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Abstract: The aim of the present paper is to formulate two new mathematical models to describe the
co-dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human T-cell
lymphotropic virus type-I (HTLV-I) in a host. The models characterizes the interplaying between
seven compartments, uninfected ECs, latently SARS-CoV-2-infected ECs, actively SARS-CoV-2-
infected ECs, free SARS-CoV-2 particles, uninfected CD4 " T cells, latently HTLV-I-infected CD4*T
cells and actively HTLV-I-infected CD4 " T cells. The models incorporate five intracellular time delays:
(i) two delays in the formation of latently SARS-CoV-2-infected ECs and latently HTLV-I-infected
CD4™T cells, (ii) two delays in the reactivation of latently SARS-CoV-2-infected ECs and latently
HTLV-I-infected CD4™" T cells, and (iii) maturation delay of new SARS-CoV-2 virions. We consider
discrete-time delays and distributed-time delays in the first and second models, respectively. We first
investigate the properties of the model’s solutions, then we calculate all equilibria and study their
global stability. The global asymptotic stability is examined by constructing Lyapunov functionals.
The analytical findings are supported via numerical simulation. The impact of time delays on the
coinfection progression is discussed. We found that, increasing time delays values can have an
antiviral treatment-like impact. Our developed coinfection model can contribute to understand the
SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-19
patients with HTLV-L.

Keywords: SARS-CoV-2; COVID-19; HTLV-I; coinfection; global stability; time delays; Lyapunov
functional
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1. Introduction

At the end of 2019, the world witnessed the emergence of a new infectious disease
in Wuhan, China, which was called coronavirus disease 2019 (COVID-19). This disease
is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within
a few months, SARS-CoV-2 infection spread rapidly in most countries of the world and
infected many people. According to the update provided by the World Health Organization
(WHO) on 23 October 2022 [1], over 624 million confirmed cases and over 6.5 million
deaths have been reported globally. SARS-CoV-2 is transmitted to people when they
are exposed to respiratory fluids carrying infectious viral particles. The implementation
of preventive measures such as hand washing, using of face masks, physical and social
distancing, disinfection of surfaces and getting COVID-19 vaccine can reduce the SARS-
CoV-2 transmission. WHO approved eleven vaccines for COVID-19 for emergency use
including Novavax, CanSino, Bharat Biotech, Pfizer/BioNTech, Moderna, Serum Institute
of India (Novavax formulation), Janssen (Johnson & Johnson), Oxford / AstraZeneca, Serum
Institute of India (Oxford / AstraZeneca formulation), Sinopharm, and Sinovac [2].

SARS-CoV-2 is a single-stranded positive-sense RNA virus and infects the ECs of the
respiratory tracts. The virus has clinical manifestations including dyspnea, cough, fever,
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headache, rhinitis, myalgia and sore throat. SARS-CoV-2 can lead to acute respiratory
distress syndrome (ARDS), which has high mortality rates, particularly in patients with
immunosenescence [3] susceptibility to viral infections [4]. It was reported in [5] that,
94.2% of patients with COVID-19 were also coinfected with several other microorganisms,
such as fungi, bacteria and viruses. Important viral copathogens include the respiratory
syncytial virus, rhinovirus/enterovirus, influenza A and B viruses (IAV and IBV), metap-
neumovirus, parainfluenza virus, human immunodeficiency virus (HIV), cytomegalovirus
(CMV), dengue virus (DENV), hepatitis B virus (HBV) and Epstein Barr virus (EBV) (see
the review paper [6]).

Human T-cell lymphotropic virus type-I (HTLV-I) is a single-stranded RNA virus
which infects the essential human system immune cells, CD4™T cells. Therefore, HTLV-I
can cause immune dysfunction even in asymptomatic carriers [3]. HTLV-I can leads to
two diseases, adult T-cell leukemia (ATL) and HTLV-I-associated myelopathy /tropical
spastic paraparesis (HAM/TSP) [7]. Although HTLV-I can cause fatal diseases (ATL and
HAM/TSP), most of infected persons remain asymptomatic throughout their lives [3]. An
estimation by WHO told that about 5 to 10 million individuals are infected with HTLV-I
worldwide [8]. The primary way for HTLV-I transmission is through bodily fluids including;:
semen, blood and breast milk [9]. The spread of this viral infection that causes significant
morbidity and mortality in some countries of the world has increased the interest and
awareness of medical and biological scientists.

In [3,10], two cases of COVID-19 patients with HTLV-I infection were reported. These
reports highlighted the need for the accumulation of similar cases to illustrate the risk
factors for severe illness, the best-in-class antiviral agent, how to manage and prevent
secondary infection, and the optimal treatment strategy for patients with SARS-CoV-2
and HTLV-I coinfection. Sajjadi et al. [11] presented a review on the pathogenesis of
both SARS-CoV-2 and HTLV-I infections and discussed their similarities in triggering
immune responses.

Mathematical Models of Within-Host HTLV-I and SARS-CoV-2 Mono-Infections

During the past decade, mathematical models which describe the within-host dynam-
ics of human viruses have demonstrated their ability to provide useful insight to gain a
further understanding the dynamics and mechanisms of the viruses. These models may
assist in the development of viral therapies and vaccines as well as the selection of appro-
priate therapeutic and vaccine strategies. Further, these models are helpful in determine the
sufficient number of factors to analyze the experimental results and explain the biological
phenomena [12]. Furthermore, mathematical models have been a key in studying viral-viral
coinfections and can be particularly useful in examining the interplay between respiratory
viruses and chronic viruses.

Hernandez-Vargas and Velasco-Hernandez [13] formulated the basic target cell-limited
model for SARS-CoV-2 dynamics within a host. The model contained three compartments,
uninfected ECs (X), active SARS-CoV-2-infected ECs (Y) and free SARS-CoV-2 particles
(V). The model was formulated as a system of ODEs:

SARS-CoV-2 infectious transmission

) ———
X(t) =— eV (£)X(t) , (1)
SARS-CoV-2 infectious transmission death
. —_—— —
Y(t) = pV (1) X(t) — &y Y(t), )
generation of SARS-CoV-2 death
. —~ =~ ——
V(t) = nY(t) =&y (t). ®)

In the same paper [13], this model was extended to include the eclipse (latent) phase.
The eclipse phase is defined as the period of time that elapses between the entry of the
virus into the uninfected epithelial cell and the release of virions from that infected cell [14].
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There are two methods to include the latent phase in the viral infection models. The first
method is to comprise the eclipse phase by introducing it as a time delay in the model [15].
This can be conducted by reformulating Equation (2) as [15]:

Y(t) = pV(t - T)X(t—T) — &Y (1),

where 7 is the delay between viral entry into an epithelial cell and the start of production
IAV virions. The second method is to define two separate populations of SARS-CoV-2-
infected ECs: one population is the latently SARS-CoV-2-infected cells (N) which contains
the SARS-CoV-2 virions but not yet producing it; the second population is the actively
SARS-CoV-2-infected cells (Y) which produce the SARS-CoV-2 [16]. SARS-CoV-2 infection
model with latent infected cells was formulated as [13]:

SARS-CoV-2 infectious transmission
. —_—T
X(t) = - pV(t)X(t) ,
SARS-CoV-2 infectious transmission  latent activation
. — —~
N(t) = pV(t)X(t) - K

N(t)
latent activation death
. —N —N—
Y(t)= kN(t) —EyY(t),

generation of SARS-CoV-2 death
——

. —~N—
V= ® -V

Li et al. [17] have considered a SARS-CoV-2 infection model with regeneration and
death for the uninfected ECs as:

X =6—(xX—pVX,

where J and {x X are the regeneration and death rates of uninfected ECs, respectively.
Models presented in [13,17] were extended and modified by including (i) the effect of
immune response [18-23], (ii) the influence of different drug therapies [24,25], and (iii) the
impact of time delay [26].

In very recent works, mathematical models have been formulated to describe the coin-
fection of COVID-19 with other diseases in epidemiology such as: COVID-19/Dengue [27],
COVID-19/Influenza [28], COVID-19/HIV [29], COVID-19/ZIKV [30], COVID-19/Dengue/
HIV [31], COVID-19/Tuberculosis [32], COVID-19/Bacterial [33]. However, modeling of
within-host dynamics of SARS-CoV-2 with other pathogens coinfection has been inves-
tigated in a few papers: SARS-CoV-2/Bacteria [34], SARS-CoV-2/HIV [35], SARS-CoV-
2 /malaria [36] and SARS-CoV-2/Influenza A virus [37].

Stability analysis of viral infection models can help researchers to (i) expect the quali-
tative features of the model for a given set of values of the model’s parameters, (ii) establish
the conditions that ensure the persistence or deletion of this infection, and (iii) determine
under what conditions the immune system is stimulated against the infection. Stability of
time-delay systems has received great interest in different fields (see e.g., [38—41]). Stability
analysis for models describing the within-host dynamics of SARS-CoV-2 infection was stud-
ied in [21-23,35,37,42]. Hattaf and Yousfi [21] studied a within-host SARS-CoV-2 infection
model with cell-to-cell transmission and Cytotoxic T lymphocyte (CTL) immune response.
The model included both lytic and nonlytic immune responses. Lyapunov method was
used to prove the global stability of the three equilibria of the model. A SARS-CoV-2
infection model with both CTL and antibody immunities was developed and analyzed
in [23]. Mathematical analysis of the model presented in [17] was studied in [42]. Both
local and global stability analysis of the model’s equilibria were established. Almocera
et al. [22] studied the stability of the two-dimensional SARS-CoV-2 dynamics model with
immune response presented in [13]. Elaiw et al. [26] studied the global stability of a delayed
SARS-CoV-2 dynamics model with logistic growth of the uninfected ECs and antibody
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immunity. In very recent works, Lyapunov method was used to establish the global sta-
bility of coinfection models including, SARS-CoV-2/HIV-1 [35], SARS-CoV-2/Influenza A
virus [37] and SARS-CoV-2/malaria [36].

Modeling and analysis of HTLV-I mono-infection have attracted the interest of several
mathematician. HTLV-I mono-infection model which describes the interaction of three
compartments, healthy (or uninfected) CD4" T cells (U), latently HTLV-I-infected cells (L)
and actively HTLV-I-infected cells (A), is given by [43]:

CD4™ T cells production ~ death  HTLV-Iinfectious transmission

. P N ——
u= v —¢ul — TAU , 4)
HTLV-I infectious transmission ~ latent activation ~ death
. —~N= N~ AN
L= AU — oL —¢rL, (5)
latent activation ~ death
A= aL — G A. (6)

In [44], model (4)—(6) was extended by incorporating a time delay T which accounts
the time between initial infection of an uninfected target cells to become latently infected
cells. Equation (5) was replaced by

L(t) = mA(t —T)U(t — T) — (a + EL)L(1).

Different biological factors were considered in HTLV-I infection models including
(i) Cytotoxic T-Lymphocytes (CTLs) immunity [7,45-48], (ii) mitotic transmission of ac-
tively infected cells [49-53], (iii) intracellular time delay [44,47,48]) or immune response
delay [45,46,54], and (iv) reaction and diffusion [55]. HTLV-I has quite similar ways of
transmissions as HIV-1. Therefore, we formulated and analyzed some HIV-1/HTLV-I
coinfection models [56].

To the best of our knowledge, mathematical modeling of within-host SARS-CoV-2 and
HTLV-I coinfection has not been studied before. The objective of this work is to formulate
new models for within-host SARS-CoV-2-HTLV-I coinfection with discrete/distributed
time delays. We study the properties of the model’s solutions, calculate all equilibrium
points, investigate the global stability of equilibria and conduct some numerical simulations.
Finally, we discuss the obtained results.

The SARS-CoV-2 and HTLV-I coinfection models presented in this paper can be helpful
to describe the co-dynamics of several human viruses. In addition, the models may be
used to predict new treatment regimens and strategies for patients who are coinfected with
different viruses or multi variants of a virus [57].

2. SARS-CoV-2 and HTLV-I Coinfection Model with Discrete-Time Delays

In this section, we formulate a SARS-CoV-2 and HTLV-I coinfection dynamics model.
Let us consider following hypothesis:

Hypothesis 1 (H1). The model describes the interactions between seven compartments, uninfected
ECs (X), latently SARS-CoV-2-infected cells (N), actively SARS-CoV-2-infected cells (Y), free
SARS-CoV-2 particles (V), uninfected CD4™ T cells (U), latently HTLV-I-infected cells (L) and
actively HTLV-I-infected cells (A).

Hypothesis 2 (H2). The uninfected ECs and CD4" T cells are the targets for SARS-CoV-2 and
HTLV-I, respectively, [13,43].

Hypothesis 3 (H3). The CD4"T cells help the CTLs to kill the actively SARS-CoV-2-infected
ECs at rate YU and are proliferated at rate uYU [35].
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Hypothesis 4 (H4). The actively HTLV-I-infected cells are proliferated at rate e* A, with a part
we* A turn into latent, while the other part (1 — w)e* A remains active, where w € (0,1) [52,56].

Hypothesis 5 (H5). There exist two time delays T and 14 in the formation of latently SARS-CoV-
2-infected cells and latently HTLV-I-infected, respectively [26,58,59].

Hypothesis 6 (H6). There exist two reactivation time delays T, and s of the latently SARS-CoV-
2-infected cells and latently HTLV-I-infected cells, respectively [26,58,59].

Hypothesis 7 (H7). There exist a maturation time delay 13 of SARS-CoV-2 virions [26].

Under hypothesis H1-H7 we propose the model for SARS-CoV-2 and HTLV-I coinfec-
tion within a host as:

X(t) =0 —¢xX(t) —pV(H)X(t), @)
N(t) = pe™ 0V (t—1)X(t— 1) — (K +EN)N(E), 8
Y(t) = xe"ON(E— 1) = Gy Y (1) — pY(HU(1), )
V() = e ®BY(t - 1) — vV (1), (10)
U(t) =y +uY(H)U(t) — EyU(t) — TA(H)U(t), (11)
L(t) = me B A(t — 1) U(t — 14) + we* A(t) — (a + &L)L(E), (12)
A(t) = ae BBL(E—15) + (1 — w)e* A(t) — ELA(L). (13)

The factors e~%17,e~%272 =47 =T and ¢~95% denote the probability of surviving
the compartments during the time delay periods, where, d1, d>, d3,d4 and ds are constants.
Let 7" = max{1, o, T3, 4, T5 } and assume the initial conditions of system (7)—(13) having
the following form:

X(0) = ¢1(6), N(6) =¢2(60), Y(6) =¢3(6), V(0) = ¢a(6),
U(6) = ¢5(0), L(0) = ¢6(0), A(6) = ¢7(6),
$:(0)>0,0€[—1%,0,i=12,...,7, (14)
where ¢; € C and C = C([—7%,0],R>) is the Banach space of continuous mapping the
interval [—7%,0] into R>( with the norm ||¢;|| = sup \(])1(9)| forp; e C,i=1,2,...,7.
—T*<6<

By the fundamental theory of functional differential equatlons system (7)—(13) with initial
conditions (14) has a unique solution [60]. We note that, model (7)-(13) can be seen as a
generalization of many models for HTLV-I and SARS-CoV-2 mono-infections presented in
the literature.

All parameters of model (7)-(13) are positive. In [52,56], it was proposed that £* <
min{¢y,¢r,¢%}. Since 0 < w < land ¢ < &3, thus (1 —w)e* < . Denote {4 =
&% — (1 —w)e* > 0and e = we*. Wehave {4 — e = ¢ — &* > 0. Therefore, model (7)-(13)
becomes:

X(t) =6 —¢xX(t) — pV(H)X(), (15)
N(t) = pe MV (t— 1) X(t— 1) — (x + EN)N(H), (16)
Y(t) = ke RNt — 1) — Gy Y () — Y (HU(L), (17)
V() = e ®BY(t— 1) — Gy V (1), (18)
U(t) = v+ uY(HU() — GulU(t) — TA(HU(H), (19)
L(t) = me” BB At — T)U(t — 1) + eA(t) — (w + GL)L(Y), (20)
A(t) = ae”BBL(t - T5) — E4A(t). (21)
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Ot) =e M X(t—1)+ N(t) + Y(t) +« / edZ(te)N(H)df)—i-g;V(t)—k

Next, we will examine the nonnegativity and boundedness of the system’s solutions.

2.1. Properties of Solutions

Lemma 1. The solutions of model (15)—(21) with initial conditions (14) are nonnegative and
ultimately bounded.

Proof. From Equations (15) and (19), we obtain X |x—o= 6 > 0and U |y—o= v > 0. It
follows that X(f) > 0 and U(t) > 0, for all + > 0. From Equations (16)—(18), (20) and (21)
we have

t
N(t) = e~ (K+eN)tpy (0) + pe ™ / e~ (HN =0y (9 — 1) X (6 — 1)df > 0,
0

t
— [(&y+ulU(s))ds
Y(t)=e { o $3(0) +Ke*d2T2/e

0

t
S (@y+ul(s))ds
0 N(0—1)do >0,

t
V(t) = e Vigy(0) + e BT /E*Q’V(t*{’) Y (6 —13)d6 >0,
0

t
L(t) = e~ (@+EL)t +/e (HEL)(0) [0 A9 — 1)U — 73) +cA(9) ] d0 > 0,
0

t
A(t) = e =54ty (0) + ne™ 5B /e*ﬁA(H’)L(e — 15)d6 > 0,
0

forall t € [0, T*]. Hence, by a recursive argument, we obtain N(t), Y (t), V(t), L(t),A(t) > 0
for all t > 0. This guarantees that (X(t), N(t),Y(t), V(t),U(t),L(t), A(t)) € Réo for all
t > 0if (X(0),N(0),Y(0),V(0),U(0),L(0), A(0)) € Réo. To investigate the boundedness

of the model’s solutions, from Equation (15), we have limsup X(t) < C% = M;. We define
t—o0

t
&
2

t—1 t
t t

e~ =0y (9)do

|
& T~~~

+ Blue + 1+ aw +r / (=) A(0)L1(8)d6 + a / (-0 (g)dg | .

t—14 t—15

Then

t

O(t) = e MU X(t — 1) + N(t) + Y(t) — dox / e~ RN (9)dO + kN(t) — ke 22N(t — 1)

t—1
t
I ZV(t) _ d3§2Yt_/ e~ B0y (9)do + %Yy(t) — %Ye*dﬂay(t )
t
+ Bl + Lt + At - dar / e~ 4(t=0) A()U(0)d0 + A(HU()

t—T4

t
—me WAt — 1) U(t — 13) — dsw / e B0 L(0)d0 + aL(t) — we BBL(t — 15)
t—T5
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=e MU -y X(t—7) —pV(t—T1)X(t— 1)) +pe NV(t—1)X(t — 1)
t
— (k4 EN)N() + ke 22N(t — 1)) — EyY () — uY (HU(t) — dox / e~ =0 N(0)do

t
+ KN (E) — ke 2RN( = 1) + 2F (;7 e BTY (t — 13) — §VV(t)) _ a8 / e =0y (0)do
2y 2 ,
kA

£ E0v() — ooy (- ) + Dy ar (DU — Euli () — mA(HU()
+m e WHA(t — )U(t— 1) + eA(t) — (0 + EL)L(E) +a e BBL(E—15) — EAA(t)

t
_dynt / e~ 44(t-0) A()UI(0)d0 + A (HU(E) — me “TA(t — T)U(t — 1)
t—14

t
—dsu / e~ B0 L(0)d0 4+ aL(t) — ae™SL(t — TS)]
t—15

t
= hTg 4 %v —Exe MTUX(t— 1) — ENN(t) — %YY(t) — dyx / e~ (=0 N(0)do
t—1

t
-y - dfgté e By (0)d0 - EeyU(n) + GuL(t) + (€4 — AW

t—1y t—15

t t
g / e~44(1=0) A (0)LI(6)d6 + dsa / e—d5<f—9>L(9)d9] .
We have 4 —e = {7 —¢* > 0. Hence,

o(t) §5+%’y—0

t
e MTX(t— 1)+ N(t) +Y(t) +x / e~ 20N (0)do + g;va)
t—1
t
£ / ¢~ 44(t=0) A(9)L1(6)dO
t —Ty

t
+%Y / ed3<f9>Y(9)d0+”(u(t)+L(t)+A(f)+”
_TS t
t

+a / eds(“’)L(e)de)] =5+ Ly —co),

u
t—15

where ¢ = min{'fxf ¢Ny %Y,dzl ¢v,d3,8u, 8L, ¢y — €, dy, d5}- Hence, limsup ©(t) < M,

t—>o0
"
for t > 0, where M, = 54%7‘ Since X,N,Y,V,U,L and A are all non-negative, then
limsupN(t) < My, limsupY(t) < My, limsupV(t) < Mz, limsupU(t) < My,

t—o0 t—ro0 t—ro0 t—ro0
limsup L(t) < M4 and limsup A(t) < My, where M3 = %ZMZ and My = %Mz. Con-
t—o0 t——0c0

sequently, X(t), N(t), Y(t), V(t),U(t),L(t) and A(t) are all ultimately bounded. O

According to Lemma 1, it can be shown that the set Q@ = {(X,N,Y,V,U,L, A) € (C?|r :
[X][ < My, [[N]| < My, [[Y]] < My, [[V]| < Ms, [[U|| < My, |IL]| £ My, [|A[| < My} is
positively invariant for system (15)—(21).
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2.2. Equilibrium Points

To calculate the equilibrium points of the system (15)—(21) we solve the following
system:

0=06—-3CxX—pVX,

0=pe hTVX — (k+&N)N,
0= ke 22N — &Y — uYU,
0= e bBY —gyV,
0=9+uYU-¢yU—mAl,
0=rme “HAU +eA — (a+ &)L,
0=ne BBL - A.

We find that system admits four equilibrium points.

(i) Uninfected equilibrium point, EPy = (X, 0,0,0,Up,0,0), where Xy = % and
Uy = %

(if) HTLV-I mono-infection equilibrium point, EP; = (X1,0,0,0, Uy, L1, A1), where

J Up Suda Su
Xi=—=Xy, Uy =—, L1 = —2—(R;y—-1), A;=2=(R1—-1),

155 oo th=3"h mxe—dsTS( 1—1), A - (Ry —1)
rraye 44575

Eu(Eréata(Ea—ee957))
mono-infection. It determines the establishment of HTLV-I infection. Therefore EP; exists

when R; > 1.
(iii) SARS-CoV-2-mono-infection equilibrium point, EP, = (X3, Ny, Y2, V5, Uy,0,0),
where

where Ry = . Here, Ry is the basic reproduction number of HTLV-I

e (k+En) Gy +ulhYs)  _ &yYa+pulbY,

v= Wgueidsrg’ - ugVVZI X2 = erfleldeTZVZ N xe—hm ’ (22)
and V, satisfies the following equation:
T\VZ+ToVo+ T
1Vy + Vo + 13 _o, )

np;(@*lel*dsz*dﬂa (Ugue*dsﬁ — ugvvz)

where

Ty = pugyGy (x +En),
T, = ¢y (u§X§YCV(K +&N) — np&yEue BT (k + &) — noype BB (k + En) — 577PKu€_d1T1_d2T2_d3T3),

T; = e*dsTS (5n2pK§uefd1T1*d2Tzfd3T3 _ UCXngVCU(K + CN) — 77')’V§X§V(K —+ CN))

We want to prove that Equation (23) has a positive root. Define a function F(V) as

_ TiV2+T,V+T;
= ﬂpKe_lel_dZTZ_d3T3 (ngue—dyr:; . u(:VV) .

E(V)
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We have
F(0) = Snpgye 0B bT _ my gy Ey (4 En) — ypéxCy (K4 EN)
B npxgye hn—dn—dsT
_ CxCv(x+En)(CySu + i) (Rp — 1)
- CuUpKeflelfdszfdg,Tg, 2 /
where

R 5;7pxgue*d171*dﬂ2*d3'r3

2 = :
ExGv(k+En)(ExSu + i)

This implies that F(0) > 0 when R, > 1. Further,

lim F(V) = —co.
Vs (ehm L)
Furthermore,
v(x + N ed1T1+d2T2+d3T3 2
P(v) = -Vt o) 7 o (&v (B mugvV —ngu)” + ypnPeu ) + e ypungxdy |-
npx (n¢u — eBBugyV)
Hence, F/(V) < Oforall V € (O,e_dﬂ3 %) It follows that there exists a unique
V, € (O, e~ BT %) such that F(V,) = 0. From Equation (22) we get Y, > 0, U, > 0,
Xy > 0and N, > 0. As a result, EP, exists when R, > 1. The parameter R; represents the
basic reproduction number of SARS-CoV-2-mono-infection. It determines the establishment
of SARS-CoV-2 mono-infection.
(iv) HTLV-I and SARS-CoV-2 coinfection equilibrium point EP; = (X3, N3, Y3, V3, Us,
L3, A3), where
X ExCy (Gyarme ™05 (8,84 +ae %575 (L4 —e)
X3 = Rii)’ N3 = ,,/pKan.eflel—d2127d373—d4‘r47d575 )> <R4 - 1)/
Y3 = ]W_%}]{%(Rzlfl)r V3 = %(Rzlfl),
 EEatae5T5(F —¢) _ Ga(ugx@vtnpiue BB
Us = we—tata—dsts 7 Ly = npame BTG -0T—d57 3 1)/

_ (uxEy+npgye™3™)
- ;7p7re’d1T1 —d373

(R3 —1),

where

_ npa e~ T —d3T3—dsTy—d5Ts

— X
ulxly + nplye—n—ds%

v Srue 20
( (gL‘:A + DC(CA — €e—d5T5)) + (K T gl\]) [‘:Yane—d4r4—d5r5 + .u(ngA T a(g/y _ se—dSTS))] ),
_ Snpxare= - hn—dsT—dsT—dsTs
B oxGy(x+&n) [gyane*dﬂrdﬁs + F(CL’;IA + Dé(gA — se*dsTs) )] ’

Thus, EP; exists when R3 > 1 and R4 > 1. At this point, R3 and Ry are threshold
numbers that determine the occurrence of HTLV-I/SARS-CoV-2 coinfection.
Now we summarize the above results in the following lemma.

Ry

Lemma 2. There exist four threshold numbers R;, i = 1,2,3,4 such that: (a) if Ry < 1, then
the uninfected equilibrium point, EPy = (Xy,0,0,0, Uy, 0,0) is the only equilibrium point, (b) if
Ry > 1, then, in addition to EPy, there is an HTLV-I mono-infection equilibrium point, EP; =
(X1,0,0,0,Uy,Lq, A1), (¢) if Ry > 1, then, in addition to EDy, there is a SARS-CoV-2-mono-
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infection equilibrium point, EPy = (Xa, Nz, Y, V2, U,0,0), (d) if R3 > 1 and Ry > 1 then,
in addition to EPy, there is an HTLV-I and SARS-CoV-2 coinfection equilibrium point EP; =
(X3, N3, Y3, V3, Us, Ls, A3).

2.3. Global Stability Analysis

In this section we discuss the global asymptotic stability of the four equilibrium points
EP;,i=0,1,2,3. We follow the work of [61] to build suitable Lyapunov function and apply
Lyapunov-LaSalle asymptotic stability theorem (L-LAST) [62-64].

Denote (X,N,Y,V,U,L,A) = (X(t),N(t),Y(t),V(t),U(t),L(t), A(t)). Let A;- be the
largest invariant subset of

A ,
Aj = {(X,N,Y,V,U,L,A) = 0}, j=0,1,23,

where, ®; (X,N,Y,V,U,L, A)is a Lyapunov function candidate.

Theorem 1. If Ry < 1and Ry < 1, then the uninfected equilibrium point EPy is globally
asymptotically stable (GAS).

Proof. Define @ as:

Dy = XoH £ +ehuN 4+ (x+ gN)ed1T1+d2T2Y + @V—i— p(x +§N)edm+dzfzu0’;.[ E
X() K (:.fv uK uO

+ F(K + CN) ed1T1+dzT2+d4T4L + ‘Z/l(K + gN)(UC + gL) ed1T1+d2T2+d4T4+d5T5A

uK KUK
; a7 ¢ —d313 t
t—1 K =0 Cv e
d1T1+d2T2 t !
L B+ En)e / TA@)U(0)do + M EN (@ +€‘L)edm+dm+dm/ «L(6)d6,
ux -7 auK =%

where, #(x) = x — 1 — Inx. Obviously, ®o(X,N,Y,V,U,L,A) > 0forall X,N,Y,V,U,L,
A > 0, while ®y(X),0, 0,0, Up,0,0) = 0. The derivative of ®y w.r.t. t along the solutions of
system (15)—(21) is calculated as:



Mathematics 2022, 10, 4756 11 of 35

& - _ & X +ehTuN + (k +&n) ety + LXOV + p(x+En) et [ _ % U
dt X K Sy UK u

4 ‘u(K + gN) €d1T1+d2T2+d4T4L + ]’l(K + CN) (tX + gL) ed]T]+d2T2+d4T4+d5T5A 4 pVX
uK XuUK

—pV(t—7)X(t—1)+ (x+ §N)€d1T1N — (x+ §N)€d1T1N(t —T)+ %neidﬂfﬂ/

PX0 iy () + 7"(’(;(%) e R ALT — 7”(";;‘3’) et IR At — ) U(t — 1)
14

+ .u(K + CN)(“ + gL) ed1T1+d2Tz+d4T4L _ V(K + C'N)(Dé + CL) ed1T1+d2T2+d4T4L(t _

T5)
uK uK

_ (1 - )}i") (6 — ExX — pVX) + et (pe*dm V(t—1)X(t—T71) — (K + §N)N)
X
4 kEon) th ) i+ (Ke*dﬂZN(t D) — &Y — yYU) n p(,;—vo (qe*dﬂw(t ) — gvv)

+ ‘H(K + gN)Elelersz (1 _ LIO) (,Y +uYU— guu _ n,Au)

uK u

4 BETEN) (":;fN ) gty (e~ A(t — T)U(t — T) +eA — (€ +E1)L)

+ ‘M(K + CN)(“ + gL) ed1T1+d2T2+d4T4+d5T5 <[X€_d5T5L(t _ T5) _ CAA) + pVX

XUK
_ V(=) X(E—T1) + (k4 En)EIIN — (k + En)eENTIN(E— 1) + pgﬁqe*dﬂsy
v
X0ty () EEEEN) i gy
Cy UK
B ‘u(K:;{gN) e TR A LU (E — 1) + p(x + 51;13{(& +31) Tty
_ ‘U(K + éiz{(“ + CL) ed1T1+d2T2+d4T4L(t _ TS)-

Since 6 = {xXg and v = Uy, then

dd (X = Xo)®  plulic+En)ennt e (U —Up)? | (x+ En) (EyEu + py)ehinthn
— = —Cx - + (R —1)Y
dt X UK u kCu
_ ep—d5Ts5
N u(x +&N) (CLCA + a(CA ee )) MO (R )AL

uKw

Therefore, if R; < 1and R, < 1, then dt% <Oforall X,Y,U,A > 0and d‘% = 0 when
X = Xo, U = Uy, (R, —1)Y = 0and (R; —1)A = 0. The solutions of system (15)-(21)
converge to Af, which comprises elements with X = Xp, U = Uy, (R, —1)Y = 0 and
(Ry —1)A = 0. Let consider four cases:

(i) Ry <1,Ry <land Y = A = 0. Hence, Y = A = 0 and Equations (17) and (21) yield
0=Y=xe @2N(t—1) = N(t)=0, forallt, (24)
0=A=aeB5L(t—15) = L(t)=0, forallt. (25)

Further, Equation (15) gives

0=X=06-CxXo—pVXg = V(t)=0, forallt, (26)
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(ii) R; = Ry = 1. From Equation (26) we have V(t) = 0, for all ¢, and from Equation (18)
we get

0=V =neBBY(t—1) = Y(t)=0, forall t. 27)
Equation (19) gives
0=U=+vy—¢yly—mAlUy = A(t)=0, forallt. (28)

Using Equations (24)—(25) we obtain N(t) = L(t) = 0, for all £.
(ili) R; < 1,Ry = 1and A = 0. From Equations (25)-(27) we obtain L(t) = V(t) = Y(t) =0,
for all t. Moreover, from Equation (24) we obtain N(t) = 0, for all ¢.
(iv)R1 =1, Ry < 1and Y = 0. From Equations (24), (26) and (28) we obtain N(t) = V() =
A(t) =0, for all t. Finally, Equation (25) implies that L(¢) = 0, for all ¢. In all cases (i)—(iv),
we have A6 = {EPO}. We deduce from L-LAST that, if Ry < 1 and R, < 1, then EPy is
GAS [62-64]. O

The result of Theorem 1 suggests that, when Ry < 1and R < 1, both SARS-CoV-2 and
HTLV-I infections are predicted to clear regardless of the initial states (any disease stages).

Theorem 2. If Ry > 1 and Ry < 1, then the HTLV-I mono-infection equilibrium point EPy
is GAS.

Proof. Let ®; be defined as:

qjl — XlH (;(() 4 €d1T1N+ (K —tcgN)ele]+d2T2Y+ p?}(lv_~_ V(K + gN)ed]T]+d2T2U1H (ll}l)
1 1

4y
dt

+ ‘Z/l(K + gN) ed1T1+d2T2+d4T4 LlH (f) + l’l(K + gN) (“ + CL) ed1T1+d2T2+d4T4+d5T5A]H (A)

uK
t

t—Tl

uK

[ oV(0)X(8)d + (k + Ex e /:

74 ukK

KUK

N(6 )dt9+pg ! ‘”’3T3/ 7Y (6)d6

t'['3

Al

_|_ ]’t(K+§N)ed1T1+d2T2n.A1ul ! H(A(e)u( )>d9

t—T4

+

X

uK

‘H(K + (:;’N)(“ + (;rL) ed1T1+d2T2+d4T4L1 ! H ( L( ) >d9
t—15

Ly

Clearly ®1(X,N,Y,V,U,L,A) > 0forall X,N,Y,V,U,L,A > 0and ®1(X1,0,0, 0,
Uy, Ly, A1) = 0. Calculate d{% as:

_ (1 - X1> (6 — ExX — pVX) + et (pe*dMV(t —)X(t—7) — (x+ gN)N)

Gl 4)) J:{‘:N ) i+ (Ke*dﬂZN(t D) — &Y — yYU) st (qe*dﬂw(t ) — gvv)

o 2) d1T1+dsz<1 u1>(7+uYU Cull — mAU) +
u

+
( d4T4A
(we

TU(t—T4) + A — (a+Er)L) +

Sv
)+ K s (1 L)
uK L

V(K—FCN)(UC +€L)ed1T1+d2T2+d4T4+d5T5 1 é "
auUK A

e BBL(E— T5) — CAA) +oVX —pV(t—1)X(t— 1) + (K + En)eTIN — (k + En)e N (t — 1)

+ p 1 —d3T3

Sv

—Hn(

X
Y — %—Vle_dﬂ%ﬂ(t -13)+ px+En) gN)ed””dm AUy

Al Al

( AU A(t*T4)U(f*T4)

L

At —m)U(t — 74)>) N (x4 En) (a + & et hn+din L1< L Lt-1) +ln(L(t_T5)>>.

AU

uxK Ll L1
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Utilizing the equilibrium point conditions for EP;:

0 =CxXi, v = Cullh + AU,
e MU AUy = (0 +Ep)Ly — €Ay, ae BTBLy = FaAq,
we obtain
dby o (X=X)T plu(ktEn)enn TR (U - Uy)?
dt X X uK u
(k+¢n) {Cyocrce“’lﬂfdﬂ5 +u <§L§A +a <§A - se‘d5r5>)} eh Tt T +dsTs
+ (Ry —1)Y
KXt
(K + @y e T u; At —t)U(t — )Ly L(t—15)A
— A —1 ok S VA
e e T R AL T\ T oA
1(x + gN)ed1T1+dsz+d4T4 ALy L(t—15)Aq
_ A it} ——2 ).
. &N H AlL H L1A

Therefore, if R4 < 1, then ‘16% < Oforall X,Y,U,L,A > 0, where d'% = 0 when

X=X;,Y=0,U=U;, L=L;and A = A;. The solutions of system (15)—(21) are limited
A} which comprises elements with X = X;, U = U;, L = L1, A = Ajand Y = 0, then

Y = 0. Equation (17) yields
0=Y=xe?2N(t—1) = N(t)=0, forallt.
Equation (16) gives
0=N=pe "0V(t—1)X; = V(t) =0, forall .
Consequently, A] = {EP; } and then L-LAST implies that EP; is GAS. [

The result of Theorem 2 demonstrates that, when Ry > 1 and Ry < 1, then the HTLV-I
mono-infection is always established regardless of the initial states.

Theorem 3. If Ry > 1and R3 < 1, then the SARS-CoV-2-mono-infection equilibrium point, EP»
is GAS.

Proof. Define &, as:

D, = Xo'H (;5) +€d1T1N2H( N> + (K+§N)€d1Tl+d2T2Y2H (Y> + 10}(2V2H<V>
2

N, K Y, 4% V2
4 y(K + gN) elel +dr UZH E + ]’l(K + CN) ed] T1+d2T2+d4T4L
uK ux
+ l’l(K + gN)(a + gL) ed1T1+d2T2+d4T4+d5T5A + PVZXZ /t H V(G)X(G) de
auK -7 Vo Xz
ot t
+ (k + &En)e TN, H(N(Q))d9+ &e_dmisz/ ’H(Y(Q)>d9
- N, v Jt-3 Y2
I p(x+30n) ettt /t A(O)U(6)d6 + ple+on)(at €L)3d171+d2T2+d4T4 /t L(0)d6.
UK t—14 UK t—15

Clearly, @,(X,N,Y,V,U,L,A) > 0forall X,N,Y,V,U,L, A > 0and (X5, Na, Y»,
V,, Uy, 0,0) = 0. Calculate d‘% as:
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diz - (1 - )}%) (06— ExX — pVX) + ¢hm (1 - Z\I\?) (pe MV (t — ) X(t— 1) — (x + E)N)
Y X V.
+ (kc+8n) t{gN) et <1 Yz) (Ke*dmN(t —T) = GyY - MYU) p(:; <1 — V2> X
(17 d3r3y( ) C:VV) (K;;{gl\]) e+ <1 LLI[2> (7 +uYU — &gU — nAU)

+ We’d”ﬁ’im*dm (ne_d‘*T‘*A(t —)U(t— 1) +eA— (a+ §L)L)

]’l(K + CN) (IX + gL) A1 11 +do T +ds Ty +d5Ts5 —dsTs
+ po e (txe L(t—15) — @AA> + pVrXo X
VX Vit—1m)X(t—1) V(t t*Tl d1T1
(szz e +1In + (k + ¢N)e TN, X

o \

(I\I\IL_N(fz\]—2T2)+1n<N(tl\—]Tz)>>+ed3T3P 2 (Y t_zT)+l (Y(t;73)>)

+ 7”(":;(5” e TR (AU — At — 1)Ut - 14))

+ ,”(K + gN)(’X + éL)ed11'1+d2T2+d4’r4(L o L(t . TS))-
uxK

Utilizing the equilibrium point conditions for EP,:

0 =2CxXo+pVaXy, pe~ MV, Xy = (k4 EN)No,
Ke_d2T2N2 ngZ + ‘Z/lYZLIz, ne d3T3Y2 gvvz,
v = Culy —uYoly,

we obtain
& = (X_iXZ) Tt py(x+2an) (U — U2)2
dt X X uxly, u
- X2\ gy (VU)X )N L (NE—m)Ya) | (Y=Y
pV2Xo [H(X) —l—?—l( VXN +H NyY +H v

_ —dsTs)
+ et T tdsTyt+dsTs V<K7+ ¢n) (e_d4f4—d575 iy — creat “((:A “ ) A.
UK x

Hence, if R3 < 1, then EP3 dose not exist since A3 < 0 and L3 < 0. This implies that
A(t) = e BBL(t—15) — E4A <0,
L(t) = me “BA(t — 7)U(t — 1y) + €A — (e + &)L < 0.

r8ata(fa—ee %5%)

It follows that (e %m—d5T (], — .

)A < 0 for all A > 0. Thus,

—d5 T
edimdsts g,  SEATM(EAme ) o g 892 0 forall X,N, Y, V,U, L, A > 0and

d<1>2 =0whenX=X;, N=N,, Y=Y, V=1V,U=U,and A = 0. The solutions of the
system converge to A, which comprises elements with A = 0. It follows that A = 0 and
Equation (21) becomes

0=A=uwaeB5L(t—15) = L(t) = 0 forall t.

Therefore, A}, = {EP,}. L-LAST implies that EP, is GAS. [
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The result of Theorem 3 shows that, when R, > 1 and R3 < 1, then the SARS-CoV-2-
mono-infection is always established regardless of the initial states.
Let us define a parameter R as:

Upan,)/efd]‘r] 7d3T37d4T47d5T5
(u8x8v +npdue=®%) (GLéa + ae™5%(s —¢))

R:

Theorem 4. If Ry > 1and 1 < Ry < 1+ R, then the HTLV-I/SARS-CoV-2 coinfection equilib-
rium point EP3 is GAS.

Proof. Define ®; as:

@3 X3H< ) + ed]T]N3H< N> + (K —tcgN) d]T]+d2T2Y H( ) pX3V H< )
3 3

N3 ‘;IV
+ ]’I(K + gN) ed]Tl—i-dZTz USH g + l’l(K + gN) d1T1+d2T2+d4T4L H L
uK U; uK L3

+ V(K + CN)(DC + gL) d1T1+d2T2+d4T4+d5T5A H A + PV3X3 /t H V(G)X(G) 4o

auK As t T1 V3X3

t
t—1 N3 é Y3
V(K + CN) d]T1+lJl2T2 g A(Q)U< )

+ 71/”{ e 7‘[A3U3 1, H 7A3U3 do
+ V(K + éN)(lX + gL) edl’l’] +d2Tz+d4T4L3 g H ( L(G) > dG

uK s Ls

Clearly, ®3(X,N,Y,V,U,L,A) > 0forall X,N,Y,V,U,L,A > 0and ®3(X3,N3,Y3,
Vs, Us, L3, A3) = 0. Calculate d{% as:

+ et (k+En) <1 - ?) (e_deN(t —T) —GyY - VYU) 4 0% (1 - V3> X

K v 14
(7Y (t =) — gy V) + ehimrrdan 7”(":;&“) (1 Lﬁ) (7 +uYU — gyl — mAU)
+ et ntdin 7}[(1{;{%) (1 — LL3) (e‘dm TA(t — )U(t —14) + €A — (2 + CL)L)
| Tt DT ST p(x + 501215“ +31) (1 _ 113) (efd5T5aL(t 1) — CAA)
. <XZ§3 (- 1;1/3);(3(1‘ _ 1) _Hn(V(t _ n‘g(t _ 771)))
+ M7 (i + EN)N3 (Z\Z\é N(t =) N ) + ln<N(tl\_] ) ))
te —d3r3P§/317Y (Y Y(tY_3 ) +ln(Y(f; T3)>>
4 Tt (K;(ffN) A5l (Alilblla At - ”If:zlLlI;t —T) ln(A(t - ng(f - 74)))

+ed1T]+d2Tz+d4T4 H(K+§N)(“+€L)L3 L _ L(t_T5) +ln L<t_T5)
uxK L3 L3 L
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Utilizing the equilibrium point conditions for EP;:

0 =(CxX3+pV3X3, e~ MTpV3X5 = (k + EN)N3,

e~ mTKN; = &y Y3 + uYsls, e BByY; =&y Vs,

7y =&l — uYsUs + mA3U;, e “TmAzUs = (a+ & )L3 — eAs,
e H5BuLy = E4As,

we get

dd; . Cx X3 V(t—Tl)X(t—Tl)N3 N(t—Tz)Yg
G o () - () e (R

Y(t—1)V3\]|  drtdorytdsrs KK+ EN) ALz L(t — 15) A3
+H(Y3V >} e B eAs | H AsL +H 7[1314

_ed1r1+d212V(K:;{‘:N)nA3u3{H<u3>+H< (f—T4)U(t—T4)L3>+H<L(f—T5)A3)]

u AsUsL LA

e+ 2n) (uExEy + e BBn0cu ) (1 - )2
e_Zlel_dzTZ_d3T377pK1/l u

(R3 — R —1).

+

Moreover, since 1 < Rz < 1+ R we obtain d% <Oforall X,N,Y,V,U,L,A > 0and
dg? = 0 when X = X3,N = N3,Y = Y3,V = V3,u = U3,L = L3andA = A3.The
solutions of the system converge to Aj. Clearly, Ay = {EP3}. and thus, L-LAST implies that

EPyis GAS. O

The result of Theorem 4 suggests that, when R4 > land 1 < R3 <1+ R, then the
SARS-CoV-2 and HTLV-I coinfection is always established regardless of the initial states.

3. Model with Distributed-Time Delays

In Section 2, it is assumed that the time delay is constant. It means that, each cell or
virus is subject to the same delay during a certain biological process. For example, 13 is
constant means that, the maturation time for all new produced virions is assumed to be
same. In reality, the maturation time may vary among immature virions. To accommodate
this, one may use a weighted average of all the possible values for the delay time. Therefore,
in this section, we consider SARS-CoV-2/HTLV-I coinfection model with five types of

distributed-time delays as:

=0 / fl(@)e MV (t— @)X (t — @)ded — (x+ Ex)N(H),
) =x / B(@)e RN (t — @)d@ — EyY(t) — pY ()U(H),

V() =y / f3(@)e~BOY(t — @)de — Ey V(1)
U(t) = v+ uY(HU(t) — SuU(t) — mA()U(t),

L(t)=n / fi(@)e MOA(t — @)U(t — @)de + eA(t) — (& + E1)L(E),

ftx/f5 eOL(t — @)d — EAA(H).

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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N(t) = e~ (<Hen)tg,

Y(t)=e ©

V(t) = e Vigy(0)

L(t) = e~ (+e0)tg

Here, @ is a random variable generated from probability distribution functions f;(@),
i=1,2,...,5over the time interval [0,m;],i = 1,2,...,5 where m; is the upper limit of
the delay period. Here f;(@)e~%? i = 1,2,...,5 represents the probability of surviving
a compartment from time t — @ to time ¢. Functions f;(@), i = 1,2,...,5 satisfy the

following conditions:
mi

() fi(@) >0, (i) ff @)do =1, (iii) f ~HOfi(@)d@ < oo, u > 0.
0
Let us define F; as:
m;
Fi= /g—diwfi(co)da), i=12,...,5
0

Clearly0 < f; <1,i=1,2,...,5. We assume that the initial conditions of system (29)—(35)
are the same as given by Equation (14) by replacing 7 by m* = max{my, my, m3, m4, ms}.
3.1. Properties of Solutions

Lemma 3. The solutions of model (29)—(35) satisfying the initial conditions in (14) are nonnegative
and ultimately bounded.

Proof. From Equations (29) and (33), we obtain X |x—o= 6 > 0and U |y—o= v > 0. It

follows that X(t) > 0 and U(t) > 0, for all t > 0. From Equations (30)—(32), (34) and (35)
we have

+p/e (k+8) (10) /f1 Je MOV (8 — @)X(6 — @)ddd > 0,

t t my
= [(@y+puU(s))ds S (@y+uU(s
' 5(0) +K/e 0 /fz(w)e*dz‘”N(G—co)dcode >0,
0 0
+77/ vt 9>/f )e~ B2y (0 — @)d@dd > 0,
t Ty
+/e (a+21) (1) /f4(¢o)e—d4“’A(9—co)u(9—(D)dci)—i—sA(G) do > 0,
0 0

ms

A(t) = e 4, (0 )+a/e calt=0) /f5 (@)e B5CL(6 — @)ddf > 0,

), L(t),A(t) > 0

forall t € [0, m*]. Hence, by a recursive argument, we obtain N(f), Y/( t
t )) € RZ,. From

t
for all + > 0. This guarantees that (X(t), N(t), Y(¢), V (), U(t), L(
Equation (29), we have lim sup X(t) < % = M;j. We define

t—o0

B, V(
), Alt
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t
fi(@)e MX(t — @)d@ + N(t D0 N (8)dodeo + LV (¢
/1 @)d@ + N(t) + Y /co)/we @+ 5 V()

t

t
ga4 / (@) / e~ B0y (0)dode + E{U() + L() + A1)

t
) / =450 [ (9)dfdco | .

t—w

my

/f1 )e MK (t — @)d + N(t) + Y (1) —de/fZ(@
0 t

e~ (=0 N(0)dodeo

5~

4 RN(t /fz ©)do —K/f2 e PON(t — @)de + g:;V(t)

t ms ms
- 013% / f3() / e~ B0y (9)dodo + %Y(t) /fg(w)dw - %Y /fa(w)e‘d3“Y(t—w)dc@

t—c@ 0
My

+£ U(t)+L(t)+A(t)fd47t/f4 /e—d4f 0 A(0)U(0)d0do + mA(H)U ()/f4(co)dco

t—
ms t

_n/f4 i@ A1 )u(t—w)dco—dSa/f5(a)) /e*d5(t*9)L(6)d6dco

t—w

FaL(t /f5 dco—zx/ﬂ; e 9L ( — @)do

— 5/f1(co)e—d1wdco + %7 - Cx/ﬁ (@)e ™ MPX(t — @)d@ — ENyN(t) — ‘LYY( )
0

t ms t

~ax [@) [ edz<f9>N(e)d9dco—C§§VV(t)—d352Y [ 6@ [ ety ()00
0 t

—@ 0 t—@
t

—% gUU(t)+gLL(t)+(§A—s)A(t)+d4n/f4 /e 4(1-0) A (0) U (8) dBd@
t

ms
+dsa / 5() / =501 (0)dbdeo | .
0

t—w

Wehavely —e=¢) —¢* >0and 0 < F1 < 1. Hence,

o) <o+ Ly —co),
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where ¢ = mln{éX/ gN/ %/ d2/ gV/ d3/ €UI CL/ gj:‘i - S*, d4/ dS} Hence/ lim sup ®(t> S M2
t—>o0
"
for t > 0, where M, = (Stf“’y. Since X,N,Y,V,U,L and A are all non-negative, then
limsupN(t) < My, limsupY(t) < My, limsup V() < Ms, limsupU(t) < My,

t—>o00 t—>o0 t—>o0 t—>0o0

limsup L(t) < My and limsup A(t) < My, where M3 = E—ZMZ and My = %Mz. Con-
t—00 o

t—s
sequently, X(t), N(t),Y(t),V(t),U(t), L(t) and A(t) are all ultimately bounded. [

According to Lemma 3, it can be shown that theset O = {(X,N,Y,V,U,L,A) € CZF :
[X][ < My, [[N]| < My, [[Y]| < My, [[V]| < Ms, [[U|| < My, |L]| < My, [|A[| < My} is
positively invariant for system (29)-(35).

3.2. Equilibrium Points

To calculate the equilibrium points of the system (29)—(35) we solve the following
system:

0=06—-CxX—pVX,
0=pF1VX — (k+&N)N,
0=xFN—CyY —puYlU,
0=nFs3Y—=¢vV,
0=v+uYU-_yU—mAl,
0=rnF4AU+eA— (a+Cr)L,
0=aF sL —GAA.
We find that system admits four equilibrium points. These equilibrium points can be

given as the same as given in previous equilibrium points sub-section by replacing e =%
by Fi,i=1,2,...,5. The parameters Rj, Ry, R3 and R4 will be given as:

R, = vk 4F 5 Ry — onpxguf 1F 2F 3
Su(Créa+a(a—eFs)) ExCv(x +¢n)(GvSu +am)’
Ry — npxrtk 1F 3k 4F s < Y n oxuf )
uGxGy +nodufF1F3\ (Gréa +a(Ga —eFs)) (kK +on)(amGyF aF 5+ pu(Gréa +a(la —ef5))) )’
Ry = Snpxartk 1F oF 3F 4F 5

ExCv(x+Cn)[arlyFaF s+ u(Créa +a(a —eFs5))]

The results of Lemma 2 is valid for system (29)—(35).

3.3. Global Stability Analysis

In this subsection, we discuss the global stability of four equilibrium points EP;,
i=0,1,2,3 of system (29)—(35).

Theorem 5. If Ry < 1and Ry < 1, then the uninfected equilibrium point EPy is GAS.
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Proof. Define @ as:

Dy = X0H(X>—|-1N+(K+§N)Y+PXOV+;M(K+§N)UOH<U>+V(K+§N)L

A KF1f 2 &y ukh 1 2 Up/) — uxk1FoFa
t
y(K+§N)(“+CL /f *dlw/ pV(0)X(0)dbdw
auxF 1FoF 4F 5 Fl -

my ¢ 3 ot
Gt 3Y) /fz((o)e_dzw/ KN () d6de + @/fa(w)e‘dw/ 7Y (0)d0da
kF1F2 ) - Sv 4 J-a

my
V(K+§N)/ fdw/t
—2 [ fy(@ 4 AU (0)dOdwo
+MKF1F2F4O a(@)e _ TAO)U(O)

s

t

p(x+3n)(a+381) /fS(w)e_d5w/ aL(0)dfdw.
auxk 1F 2F 4F 5 -

Obviously, ®y(X,N,Y,V,U,L,A) > 0forall X,N,Y,V,U,L, A > 0, while ®(Xy,0,0,
0, Up, 0,0) = 0. We calculate “F0 as:

(-2 )e-ax-pvx - (p [ fi@)e 1V (t @)Xt~ @)de — (x + éw)N)
0

K‘i‘gN / o th@
fa( 2 N w)do — &Y —uYU
KF1F2 ( @) SyY —u

+( /f3 dstYt— )d(D—CvV)+m(l—bbl;)>('y+uYU—§uU—nAu)

uKF1FzF4

(K+€N D‘+€L /f 7d5(DL (D)d(,@—éAA
auxF 1F 2F 4F 5

(K +EN) ( /f Je~ @ At )U(t—a))d(i)+SA—(DC+‘:L)L)

+—/f1 ~hO (VX — pV(t — @)X (f — @))de

K+CN /f )e (N - N(t — @ ))dw+—17/f )eB(Y —Y(t — @))do
F1iF»2
et En) /f Je B (AU — A(t — @)U(t — @))dd
uKF1FzF4
(K+CN “‘i‘(:L /f —d5¢aL L(t— ))d(ﬂ
ukF1F2F 4F 5
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(1_X0) (6 — ExX) — (K+€N)§yY+p—)(()F317Y—|— p(k+2En) (1 UO><,Y cull)

X kF1F2 Cv uxF 1F 2 u
B V(K+§N)UOY+ V(K+§N)nAu0+ plk+On) o ple+Sn)(a+Er)
kF1F2 uxlf 1F 2 uxlf1F2F 4 aul 1F 2F 4F 5

Using 6 = ¢xXo and v = ¢yyUp, we get

dPy (X = X0)*  péulc+&n) (U—Up)* | (k+&n)(EvEu+n7)
dt o _(:X X B UKF]F?_ u * KguFle (Rz B 1)Y
L M EN)(Erla +alla —ef 5)) (R —1)A.
ukak 1F 2F 4F 5

Therefore, if R; < 1and R, < 1, then d‘% <Oforall X,Y,U,A > 0and d{% = 0 when
X =Xo, U=Uyand Y = A = 0. Similar to the proof of Theorem 1 we can show that,
Al = {EPy}. We deduce from L-LAST that, EP; is GAS. [

Theorem 6. If Ry > 1 and Ry < 1, then the HTLV-I mono-infection equilibrium point EP;
is GAS.

Proof. Let ®; be defined as:

o) = Xﬂi( X>+1N+(K+CN)Y+ leV+V(K+€N)LI1’H<u) JMEEEN) L1'H<L>

F1 kF1F2 Sv uxk1f 2 Uy uck1F 2F 4 Ly
t
PN CL) 4 gy ( > /f1 e [ pv(@)x(0)ded
auxf 1F 2F aF 5
t
4 k+en) / fy(@)e b2 / N(6) d9dw+pxl / f5(@)e~ b / 7Y (0)d6do
F1iF 2 t—@

p( + EN) / @ /f (A(G)U(f?))
— 2L AU | 4 ——— 1dbd
+ MKF1F2F47T it [ fi(@)e t—(DH Al @

(K+CN 0‘+€L /f 7d56_7/ H<L(0))d9dw
uxF 1F2F 4F 5 Lq

Calculating d{% and using the equilibrium point conditions for EP;:

0= ’:::Xxlr Y= (:Uul + 7TA1U1/
ik AUy = (0 +Cp)Ly — €A, aF 501 =CaA,

we obtain
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d®y _  ox _ mle+En)Su
ar X(X X> uk 1F o u(u U)
N (K +&N)[GyartF 4F 5+ p(Gréa +a(Ga —ef 5))] (Ry—1)Y — Mmlul [7—[ U1>
K&tk 1FoF 4F 5 uxkF 1F o u
my ms
1 —dyoqy (At —@)U(t — @)Ly i/ s, (Lt —@) Ay
s 0/f4(a7)e 7—[( pi 4o+ - 0 fa(@)e om0 Jda
s
_ HEten) ALy, 1 [ fs(@)e o L(t—®)A
MKF1F2F4SA1 H(AlL + J f5(@)e N I A deo

Therefore, if R4 < 1, then ‘i] < Oforall X,Y,U,L,A > 0, where dcp] = 0 when

X=X;,Y=0U=U;, L=L;and A = A;. Similar to the proof of Theorern 2 we can
show that A} = {EP;} and then L-LAST implies that EP; is GAS. [

Theorem 7. If R, > 1and R3 < 1, then the SARS-CoV-2-mono-infection equilibrium point, EP»
is GAS.

Proof. Define &, as:

@) = XzH(X) + 11N2H(N> 4 KHeN) ) H(Yz> pX2V2H<V2>

X F Ny kF1F 2 v
Hx+¢n) (U) Hx+¢n) px+8n)(a+ 1)
—— 2 UyH| — L A

* ukf1F, 2 U, +MKF1F2F4 + oauxf 1F oF 4F 5
my
% e [ (VOXO)
+—= | fi(w@ 1 H| —F—-2 |dOdw
@) J 1(@)e o VaXo
K+§N / 4@/ (N(9)>
——222N, [ faof 2 H| ——= |dOdw
F1F2 t—@ N

pX2 —dzo ! Y(6)
T e | (")

H(x+EN) /f —d4w/ A(0)U(0)d0dw
uKF1F2F4 @
t
p(x+38n)(x+3r) /fS(w)e*dsfﬂ/ L(0)dodw.
ukl 1F2F 4F 5 f-@

Calculating d(% and using the equilibrium point conditions for EP»:

0= CxXo +pVaXy, pF 1V2Xo = (k4 ¢n)Na,
kF 2Ny = CyYo +uYolly, nF3Ys =CyVa,
v =Culh —uYoU,,
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we get
a0y . (X=Xa)"  pyletéy) (U= )’
dt XX uxk1F U, U
my
B X2 1 —djoq, (VI —@)X(t —@)N,
oVaXo 7‘[( X) + ) /fl((i))e H VoXoN do

1T oy oz (NE=@¥2 o U o (Y= @)Va
+F2/f2(w)e ”H( oy )i+ /f3 (= Jde

px+¢n) < CLCAJFOC(@A—EFS))
— 7 u, — A.
uxlh 1F oF 4F 5 7k af 5t o

Similar to the proof of Theorem 3 we can show that A}, = {EP,}. L-LAST implies that
EPyis GAS. [J

We define the parameter R as:

noxrtyF 1F 3fF 4F 5

k= (u8xCv +npduf 3)(Eréa +aFs(Ga—e))

Theorem 8. If R4 > 1and 1 < Rz < 1+ R, then the HTLV-I/SARS-CoV-2 coinfection
equilibrium point EP; is GAS.

Proof. Define @3 as:

®; = X3H(X>+1N3H(N)+(K+€N)Y’H< ) px3v3H( 3)

F1 N3 KF1F 2 Sv
H(x+¢n) (U> p(x+En) <L) Pk +En)(a+3r) (A)
PETON) gy (=) 4 FAETONT gy (= At (2
* uxk 1F » 3H U +MKF1F2F4 3t L3 * aukf 1F 2F 4F 5 3H Aj
my
pV3Xs / f (@)t /‘f (V(G)X(G)) J
— —L 2 1d0d
+ I 1(6’0)6 Jiw H VaXs [

K+§N / —dca/ <N(9)>
——2"2 N3 | fo( 2 —2 1dod
Fle t coH N3 @

pX3 o (! Y(0)
+§V77Y30/f3(¢@)€ /th( Ys )ded

my
p(x+3&n) / —d@/t (A(B)Uw))
—— AU fi(@ 4 H| —F——= |dOdw
+uKF1F2F4n sUs [ fy(@)e o AsUs

u(x+¢n) IX—FCL i@ (L( ))
f5( 5 dédo
ukfF 1F 2F 4F 5 / / # L3

Calculating d[% and using following equilibrium point conditions for EPs:

0 =CxX3+pV3X3, F10V3X3 = (x+&n)N3,
F2xN3 = Gy Y3 + uYsls, FanYs=_yVs,

v =Culs —uYsUsz + mAzUs, F4mAsUs = (a4 Gp)Lg — €As,
Fsals = CaAs,
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we get

L (X=Xa)? | p(k+EN)(uExBy + Fanplu) U —UWs)* 0 o
7 - gX X + UPKMF%FZF:; u (R3 1 R)

my
& L —di@ V(t—(D)X(t—c’O)N3
7—[( X) + o b/fl(co)e H VaXaN do
1 f N(t — @)Y 17 Y(t — @)V:
_ —@w)Y3 —d3@ —w)Vs
- f dZCD N Y d . /f 3 S\ Vo d
+F2'o/2(w)e H< NsY )‘”Fsb (e H< YoV )4
my
_ pu(k+8En) uz L/ dyoqy (Alt —@)U(t — @)Ls
Kk 1f o wAsUsz | H U +F4 J f4((D)e H AsUsL dw
—ds®@ L
+7/f5(£0 5 H( ) w
ms
AL —dsq, (Lt —®@)As
<A3L> /f5( )8 H I5A do

Since 1 < R3 < 1+ R, then we obtain d‘% < Oforall X,N,Y,V,U,L,A > 0and
45 —0when X = X3, N = N3,Y = Y3,V = V3, U = Us, L = Lyand A = A;. The
solutions of the system converge to A}. Clearly, A, = {EP3}, and thus L-LAST implies that
EP3isGAS. O

—oV3X3

Mk +EN)
uKF1F2F4

Based on the above findings, we summarize the existence and global stability condi-
tions for all equilibrium points in Table 1.

Table 1. Conditions of existence and global stability of the system’s equilibria.

Equilibrium Point Existence Conditions Global Stability Conditions
EPy = (X0,0,0,0,Uyp,0,0) None Ry <landR; <1

EP; = (X31,0,0,0,Uy, L1, A7) Ry >1 Ri>1and Ry <1

EP, = (X3, Na, Y2, Vo, U, 0,0) Ry >1 Ry >1land Rz <1

EP; = (X3,N3,Y3,V3,U3, L3, A3) Rz >Tland Ry > 1 Ry>1land1 <R3 <1+R

Remark 1. Let us choose a Dirac delta function I1(.) as a special form of the function f;(.) as
fl((i)) = H((D — Ti)/ T € [O,mi], i=1,2,...,5

and let m; tends to co, then the properties of I1(.) implies that:

/fl-(a))dco -1, = /e’di‘ofi(co)dw — T =12, 5.
0 0

Then, the distributed-time delay model (29)—(35) will lead to the discrete-time delay model
(7)—(13).

4. Numerical Simulations

In this section, we present some numerical results for model with discrete-time delays
(7)—(13) to illustrate the stability of equilibrium points. Further, we illustrate the effect
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of time delays on the dynamical behaviors of the HTLV-I/SARS-CoV-2 coinfection. We
used the dde23 solver in MATLAB to solve the system of delay differential equations
numerically.

4.1. Stability of Equilibrium Points

We solve the system with three initial conditions:

IC1: (X(6), N(6),Y(6),V(6),U(6),L(6), A(6)) = (1,0.0001,0.0002,0.0003, 600,150, 15),
IC2: (X(6), N(6),Y(6),V(6),U(6),L(6), A(6)) = (3,0.0005,0.0006,0.0007,500,200,20),
IC3: (X(0), N(6),Y(0),V(0),U(6),L(6), A(6)) = (5,0.001,0.002,0.003,400, 250, 25),

where 6 € [—max{T, T,...,T5},0]. We fix the time delay parameters 7; = 0.1, i = 1,
2,...,5. Table 2 contains the values of some parameters. We mention that, the values of
some parameters of the model are taken from previous studies for SARS-CoV-2 and HTLV-1
mono-infections, while other parameters such as the delay parameters 7;,i = 1,2,...,5 are
chosen just to conduct the numerical simulations. To the best of our knowledge, till now
there is no available data from SARS-CoV-2 and HTLV-I coinfection patients. Therefore,
estimating the parameters of the coinfection model is still open for future investigations.
We vary the parameters, p, y#, v and 7t to obtain four cases as:

Case 1. (Ry < 1land Ry < 1): Choosing p = 0.8, uy = 1.1, y = 5.5 and m = 0.0001 which
gives Ry = 0.2208 < 1 and Ry = 0.0003 < 1. Based on Theorem 1, the equilibrium point, EP, is
GAS. This is illustrated in Figure 1, where, the concentrations of the uninfected ECs and uninfected
CD4T cells tends to their healthy values Xo = 10 and Uy = 833.33, while, the concentrations
of the other compartments tend to zero. This case means the clearance of both SARS-CoV-2 and
HTLV-I infections.

Case 2. (Ry > 1and Ry < 1): We take p = 0.5, u = 1.1, {y = 5.5 and = = 0.0015. So, we
obtain Ry = 3.3126 > 1 and Ry = 0.0006 < 1. According to Lemma 2 and Theorem 2, the
HTLV-I mono-infection equilibrium point, EPy exists and is GAS. Figure 2 shows that the models’s
solutions converge to the equilibrium point EP; = (10,0,0,0,251.56,196.97,18.5) for all initials
ICI-IC3. In this situation, the patient becomes infected by HTLV-I, while the SARS-CoV-2 infection
is cleared.

Case 3. (Ry > 1and Rz < 1): We choose p = 3, 4 = 0.01, ¢y = 0.04 and 7t = 0.0001. Then,
we calculate Ry = 15.3786 > 1 and Rz = 0.2407 < 1. Lemma 2 and Theorem 3 state that the
SARS-CoV-2-mono-infection equilibrium point, EP, = (0.702,0.022,0.009, 0.049,900.46, 0, 0)
exists and is GAS. Figure 3 displays the numerical solutions of the system converge to EP, for all
the three initials IC1-1C3. The results support the theoretical results presented in Theorem 3. This
situation represents a patient who infected only with SARS-CoV-2.

Case 4. (Ry > land 1 < R3 < 1+ R): We consider p = 3, u = 0.01, & = 0.6 and 7= = 0.0015.
So, we obtain Ry = 32969 > 1, R3 = 3.3113 > 1and R3 < 1+ R = 4.0299. Lemma 2 and
Theorem 4 state that the HTLV-I/SARS-CoV-2 coinfection EP3 = (3.03,0.017,0.023,0.008, 251.56,
213.49,20.05) exists and is GAS. Figure 4 shows that the solutions of the system converge to EPs
for all initials IC1-IC3. The results support the theoretical results presented in Theorem 4. In this
case, a SARS-CoV-2 and HTLV-I coinfection happens, where a HTLV-I-patient gets contaminated
with COVID-19. CD4™ T cells are animated to dispense with SARS-CoV-2 disease from the body.
In any case, assuming the patient has low CD4™" T cell counts, the freedom of SARS-CoV-2 may not
be accomplished. This can prompt extreme contamination and passing.

4.2. Impact of Time Delays on the Clearance of Coinfection

In this part, we study the effect of time delay parameters 7;,i = 1,2,...,5 on the stabil-
ity of the uninfected equilibrium point EPy. Since Ry and R; dependon 7;,i =1, 2,...,5,
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then changing the parameters 7; will change the stability of the uninfected equilibrium
point. Using the values of the parameters in Table 2 and considering p = 3, u = 0.01,
¢y = 0.06 and 7T = 0.0015 to solve the model (7)—(13) with initial condition:

IC4: (X(), N(6),Y(6),V(6),U(6),L(6), A(6)) = (5,1,0.0012,0.004, 400,200, 20),

where 6 € [-max71;,0],i=1,2,...,5.Consider T = 71 = T» = 73 = 74 = T5 and the other
parameters are fixed, then R; and R; can be given as functions of 7 as follows:

B ﬂﬂé'ye_(d4+d5)1—
© Cu(Ciat+a(Ea —eeBT))

We note that, when all other parameters are fixed, then R; and R; are decreasing
functions of 7. Let 7, and T, be such that Ry (7, ) = Ra2(7er,) = 1. Consequently,

Snox e—(d1+d2+d3)1’
’ RZ(T) = 10 CU

Ry (7) ~ ExCv(k+En)(EySu +m)’

Ri(7) <1, forall T > 7,
Ry(1) <1, forall T > 1g,.

Therefore, EPy is GAS when T > 7, and T > 1¢,. Using the values of the parameters,
we get, Tor; = 0.692433 and 7, = 0.108309. It follows that:

(i) If T > max{Te,, T2} = 0.692433, then R1(7) < 1 and Ry(7) < 1 and thus, EPy
is GAS.

(if) If T < 0.692433, then R1(7) > 1 or Ry(t) > 1 and thus, EPy will lose its stability.

Therefore, sufficiently large time delay can stabilize the system around the equilibrium
EP,.

It is clear from Figure 5 that, as T increases, the concentrations of the uninfected
ECs and uninfected CD4™T cells are increased, while the other concentrations of other
compartments are decreased. We can see from the above discussion that increasing time
delays values can have similar effect as antiviral treatments.

Table 2. Model parameters.

Parameter Value Sources Parameter Value Sources

1) 0.11 [26] u 0.1 [35,65]

Cx 0.011 [26] ¢u 0.012 [49,51,52]

0 Varies Assumed s Varies Assumed

K 4.08 [35,66] w 0.9 [50]

N 0.11 [26] e* 0.011 [50]

Cy 0.11 [35,42] % 0.003 [49,51,52,67]
U Varies Assumed ¢ 0.03 [50-53]

1 0.24 [35] ) 0.03 [49,51,52]
7 Varies Assumed d,i=1,...,5 1.0 Assumed

0% 10 [51,52,68] 7,i=1,...,5 Varies Assumed
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Figure 5. Impact of time delays parameters 7;,i = 1,2, 3,4, 5 on the HTLV-I/SARS-COV-2 coinfection’s
dynamics given by system (7)—(13) with initial conditions IC4.

5. Discussion

Coinfection

cases with SARS-CoV-2 and HTLV-I were reported in [3,10]. Therefore, it

is important to understand the within-host dynamics of this coinfection. In this paper, we
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developed and examined two SARS-CoV-2 and HTLV-I coinfection models. The models
considered the interactions between uninfected ECs, latently SARS-CoV-2-infected ECs,
actively SARS-CoV-2-infected ECs, free SARS-CoV-2 particles, uninfected CD4™ T cells,
latently HTLV-I-infected CD4"T cells and actively HTLV-I-infected CD4T cells. We
introduced five intracellular time delays into the models: (i) two delays in the formation
of latently SARS-CoV-2-infected ECs and latently HTLV-I-infected CD4" T cells, (ii) two
delays in the reactivation of latently SARS-CoV-2-infected ECs and latently HTLV-I-infected
CD4 T cells, and (iii) maturation delay of new SARS-CoV-2 virions. Discrete-time delays
and distributed-time delays were incorporated in the first and second models, respectively.
We examined the nonnegativity and ultimate boundedness of the solutions. We found that
these systems has four equilibria and we proved the following:

(I) The uninfected equilibrium point EPy always exists. It is GAS when R; < 1
and R, < 1. In this case, the patient is recovered from both SARS-CoV-2 and HTLV-L
From a control viewpoint, making R; < 1 and R, < 1 will be a good strategy. The
parameter R, may be reduced by multiplying the parameters by p or # by (1 —€7) or
(1 — ep), respectively. Here, €1 € [0,1] and €, € [0, 1] are the effectiveness of the antiviral
drugs for blocking the infection and blocking the production of SARS-CoV-2 particles,
respectively [20]. Since there is no treatment for HTLV-I infection [11], making R; < 1is
rarely achieved.

(IT) The HTLV-I mono-infection equilibrium point, EP; exists if Ry > 1. It is GAS when
Ry > 1and Ry < 1. This case leads to the situation of the patient who infected by HTLV-I,
while the SARS-CoV-2 infection is cleared.

(III) The SARS-CoV-2 mono-infection equilibrium point, EP; exists if Ry > 1. Itis
GAS when R, > 1 and Rz < 1. This case leads to the situation of the patient who has
SARS-CoV-2 mono-infection.

(IV) The HTLV-I and SARS-CoV-2 coinfection equilibrium point, EPs exists if R3 > 1
and Ry > 1. Itis GASwhen Ry > 1and 1 < R3 < 1+ R. This point represents the situation
of SARS-CoV-2 and HTLV-I coinfection patient.

The global stability of equilibria was established using Lyapunov method. We per-
formed numerical simulations and demonstrated that they are in good agreement with
the theoretical results. We discussed the impact of time delays on the clearance of coin-
fection. We concluded that, increasing time delays values can have an antiviral treatment-
like impact.

The models developed in this work can be improved by (i) utilizing real data to
find a good estimation of the parameters’ values, thus, the theoretical results obtained in
this paper need to be tested against empirical findings when real data become available,
(ii) considering the mutations of the SARS-CoV-2, (iii) including the stochastic interaction,
and (iv) considering the diffusion of cells and viruses. Future studies should evaluate the
effect of SARS-CoV-2 on HTLV-1 patients. These research points need further investigations
so we leave them to future works.
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