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Abstract: An intrusion detection system is one of the main defense lines used to provide security to
data, information, and computer networks. The problems of this security system are the increased
processing time, high false alarm rate, and low detection rate that occur due to the large amount of
data containing various irrelevant and redundant features. Therefore, feature selection can solve
this problem by reducing the number of features. Choosing appropriate feature selection methods
that can reduce the number of features without a negative effect on the classification accuracy is a
major challenge. This challenge motivated us to investigate the application of different wrapper
feature selection techniques in intrusion detection. The performance of the selected techniques, such
as the genetic algorithm (GA), sequential forward selection (SFS), and sequential backward selection
(SBS), were analyzed, addressed, and compared to the existing techniques. The efficiency of the three
feature selection techniques with two classification methods, including support vector machine (SVM)
and multi perceptron (MLP), was compared. The CICIDS2017, CSE-CIC-IDS218, and NSL-KDD
datasets were considered for the experiments. The efficiency of the proposed models was proved in
the experimental results, which indicated that it had highest accuracy in the selected datasets.

Keywords: intrusion detection; genetic algorithm; greedy search; backward elimination learning;
NSL-KDD; CIC-IDS-2017; CIC-IDS2018

MSC: 68M25

1. Introduction

Currently, the internet is necessary for storing and transferring the diverse information
of users, companies, and governments. Protecting and securing systems and information is
necessary. One of the most efficient existing systems used to secure systems and control
intrusion activities is the intrusion detection system (IDS). In recent years, several IDSs have
been proposed. These security systems have many problems such as an increasing pro-
cessing time, high false positive rate (FPR), and low detection rate (DR), which are caused
by the large amount of data containing various irrelevant and redundant features [1,2].
Feature selection (FS) can solve these problems by reducing the number of features and
selecting only useful features. Several feature selection methods are available, but the task
of finding which one is suitable for IDS that provides the minimum number of features
with the maximum accuracy is a major challenge [2,3]. This challenge motivated us to
investigate the application of different FS techniques in intrusion detection. The perfor-
mance of the selected techniques, such as the GA [4], SFS [5], and SBS [3] were analyzed,
addressed, and compared with existing techniques. This study used the recent CICIDS2017
and CSE-CIC-IDS218 [6] datasets as well as the NSL-KDD [7] dataset.

1.1. Intrusion Detection System

IDS is a software or hardware that monitors activities inside and outside the network
to detect abnormal ones [3]. It is one of the most important mechanisms that protect
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systems and networks against malicious activities [6,8]. This system generates alarms if
any abnormal pattern is recognized. IDSs have two types: host-based IDS, which focuses
on individual computers, and network-based IDS, which focuses on the traffic between
computers. Based on the detection method, IDS can be classified into two categories,
namely signature-based and anomaly-based detection [1,9].

1.1.1. Signature-Based Detection

This detection method is also known as misuse detection. It uses the attack signature
database to identify intrusions or abnormal activities. When a packet signature matches
with a signature in the database, IDSs detect that packet as an intrusion. This detection
type can detect known attacks only [1].

1.1.2. Anomaly-Based Detection

In this detection type, IDSs build profiles of the normal network packets. They then
analyze and monitor the network packets. When there is any deviation from the normal
profile, IDSs detect the abnormal activity. This detection type can detect known and
unknown attacks [1].

1.2. Feature Selection Methods

Feature selection methods select the relevant and useful features from a dataset.
The goal of FS techniques is to increase the accuracy and detection rate and decrease the
execution time and false positive rate. To achieve this goal, FS measures the importance of
features and only allows the most important features to enter the classification. The number
of features is then reduced as well as the classification time. There are two types of FS
methods based on evaluation criteria [8,10]. The first type is the filter method, which it is
independent of the classifier. It analyzes each single feature and decides which features are
useful and should be trained based on statistical measures [8,11,12]. The second type is the
wrapper method, which is dependent on the classifier. In contrast to filter methods, wrapper
methods use machine learning algorithms to determine the best feature subset to provide a
high classification performance [8,10–12]. The filter and wrapper FS methods are based on
two components: a search strategy (e.g., GA, SFS, and SBS) and an objective function or
fitness function (e.g., classifier performance in wrapper methods and statistical measure
in filter methods). The search strategy determines the optimal subset of features that
provide high accuracy and low false alarms results based on the classifier’s performance (in
wrapper methods) or statistical measures such as information gain (in filter methods) [13].
The search strategy can be made up of exhaustive, heuristic, and random searches [14].
Exhaustive searches are time consuming and impractical because of the large number
of combinations to evaluate. For example, a search of an 2n−1 possible feature subsets
in n features dataset becomes an NP-hard problem as the number of features grow [13].
Heuristic searches such as the forward sequential search and fuzzy systems and random
searches such as the GA perform better in large datasets [15–17].

Filter selection methods are faster and have a lower level of complexity than wrapper
methods, but the latter are more accurate [18]. Therefore, we used wrapper methods in
our study to build an efficient IDS model that provides a low FPR and high ACC with the
minimum number of features.

Several features selection methods are available such as the GA, SBS, and SFS, but the
problem is to find which one is more suitable for an intrusion detection system (IDS) that
provides a minimum number of features with maximum accuracy [2,3].

1.2.1. Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS)

SFS and SBS are simple search techniques that run in iterations and make a greedy
decision to select the best local solution in each iteration based on the objective function.

The SFS algorithm starts with an empty set and adds one feature to the subset at each
iteration until a stopping criterion is met such as the search is completed or the desired
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number of subset features is reached. After that, it returns the local optimal solution among
iterations or the solution in the desired number of subset features. Figure 1a shows an SFS
methodology in which a dataset has three features: F1, F2, and F3. In the first iteration,
SFS generates and evaluates several subsets that contain only one feature from the complete
set of features. The feature that has the maximum objective function is selected as a local
optimal solution in this iteration. In the second iteration, it also generates and evaluates
several subsets, in which one feature is added to the selected feature from the previous
iteration. Subsequently, each subset is evaluated to select the best local optimal solution.
In the third iteration, a feature is added to the selected features from the previous iteration;
in this case, the complete set of features is evaluated. Finally, it returns the best local optimal
solution among these iterations as the output. By contrast, the SBS algorithm starts from a
complete set of features and iteratively removes one feature until a stopping criterion is
met. After that, it returns the local optimal solution among iterations or the solution in
the desired number of subset features. Figure 1b shows an SBS methodology in which a
dataset has three features: F1, F2 and F3.
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Figure 1. (a) An example of SFS; (b) an example of SBS.

1.2.2. Genetic Algorithm

The GA is a metaheuristic search and work algorithm based on a direct Darwinian
natural selection analogy and genetics in biological systems [12,13]. It is composed of four
components: a population of individuals, a fitness function, a selection function, and a
genetic operator (e.g., crossover and mutations). The GA randomly generates a population
of individuals or chromosomes in which each chromosome represents a solution to the
problem [12,13]. The fitness function determines the chromosome’s chance of being chosen
to create the offspring or the next generation individuals. The selection function selects the
parents of the offspring from the current generation, and then the crossover and mutation
are applied to the selected parents to generate the offspring or the next generation of
individuals. Several selection functions are available, such as the tournament selection
method, roulette wheel, and rank selection [13]. Crossover and mutation operators are then
applied to the selected individuals or chromosomes to create offspring or the generation
of new individuals. Crossover is the exchange of individual bits between two randomly
selected parents. Mutation is the alteration of individual bits to generate new individuals.
New and different individuals are generated from the current generation after applying
crossover and mutation operators. The evaluation of individuals, selection, crossover,
and mutation are repeated in a predefined number of generations until a stopping criterion
is met.

2. Related Work

Sarvari et al. [19] used the wrapper cuckoo search algorithm (CSA) as an FS technique
to build an efficient IDS model. They applied the FS method and trained an artificial neural
network (ANN) using a multiverse optimizer (MVO). The proposed model, called MCF &
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MVO-ANN, was evaluated using the NSL-KDD dataset. As a result, their model achieved
a high ACC (98.16%), a high DR (96.83%), and a low FPR (0.03%).

Saleh et al. [8] presented an IDS approach based on the wrapper NBFS technique to
select the best feature subsets. The proposed model combines optimized support vector
machines (OSVMs) and prioritized k-nearest neighbors (PKNN) techniques. They used
OSVM for rejecting outliers and PKNN to detect attacks. The experimental results indicate
that NBFS achieves a higher DR (approximately 90.28%) than other techniques using an
NB classifier with 18 selected features. The proposed model also gives a higher DR (95.77%
using the NSL-KDD dataset and 93.28% using KDD Cup99) than other techniques.

Ates et al. [5] used the greedy search (GS) algorithm and SVM to detect distributed
denial of service (DDoS) attacks. They used GS for FS and SVM as a classifier. The proposed
model calculates the distances between the probability distributions of header informa-
tion using the GS algorithm and Kullback–Leibler divergence. In the testing phase, they
used a dataset collected from the MIT Darpa 2000 dataset and a university network and
achieved a high AC of 99.99% and a low FPR of 0.001% for the MIT Darpa 200 dataset.
However, the proposed model needs to be evaluated using a standard dataset to compare
its performance results with recent models.

Asdaghi et al. [20] proposed a new backward elimination (BE) method called Smart-BT
for web spam detection. They used index of balance accuracy values as a performance
metric. The proposed model uses the chi-square as a pre-processing process. Afterward,
Smart-BT selects the relevant and useful features by eliminating a set of features from
the initial set. The experimental results show that the Smart-BT gives better classification
results than other existing FS techniques such as the ranker search algorithm and particle
swarm optimization (PSO) techniques.

Tao et al. [4] introduced an FS technique based on the GA and SVM to improve the IDS.
They presented a new fitness function for the chosen FS method to determine the optimal
feature subset. The experimental results indicate that their model succeeds in minimizing
the number of features to 19 features and achieves a high DR and low FPR using the KDD
Cup99 dataset. However, the determination of the weight values for the TPR and selected
feature number is carried out manually.

Thakkar and Lohiya [3] presented a performance analysis of FS techniques in IDSs.
Chi-square, IG, and recursive feature elimination (REF) were implemented separately as FSs
with several ML classifiers such as SVM and ANN. For determining the best combination
performance in terms of FS technique and machine learning classifier using the NSL-KDD
dataset, they conducted several experiments and reported that the combination of SVM and
REF performs well compared with other techniques. The average ACC, precision, recall,
and F-score rates were 98.95%, 99.2%, 99.75%, and 98.40%, respectively, for the SVM-REF
model.

G Suseendran and T. Nathiya [10] presented a GS FS method to increase the accuracy
and decrease the false alarm rate in IDSs. They used correlation feature selection (CFS) to
evaluate the selected feature subsets. The RF classifier is used in their model. The experi-
ments showed that their model achieves 98.32% in terms of ACC and 0.40% in terms of the
false alarm rate using the NSL-KDD dataset.

Aslahi et al. [21] used the GA for FS and SVM as a classifier for building a new IDS
model. Their model reduces the amount of features to 10 features from the original 41
features. The KDD dataset was used in their experiments. Their model achieves 97.30% in
terms of accuracy and 1.70% in terms of false alarm rate.

J. Lee et al. [22] proposed a sequential forward floating search (SFFS) method to
increase the ACC and decrease the false alarm rate in IDSs. They used a SFFS to select
the optimal feature set and RF classifier for the evaluation. The NSL-KDD dataset was
used in the experiments for the proposed model. The experiments proved that their model
achieves a 0.40% false alarm rate and 99.89% ACC with 10 selected features.

Li et al. [15] proposed a modified random mutation hill climbing (MRMHC) method
as a wrapper FS technique. They used a modified linear SVM as an evaluation criterion.
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MRMHC generates an initial subset from the complete set of features. Then, the MLSVM
evaluates the selected subset and select the best subset. Their experiments on the KDD Cup
dataset showed that their approach has a high ACC and low detection time.

Li Y et al. [23] used a gradual feature removal method to select the important features
in IDSs. This method deletes the less important features gradually. They used SVM classifier
as an objective function in their proposed model. Their model selected 19 features from the
KDD Cup dataset, which was used in the experiments. The results obtained an ACC of
98.62%.

Raman et al. [24] proposed a hypergraph-based GA (HG-GA) to build an adaptive
IDS with a high ACC and low false alarm rate. HG-GA is used for FS in their proposed
model, and SVM is used for classification. In their experiments, they used the NSL-KDD
dataset. The proposed model achieves an ACC of 97.14% and a false alarm rate of 0.83%.

Khammassi and Krichen [13] used the GA for FS and linear regression as a classifi-
cation algorithm. This wrapper approach selects the important features from the original
datasets (KDD99 and UNSW-NB15). Then, the DT classifier uses the selected features to
measure the efficiency of the selected features. An accuracy of 99.90% and false alarm rate
of 0.11% were obtained in their experiments for the KDD99 dataset with 18 features.

Zhou and Cheng [25] developed an IDS model based on correlation-based FS (CSF)
and the bat algorithm (BA). They combined RF, C4.5, and forest attributes to build an
ensemble approach. The proposed model was evaluated using several IDS datasets such
as the CICIDS2017 and NSL-KDD datasets. Their model obtains 94.04% in terms of the
detection rate, 2.38% in terms of the FPR and 96.76% in terms of ACC.

Hua Y. [26] developed a hybrid filter and wrapper FS method based on IG and
LightGBM. An under-sampling technique was used to balance the used CICIDS2017 dataset.
The proposed model achieves an ACC of 98.37%, a precision of 98.17%, and a recall of
98.37% with 10 selected features.

Sugandh Seth et al. [27] used random forest (RF) and principal component analysis
(PCA) as a hybrid feature selection method. A light gradient boosting machine (LightGBM)
classifier was used to classify the instances of the CIC-IDS-2018 dataset. The authors used
an under-sampling technique to balance the dataset. Their model achieves 97.73% in terms
of accuracy and a 97.57% F1-Score with 24 selected features.

Alazzam et al. [28] used the pigeon inspired optimizer (PIO) technique. They designed
two models of the POI such as the sigmoid PIO and binary cosine PIO to determine the
optimal number of features. In the binary PIO, the calculation of the velocity of pigeons
is based on the cosine similarity. Their models were evaluated using the decision tree
(DT) technique. Through experiments, the models were evaluated using the UNSW-NB15,
NSL-KDD, and KDDCUP99 datasets. The result indicate that the proposed model (cosine
PIO) outperforms several proposed FS algorithms in terms of AC, F-score, FPR, and TPR.

Mazini et al. [29] used the wrapper artificial bee colony (ABC) algorithm for FS to build
an efficient anomaly IDS. The AdaBoost classifier is used for evaluation and classification.
Through simulation, the model was evaluated using the ISCXIDS2012 and NSL-KDD
datasets. As a result, the proposed model achieves a high DR (99.61%), low FPR (0.01%),
and high ACC (98.90%). However, the parameter settings for FS are determined manually.

Aween Saeed and Noor Jameel [30] used the particle swarm optimization algorithm
with a decision tree (DT) to build a wrapper feature selection model for IDS. The authors
trained and tested their model using a DT classifier. Their model selected 19 features from
the CIC-IDS-2018 dataset, which was used in the experiments. The results obtained an
ACC of 99.52%.

Jahed Shaikh and Deepak Kshirsagar [31] used information gain (IG) and a correlation
attribute evaluation as a feature selection method to select the optimal number of features
from the CIS-IDS-2017 dataset. A PART rule-based machine learning classifier was used to
evaluate the proposed model. An accuracy of 99.98% and false alarm rate of 1.35% were
obtained in their experiments with 56 features.
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Patil and Kshirsagar [32] presented an IDS model based on information gain (IG) and
ranker method as a feature selection method. The J48 classifier was used to evaluate the
selected features. Their model selected 75 features from the CIC-IDS-2017 dataset, which
was used in the experiments. The results obtained an ACC of 87.44%.

Many of the above FS techniques have not been evaluated on high-dimension datasets
such as CICI-IDS-2017 and CSE-CIC-IDS-2018, which contain more features (80 features)
compared with KDD Cup99 and NSL-KDD, which contain 41 features [17]. In addition,
certain researchers did not mention the obtained number of selected features, which affects
the execution time in terms of classification [2]. Moreover, BE, GA, and GS techniques
achieved high results in previous works [3–5,31]. Hence, the present study investigated
these FS techniques using several standard datasets to determine the most appropriate
technique that provides the minimum number of relevant features with maximum accuracy.
A summary of the literature review is shown in Table 1.

Table 1. Summary of the literature review.

Ref. Feature Selection
Algorithm

Classification
Algorithm Dataset Number of

Features Result (%)

[3] REF SVM NSL-KDD - ACC: 98.95
F-score: 99.75

[4] GA SVM KDD Cup99 19

[5] Greedy Search SVM MIT Darpa 2000 - ACC: 99.99
FPR: 0.001

[8] NBFS PKNN + OSVMs NSL-KDD - DR: 95.77

[10] Greedy Search + CFS RF NSL-KDD - ACC: 98.32
FPR: 0.40

[13] GA DT KDD99 18 ACC: 99.90
FPR: 0.11

[15] MRMHC MLSVM KDD Cup 4 TPR: 80.00
FPR: 3.65

[19] CSA MCF & MVO-ANN NSL-KDD 22
ACC: 98.81
DR: 97.25
FPR: 0.03

[21] GA SVM KDD Cup 10 ACC: 97.30
FPR: 1.70

[22] SFFS RF NSL-KDD 10 ACC: 99.89
FPR: 0.40

[23] Gradual feature removal SVM KDD Cup 19 ACC: 98.62

[24] HG-GA SVM NSL-KDD - ACC: 97.14
FPR: 0.83

[25] CSF + BA RF + C4.5 + FOREST
ATTRIBUTE

NSL-KDD
CICIDS2017 -

ACC: 96.76
DR: 94.04
FPR: 2.38

[26] IG LightGBM CICIDS2017 10 ACC: 98.37

[27]
Hybrid Feature

Selection
(RF + PCA)

Light GBM CICIDS2018 24 ACC: 97.73

[28] Sigmoid POI DT NSL-KDD 18 ACC: 86.90
FPR: 6.40

[28] Cosine POI DT NSL-KDD 5 ACC: 86.90
FPR: 8.80
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Table 1. Cont.

Ref. Feature Selection
Algorithm

Classification
Algorithm Dataset Number of

Features Result (%)

[29] ABC AdaBoost NSL-KDD 25 ACC: 98.90
FPR: 0.01

[30] Binary-particle swarm
optimization Decision tree CICIDS2018 19 ACC: 99.52

[31]
IG and correlation

attribute evaluation
methods

PART CICIDS2017 56 ACC: 99.98
FPR: 1.35

[32] Information gain and
ranker algorithm J48 CICIDS2017 75 ACC: 87.44

3. Methodology

Figure 2 shows the methodology which includes: database selection, pre-processing,
feature selection, classification, evaluation, as well as the analysis and comparison of results
steps. We will explain these steps in the following subsections.
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3.1. Dataset Selection

New cybersecurity datasets are available, so this work used three different datasets,
namely NSL-KDD, CIC-IDS-2017, and CIC-IDS-2018, for the experiments. All of these
datasets were explored to determine which was the most suitable dataset for building an
efficient IDS.

3.1.1. NSL-KDD

The NSL-KDD dataset is one of the most widely used benchmarks for IDSs [8,19,28].
It is an upgraded version of the old KDD Cup99 dataset [7]. It has four attack categories:
user to root attack (U2R), denial of service attack (DoS), probing attack, and remote to local
attack (R2L). The full NSL-KDD training dataset contains 125,973 records, whereas the full
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NSL-KDD testing dataset contains 22,254 records. There are 41 features in the NSL-KDD
dataset: three of them are nominal or symbolic features, and the rest are numeric features.

3.1.2. CIC-IDS-2017

The CIC-IDS-2017 dataset is a network traffic dataset that consists of both normal and
a variety of attack data developed by the Faculty of Computer Science, University of New
Brunswick and the Canadian Institute of Cybersecurity (CIC) in 2017. This dataset was
captured over a duration of five days, and it uses a large variety of attack types [25,33,34].
In the CIC 2017 dataset, the attack simulation is divided into seven categories namely,
botnet, brute force attack, DoS attack, DdoS attack, infiltration attack, web attack, and heart
bleed attack [25,34]. This dataset contains over 2.5 million records and 78 features, including
the label column, and 19.70% of CIC-IDS-2017 is attack traffic. The dataset has a class
imbalance. An unequal distribution between majority and minority classes in databases is
known as class imbalance, which affects the performance of classification [34].

3.1.3. CIC-IDS-2018

The CIC-IDS-2018 dataset is a network traffic dataset consisting of both normal and a
variety of attack data developed by the Faculty of Computer Science, University of New
Brunswick, the CIC, and the Communications Security Establishment (CSE) in 2018 [6].
The structure of this dataset is similar to the previous dataset, and both have a class
imbalance. Roughly 17% of the total number of records, which is 16,233,002 records,
is attack traffic.

3.2. Preprocessing

The datasets must be preprocessed to avoid inconsistent, irrelevant, and missing data
that affect the performance of the IDS. This step may include several tasks such as removing
null or missing values, resampling, and scaling.

Certain datasets have missing, null, or symbolic values. These types of data structures
make the classification algorithms difficult to handle. Therefore, missing values or null
values are removed, and symbolic values are mapped to numeric values. Duplicated
records and features should be removed to prevent the classifiers from being biased to the
most frequent records [28]. Certain machine learning classifiers such as SVM and MLP
are sensitive to feature scaling and require the scaling of a dataset because these classifiers
provide weights to the input features according to their data points and inferences for
output. Therefore, scaling all the used datasets before the FS, training, and testing phases is
highly recommended.

The highly unbalanced datasets in the CIC-IDS-2017 and CIC-IDS-2018 datasets affect
the performance of the classifier. The random under-sampling (RUS) technique is used
to balance the class distribution. The RUS technique, in which specific majority instances
are removed to balance a dataset, provides a good result compared with other sampling
methods in the context of the CIC-IDS-2017 dataset [35].

3.3. Feature Subset Selection

This work focused on FS techniques and considered different wrapper FS techniques
such as SFS, SBS, and the GA. Different machine learning techniques such as MLP and
SVM were applied as the objective functions for the chosen FS techniques.

Not all features of the NSL-KDD, CIC-IDS-2017, and CIC-IDS-2018 datasets are impor-
tant to build an efficient IDS. A subset of these features can achieve high a ACC and low
FPR. Moreover, eliminating certain features using FS techniques is necessary to build an
efficient IDS with a high accuracy and low false alarms. In this study, the performance of
SFS, SBS, and GA FS techniques were explored. We used the wrapper FS approach. This
approach is based on three components: a search strategy, a classifier, and an evaluation
function [13,14]. We used three search strategies (SFS, SBS, and the GA). In each search
strategy, we used SVM and MLP as classifiers. The evaluation of the feature subsets was a
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fitness function based on a custom score of the cross-validation of the previous classifiers.
Cross-validation is a resampling technique that divides the dataset into equal different
portions to train and test a model on different iterations. Cross-validation gives an insight
on how the model can be generalized to an unknown dataset, and it is a useful technique to
identify the overfitting of a model. In the FS phase, two-fold, five-fold, and ten-fold cross
validation are used. Our goal in this study was to propose an FS method that increases the
ACC and decreases the false alarm rate with the minimum number of features. Therefore,
our objective function or fitness function was based on three criteria: the classification
accuracy of SVM or MLP, the false alarm rate or FPR, and the number of selected features.
Hence, the subset having the smallest number of features, the highest ACC, and the lowest
FPR produces the highest objective function.

Several objective functions are available. Hence, we investigated several objective
functions in the FS phase. Bamakan et al. [36] proposed an objective function based on the
detection rate, the false alarm rate of the classifier, and the number of selected features,
as shown in Equation (1). Hang and Wang [37] proposed an objective function based on
the accuracy and the number of selected features, as shown in Equation (2).

Objective Function(X) = DR(X) ∗ WA + (1 − FPR) ∗ WF + (1 − N ∗ WN) (1)

Objective Function(X) = ACC(X) ∗ WA + (1 − N ∗ WN) (2)

where N is the number of selected features in the subset, WA is a predefined weight for the
accuracy score of the subset, WF is a predefined weight for the FPR of the subset, WD is a
predefined weight for the DR of the subset, and WN is a predefined weight for the number
of selected features in the subset. All the weights should be in range [0–1].

In the following, we explain the selected FS techniques in this study, which were the
SFS, SBS, and GA feature methods.

3.3.1. Sequential Forward Selection (SFS)

SFS is a wrapper FS that selects k features from an initial d features dataset where k
< d through a number of iterations. It selects the best feature subset by starting from an
empty dataset and adding one feature at a time based on the classifier performance in an
iterative process until a stopping criterion is met, such as a feature subset of the specified
size k being reached. If the desired number of features is in a range (e.g., 1–40), SFS selects
the feature subset that contains the highest objective function (e.g., accuracy) in that range.
SFS flowchart is shown in Figure 3.

3.3.2. Sequential Backward Selection (SBS)

This method is essentially the reverse of the above method. It selects the best feature
subset by starting from the original full feature dataset and removes one feature at a time
based on the classifier performance in an iterative process until a stopping criterion is met,
such as a feature subset of the specified size k being reached. If the desired number of
features is in a range (e.g., 1–40), SBS selects the feature subset that contains the highest
objective function (e.g., accuracy) in that range. SBS flowchart is shown in Figure 4.
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3.3.3. Genetic Algorithm (GA)

The GA is composed of five components: the initiation of the population, a fitness func-
tion, a selection function, genetic operators (e.g., crossover and mutations), and stopping
criteria. Below, we explain each component in a separate section.

Population Initiation

First, the GA randomly generates a population of individuals or chromosomes in
which each chromosome represents a solution for the problem [12,13]. Each chromosome or
individual is encoded as binary; a feature is either included or not in the subset. The num-
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ber of individuals or the population size is defined by the user (n_population). A large
population size provides a large search space to the GA but it increases the required time to
evaluate all the individuals of the population. In contrast, a small population size provides
a small search space to the GA but the required time to evaluate all the individuals of
population is less than in the first situation.

Fitness Function

The fitness function determines the chromosome’s chance of being chosen to create
the offspring or the next generation. The fitness function can be any metric of the classifier
performance, such as accuracy. For example, if the classifier accuracy is chosen to be the
fitness function, the chromosome having the highest accuracy produces the highest fitness
value [13].

Selection Function

The selection function selects the parents of offspring or the next generation of individ-
uals from the current generation. In this study, we used the tournament selection method
that selects the best individuals from a population of individuals. It randomly selects a
predefined number of individuals (tournament_size) and runs a tournament among them.
The individual or chromosome with the best fitness is the winner of the tournament and it
is selected for generating the next generation. The tournament selection is repeated several
times, as specified by the user. The best induvial with the highest fitness function among
other individuals in each generation is added to the population of the next generation.
Hence, each generation in the GA has an individual that has the highest fitness function
among its previous generations.

Crossover Process

The crossover operator is used to generate new offspring or solutions from the current
solutions (the parents). For each two randomly selected individuals or chromosomes,
a crossover is performed with a predefined probability in a range [0–1]. Several crossover
operators are available, such as one-point, two-point, and uniform crossovers. In this
study, we used a uniform crossover in which each bit in a parent’s chromone is swapped
based on a predefined probability and a random number in a range [0–1]. For instance,
if the predefined probability is 0.5 and the random number is 0.7, in this case the random
number is equal to or greater than the predefined probability. Therefore, bit swapping
occurs. This process is repeated for all bits in the parents’ chromosome. Hence, we have
two probabilities: a probability for applying crossover between two individuals and a
probability for exchanging the bit value between two individuals.

Mutation Process

Mutation, which is applied after the crossover process, is the alteration of individual
bits to generate new individuals from the current individuals. Several mutation operators
are available, such as inversion mutation, insertion mutation, and flip-bit mutation [38].
In this study, we used flip-bit mutation, which switches certain bits from 1 to 0 or vice
versa. Two probabilities are used in mutation: the probability of applying mutation on
the individual and the probability of mutation or flipping the bit value of the individ-
ual. New different individuals are generated from the current generation after applying
crossover and mutation operators.

Stopping Criteria

The evaluation of individuals, selection, crossover, and mutation are repeated in a
predefined number of generations until a stopping criterion is met (e.g., the maximum
number of generation or a specified number of generations is reached when the objective
function cannot improve).
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3.4. Classification

The selected feature subsets are then fed to a classifier such as MLP and SVM to classify
the inputs as normal or attack traffic. Different classifiers are investigated to identify the
most suitable one for training and testing the IDS model.

3.4.1. Support Vector Machine (SVM)

SVM is a supervised learning model that provides a good level of accuracy in classifi-
cation problems [4,8,10,21,33]. SVM builds one or more hyperplanes by using the nearest
training data points of each data (called support vectors). Then, it tries to maximize the
margin between the data points. In the implementation of SVMs, there are certain kernel
functions such as polynomial, sigmoid, and radial kernel functions (RBF). Making the
trade-off between constant C and the type of kernel function is crucial to achieve a good
result for the classification [8].

3.4.2. Artificial Neural Network Multi Perceptron (ANN-MLP)

MLP is also a supervised learning model. It is a class of feedforward ANN. There are
at least three layers in MLP: an input, hidden, and output layer [19]. Each layer contains
one or more neurons. Each neuron connects with a specific weight to every neuron in the
following layer [19]. The learning in MLP occurs by changing the weights after each input
of data.

3.5. Evaluation

The performance of each FS technique is evaluated on the basis of performance
measures such as ACC, FPR and F1 score as well as the number of selected features. Several
metrics are available for evaluating feature selection algorithms such as accuracy, false
positive rate, detection rate, and precision. These metrics can be calculated using the
confusion matrix that is represented by the following four main parameters:

• True positive (TP): represents number of attack samples classified correctly.
• True negative (TN): represents number of normal samples classified correctly.
• False positive (FP): represents number of normal samples classified wrongly.
• False negative (FN): represents number of attack samples classified wrongly.

In binary classification, a confusion matrix is a table or matrix of size 2 × 2 that is used
to describe the performance of machine learning classifiers. A confusion matrix is shown
in Table 2, where each column represents the predictive records and each row represents
the actual records.

Table 2. Confusion matrix.

Predictive Records

Actual records
TP FP

FN TN

The definition and formulas of the performance metrics are as follows [28]:

- Accuracy: represents the proportion of correct classified instances to the total number
of classifications, as in Equation (3).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (3)

- FPR (a.k.a. false alarms): represents the proportion of the normal instances that are
identified as attack or abnormal instances, as in Equation (4).

FPR = FP/(TN + FP) (4)
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- Precision: represents the ratio of correctly predicted positive instances to the total
predicted positive instances, as in Equation (5).

Percision = TP/TP + FP (5)

- Recall (a.k.a. detection rate (DR)): represents the ratio of correctly predicted positive
instances to the overall number of actual positive instances, as in Equation (6).

Recall = TP/TP + FN (6)

- F1 score: represents the weighted average of precision and recall values, as in Equation
(7).

F1 score = 2 ∗ percision ∗ recall
percision + recall

(7)

3.6. Analysis and Comparison of Results

The results obtained from the previous step were analyzed and compared with one
another to select an efficient IDS model with a high accuracy, low false alarm, and a small
number of features.

4. Implementation

In this section, the experimental settings are presented, and the effectiveness of the
SFS, SBS, and GA methods are illustrated. The experimental environment was set up as
follows: a desktop computer running Windows 10 on an Intel Core i9-12th Gen with 48
GB RAM, Anaconda 3 with Python 3 distribution, the Scikit-learn library, and the Jupyter
notebook [39]. Figure 5 illustrates and summarizes the steps of implementation, which are
presented in detail.
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4.1. Preprocessing

The processing phase we used consist of eight steps which are:

1. In the NSL-KDD dataset, three categorical features, which are flag, service, and proto-
col_type features, are mapped to numeric values ranging from 0 to N − 1, where N is
the number of symbols in the feature.

2. Missing values or null values are removed from the CIC-IDS-2017 and CIC-IDS-2018
datasets. A script written in Python is used for removing these records.
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3. A duplicate feature in CIC-IDS-2017, namely Fwd Header Length, is removed man-
ually. The timestamp feature is removed manually in CIC-IDS-2018. In addition,
ten features are removed manually in CIC-IDS-2017 and CIC-IDS-2018, as they have
zero values.

4. Duplicated records are removed in all datasets. A script written in Python is used for
removing these records.

5. The class label is mapped to 0 for normal class and 1 for attack. As we use binary clas-
sification in this study, all the sub-category attack labels are mapped to 1. The resulted
label feature contains 0 for normal records and 1 for attack records.

6. The StandardScaler method from the sklearn library in Python is applied to standard-
ize the feature variance in all the used datasets.

7. All datasets are split into 70% training and 30% testing datasets.
8. The random under-sampling (RUS) technique is applied in all training datasets.

4.2. Feature Selection

The scikit-learn library and Jupyter notebook are used to implement SFS, SBS, and GA
FS methods. The performance evaluation of the selected features of the subsets in each
iteration in SFS, SBS, and the GA is carried out using the cross-validation technique in
which the dataset is randomly divided into several K subsets. One subset is used for testing
the model, and the remaining subsets are used for training. This process is iterated K times,
and the testing subset is different in each iteration [13]. Table 3 shows the selected weights
in the selected fitness functions.

Table 3. Parameters of fitness functions.

Objective Function Parameter Value

Equation (1)

WD 0.45

WF 0.45

WN 0.1

Equation (2)
WA 0.94

WN 0.06

Implementation of SFS, SBS and the GA

The MLxtend library in Python is used to implement SFS and SBS, while the Sklearn-
genetic, which is a genetic FS module for scikit-learn, is used to implement the GA [40,41].
SVM and MLP are used separately as estimators in SFS, SBS and the GA. To evaluate the
subsets of selected features in each iteration, two-fold, five-fold, and ten-fold cross valida-
tion are used separately in the implementation of SFS, SBS and the GA. The parameters
of SFS and SBS are configured as shown in Table 4, while the parameters of the GA are
configured as shown in Table 5.

Table 4. Parameters of SFS and SBS.

Parameter Value Parameter Value

Estimator
SVM n_jobs −1

MLP floating False

Scoring
Equation (1)

cv

2

Equation (2) 5

k_features

NSL-KDD (1,40) 10

CIC-IDS-2017 (1,66) forward True (SFS)

CIC-IDS-2018 (1,67) False (SBS)
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Table 5. Parameters of GA.

Parameter Value Parameter Value

Estimator
SVM crossover_proba 0.6

MLP crossover_independent_proba 0.6

Scoring
Equation (1) mutation_proba 0.1

Equation (2) mutation_indenpdent_proba 0.1

Max_features

NSL-KDD (40) caching True

CIC-IDS-2017 (66)

n_gen_no_change

NSL-KDD (50)

CIC-IDS-2018 (67) CIC-IDS-2017 (65)

n_population

NSL-KDD (60) CIC-IDS-2018 (65)

CIC-IDS-2017 (80) n_jobs −1

CIC-IDS-2018 (80) verbose 1

n_generations NSL-KDD (50)

cv

2

CIC-IDS-2017 (65) 5

CIC-IDS-2018 (65) 10

4.3. Training and Testing

For each selected subset, we transform the original training dataset to have the same
number of selected features from the FS phase. The selected feature subsets from the
previous FS methods are fitted into the same used classifier in the FS phase to determine
and evaluate the performance of the selected feature subset. Hence, SVM is used to evaluate
the selected feature subsets selected from the FS phase when SVM is used as an objective
function. MLP is used to evaluate the selected feature subsets selected from the FS phase
when MLP is used an objective function.

4.4. Results and Discussion

The experimental results of the chosen feature selection methods are presented in this
section.

Table 6 shows the result of SFS, SBS and the GA based on SVM and MLP in the NSL-
KDD dataset using an objective function based on accuracy and the number of selected
features. As shown in the table, the results are presented and compared using different cross
validations such as two-fold, five-fold, and ten-fold cross validation for each combination
of FS method and classifier. The highest accuracy among all these combinations is 99.23%
with the GA+SVM, with a 0.77% false alarm rate and 29 selected features using two-fold
cross validation in the feature selection phase. This model also has the highest F1 score,
of 99.20%, among the models. The lowest false alarm rate among these combinations is
0.73% with the GA+SVM, with an accuracy of 99.06%. SBS+SVM performs well with a
different number of folds. It obtained 98.92%,98.95%, and 98.99% in terms of accuracy and
1.20%, 1.36%, and 1.16% in terms of FPR, respectively, with the same selected number of
features (10 features). A graphical illustration of Table 6 is shown in Figure 6.

Table 7 shows the result of SFS, SBS, and the GA based on SVM and MLP in the CIC-
IDS-2017 dataset using an objective function based on accuracy and the number of selected
features. As shown in the table, the highest accuracy among all these combinations is 99.96%
with the GA+MLP, with a 0.03% false alarm rate and 40 selected features using five-fold
cross validation in the feature selection phase. The lowest false alarm rate among all these
combinations is 0.01% with SFS+MLP and the GA+SVM, with accuracies of 88.74% and
99.9%, respectively. SBS+SVM performs well with a different number of folds. It obtained
99.65%, 99.81%, and 99.75% in terms of accuracy and 0.50%, 0.13%, and 0.27% in terms of
FPR, with the six, five, and five selected features, respectively. An illustration of Table 7 is
shown in Figure 7.
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Table 6. Performance of SFS, SBS and the GA using objective function based on accuracy and number
of selected features in NSL-KDD.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 98.94 97.83 98.95 98.25 99.23 99.01

5 98.80 97.66 98.82 98.81 99.16 99.02

10 98.89 98.78 98.88 98.16 99.06 99.06

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 10 9 10 16 29 38

5 9 9 10 14 27 35

10 10 13 10 13 29 36

FP
R

(%
) 2 1.14 2.51 0.99 1.50 0.77 0.95

5 1.44 2.84 1.18 1.26 0.84 1.20

10 1.39 1.59 1.26 1.84 0.73 1.16

F1
(%

) 2 98.90 97.75 98.81 98.17 99.20 98.98

5 98.76 97.59 98.77 98.77 99.13 98.98

10 98.85 98.83 98.84 98.09 99.03 99.02
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Figure 6. Performance of SFS, SBS and GA using objective function based on accuracy and number
of selected features in NSL-KDD.



Mathematics 2022, 10, 4745 17 of 25

Table 7. Performance of SFS, SBS, and GA using objective function based on accuracy and number of
selected features in CIC-IDS-2017.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 99.75 99.83 99.65 94.79 99.94 99.93

5 99.78 89.61 99.81 99.84 99.94 99.96

10 99.28 88.74 99.75 99.83 99.9 99.91

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 5 7 5 6 42 44

5 5 5 6 5 39 40

10 5 5 5 6 45 38

FP
R

(%
) 2 0.27 0.04 0.5 1.12 0.02 0.02

5 0.22 0.03 0.13 0.17 0.02 0.03

10 1.44 0.01 0.27 0.12 0.01 0.03

F1
(%

) 2 99.78 99.86 99.69 95.24 99.95 99.96

5 99.81 89.93 99.83 99.86 99.93 99.94

10 99.36 89.00 99.78 99.85 99.93 99.39
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Figure 7. Performance of SFS, SBS, and GA using objective function based on accuracy and number
of selected features in CIC-IDS-2017.

Table 8 shows the result of SFS, SBS, and the GA based on SVM and MLP in the
CIC-IDS-2018 dataset using an objective function based on accuracy and the number of
selected features. As shown in the table, the highest accuracy among all these combinations
is 99.87% with the SFS+MLP and SBS+MLP models. SFS+MLP obtains a lower FPR, of 0.1%,
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than SBS+MLP with eight selected features using five-fold cross validation in the feature
selection phase. Three models, which are SFS+MLP, SBS+SVM, and the GA+MLP obtain
the lowest false alarm rate, of 0.1%, among the models. A demonstration of Table 8 is
shown in Figure 8.

Table 8. Performance of SFS, SBS, and GA using objective function based on accuracy and number of
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Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 99.46 99.87 99.78 99.87 99.71 99.69

5 97.67 99.87 99.64 99.51 99.82 99.83

10 97.72 99.80 99.69 99.67 99.8 99.78

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 21 11 7 8 18 23

5 6 8 7 10 21 26

10 6 8 8 11 24 25

FP
R

(%
) 2 0.32 0.90 0.10 0.90 0.16 0.21

5 0.18 0.10 0.10 0.84 0.16 0.10

10 0.30 0.30 0.20 0.90 0.19 0.17

F1
(%

) 2 99.46 99.88 99.77 99.88 99.71 99.69

5 97.61 99.85 99.64 99.51 99.82 99.80

10 97.63 99.80 99.71 99.74 99.80 99.75
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Table 9 shows the result of SFS, SBS, and the GA based on SVM and MLP in the
NSL-KDD dataset using an objective function based on detection rate, false positive rate,
and number of selected features. As shown in the table, the GA+SVM obtains the highest
accuracy and lowest false alarm rate among all these combinations. It obtains an accuracy
of 99.21% and an FPR of 0.83% with 30 selected features using 10-fold cross validation
in the feature selection phase. In addition, this model obtains an accuracy of 99.19% and
an FPR of 0.81% with 33 selected features using five-fold cross validation in the feature
selection phase. Table 9 is depicted in Figure 9.

Table 9. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number of
selected features in NSL-KDD.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 98.77 97.83 97.76 97.7 99.18 99.11

5 98.19 97.66 98.82 97.99 99.19 98.98

10 98.19 98.82 98.65 97.93 99.21 98.93

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 9 9 6 9 27 37

5 7 9 10 10 33 28

10 7 12 8 10 30 39

FP
R

(%
) 2 1.46 2.51 1.94 2.76 0.89 0.85

5 1.85 2.84 1.81 1.76 0.81 1.17

10 1.85 1.65 1.82 2.64 0.83 1.28

F1
(%

) 2 98.72 97.96 97.66 97.63 99.15 99.08

5 98.12 97.59 98.78 97.91 99.16 98.92

10 98.12 98.09 98.61 98.01 99.18 98.88
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Figure 9. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in NSL-KDD.

Table 10 shows the results of SFS, SBS, and the GA based on SVM and MLP in the
CIC-IDS-2017 dataset using an objective function based on the detection rate, false positive
rate, and number of selected features. As shown in the table, GA+MLP obtains the highest
accuracy, of 99.95%, among all these combinations and a low false alarm rate of 0.007% with
35 selected features using two-fold cross validation in the feature selection phase. The GA
models obtain a higher accuracy than the SFS and SBS models and give a low false alarm
rate (less than 0.035%) in all their combinations. Figure 10 displays Table 10 in its entirety.

Table 10. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2017.
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Figure 10. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2017.

Table 11 shows the result of SFS, SBS, and the GA based on SVM and MLP in the
CIC-IDS-2018 dataset using an objective function based on the detection rate, false positive
rate, and number of selected features. As shown in the table, the GA+MLP obtains the
highest accuracy, of 99.92%, and lowest false alarm rate, of 0.07%, with 47 selected features
using two-fold cross validation in the feature selection phase. The GA models obtain a
higher accuracy than the SFS and SBS models and give a low false alarm rate (less than
0.20%) in all their combinations. Figure 11 depicts Table 11 in detail.

Table 11. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2018.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

A
cc

ur
ac

y
(%

) 2 97.41 97.57 98.2 99.56 99.56 99.92

5 97.41 99.78 99.6 99.09 99.8 99.89

10 97.38 98.21 99.01 99.16 99.74 99.82
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Table 11. Cont.

Metric Fold SFS+SVM SFS+MLP SBS+SVM SBS+MLP GA+SVM GA+MLP

N
um

be
r

of
se

le
ct

ed
fe

at
ur

es

2 6 8 6 8 14 47

5 4 7 5 7 15 41

10 6 7 6 9 17 38

FP
R

(%
) 2 0.35 0.19 0.36 0.15 0.13 0.07

5 0.30 0.16 0.19 1.31 0.19 0.11

10 0.33 0.19 0.20 1.22 0.15 0.19

F1
(%

) 2 97.35 97.51 98.91 99.55 99.56 99.93

5 97.34 99.78 99.60 99.07 99.80 99.89

10 98.85 98.83 98.84 98.09 99.03 99.02
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Figure 11. Performance of SFS, SBS, and GA using objective function based on DR, FPR, and number
of selected features in CIC-IDS-2018.

4.5. Performance Comparison with the Recent Methods

Tables 12–14 show the comparison between our best obtained results and those of
other recent methods in the NSL-KDD, CIC-IDS-2017, and CIC-IDS-2018 datasets.



Mathematics 2022, 10, 4745 23 of 25

Table 12. Performance comparison with recent methods in NSL-KDD.

Ref. FS Tech. Classifier Number of
Selected Features

ACC
(%)

FPR
(%)

[19] CSA MCF+MVO-ANN 22 98.81 0.02

[28] Sigmoid POI DT 18 86.90 6.40

[28] Cosine POI DT 5 88.30 8.80

[29] ABC AdaBoost 25 98.90 0.01

Proposed model GA SVM 29 99.23 0.77

Table 13. Performance comparison with recent methods CIC-IDS-2017.

Ref. FS Tech. Classifier Number of
Selected Features

ACC
(%)

FPR
(%)

[31] IG and correlation attribute
evaluation methods PART 56 99.98 1.35

[32] Information gain and ranker
algorithm J48 75 87.44 -

[26] IG LightGBM 10 98.37 -

Proposed model GA MLP 35 99.95 0.007

Proposed model GA SVM 38 99.94 0.003

Table 14. Performance comparison with recent methods in CIC-IDS-2018.

Ref. FS Tech. Classifier Number of
Selected Features

ACC
(%)

FPR
(%)

[27] Hybrid feature selection (RF + PCA) Light GBM 24 97.73 -

[30] Binary-particle swarm optimization Decision tree 19 99.52 -

Proposed model SFS MLP 11 99.87 0.90

Proposed model SBS MLP 8 99.87 0.90

Proposed model GA MLP 47 99.92 0.07

5. Conclusions

This paper has presented a comparative study of sequential forward selection, se-
quential backward selection, and genetic algorithm feature selection methods in intrusion
detection systems to select an efficient IDS model that provides a high accuracy and low
false alarm with a minimum number of features. The efficiencies of the three feature selec-
tion techniques with two classification methods, namely SVM and MLP, were compared.
These methods were applied to three publicly available intrusion detection system data sets,
namely NSL-KDD, CICIDS2017, and CICIDS2018. This paper has presented an assessment
of these datasets, identifying their limitations and providing solutions to overcome these
limitations.

The performance of the proposed models was analyzed, addressed, and compared
to existing techniques. The efficiencies of the proposed models were proven in the exper-
imental results, which indicated that the highest accuracy in the NSL-KDD dataset was
99.23%, achieved using the GA+SVM, with a 0.77% false alarm rate and 29 selected features
using two-fold cross validation in the feature selection phase. This model also has the
highest F1 score, of 99.20%, among the models. In the CICIDS2017 dataset, the highest
accuracy among the proposed models is 99.96%, achieved with the GA+MLP, with a 0.03%
false alarm rate and 40 selected features using five-fold cross validation in the feature
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selection phase. The lowest false alarm rate among the proposed models is 0.01% in the
case of SFS+MLP and the GA+SVM, with accuracies of 88.74% and 99.9%, respectively.
In the CSE-CIC-IDS218 dataset, SFS+MLP and SBS+MLP achieved an accuracy of 99.87%.
SFS+MLP obtains a lower FPR, of 0.10%, than SBS+MLP with eight selected features using
five-fold cross validation in the feature selection phase.
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