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Abstract: In the age of data, data mining provides feasible tools with which to handle large datasets
consisting of data from multiple sources. However, there is limited research on retrieving statistical
information from data when data are confidential and cannot be shared directly. In this paper,
we address this problem and propose a framework for performing data analysis using data from
multiple sources without revealing true values for privacy purposes. The proposed framework
includes three steps. First, data custodians individually mask data before publishing; then, the
masked data collection is used to reconstruct the density function of the original dataset, from which
resampled values are generated; last, existing data mining techniques are applied directly to the
resampled data. This framework utilises the technique of reconstructing an original density function
from noise-masked data using the moment-based density estimation method, which plays an essential
role. Simulation studies show that the proposed framework performs well; analysis results from the
resampled data are comparable to those of the original data when the density of the original data
is estimated well. The proposed framework is demonstrated in data clustering analysis using the
example of a real-life Australian soybean dataset. Results from the k-means algorithms with two
and three fitted clusters are presented to show that cluster analysis using resampled data can well
replicate that of the original data.

Keywords: data masking; multiplicative noise; data mining; sample size calculation
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1. Introduction

With the explosive evolution of information technology and computer science, it is
easier and less expensive to collect and store data, and the databases containing this in-
formation are often massive. While technological evolution makes access to voluminous
data feasible, it also brings many challenges in how to turn big data into big knowledge.
Data mining is a key component in big data analytics. It is an inductive process for extract-
ing hidden and potentially useful patterns and information without a priori hypotheses,
where traditional hypothesis-driven methods, such as online analytic processing and most
statistical methods, fall short [1]. This feature makes data mining techniques ideal when
hypotheses are difficult to determine or define.

Given its nature, big data can consist of data from multiple sources, and require a
sophisticated information systems for storage and access, often being stored off-site or in
systems managed by a third party (e.g., cloud storage). When the control of data access is
no longer in the hands of the data owners, there are potential threats to data security. In
practice, data access control protocols are implemented to secure data privacy [2]. One of
the more extreme ways is to indiscriminately restrict public access to data. This method is
often chosen by the data owners for data containing sensitive commercial values. Access
restriction provides reasonable data security in this case, as it solely relies on the safekeeping
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of datasets [3]. However, data access restriction is usually not an optimal solution, as it is
restrictive for general data use and data sharing.

The main interest in data privacy research is to develop methods for protecting data pri-
vacy that also allow the preservation of statistical information. This topic has been studied
separately in the fields of statistics (statistical disclosure) and computer science (privacy-
preserving data mining and privacy-enhancing technologies) [4]. Torra and Navarro-
Abrribas [5] provided an overview of the existing data privacy methods, categorised by
the types of data and the types of analyses applied to these data. They summarised that
when data are published for a general purpose, masking (statistics) and anonymisation
(computer science) are the two available methods which can be used to protect the privacy
of the data values. Masking and anonymisation methods systematically transform datasets
prior to release. They can be classified into three categories: perturbative, non-perturbative
and synthetic data generators. Perturbative methods alter data values by introducing pre-
determined errors, including noise addition or multiplication, substitution, rank swapping,
etc. Non-perturbative methods generally refer to data generalisation and suppression,
which make data less detailed. Synthetic data generators replace original data with values
generated from an underlying model, ideally retaining the desired statistical information
of the original data.

Data privacy simultaneously requires that data values are well protected from disclo-
sure and that statistical inference is accurate about the population of interest [4]. Figure 1
demonstrates these two processes for a set of data published for a general purpose. (i) Data
protecting techniques are used by data providers to protect original data values to ensure a
certain level of privacy protection before publicly releasing datasets. (ii) Once the protected
data are available to the general public, suitable procedures are then performed to retrieve
the statistical information of the unpublished, original data.

Figure 1. Overview of the data privacy process. The grey area is unavailable to the public for privacy
purposes. Information regarding the data masking process performed by data providers can be made
partially available to the public.

Current data privacy research focuses on developing methods of ensuring a desirable
amount of disclosure with some guarantee on the utility loss for a given statistic (process (i)
in Figure 1). An overview of practical privacy protection methods and their applications
can be found in [6]. However, there is very limited work on investigating the statistical in-
formation retrieval process ((ii) in Figure 1), i.e., how to apply various statistical techniques
to a privacy-protected dataset to obtain inferential results other than that considered by
the utility loss. Consider the following scenario. Data collection consists of data collected
independently from K institutions. Due to the issue of data sensitivity, all institutions
require a guarantee of a certain level of privacy protection upon releasing data. Meanwhile,
all of them are interested in the statistical inference given by the clustering analysis using
the entire data collection. To the best of our knowledge, there is no literature on discussing
how to apply existing data mining techniques, particularly clustering analysis, directly to
published protected data from multiple data sources when the original data values are not
accessible. This topic is the focus of this paper.

Note that there exists a strand of research within the data mining community that
addresses privacy issues, namely, privacy-preserving data mining. Privacy-preserving
data mining involves modifying existing data mining algorithms to ensure the privacy
of the outcomes of algorithms. Reference [7] gives a detailed review of these methods
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and discusses developments in this area. The focus of privacy-preserving data mining is
on the protection of the outcomes of algorithms, not the data themselves [8], which is a
fundamentally different situation from the confidentiality-related privacy issues discussed
in this paper. Furthermore, privacy-preserving data mining methods generally require
access to original data and need to be customised depending on the analysis. This is
different from the problem of the original data being inaccessible, which is discussed in
this paper; therefore, we will not consider these privacy-preserving data mining methods.

This paper proposes a framework for data clustering analysis, assuming that the
underlying true data are confidential and that it is impossible to directly share data between
multiple data sources. In this framework, confidential quantitative data are firstly protected
using the noise-multiplicative masking method. Then, the density function of the original
data are reconstructed from the noise-protected data using the moment-based density
estimation method. Resampled values are then drawn from the reconstructed density and
analysed directly for modelling and inferential results.

The paper is organised as follows. In Section 2, we introduce the multiplicative noise
masking method for data value protection and the moment-based density function re-
construction for statistical information retrieval. We also introduce an application of the
Kolmogorov–Smirnov test for determining the sample size in the context of the recon-
structed density function. This is the basic knowledge required for the clustering analysis
discussed in this paper. The proposed framework and its performance evaluation through
simulations are presented in Section 3. In Section 4, we present the application of the
framework to a real-life dataset and evaluate it empirically.

2. Data Publishing and Information Retrieval

Let X be a random variable. Sometimes, we also call it the data population. Assume
that there are K institutions. Each of them independently and randomly draws a sample
from the population X. Denote x(k) = {x(k)i }

Nk
i=1, as the data collected by the kth institution,

where Nk is the size of sample and k = 1, · · · , K. We merge those datasets and form a large
sample from the population X. This paper assumes that the K institutions want to carry
out clustering analysis based on the large sample. However, all institutions consider their
data confidential and do not wish to share them with others without any privacy protection
measures in place.

In current data privacy literature, information retrieval is often treated as a part of the
data masking strategy. Depending on the parameters of interest and the methods used for
data analysis, a specific data masking method is chosen not only for data value protection
but also for obtaining reasonable estimates for the parameters. For example, in differential
privacy [9], which is a widely-used data privacy mechanism, a zero-mean Laplace noise is
used to ensure the unbiased estimation of a group sum, and the infinity divisibility property
of the Laplace distribution is utilised to achieve a certain level of privacy when running
queries [9–12]. A differential privacy mechanism ensures that no single observation is
identifiable from differentiating queries. However, in practice, the level of perturbation
needed to ensure a statistically level of privacy protection often is high, which leads to a
low statistical utility. Additionally, when the parameter of interest is no longer the sum, the
masking techniques or noise distributions must be customised accordingly [13]. Currently,
there is no discussion on how to retrieve the accurate statistical information beyond simple
statistics in the differential privacy framework, when a dataset is masked and published
for general use and the intended analyses are unspecified. Simply applying cluster analysis
to masked data protected by a differential privacy mechanism cannot guarantee the results
from masked values represent those from the original values.

In this section, we propose a general framework for perturbing data values for privacy,
then retrieving relevant statistical information by reconstructing the density function
of original data. The basic idea is motivated by Fisher’s likelihood principle, which is
arguably one of his greatest contributions to the foundation of statistical science. It states
that the likelihood function contains all the evidence in a data sample relevant to model
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parameters [14]. The likelihood principle implies that statistical information is fully stored
in the density function, and data are a representation of the density function. If we
can reconstruct the original density function from masked data, we can generate a new
dataset from the reconstructed density function, and this new dataset will contain the same
statistical information as the original data. Here we discuss the details relevant to the two
data privacy processes described in Figure 1, specifically for the general framework for
masking and analysing data from multiple data sources.

2.1. Data Masking and Reconstructing the Density Function
2.1.1. Data Masking at Publishing

Data masking protects data by altering values at the individual observation level.
Given that data mining techniques are traditionally performed at the individual data
level, we only consider the data masking methods that allow for releasing the protected
individual data. In particular, we propose to use the multiplicative noise method in this
framework, which has desirable properties for masking a wild range of datasets. The
multiplicative noise method can be applied to both numerical and categorical data. In
addition, the multiplicative noise method provides uniform protection in terms of the
coefficient of variation of the noise. This means that the required variation of noise to
achieve a desirable level of certainty in estimation does not depend on the values of data,
providing an effective way of using small variance for noise distribution to significantly
alter large-value data, especially in datasets with large spreads [15].

To protect the values of x(k) for k = 1, · · · , NK, firstly, data owners agree on an
appropriate random noise C, which is independent of X. Then, each data owner selects
a random sample {c(k)i } from the noise population C; a new dataset x∗(k) = {x∗(k)i } =

{x(k)i c(k)i } is calculated for the kth institution and can be released to others.
Note that all data owners are required to use the same random noise C to mask their

data. Data owners often choose to release certain characteristics of the noise distribution, C,
i.e., the shape of the distribution or moment information, etc. (shown as the dashed line
around (i) data masking process in Figure 1). When this partial information about the noise
distribution is known to the public, the values of {x(k)i } will still be well protected and

unable to be recovered from {x∗(k)i }. For the relevant discussion, see [15].

2.1.2. Reconstructing Density Function

After masked data are publicly available, we use the masked data to reconstruct the
density function of the original data in order to accurately obtain the data’s statistical
information. In practice, there is often no additional information about the underlying
distribution beyond actual observations. A robust estimation method with less prior
information on reference density is preferred, even though it may be computationally
expensive. References [16–18] were the first to independently introduce the fundamental
methods for estimating the density function of original data from masked data for a
single variable. Lin and Krivitsky [19] gave a detailed review and pointed out that the
algorithms proposed in the first three papers have several technical problems, including
non-convergence and slow computation. These problems are pronounced in skewed
data. Lin [18] exclusively discussed density estimation using a moment-based polynomial
approach for noise-multiplied data. This research showed that, for a random variable X
with a density function defined on a finite interval [a, b], the density function of X can be
approximated by

fX,P(x) =
P

∑
p=0

ap(x)
µX∗(p)
µC(p)

,

with an appropriate integer P, where X∗ = XC is the masked random variable, noise C is
the independent multiplicative random variable, µX∗(p) = E(X∗p), and µC(p) = E(Cp).
ap(x) is a continuous polynomial function of x.
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Lin [18] also pointed out that, given the noise-multiplied data {x∗i }N
i=1 and sample

moments’ information on the multiplicative noise C, fX,P(x) can be empirically approxi-
mated by

fX,P|{x∗i ,ci}(x) =
P

∑
p=0

ap(x)
(X∗)p

Cp
, (1)

where (X∗)p = ∑N
i=1(x∗i )

p/N and Cp = ∑N
i=1 cp

i /N are the empirical pth moment for
masked data X∗ and noise distribution C, respectively. This means that we can use the
moment information about the masked data and the noise distribution to reconstruct the
density function of the original data. Lin [20] subsequently developed a computational
algorithm and built an R package called MaskDensityBM using the moment-based density
estimation method. In this study, we used the method proposed by Lin [18] and utilised
the existing software packages for density reconstruction. After reconstructing the density
function, we can generate resamples to perform analysis.

2.2. Determining Sample Size for Resampled Data

Since the original data are confidential, we cannot directly use the data for cluster-
ing analysis. Our approach uses a sample drawn from the constructed density function
(sometimes called the simulated data or resampled data below) to replace the original
data to avoid this problem. Based on the approach we propose, the quality of clustering
analysis will rely on two factors. One factor is the closeness of the reconstructed density
function to the actual density function. We applied the R package MaskDensityBM [20] to
determine the reconstructed density function. The other factor is the size of the sample
drawn from the reconstructed density function, which ensures the statistical information of
the reconstructed density can be well retrieved.

We assume that the reconstructed density function captures the main characterises
of the density function of the original data. Even under a perfect scenario, the outputs of
data analysis given by the original data and those of the simulated data are likely different
if the size of the simulated data is small. The main reason is that when the size of the
resamples is too small, the information on certain characteristics of the distribution may
be missing from the simulated samples, especially in the two tail-end regions. Even if the
size of the simulated data is the same as that of the original data, due to randomness in
data generating process, there is no guarantee that the set of simulated data has a similar
density to the original data.

We suggest an analytic solution to determine an appropriate data size through a
sequence of Kolmogorov–Smirnov tests. Denote {xi}N

i=1 as the set of the underlying
original data with a sample size of N; f̂X,N is the estimated smoothed density function
determined by the original data. Let {x̃i}M

i=1 be a set of resampled data with a size of M.
Verifying if the smoothed density function given by {x̃i}M

i=1 is statistically equivalent to
f̂X,N is the same as checking whether the empirical cumulative probability distribution
function given by {x̃i}M

i=1 is close to the cumulative probability distribution determined by
f̂X,N . The hypotheses are defined as:

H0 : F̂X̃ = F̂X,N

and
H1 : F̂X̃ 6= F̂X,N ,

where F̂X̃ is the empirical cumulative function given by the simulated data {x̃i}M
i=1 and

F̂X,N is the cumulative distribution related to f̂X,N . The test statistic is

DM = max
1≤i≤M

{∣∣∣∣F̂X,N(x̃(i))−
i− 1

M

∣∣∣∣} , (2)
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where x̃(i) represents the ith ordered values in the dataset {x̃i}M
i=1. A small DM suggests

similarity between the smoothed density function of the original data and the empirical
density of the resamples. We considered 0.007 as a critical value for this test and solved for
M.

Example 1. We generated 1000 data from a random variable X following a mixture of normal
distributions with density function

fX = 0.25× N(0, 12) + 0.75× N(4, 22) . (3)

Using Criterion (2), the resampled data with a size of 37,000 has a sufficiently small
DM (=0.0056), and the smoothed density function of the resampled data is shown to be a
reasonable estimation of the density of the original data (Figure 2).

Figure 2. The plots of the smoothed density functions given by {xi} (solid line) for i = 1, . . . , 1000
and a set of resampled values {x̃i} determined by DM < 0.007 (dash line).

Figure 3 illustrates the relationship between sample size and the information lost,
measured by DM. We generated 500 samples of 1000 data from the model in (3); then
we calculated DM for the resampled data with various sizes of 300, 700, 1000, 3000, 6000,
and 12,000. The larger size of resampled data preserves the information of the cumulative
distribution of the density function in (3) better with a smaller mean of DM. It also
shows that the variations of the test statistics are much larger in the resampled data with
smaller sizes.

Figure 3. Relationship between DM and the size of the resampled data for M = 300, 700, 1000, 3000,
6000, and 12,000. The bars extend to one standard deviation above and below the average DM values
from 500 simulation samples.

3. Proposing a Framework and Simulation Studies

In this section, we propose a general framework for publishing data for general use
and retrieving statistical information by generating resamples using reconstructed density
functions. We consider all data from the K institutions as a whole. Let ∑K

k=1 Nk = N be the
total number of observations from the K institutions and x = {x(1), . . . , x(K)} = {xj} for
j = 1, . . . , N be a collection of N original data from the K institutions.
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Framework for publishing and mining data from multiple data sources:

(i) Publishing data masking:

(a) Data owners across the K institutions agree on an appropriate noise distri-
bution C. Then, information about the noise distribution and parameter
values are released to the public;

(b) For the kth institution, independently generate a sample {c(k)i }
Nk
i=1 from C,

and produce a masked dataset x∗(k) = {x(k)i c(k)i };
(c) Each institution publishes the masked data x∗(k) separately. Considering

x∗ = {x∗(1), . . . , x∗(K)}, this new collection x∗ with sample size of N is the
masked data of the original collection x.

(ii) Generating simulated samples:

(a) Calculate the moments of the masked data x∗ and the noise C;
(b) Reconstruct the density function of the original data x based on the masked

data collection x∗ using the moment-based estimation method implemented
in the R package MaskDensityBM;

(c) Generate a large set of resampled data x̃ = {x̃i} from the reconstructed
density function. Use these data to replace the original data x for retrieving
the statistical information of X. The size of the simulated data M can be
determined iteratively and must satisfy the DM < 0.007 criterion (2).

(iii) Analysing resampled data:
Apply a data mining technique directly to the resampled data x̃ to obtain statistical
information about the original data.

This framework covers several possible practical scenarios. If data owners want to
combine their data with those of others to perform data analysis, they will need to follow
all three steps, starting with masking their data (i). If a data owner is only interested
in publishing his data but still wants to allow others to perform analysis, only Step (i)
needs to be followed to release the masked data and the relevant information on the
noise distribution. If a masked data collection x and relevant information about the
noise distribution are already available, data users can start from the resampled data
generation (ii).

3.1. Simulation Study

To evaluate the performance of the proposed framework, we conducted a simula-
tion study under four different scenarios for cluster analysis, each representing different
compositions of locations of means and proportions of samples. First, we present a short
introduction to clustering. Cluster analysis or clustering is the task of grouping a set of
objects so that objects in the same group (called a “cluster”) are more similar to each other
than to those in other groups. K-means, introduced by MacQueen [21], is a classic and
still-popular algorithm for clustering analysis in data mining.

The K-means algorithm is a special case of the expectation-maximization (EM) algo-
rithm for Gaussian mixture analysis, which decides cluster assignment based on posterior
probabilities. Bishop [22] demonstrated that in the limit, the EM algorithm for the Gaussian
mixture reduces to the K-mean result. In general, mixture model analysis aims to identify
individual base distributions, which are used to form a mixture distribution for the under-
lying mixture model. Those individual base distributions are usually unimodal probability
distributions. If the centres of those unimodal probability distributions can be identified
with statistical significance, these centres are considered to be the centres of clusters. In
other words, if we can sufficiently estimate the mixture distribution of data, we can use the
EM algorithm for the clustering exercises using the mixture distribution. In this study, we
used the commonly used R software mclust [23] (k-means clustering analysis tool) to carry
out clustering analysis.
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The simulation settings considered in this paper represent factors relevant to cluster
analysis, which are how close the means are to each other and the proportions of the sizes
of clusters. Let X be the random variable of the sample data; the four simulation settings
are given as follows.

Setting 1. Two-group unequal proportions with a large difference in means: fX =
0.25× N(0, 12) + 0.75× N(6, 22).
Setting 2. Two-group equal proportions with a large difference in means: fX = 0.5×
N(0, 12) + 0.5× N(6, 22).
Setting 3. Two-group equal proportions with close means: fX = 0.5× N(0, 12) + 0.5×
N(4, 22).
Setting 4. Three-group equal proportions with two close means and one large mean:
fX = 1/3× N(0, 12) + 1/3× N(6, 22) + 1/3× N(10, 22) .

We generated 400 Monte Carlo simulations for each simulation setting; each simulation
sample contained 900 data. For each simulation, we reconstructed the density function
then generated M = 18, 000 resampled data. We ensured that the sample size criterion
DM < 0.007 (2) was satisfied in all simulations so that the density of the resampled data
was close to that of the original data. Both sample data and resampled data were then
analysed using the R function kmeans for the cluster analysis results.

The performance of the proposed framework was evaluated in terms of estimation
accuracy and variation for cluster analysis, under the condition that the cumulative density
of resampled sample estimates that of the original sample well. For estimation accuracy,
we examined the sampling bias, which is the average value of the differences in cluster
means between the resampled data and sample data. To examine the estimation variability,
we considered two measures, the sampling standard deviation (s.d.) and the coefficient of
variation (CV). Sampling standard deviation is the standard deviation of the cluster means
of the resamples, and CV measures the dispersion of the estimation by taking the ratio of
the sampling standard deviation and sampling cluster means. We also included the root
mean-square error (RMSE), which is the root average of the sum of the square of differences
in cluster means between resampled values and sample data. RMSE can be used to directly
compare the performance of the proposed method under different simulation settings.

Table 1 shows the results from the Monte Carlo simulations for different simulation
settings, with various compositions of mean locations and cluster sizes. In terms of es-
timation accuracy, average biases were relatively small for all simulation settings, and
better performance was achieved from the settings with equal proportions between clusters
(Settings 2 and 3). Setting 4, with a smaller cluster size, is slightly more biased than others,
possibly due to the reduced quality of fit from a smaller cluster size.

Estimation variability was relatively stable across different simulation settings. The
slightly larger sampling standard deviation in Setting 4 indicates that estimation variations
elevated when the original cluster sizes are small. Coefficients of variations are generally
larger for smaller clusters with low means. This is consistent with the stable sampling
standard deviation results, as the CV is the ratio between standard deviation and means;
i.e., when the standard deviations are similar, smaller CVs are caused by smaller means.

Results of RMSE, which measures the dispersion of cluster means between resampled
values and original sample data, can be used directly to compare the performance of the
proposed framework for the four different settings. The most ideal scenario, Setting 2,
with two groups of equal cluster sizes and a large difference in cluster means, has the
smallest RMSE. This means that the dispersion is smallest and the proposed framework’s
performance was best in Setting 2. Equal cluster size and larger clusters also contribute
to low dispersion (smaller RMSE). Dispersion was elevated in the case of smaller cluster
sizes (Setting 4), which is consistent with the conclusion observed from the measure for
estimation accuracy.
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Table 1. Monte Carlo simulation results comparing the cluster analysis results from the resampled
data to those of the sample data under four simulation settings, including average bias, sampling
standard deviation (s.d.), coefficient of variation (CV), and root mean-square error of the estimation
differences (RMSE).

Average
Bias

Sampling
s.d. CV RMSE

Setting 1 Cluster 1 mean = 0 0.044 0.105 0.162 0.873
Cluster 2 mean = 6 0.037 0.083 0.013 0.733

Setting 2 Cluster 1 mean = 0 -0.009 0.056 0.325 0.182
Cluster 2 mean = 6 0.019 0.093 0.015 0.386

Setting 3 Cluster 1 mean = 0 -0.026 0.055 0.268 0.525
Cluster 2 mean = 4 0.015 0.108 0.023 0.298

Setting 4
Cluster 1 mean = 0 -0.034 0.073 0.330 0.682
Cluster 2 mean = 4 0.050 0.173 0.035 1.003
Cluster 3 mean = 10 0.061 0.138 0.013 1.221

4. Real-Life Data Application

This section illustrates how to implement the framework proposed in Section 2.1 for
data clustering and apply it to a real dataset. We applied the proposed framework to the
Australian soybean dataset (more information on the study design and the data download
link are available at http://three-mode.leidenuniv.nl/, accessed on 1 October 2021) [24],
which contains data for 58 different genotypes of soybeans collected from eight experiments
for six different soybean attributes. In the dataset, the 58 different lines (genotypes) of
soybeans are 43 Australian lines and 15 other lines, of which 12 are from the US. Line 1–40
are local Australian selections from Mamloxi (CPI 172) and Avoyelles (CPI 15939).

In this example, we considered that each genotype of soybean is owned by a data
provider and clustered the soybean genotypes based on the attribute seed size. The total
number of data providers was 58, and there were 8 data points from each of the providers
(genotype). The total number of observations for seed-size data N is 58× 8 = 464. Each
provider wants to know which cluster his/her data belongs to, when there is no access to
the actual values of data from other providers. In particular, they are interested in which
clusters their data can be classified into if there are two or three clusters.

Following the framework proposed in Section 3, all 58 data providers first agree on a
noise distribution C. Assume that the probability density function of C is

fC = 0.6×Uni(2, 5) + 0.4×Uni(4, 6).

Then, the data providers independently mask their raw seed-size data using the
multiplicative noises C and publish their own masked values to create a collection of
masked data for see size from 58 data providers. Figure 4 plots the masked data of seed size
against the original values, showing the effectiveness of data masking. A given masked
value corresponds to a large range of possible values of original data. This indicates that it
is hard to accurately estimate the values of the original data from the masked values.

The second step is to reconstruct the density function of the original data based on the
masked data and the information of the noise distribution C to generate resampled data.
We applied the R package MaskDensityBM to the masked data collection and obtained the
estimated density function associated with the set of the original seed-size data. The density
function of the original seed size and its reconstructed density function are presented in
Figure 5, which shows that the reconstructed density function preserves the two-mode
feature and follows the pattern of the original density reasonably well. Then, the resampled
data were generated from the reconstructed density function. The sample size required to
satisfy the DM < 0.007 criterion is 1856, approximately four times the original sample size
of 464.

http://three-mode.leidenuniv.nl/
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Figure 4. The scatter plot of the masked values and the original values for seed size.

Figure 5. The plot of smoothed original density function (solid line) and reconstructed density
function from 1856 simulated samples (dotted line).

We fitted both datasets—the resampled soybean seed-size data and the original data—
using the k-means clustering analysis tool in R. We obtained the outputs of clustering
analysis for k = 2 and 3 clusters. The outputs are given in Table 2. For k = 2, centres
from the two datasets are similar to each other, having similar standard deviations. A



Mathematics 2022, 10, 4744 11 of 13

higher cluster mean in the resampled data was observed, though the difference in means
was not statistically significant. This is consistent with what we observe in Figure 5; the
reconstructed density for the resampled data has a second mode at larger seed-size values.
A similar conclusion can be drawn for the k = 3 output, except that the larger mean
only occurs in the last cluster of the resampled dataset, and there are two groups with a
significant difference in means. However, this is not a surprise, as the density plot suggests
that the original data are more likely to have two clusters (not three), so the k-means with
k = 3 clusters may not fit the data well. Furthermore, the clusters show similar allocation
(in proportion) between the two datasets for both k = 2 clusters, but not as good of a fit for
k = 3 clusters.

Table 2. Comparison of outputs of the clustering analysis from the resampled dataset and original dataset. Here,
the results include cluster mean, cluster standard deviation (s.d.), cluster size, and its corresponding proportion.

Number of Clusters k = 2

Resampled data Original data

Cluster centre (s.d.) 8.882 (2.111 #) 8.686 (1.837)
17.631 (2.709) 17.503 (2.530)

Cluster size (proportion) 1412 (76.1%) 335 (72.2%)
444 (23.9%) 129 (27.8%)

Number of Clusters k = 3

Resampled data Original data

Cluster centre (s.d.) 7.650 * (1.235) 7.901 (1.253)
11.896 (1.457) 12.016 (1.526)

18.942 * (1.949) 18.476 (1.980)

Cluster size (proportion) 902 (48.6%) 256 (55.2%)
633 (34.1%) 108 (23.3%)
321 (17.3%) 100 (21.6%)

* Sample means are statistically different between groups at the 5% significance level. # Sample standard deviations
are statistically different between groups at the 5% significance level. Details of statistics and associated p values
for comparing group means and variances in given in Table A1 in Appendix A.

We conclude that the resamples generated from reconstructed density can produce
statistically equivalent results of the original data. However, this may not be guaranteed
when the model fit is not appropriate. The analysis results from resampled data must be
used with caution, as they depend not only on the quality of the reconstructed density, but
also on the appropriate use of a data analysis technique for making inferences about the
population parameter of interest.

5. Closing Remarks

The issues of data privacy are currently receiving widespread and significant attention.
In general, methods for the statistical analysis of confidential data should be different
from traditional methods. This paper proposes a data clustering analysis method for
scenarios where data are independently collected from various data sources. These data are
confidential and cannot be shared across data sources directly. The approach proposed is
supported by the technique of reconstructing density functions based on noise-multiplied
data. The method ensures that an original density function can be closely approached by the
reconstructed density function. Therefore, we can retrieve accurate statistical information
of the original data from the samples generated from its reconstructed density function.
We detailed the application of the approach to a real-life dataset, assuming that the data
have privacy issues.

The proposed framework is feasible in practice. Few traditional data analysis R tools
can be directly applied for confidential data analysis due to privacy issues. The sample
generated from the reconstructed density function plays the role of a “bridge”, linking the
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confidential data and the existing R tools. The proposed approach brings great convenience
to realistic data analysis practices when data privacy is of concern, avoiding the need to
develop special R tools for data analysis.

The framework developed in this paper is not limited to cluster analysis. Its applica-
tions extend to a broad range of data mining analyses. This paper only focuses on univariate
data. However, we can apply the framework of the approach to multivariate data once a
technique of reconstructing joint density function based on multivariate masked data is
available. This technique for multivariate density estimation is under development and
will be introduced soon in another paper.
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Appendix A

It is important to evaluate the accuracy of the clustering analysis results from the
resampled values. We compared the analysis outcomes to examine whether the clustering
groups in the resampled and original data have statistically equal means and variances.
We firstly tested the spread of the data from each allocated group using a F test of equal
variance between the resampled data and original data groups. Depending on the F test
result, either a pooled or unpooled t test was then used to test whether group means
between the resampled data and the original data are statistically equivalent; for the
groups with statistically different variance (p values from F test less than 0.05), an unpaired
unpooled t test was performed to test the difference in group means, assuming a difference
in group variances. Otherwise, an unpaired pooled t test was performed for the groups
with statistically equivalent variance (p > 0.05 in F test of equal variance) in the resampled
data and in the original data.

Table A1. Test statistics and associated p values for comparing the cluster means (t-tests) and cluster
standard deviations (F tests) between the resampled and original Australian soybean data.

F Tests for Equal Variance t Tests for Equal Means

F Statistic p T Statistic p

Number of clusters k = 2 1.3206 0.0018 1.7041 0.0889
1.1465 0.3554 0.4793 0.6318

Number of clusters k = 3
0.9684 0.734 −2.8607 0.004
0.9116 0.5046 −0.7856 0.4324
0.9689 0.8236 2.0799 0.03814

Table A1 includes the test statistics and p values from the relevant F tests and t-tests
to compare the cluster variances and cluster means between the resampled and original
Australian soybean data. The equal-variance tests (F tests) show that the allocated groups
in the resampled and original data have nonsignificant difference (similar) variances, except
for the first group in the cluster analysis with two clusters. The equal-mean tests (t tests)
for the cluster analysis with two clusters are non-significant, suggesting that the resampled
data and the original data produce the same groups means. However, when the model
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fit is less appropriate (cluster analysis with three clusters), two groups show a significant
difference in cluster means between the resamples and the original data.
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