (there was
a decrease in the dimension from 9 to 2). Next, the length of the 2d-projection of the aortic
flow channel was measured, and on the distance from the beginning of the aorta by 10%
and 90% of the entire length of the aorta, the aortic radius was measured. Thus, two pairs of
values (z1, r1) and (z2, r2) were obtained, which are important for C0 and Γ0 computation
according to expressions (5) and (6).

Normally, for patients without obvious aortic pathology, the streamlines can be plotted
as follows (Figure 1a,b).

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 22 
 

 

a trajectory from point �
1
 to point �

2
 in the direction of the maximum decrease in the 

value of the scalar field (i.e., in the direction of the medial axis of the cavity). 

Central lines have been constructed using The Vascular Modelling Toolkit (vmtk). 

All required data engineering and math computations has been done using standard 

python packages—pandas, numpy, scipy, scikit-learn and vmtk. 

3. Results 

3.1. Computation of �� and Г� 

Eighteen aortic conditions were studied in 14 patients, of which 4 had normal aortas, 

6 had lesions located in the proximal regions, and 4 had lesions localized in the distal 

regions. Three-dimensional reconstructions of the aortas were obtained using MSCT. 

Each reconstruction is a surface in STL format. The surfaces presented in this format 

are a set of conjugated triangles with indication of the normal to them. The following al-

gorithm was used to calculate the �� and Г� values for these reconstructions: 

1. The initial matrix with the coordinates of the triangles that make up the surface of 

the aortic duct was presented as a matrix A with dimensions [num_rows, num_features]. 

Here num_rows is the total number of triangles that make up the surface, and num_fea-

tures is the number of points representing each such triangle (num_features = 9 for 3D 

space). 

2. The computed matrix A was projected onto a plane by the PCA method (there was 

a decrease in the dimension from 9 to 2). Next, the length of the 2d-projection of the aortic 

flow channel was measured, and on the distance from the beginning of the aorta by 10% 

and 90% of the entire length of the aorta, the aortic radius was measured. Thus, two pairs 

of values (��, ��) and (��, ��) were obtained, which are important for �� and Г� compu-

tation according to expressions (5) and (6). 

Normally, for patients without obvious aortic pathology, the streamlines can be plot-

ted as follows (Figure 1a,b). 

 
(a) 

Figure 1. Cont.



Mathematics 2022, 10, 4773 6 of 22Mathematics 2022, 10, x FOR PEER REVIEW 6 of 22 
 

 

 
(b) 

Figure 1. (a) Streamlines of the swirling flow in the normal aorta in longitudinal-radial projection. 

(b) Streamlines of the swirling flow in the normal aorta in the axial-radial projection. 

Figure 1b shows a plot of �� and Г� values depending on the location of aortic pa-

thology. Table 1 shows the corresponding values of the parameters �� and Г�. 

Table 1. Values of constants �� and Г� for the studied aortas, ‘loc’—localization of aortic lesion 

(down—distal aneurysm, up—proximal aneurysm, norm—no pathology). 

Name ��(Sec−1) Г�(m2/Sec) loc 

lar_s 0.301 0.046 up 

hom_a 0.357 0.058 up 

are_d 0.537 0.073 down 

ino_d 0.407 0.070 down 

mir_s 0.460 0.037 norm 

lar_d 0.307 0.048 up 

she_a 0.243 0.071 down 

mal_a 0.135 0.076 down 

zag_a 0.368 0.041 norm 

mir_d 0.427 0.037 norm 

are_s 0.378 0.068 down 

pav_a 0.218 0.071 down 

bor_a 0.545 0.089 down 

gor_d 0.314 0.041 norm 

poz_a 0.255 0.044 norm 

bar_a 0.564 0.039 up 

ino_s 0.396 0.072 down 

bru_a 0.484 0.052 up 

As can be seen in Figure 2, a pair of �� and Г� values can serve as a quantitative 

criterion for identifying aortic pathology. All three considered cases (pathology in the de-

scending aorta, pathology in the ascending aorta and the norm) are linearly separable. 

Figure 1. (a) Streamlines of the swirling flow in the normal aorta in longitudinal-radial projection.
(b) Streamlines of the swirling flow in the normal aorta in the axial-radial projection.

Figure 1b shows a plot of C0 and Γ0 values depending on the location of aortic
pathology. Table 1 shows the corresponding values of the parameters C0 and Γ0.

Table 1. Values of constants C0 and Γ0 for the studied aortas, ‘loc’—localization of aortic lesion
(down—distal aneurysm, up—proximal aneurysm, norm—no pathology).

Name C0 (s−1) Γ0 (m2/s) loc

lar_s 0.301 0.046 up

hom_a 0.357 0.058 up

are_d 0.537 0.073 down

ino_d 0.407 0.070 down

mir_s 0.460 0.037 norm

lar_d 0.307 0.048 up

she_a 0.243 0.071 down

mal_a 0.135 0.076 down

zag_a 0.368 0.041 norm

mir_d 0.427 0.037 norm

are_s 0.378 0.068 down

pav_a 0.218 0.071 down

bor_a 0.545 0.089 down

gor_d 0.314 0.041 norm

poz_a 0.255 0.044 norm

bar_a 0.564 0.039 up

ino_s 0.396 0.072 down

bru_a 0.484 0.052 up

As can be seen in Figure 2, a pair of C0 and Γ0 values can serve as a quantitative
criterion for identifying aortic pathology. All three considered cases (pathology in the
descending aorta, pathology in the ascending aorta and the norm) are linearly separable.
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Figure 2. Comparison of C0 and Γ0 values for aortas from Table 1. Blue triangles indicate aortas with
pathology in the proximal sections, orange triangles—aortas with pathology in the distal sections,
and green circles—aortas without severe pathology.

In the case of a pathological disturbance of the vascular bed in the descending section,
the value of the circulation Γ0 of the swirling flow increases significantly. At the same time,
a C0 raising can be observed followed by the increase in the transverse gradients of the
blood flow velocity. Fluctuations of C0 and Γ0 values may reflect the action of compensatory
and regulatory mechanisms of the cardiovascular system. However, the actions of these
mechanisms are inevitably associated with excessive energy consumption to maintain the
flow structure and can also lead to an increased force impact on the aortic wall.

In the case of pathology in the ascending region, one can observe a slight increase in
the Γ0 value and a relatively small (compared with the pathology of the descending region)
increase in C0 value.

However, the parameters C0 and Γ0 do not unequivocally allow the establishment of
the fact of pathological remodeling of the aortic duct. In Figure 1a,b, the dots representing
aortas with distal damage lie very close to the dots corresponding to the normal aorta.

3.2. Approximation of the Aorta Flow Channel by a Parametric Spiral

Figure 3a,b show the result of plotting the central line for an aorta with no obvious
pathological disorders and an aorta with pathology, respectively.
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Figure 3. (a) Three-dimensional STL—reconstruction of the flow channel of the aorta without severe
pathology. A central line is built inside the flow channel. (b) Three-dimensional STL—reconstruction
of the flow channel of the aorta with severe pathology of the distal sections. A central line is built
inside the flow channel.

Each center line is a matrix with dimensions [num_points, 3], where num_points is
the number of points in the center line, and 3 is the number of spatial dimensions in the
Cartesian coordinate system. The resulting lines must be approximated by some spiral
curves to obtain the characteristic parameters. The search for spirals was carried out in
the class of hyperbolic spirals described by the following relation in the polar coordinate
system:

r =
(

a
ϕ

)power
+ bias (11)

In relation (11), the unknown parameters are (a, power, bias).
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The hyperbolic class of spirals was chosen since the streamlines of the swirling blood
flow in the aorta in the radial-axial projection are described by a hyperbolic spiral, and the
similarity principle indicates that the flow channel, in which the flow evolves without the
formation of separation and stagnant zones, must have similar geometry.

For each central line, an approximating spiral was constructed in accordance with the
following algorithm:

1. The original [num_points, 3] centerline was projected onto a plane using the PCA
method to obtain a [num_points, 2] matrix, where 2 is the (x, y) coordinates. The
resulting projection is labeled centerline_proj.

2. The coordinates of the resulting line centerline_proj were converted to the polar
coordinate system (r, ϕ) using the following expressions:

r =
√

x2 + y2

ϕ = atan2(y, x)

Here atan2(y, x)—2-argument arctangent used to translate Cartesian coordinates into
polar coordinates. This arctangent can be stated as follows:

atan2(y, x) =


2arctan

(
y√

x2+y2+x

)
, i f x > 0 and y 6= 0,

π, i f x < 0 and y = 0,
unde f ined, i f x = 0 and y = 0

Using the least squares method, the parameters (a, power, bias) from expression (11)
were selected in such a way that the polar representation of the centerline_proj line is most
accurately described by the parametric hyperbolic spiral (11).

The obtained parameters of the approximating spiral (a, power, bias), the coefficient
of determination R2, and the standard deviation (mae) of the real line centerline_proj from
the approximating spiral were entered in the resulting table.

Based on the calculated five parameters
(
a, power, bias, R2, mae

)
. 2 synthetic pa-

rameters were calculated by the PCA method (feature_1, feature_2). These parameters
store all the necessary information about the quantitative differences in the parameters(

a, power, bias, R2, mae
)

for the normal aorta and in the presence of a pathological change
in the vascular bed and allow visual interpretation of these differences.

The application of the formulated algorithm for one central line looks like this:
The plotting of the initial three-dimensional central line centerline (white line) is

performed in Figure 4.
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The graph of the line centerline_proj was plotted, with the projection of the central
line onto the plane in Cartesian and polar coordinate systems (Figure 5).
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Using the least squares method, the parameters of the approximating spiral were
calculated. In Figure 6, the original curve and its approximation are plotted in the polar
coordinate system.
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Approximating spirals for all central lines were constructed using an identical algo-
rithm. The results obtained are shown in Table 2.

Table 2. Comparison of the geometric characteristics of the approximation of the central line of the
aorta.

Name a Power bias mae R2 loc feature_1 feature_2

are_s 2.896 7.893 −16.042 14.877 0.885 down 8.541 1.131

ino_s 4.008 5.256 −3.502 22.912 0.798 down −3.933 9.622

ino_d 3.894 5.215 1.000 23.025 0.779 down −8.834 9.775

she_a 3.125 6.702 0.993 15.979 0.894 down −8.471 2.855

are_d 2.579 9.392 1.000 14.694 0.881 down −8.522 0.384

bor_a 2.703 8.728 −131.587 14.359 0.925 down 124.059 −0.879

mal_a 3.009 7.190 1.000 13.648 0.892 down −8.493 0.580

pav_a 0.426 17.357 1.000 18.678 0.810 down −8.627 −0.195

mir_s 2.509 11.196 1.000 8.989 0.973 norm −8.566 −5.461

bar_a 2.276 12.468 3.263 7.553 0.968 norm −10.852 −7.325

zag_a 2.626 9.523 1.000 8.622 0.973 norm −8.543 −4.959

mir_d 2.470 11.583 7.610 9.403 0.971 norm −15.179 −5.227

gor_d 2.097 17.613 1.000 10.575 0.951 norm −8.654 −7.230

poz_a 2.735 9.002 0.931 14.640 0.908 up −8.447 0.539

hom_a 2.790 8.040 1.270 18.492 0.806 up −8.760 4.365

lar_s 2.441 11.655 1.034 17.337 0.908 up −8.580 1.574

lar_d 2.475 10.675 1.000 15.498 0.918 up −8.538 0.452

(a, power, bias)—parameters of the approximating hyperbolic spiral for the projection of the central line from
expression (11), mae—the value of the standard deviation of the approximating curve from the projection of
the central line, R2—coefficient of determination for a specific approximation, feature_1, feature_2—derived

parameters, obtained from
(

a, power, bias, R2, mae
)

by PCA method.

As can be seen from the table, the value of the coefficient of determination R2 for
aortas without noticeable remodeling is higher, and the value of the standard deviation of
the approximation mae is lower than for aortas with pathological disorders of the vascular
bed. For normal aortas, the coefficient of determination exceeds 0.95, which indicates
high approximation accuracy. For aortas with severe pathology of the vascular bed, the
coefficient of determination exceeds 0.77, which indicates the significance of the chosen
approximation method.

In Figure 6 was depicted approximation for normal aorta denoted as mir_s in Table 2.
Other approximations are depicted on Figures 7–22 The notations and lines color are the
same, as on Figure 6.
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The values of the derived quantitative features feature_1 and feature_2 make it possible
to unambiguously separate aortas without a noticeable pathological disorder and aortas
with a violation of the geometry of the vascular bed (Figure 23).

The values of quantitative features (feature_1, feature_2), which were calculated by
approximating the central line of the aortic flow channel with a hyperbolic spiral, make it
possible to clearly separate the aorta without pronounced pathological remodeling and the
aorta with pathological disturbance of the vascular bed. However, the obtained parameters
do not allow one to reliably divide aortas according to the type of pathological remodeling
(lesion in the proximal or distal sections).
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As one can see, there is one obvious outlier on a plot from Figure 23. It is caused by
a severely damaged aortic duct in the distal regions. As a result, the proposed algorithm
can’t properly handle such altered geometry and issues biased values for features.
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Figure 23. Comparison of quantitative characteristics of geometry for aortas. Blue triangles indicate
aortas with pathology in the proximal sections, green triangles—aortas with pathology in the distal
sections, and orange circles—aortas without severe pathology.

With a pathological violation of the geometry of the flow channel of the aorta, an area
is formed in the local section of the channel, the radius of which significantly exceeds the
radius of the same section in the norm. As follows from relations (2.1), for the volume of
the swirling flow that fills this additional “pathological” region, at constant values of C0
and Γ0 the radial and azimuthal velocity components will be higher than in the normal
case. An increase in the total linear velocity vector in the presence of severe pathological
remodeling of the aortic duct was experimentally confirmed. However, if we assume that
the parameters C0 and Γ0 for a pathological case normally coincide, the increase in the
total vector of blood flow velocity in pathology will exceed the experimentally observed
changes. Therefore, the value of Γ0 in case of a pathological violation of the geometry of
the flow channel will exceed the normal values to compensate for the increase in the radial
size of the area with the aneurysm. The value of C0 with pathology will increase slightly.
This will lead to an insignificant increase in the radial and longitudinal departure velocity,
which will cause an increase in the energy spent to maintain the evolution of the swirling
flow. However, at the same time, an increase in the value of C0 leads to a decrease in the
viscous radius of the swirling flow (the region in which the influence of viscosity is strong).
This will inevitably lead to a decrease in the energy spent on maintaining the twist. As a
result, in case of a pathological violation of the geometry of the flow channel, we will get a
small increase in the energy spent on maintaining the swirling blood flow; however, this
value lies within the limits that approximately correspond to indirect observations.

4. Discussion

The geometric configuration of the aorta undergoes significant changes in various
pathological conditions, such as hypertension, atherosclerosis, some infectious diseases, etc.
At the same time, it is difficult to determine the stage at which changes in the geometry of the
aortic flow channel are still compensatory in nature, and at which they are a manifestation of
decompensation. There is no formal approach to the analysis of the geometric configuration
of the aorta because the fields of force impact on the aortic wall, both in normal conditions
and in the development of pathology, have not been sufficiently studied. The only source of
force can be the flow of blood in the lumen of the aorta. However, there is still a discussion
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about the structure of this flow. Previously published papers have argued that the swirling
flow pattern is of fundamental importance for adequate unseparated blood flow along
the aorta. The shape of the lumen (longitudinal-radial size and distribution of elasticity
along the aorta) corresponds with high accuracy to the directions of streamlines of the
swirling flow described earlier using quasi-stationary equations (2.2). In the present study,
an analysis of the spatial geometric configuration of the aorta in normal conditions and in
lesions of predominantly proximal or distal sections was carried out. This analysis showed
that the factors of the flow structure (C0 and Γ0) and the parameters of approximation of
the projection of the aorta on the frontal plane of the human body by a hyperbolic spiral
together make it possible to separate these states according to a formal feature.

As a result, new quantitative parameters characterizing the degree of pathological
remodeling of the aortic duct and a method for their calculation were proposed. This
method is based on a complex analysis of the geometry of the aortic flow channel. This
analysis makes it possible to determine the hydrodynamic parameters of the swirling blood
flow inside the aortic flow channel, the geometric correspondence of the shape of the flow
channel to the direction of the swirling flow streamlines, and to formalize the geometry of
the flow channel itself.

The field of shear stresses arising on the channel walls in a swirling flow regime
differs significantly from the stresses arising in a fluid flow in laminar or turbulent regimes.
Therefore, to analyze the impact of the flow on the walls of blood vessels, it is necessary to
consider the twisted structure of the flow and to analyze the shape of the aorta parameters
characterizing the degree of this twist—C0 and Γ0. The shape of the aorta is also determined
by the nature of the swirling blood flow, so the channel geometry was approximated to a
hyperbolic spiral. Only in a channel whose shape corresponds to a hyperbolic spiral is it
possible to preserve the potentiality of the flow.

In this work, we used the geometric characteristics of the canal associated with the
swirling blood flow in the canal lumen (C0 and Γ0), which made it possible to divide the
aortas into 2 groups: the first group included normal aortas and aortas with pathology
localized in the distal sections, and the second group included aorta with localization of
pathology in the proximal sections. The construction of the central line and the approxi-
mation of this line to a hyperbolic spiral made it possible to further divide the aorta into 2
groups—the first included normal aorta, the second—aorta with lesions in the proximal
and distal sections. At the same time, the error of the results does not exceed the threshold
value adopted in experimental medicine (5%). The registered shifts in the values of the
given parameters may reflect the type and severity of the pathology and may be considered
predictors of critical conditions leading to the formation of aneurysms, dissections, and
ruptures of the aortic wall.

5. Conclusions

New quantitative parameters were obtained, reflecting the degree of pathological
remodeling of the aortic duct, as well a method for their calculation. These parameters can
be useful for analyzing the mechanisms of aortic remodeling, determining the limits of
compensatory changes in its geometry, and assessing the risks of decompensation leading
to the formation of an aneurysm, dissection, or rupture of the aortic wall.
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