
Citation: Someetheram, V.; Marsani,

M.F.; Mohd Kasihmuddin, M.S.;

Zamri, N.E.; Muhammad Sidik, S.S.;

Mohd Jamaludin, S.Z.; Mansor, M.A.

Random Maximum 2 Satisfiability

Logic in Discrete Hopfield Neural

Network Incorporating Improved

Election Algorithm. Mathematics 2022,

10, 4734. https://doi.org/10.3390/

math10244734

Academic Editor: Marek Sikora

Received: 21 September 2022

Accepted: 18 October 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Random Maximum 2 Satisfiability Logic in Discrete Hopfield
Neural Network Incorporating Improved Election Algorithm
Vikneswari Someetheram 1 , Muhammad Fadhil Marsani 1,*, Mohd Shareduwan Mohd Kasihmuddin 1 ,
Nur Ezlin Zamri 2 , Siti Syatirah Muhammad Sidik 1 , Siti Zulaikha Mohd Jamaludin 1

and Mohd. Asyraf Mansor 2

1 School of Mathematical Sciences, Universiti Sains Malaysia—USM, Gelugor 11800, Penang, Malaysia
2 School of Distance Education, Universiti Sains Malaysia—USM, Gelugor 11800, Penang, Malaysia
* Correspondence: fadhilmarsani@usm.my; Tel.: +60-4-6533657

Abstract: Real life logical rule is not always satisfiable in nature due to the redundant variable that
represents the logical formulation. Thus, the intelligence system must be optimally governed to
ensure the system can behave according to non-satisfiable structure that finds practical applications
particularly in knowledge discovery tasks. In this paper, we a propose non-satisfiability logical rule
that combines two sub-logical rules, namely Maximum 2 Satisfiability and Random 2 Satisfiability,
that play a vital role in creating explainable artificial intelligence. Interestingly, the combination
will result in the negative logical outcome where the cost function of the proposed logic is always
more than zero. The proposed logical rule is implemented into Discrete Hopfield Neural Network
by computing the cost function associated with each variable in Random 2 Satisfiability. Since the
proposed logical rule is difficult to be optimized during training phase of DHNN, Election Algorithm
is implemented to find consistent interpretation that minimizes the cost function of the proposed
logical rule. Election Algorithm has become the most popular optimization metaheuristic technique
for resolving constraint optimization problems. The fundamental concepts of Election Algorithm
are taken from socio-political phenomena which use new and efficient processes to produce the best
outcome. The behavior of Random Maximum 2 Satisfiability in Discrete Hopfield Neural Network is
investigated based on several performance metrics. The performance is compared between existing
conventional methods with Genetic Algorithm and Election Algorithm. The results demonstrate that
the proposed Random Maximum 2 Satisfiability can become the symbolic instruction in Discrete
Hopfield Neural Network where Election Algorithm has performed as an effective training process
of Discrete Hopfield Neural Network compared to Genetic Algorithm and Exhaustive Search.

Keywords: knowledge discovery; explainable artificial intelligence; Random Maximum 2 Satisfiability;
artificial neural network; Election Algorithm; potential forecasting model

MSC: 68T05; 68T27; 68T50

1. Introduction

The research of artificial neural networks (ANNs) provides interesting ideas in under-
standing the way brain interprets data and offers near optimal solutions to optimization
problems. The ANN model was inspired by the group of biological neurons that was
efficiently modeled and fires according to the goal of the whole neuron system. Due to that
reason, ANNs have gained attention from various researchers from different backgrounds
to solve various potential optimization problems [1–5]. The high demand of the ANN
is due to the nature of ANNs that can improve the solution through specific iterations
which can be run easily by computer program. One of the earliest ANNs is Hopfield
Neural Network (HNN) which was proposed by Hopfield and Tank [6] to provide potential
solution for the travelling salesman problem through the connectionist model. HNNs
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consist of interconnected neurons with input and output neuron without hidden neurons.
Each neuron fires and updates iteratively until the final neuron state converges towards
near-optimal solution. Interestingly, the neuron state of the HNN can be interpreted in
terms of Lyapunov energy function which is always minimized by the network. In this
context, HNN will update the neuron state until the network achieves global minimum
energy to ensure the optimality of the solution for any given optimization problem. Despite
having wide applicability [7–10], HNNs are prone to storage capacity issues. As proposed
by various studies [11,12], the number of stored memory patterns is severely limited (about
14%) which indicates the need for optimal neuron modeling in HNNs.

One of the earliest efforts to represent the neuron in the form of symbolic logic was pro-
posed by Abdullah [13]. In this work, the HNN was viewed as a computational paradigm
and symbolic rule rather than a tool to solve optimization problem. Logic was chosen
as symbolic rule in HNN because logic conventionally involves a database of declared
knowledge, sequential procedure, and resolution, which help HNNs to prove/disprove
the goal of the network. The introduction of logic as a symbolic rule in HNNs has at-
tracted other representations of logic. This led to the introduction of the Wan Abdullah
method [14] to find the optimal synaptic weight associated with the embedded logical rule.
This development has attracted researchers to find other variants of logic to be embedded
into HNNs. Kasihmuddin et al. [15] proposed 2 Satisfiability (2SAT) logic in HNNs by
creating a cost function that capitalizes the symmetric neuron connection. In this paper,
the proposed 2SAT in HNN was effectively optimized using the Estimated Distribution
Algorithm during the retrieval phase. As a result, the proposed HNN achieved a high
rate of global minima ratio. Next, Sathasivam et al. [16] proposed the first non-systematic
logic namely Random 2 Satisfiability (RAN2SAT) by proposing the combination of first
and second order clause to the logic formulation. Although the quality of the final neuron
state deteriorates as the number of neuron increases, the synaptic weight of the logic shows
higher number of variations compared to the other existing logic. Karim et al. [17] proposed
the higher order non-systematic logic by introducing a third order clause. This paper shows
an interesting logical variant where the first, second, and third order clause were proposed
interchangeably. The direction of non-systematic logic was extended by Sidik et al. [18] and
Zamri et al. [19] where Weighted Random 2 Satisfiability (r2SAT) were proposed in HNN.
To create the correct r2SAT logic, logic phase was introduced to ensure the right amount
of negated literal was imposed to RAN2SAT. The proposed r2SAT was reported to obtain
final neuron state with high total neuron variation. In another development, Guo et al. [20]
combined the beneficial feature of both systematic and non-systematic logic by proposing
Y-Type Random 2 Satisfiability (YRAN2SAT). The proposed logic shows an interesting
behavior because YRAN2SAT can be reduced to both 2SAT and RAN2SAT. On the other
hand, Gao et al. [21] extended the order of the clause in the logic by adding third order
clause. Although the final energy for [20,21] tends to converge to local minimum energy
(due to high number of neuron), both logics offer a wide range of flexibility to represent
symbolic rule in HNN. Despite rapid development in the field of logic in HNN, none of
the mentioned studies consider the existence of a redundant variable in the logical rule.
In this context, a redundant variable with the opposing literals will usually lead towards
non-satisfiable logic.

Maximum Satisfiability (MAXSAT) is another variant of logical rule that is not satis-
fiable in nature. According to Bonet et al. [22], MAXSAT is to find the interpretation that
maximize the number of satisfied clauses. In this context, MAXSAT logic will never be
satisfied, and the logical outcome is always False. Kasihmuddin et al. [23] proposed the
first non-satisfiability logic namely Maximum 2 Satisfiability (MAX2SAT) in HNN. The cost
function of the proposed MAX2SAT only considers the logic that is satisfiable where the
synaptic weight for the non-satisfiable logic is zero. The proposed MAX2SAT utilized the
exhaustive search and was reported to achieve global minimum energy for lower number
of neurons. To reduce learning error during learning phase, Sathasivam et al. [24] proposed
genetic algorithm (GA) to find the correct interpretation that leads to zero cost function.
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The proposed GA was reported to increase the storage capacity and successfully prevent
HNN from obtaining sub-optimal synaptic weight. Although the proposed metaheuristics
were reported to produce zero learning error, the capability of the algorithm in doing
non-systematic MAX2SAT remains unknown. Throughout this process, the real parameters
will undergo some adjustments and it take several trials to get a good result. For further
developments, in order to find the optimal solution, researchers have suggested distribu-
tional robust optimization techniques to solve the non-convex non-linear structure of the
high dimensional parameter space of the neural network [25]. Next, some combinatorial
problems based on min–max and min–max regret version have been discussed in [26].

Election Algorithm (EA) was initially proposed by Emami and Derakhshan [27] to
optimize the solution of the combinatorial problems. EA is a social-political algorithm that
was inspired by the presidential election process of the majority in a particular country. The
intelligent search of EA can cover a wide range of solutions in a large solution space. Other
than that, the mechanism of EA partitions the solution space where effective partitioning
will help in reducing complexity and allowing the searching process to be more accurate. EA
consists of three-layered optimization operators that will help in improving the solution in
every iteration. Researchers have utilized EA for real-life problems where the versatility of
EA can cater to both continuous and discrete optimization problems. In terms of RAN2SAT,
Sathasivam et al. [28] proposed the first binary EA to optimize the learning phase of the
HNN. In this context, several functions in the EA were replaced by the binary operator to
fit the fitness function of the HNN. The proposed network was reported to outperform
most of the state-of-the-art algorithm in doing RAN2SAT. Next, Bazuhair et al. [29] utilized
EA in finding the correct interpretation for higher order RAN3SAT. Similar to the previous
study, the proposed EA was reported to achieve almost zero error and maximum total
neuron variation for RAN3SAT. This shows the superiority of the EA in reducing the
learning complexity of the HNN. However, the performance of the proposed EA in doing
non-satisfiable logic remains unknown. In this context, the proposed EA must have
the capability to reduce the fitness of the neuron to non-zero cost function. Thus, the
contributions of the present paper are as follows:

1. To formulate a novel non-satisfiability logical rule by connecting Random 2 Satisfiabil-
ity with Maximum 2 Satisfiability into one single formula called Random Maximum
2 Satisfiability. In this context, the logical outcome of the proposed logic is always
False and allows the existence of redundant variable. Thus, the goal of the Random
Maximum 2 Satisfiability to find the interpretation that maximize the number of
satisfied clauses.

2. To implement the proposed Random Maximum 2 Satisfiability into Discrete Hopfield
Neural Network by finding the cost function of the sub-logical rule that is satisfi-
able. Each of the variables will be represented in terms of neurons and the synaptic
weight of the neurons can be found by comparing cost function with the Lyapunov
energy function.

3. To propose Election Algorithm that consists of several operators such as positive
advertisement, negative advertisement, and coalition to optimize the learning phase
of the Discrete Hopfield Neural Network. In this context, the proposed EA will be
utilized to find interpretation that maximize the number of the satisfied clause.

4. To evaluate the performance of the proposed hybrid network in doing simulated
datasets. The hybrid network consisting of Random Maximum 2 Satisfiability, Elec-
tion Algorithm, and Hopfield Neural Network will be evaluated based on various
performance metrics. Note that the performance of the hybrid network will be com-
pared with other state of the art metaheuristics algorithm.

By creating an effective and efficient hybrid network, the proposed network creates
a new method to learn non-satisfiable logic which accounts for most of real-life problem.
Thus, this paper is organized as follows: Section 2 provides the preliminary explanation
on the Random Maximum 2 Satisfiability, how Random Maximum 2 Satisfiability studies
in DHNN, Genetic Algorithm, and Election Algorithm. The methods and experimental
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setup will be given in Section 3. The simulation of the study will be discussed in Section 4.
Finally, concluding remarks are given in the final section, Section 5.

Table 1 below shows the list of related research.

Table 1. Summaries of related studies.

Author(s) Detail of the Studies Summary and Findings

Hopfield and Tank [6] The authors proposed non-linear analog neurons. The authors used DHNN to solve the optimization of the
Traveling Salesman Problem (TSP).

Abdullah [13] The author proposed the Wan Abdullah method to
solve logic programming in DHNN.

This author proposed a new method in retrieving the synaptic
weight of Horn clause. The new method has outperformed
Hebbian learning.

Kasihmuddin et al. [23] The authors proposed Restricted Maximum k
Satisfiability in DHNN.

The performance of MAXkSAT in DHNN outperformed
MAXkSAT in Kernel Hopfield Neural Network (KHNN).

Sathasivam et al. [16]
The authors proposed a RAN2SAT has been
developed to represent the non-systematic logical
rule in DHNN.

RAN2SAT is embedded in DHNN by retrieving maximum
outcomes of global solutions.

Zamri et al. [19]
The author proposed Implemented Imperialist
Competitive Algorithm (ICA) in 3 Satisfiability
(3 SAT) and compared with ES and GA.

This paper shows the comparison of the proposed model done
by two real data sets and ICA has outperformed ES and GA.

Bazuhair et al. [29] This paper proposed EA in training phase
of RAN3SAT.

Incorporation of RAN3SAT with EA in DHNN has the ability to
achieve the optimal training phase.

Gao et al. [21] This paper utilized DHNN in explaining G-Type
Random k Satisfiable.

This paper emphasizes on the formulation of first, second, and
third order of clauses in the logical structure. The proposed
logic structure produces higher solution diversity.

Karim et al. [17]
The author proposed a new novel of
multi-objective HEA for higher order Random
Satisfiability in DHNN.

HEA achieves highest fitness value. The HEA is able to yield
a high quality of global optimal solution with higher accuracy
and outperformed GA, ABC, EA, and ES.

2. Related Works
2.1. Random Maximum 2 Satisfiability

Random Maximum 2 Satisfiability (RANMAX2SAT) belongs to the non-systematic
satisfiability model presented in Conjunction Normal Form (CNF). The logical structure
consists of two redundant variables per clause and at most two random variables in each
clause connected by a logical operator OR operator. RANMAX2SAT defined in CNF
formula that consists of p clauses of two redundant variables and positive integer g where
g ≤ p [23] and m clauses containing two random variables in each clause and n clauses
containing one random variables in each clause. RANMAX2SAT problem gives the best
bit string assignments to the variables by satisfying at least g of p clauses for clauses with
redundant variables and m clauses for second order random variables and n clauses for
first order random variables. The formulation for Maximum 2 Satisfiability (MAX2SAT) is
given below [23]:

PMAX2SAT = (A ∨ B) ∧ (¬A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ ¬B) , (1)

where variables A and B are redundant literals in the logical structure. The formulation for
RAN2SAT is given as [16]:

PRAN2SAT =
m
∧

i=1
C(2)

i
n
∧

i=1
C(1)

i , (2)

where m is total number clauses with two variables and n is total number of clauses with
one variable. Thus, the general formulation of PRM2SAT is a combination of PMAX2SAT and
PRAN2SAT as follow:

PRM2SAT = PMAX2SAT ∧ PRAN2SAT , (3)

PRM2SAT = (A ∨ B) ∧ (¬A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ ¬B)
m
∧

i=1
C(2)

i
n
∧

i=1
C(1)

i , (4)
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The definition of the clauses in PRM2SAT is given by:

C(k)
i =

{
(X∗i ∨Y∗i ) , k = 2 , 1 ≤ i ≤ m

Z∗i , k = 1 , 1 ≤ i ≤ n
, (5)

where X∗i ∈ {Xi,¬Xi}, Y∗i ∈ {Yi,¬Yi} and Z∗i ∈ {Zi,¬Zi} is a variable in PRM2SAT . C(2)
i

and C(1)
i defines second order clauses and first order clauses, respectively. One of the

examples for RANMAX2SAT formulation is given:

PRM2SAT = (A ∨ B) ∧ (¬A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ ¬B) ∧ (X1 ∨Y1) ∧ (X2 ∨Y2) ∧ Z1 ∧ Z2 (6)

According to the above equation, if PRM2SAT = (A, B, X1, Y1, X2, Y2, Z1, Z2)
= (1, 1, 1, 1, 1, 1, 1, 1), the outcome of above equation is PRM2SAT = −1 with only seven clauses
satisfied. Note that PRM2SAT is unsatisfiable and there is no interpretation that make
PRM2SAT true. Based on the example, the highest number of causes that can be satisfied is
seven out of eight. According to the study by [23], the best ratio of satisfied clause for any
of MAXkSAT is between 0.7 and 1.

2.2. Discrete Hopfield Neural Network

The HNN developed by [6] is well known in artificial intelligence due to the content
addressable memory (CAM) and energy minimization capability. The HNN stores patterns
as a CAM systematically [23]. The HNN model consists of an interconnected unit called
neurons that forms a network with no hidden layers. Hopfield network uses collections
of interconnected neurons to carry out the computation based on [6]. The units are HNN
represented in bipolar values of 1 and −1 [15]. The neuron is updated based on the given
formulation below:

Si =


1,i f

n

∑
j

WijSj ≥ θi

−1,otherwise

, (7)

where Sj is represents the state of unit j, Wij is the synaptic weight from unit i to j, and θ is
the threshold of unit i. There are two characteristics of synaptic weight. First, the synaptic
weight of DHNN has no connection with itself Wii = Wjj = 0 [28]. Secondly, the synaptic
weight in this network is always symmetric Wij = Wji which makes DHNN obtain the
optimal solution by always converging to global minimum energy. θ = 0 is to make sure
the energy of DHNN reduces uniformly. RANMAX2SAT has been implemented in DHNN.
In this case, RANMAX2SAT will consider at most two neurons per clause. DHNN has
a useful CAM that can store and retrieve memory the way the human brain works. CAM
can retrieve stored data with the presentation of partial information from that data. The
main objective for implementing PRM2SAT in DHNN is to minimize the cost functions to
reduce the inconsistencies of logic of the network towards a minimum energy during the
training phase. Generally, the cost function EPRM2SAT is given by the following formula:

EPRM2SAT =
NC

∑
i=1

p+m+n

∏
j=1

Tij, (8)

where NC is the number of clauses and p + m + n are the number of variables in PRM2SAT .
The inconsistency of PRM2SAT is:

Tij =

{ 1
2 (1− SA) , i f¬A
1
2 (1 + SA) , otherwise

, (9)

The inconsistency of PRM2SAT is defined by taking the negation of PRM2SAT . Note that
there is no consistent interpretation that results in EPRM2SAT = 0 because of the existence of
redundant variables in the logical structure. Therefore, the network is shifted by determin-
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ing the least value of cost function. In this work, Wan Abdullah’s method is implemented to
obtain the weights for DHNN-RANMAX2SAT based on logical inconsistencies [13]. Each
neuron will be assigned by truth values. The minimized cost function is defined by finding
the maximum number of satisfied clauses. During the testing phase, before finding the final
state of neuron, the local field plays an important role in squashing the retrieved output.
The state of the neuron will be updated asynchronously by the equation of local field hi.

hi(t) =
NC

∑
j=1,i 6=j

W(2)
ij Sj + W(1)

i , (10)

Local field determines the effectiveness of the final neuron states that are produced
by DHNN. Then, the retrieved final states will be interpreted whether the final solution is
over fit or not. Specifically, the updating equation is based on following equation:

Si(t + 1) =

{
1 , i f tanh(hi) ≥ 0
−1 , otherwise

, (11)

tanh(hi) =
ehi − e−hi

ehi + e−hi
, (12)

where hi is the local field of the network and tanh(hi) implies the squashing function of
Hyperbolic Activation function (HTAF). In the training phase, the cost function will be
compared with the Lyapunov energy function of DHNN to obtain the synaptic weight. The
equation of Lyapunov energy function is as follows:

HPRM2SAT (t) = −
1
2

NC

∑
i=1,i 6=j

NC

∑
j=1,i 6=j

W(2)
ij SiSj−

NC

∑
i=1,i 6=j

W(1)
i Si , (13)

where W(2)
ij is the synaptic weight for second order clauses and W(1)

ij is the synaptic weight
for first order clauses. The final energy that HPRM2SAT at time t + 1 is given as below:

HPRM2SAT (t + 1) = −1
2

NC

∑
i=1,i 6=j

NC

∑
j=1,i 6=j

W(2)
ij Su

i Sj−
NC

∑
i=1,i 6=j

W(1)
i Su

i , (14)

HPRM2SAT (t + 1) shows the energy after being updated by u that validates the final
stated produced by training phase and retrieval phase. The differences in energy level are
expressed as follows:

∆HPRM2SAT = HPRM2SAT (t)− HPRM2SAT (t + 1) (15)

By substituting Equations (13) and (14) in (15),

∆HPRM2SAT = −1
2
(Sj − Su

j )

(
NC

∑
i=1,i 6=j

W(2)
ij SiSj −W(1)

i )

)
, (16)

Thus, simplified version of Equation (15) is as follows:

∆HPRM2SAT = −1
2
(Sj − Su

j )(hi(t)) , (17)

According to Equation (15), the similar states imply an optimized final state whereby
∆HPRM2SAT = 0. Therefore, this equilibrium proves that DHNN will always converge to
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a stable state. The minimum values from the energy function can be defined as the stable
state of the neurons [30]. The formula to calculate Hmin

PRM2SAT
is given by:

Hmin
PRM2SAT

= −
(

θ + 2η

4

)
, (18)

where θ = n(C(2)
i ) and η = n(C(1)

i ) that corresponds to PRM2SAT .
After completing the training phase of DHNN-RANMAX2SAT, synaptic weight ob-

tained in the training phase will be used in the testing phase. Note that network relaxation
will help the network to get the correct final state. During firing and receiving information,
more interconnected neurons are involved when the number of neurons increased. Note
that, inefficiency of the relaxation mechanism produces more local minima solution. To
be precise, to guarantee the network comes to a relaxation stage where it reaches a stable
state, the neuron will be updated based on the Sathasivam Relaxation method [30]. The
exchange of information between neurons will be computed by the given formula:

dhnew
i
dt

= R
dhi
dt

, (19)

where hi refers to the local field of the network and R denotes the relaxation rate. In this
network, the relaxation rate used in our program is R = 3. The quality of the final neuron
state is determined by using the following equation:∣∣∣HPRM2SAT − Hmin

PRM2SAT

∣∣∣≤ tol , (20)

where tol is the tolerance value. The final state of the neuron will be trapped in a local
minima if Equation (16) is not satisfied. The energy function is crucial because the degree
of convergence of the network is determined by the energy function. The energy value
produced will be classified either as global minimum energy or local minimum energy.
Figure 1 shows the schematic diagram for DHNN-RANMAX2SAT. Note that the blue
dotted lines represent the second-order clauses of redundant variables and green dotted
lines represent the second-order clauses of non-redundant variables with four possibilities
of neurons in the second-order clauses. Meanwhile, the red dotted lines represent first-
order clauses with two possibilities of neurons. Algorithm 1 illustrates the steps DHNN-
RANMAX2SAT through the pseudocode below.
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Algorithm 1: The pseudocode of DHNN-RANMAX2SAT

Start
Create the initial parameters, COMBMAX, trial number, relaxation rate, tolerance value;
Initialize the neuron to each variable consisting of Si ∈ [S1, S2, S3, . . . Sn];
while (i ≤ trial);

Form initial states by using Equation (7);
[TRAINING PHASE]
Apply Equation (8) to define cost function EPRM2SAT ;
for Si ∈ [S1, S2, S3, . . . Sn] do

Apply Equation (8) to check clauses satisfaction of clauses;
if EPRM2SAT = 0

Si → Satisfied;
Else

Si → Unsatisfied;
end
Apply WA method to calculate synaptic weights;
Apply Equation (13) to compute the HPRM2SAT ;
[TESTING PHASE]
Compute final state by using local field computation, Equation (10);
for (i ≤ trial);
End
Apply Equation (18) to compute the Hmin

PRM2SAT
;

Compute the final energy;
Assign global minimum energy or local minimum energy
if |HPRM2SAT − Hmin

PRM2SAT
| ≤ tol

Allocate Global minimum energy;
Else

Allocate Local minimum energy;
end
return Output the final neuron state;

2.3. Genetic Algorithm

A Genetic Algorithm (GA) is an evolutionary algorithm inspired by the biological
evolution process of natural selection, crossover, and mutation. According to [31], GA
based on Darwin’s evolutionary theory is to find an optimal solution. Initially, GA will
randomly produce a population of chromosomes. The chromosomes represent the possible
solutions of the optimization problem. Next, to evaluate the quality of each chromosome,
the fitness function of these chromosomes will be calculated based on Equation (21).

fRM2SATGA =
p+m

∑
i=1

C(2)
i +

n

∑
i=1

C(1)
i , (21)

where C(2)
i is second order clauses RANMAX2SAT clauses and C(1)

i is the first order
RANMAX2SAT clause and given as follows:

C(2)
i =

{
1, Satis f ied
0, otherwise

, (22)

C(1)
i =

{
1, Satis f ied
0, otherwise

, (23)

The objective function of proposed GA is to maximize the fitness of the Si:

max[ fRM2SATGA] (24)

GA also has the ability to deal with a higher number of variables in the logical structure
without affecting the overall computation. Previous work by [28] used GA in the training
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phase of DHNN with the logical interpretation of RANkSAT structure being similar to the
chromosomes of DNA. Inspired by this fascinating work, in this proposed study, GA will
be implemented in the training phase of PRM2SAT . The implementation of GA in DHNN of
this proposed model is abbreviated as DHNN-RANMAX2SATGA. The involved stages in
DHNN-RANMAX2SATGA are as follows.

2.3.1. Initialization

NPopGA chromosome Si where Si ∈ {S1, S2, S3, . . . SNPopGA} initialized. In each Si, the
state of neuron is represented by 1 (TRUE) and −1 (FALSE).

2.3.2. Fitness Evaluation

All the bit string will undergo fitness evaluation based on Equation (21). If fRM2SATGA
reaches maximum fitness, the algorithm will be terminated.

2.3.3. Selection

NS chromosomes with the highest fitness are selected from the randomized chromo-
somes by selection rate, λ.

NS = λNPopGA , (25)

where λ is ranging to λ = [0, 1]. This stage is vital because a chromosome with a low value
of fRM2SATGA will not proceed to next stage.

2.3.4. Crossover

Two chromosomes are selected and separated during the crossover phase from selected
chromosomes. The information between two sub-structures of the bit strings will be
exchanged based on a crossover rate.

2.3.5. Mutation

Mutation involves flipping the state of the bit string from 1 to −1 or −1 to 1. However,
if the wrong state is flipped during this stage, there is a chance for the fitness value to
decrease. The current chromosomes will repeat the Sections 2.3.1–2.3.5 if the fitness value
does not achieve maximum fitness.

Algorithm 2 below illustrates the process of Genetic Algorithm through pseudocode.

Algorithm 2: The pseudocode of GA in the training phase

Start
Create initial parameters including chromosomes population size NPopGA consisting of
Si ∈ {S1, S2, S3, . . . SNPopGA}, trial number;
while i ≤ trial

Initialize NPopGA − NS random Si ;
[Selection]
for i ∈ {1, 2, 3, . . . , NPopGA} do

Apply Equation (21) to compute the fitness of each Si ;
Apply Equation (25) to compute NS;

end
[Crossover]
for Si ∈ {1, 2, 3, . . . , NS} do

The states of the selected two Si exchanged at a random point;
End
[Mutation]
for Si ∈ {1, 2, 3, . . . , NS} do

Flipping states of Si at random location;
Evaluate the fitness of the Si based on Equation (21);

End
end while
return Output the final neuron state.
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2.4. Election Algorithm

EA is an iterative algorithm inspired by the social-politic mechanism of presidential
elections [27]. Ref. [28] said that EA works with a set of population called solution where
each individual is either a candidate or a voter. EA is a metaheuristic that is used to
obtain the optimal solution in the logic that can minimize the cost function during the
training phase of the DHNN. This training algorithm consist of stage that partitions in a
solution space. Each partition will be assigned as party and organized by a candidate [29].
An illustrative example of EA in doing RANMAX2SAT will be explained in Appendix A.
In general, the eligibility value for the candidate, Li is as follows:

fRM2SATEA =
p+m

∑
i=1

C(2)
i +

n

∑
i=1

C(1)
i , (26)

where C(2)
i and C(1)

i are the second and first order RANMAX2SAT clause, respectively and
were given as

C(2)
i =

{
1, Satis f ied

0, otherwise
, (27)

C(1)
i =

{
1, Satis f ied

0, otherwise
, (28)

The objective function of proposed EA is to obtain the maximum fitness of the Si:

max[ fRM2SATEA] (29)

Note that EA possessed few operators that represent the real presidential election
process. The operators are explained in Sections 2.4.1–2.4.5.

2.4.1. Initializing Population and Forming Initial Parties

The algorithm will start by initializing a random population NPopEA that comprises
of voters and candidates. Each individual is represented by Si ∈ {S1, S2, S3, . . . SNPopEA}
where Si = {−1, 1}. The partitioning of solution space into number of parties j occurs
based on the given equation:

Nj =
NPopEA

NParty
, where j = 1, 2, 3, 4 (30)

where NParty is the number of parties j. The highest eligibility value will be selected as

candidate, Lj of party j. The rest of the individuals will be represented as voters vj
i that

support the candidate. The similarity of belief between candidate, Lj, and the voter, vj
i , is in

the term of distance and computed by using equation below:

dist( fLj , f
vj

i
) = fLj − f

vj
i
, (31)

where fLj and f
vj

i
are the eligibility of the candidate and voters, respectively.

2.4.2. Positive Advertisement

In this stage, the candidate in each party tries to gain more support from the voter in
their party by sharing their agendas and ideas. The number of voters that will be influenced
by the candidate is as follows:
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NS = σPNj, where σp ∈ [0, 0.5] (32)

where σp is the positive advertisement rate. The reasonable effect from the candidate to the
voter is defined as the eligibility distance coefficient given by:

ω
vj

i
=

1
dist( fLj , f

vj
i
) + 1

, (33)

The voters then will undergo state flipping based on the following equation

S
vj

i
= NCω

vj
i

, (34)

where NC is total number of clauses. The fitness of the voters is then updated by Equation (22).
The candidate will be replaced if the voters have higher fitness than the candidate.

2.4.3. Negative Advertisement

The candidate will try to gain popularity from outside voters. The number of voters
that is influenced is represented by following equation:

Nv∗i
= σn(Nj − Ns) where σn ∈ [0, 0.5] (35)

where σn is the negative advertisement rate, v∗i is the voters from the other parties. The
equation of similarity of belief between the candidate and voter as below:

dist( fLj , fv∗i
) = fLj − fv∗i

, (36)

The reasonable effect from the candidate to the voter from other party is the eligibility
distance coefficient stated in the equation below:

ωv∗i
=

1
dist( fLj , fv∗i

) + 1
, (37)

Sv∗i
= NCωv∗i

, (38)

where NC = p + m + n is sum of second and first order clauses. The eligibility of voters
is then updated by Equation (26) and the voters will replace the candidate if they have
highest fitness.

2.4.4. Coalition

Candidates will form allies with individual (both candidate and voters) from other
parties. The parties will collaborate dependently with each other. The effect from both can-
didates from both parties to the new coalition party is calculated by Equations (37) and (38).
The state of the voters and candidate is then updated by Equation (26).

2.4.5. Election Day

Election day will happen when the condition of termination is met in Sections 2.4.3–2.4.5.
In this stage, the final eligibility of all candidates will be evaluated. If the candidate Lj has
the maximum fitness, the candidate will be elected as the solution. If not, Sections 2.4.3–2.4.5
will be repeated until a certain number of iterations that has been decided on.

Algorithm 3 below illustrates the process of Election Algorithm through pseudocode.
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Algorithm 3: The pseudocode of EA in the training phase

Start
Create the initial parameters that includes the population size NPopEA consisting of
Si ∈ {S1, S2, S3, . . . SNPopEA}, trial number;
while i ≤ trial

Forming initial parties by using Equation (30);
for J ∈ {1, 2, 3, . . . , NParty} do

Apply Equation (31) to compute the similarity between the voters and the candidates
end
[Positive Advertisement]
For Si ∈ {1, 2, 3, . . . NSi} do

Apply Equation (32) to evaluate the number of voters;
Calculate the reasonable effect from the candidate ω

vj
i

by using Equation (33);

Update the neuron state according to Equation (26);
if f

vj
i
> fLj ;

Assign vj
i as new Lj;

Else
Remain Lj;

end
[Negative Advertisement]
for Si ∈ {1, 2, 3, . . . Nv∗j

} do

Calculate the similarity between the voters from the other party and the candidate from
Equation (36);
Compute the reasonable effect from the candidate ωv∗i

and update the neuron state by using
Equation (37);
if fv∗j

> fLj ;

Assign v∗i as new Lj;
else

Remain Lj;
end
[Coalition]
for Si ∈ {1, 2, 3, . . . Nv∗j

} do

Calculate the similarity between the voters from the other party and the candidate from
Equation (36);
Compute the reasonable effect from the candidate ωv∗i

and update the neuron state by using
Equation (37);
If fv∗j

> fLj ;

Assign v∗i as new Lj;
Else

Remain Lj;
End

end while
return Output the final neuron state;

3. Methodology

Figure 2 illustrates the general flow of the proposed study to ensure the readers gain
a better understanding of this approach. In the training phase, training algorithms such as
ES, GA, and EA will be implemented to Random Maximum 2 Satisfiability in DHNN to
ensure the correct synaptic weight is obtained. ES operates based on random search to find
the solution. However, GA and EA have optimization operators that will help in improving
the solution in every iteration. Next, the computation of the local field of the neuron state
and the final energy occurs in the testing phase. The differences between final energy and
minimum energy are checked whether in the range of tolerance value in order to verify the
final energy of the network. The final energy of the proposed model is considered a global
minima solution if the differences are less than the tolerance value. Otherwise, it is trapped
in the local minima solution.
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3.1. Performance Metrices

In this section, the performance of DHNN-RANMAX2SATES, DHNN-RANMAX2SATGA,
and DHNN-RANMAX2SATEA will be examined by various performance metrics. To ex-
amine the actual performance of the network, these performance metrics have been used
by several researchers in neural network studies [18–21]. The purpose of the program is to
obtain the best training model of DHNN-RANMAX2SAT.

3.1.1. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)

RMSE and MAE measure the distance between the predicted value and observes the
value of a model. RMSE and MAE are used to measure the accuracy of performance. In
general, RMSE represents the data standard deviation of the differences between the target
value and observed value. RMSE can be expressed as [19]:

RMSE =
ε

∑
i=1

√
1
ε
(Pi −Oi)

2 , (39)
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where Pi is the predicted value and Oi is the observed value. In this dissertation, RMSE for
training error can be formulated as [19]:

RMSE Training =
ε

∑
i=1

√
1
ε
( fmax − fi)

2 , (40)

where fmax is the total number of DHNN-RANMAX2SAT clause, fi is the fitness of PRM2SAT
computed by the network and ε is the number of iterations before fi = fmax. RMSE for
testing error is expressed by

RMSE Testing =
ε

∑
i=1

√
1
ab

(GPRM2SAT − LPRM2SAT )
2 , (41)

where GPRM2SAT is the number of global minimum solution and LPRM2SAT is the number of
local minimum solution. a is number of combinations and b is number of trials. MAE is
defined as the average absolute difference between the predicted value and observed value.
The formula of MAE is given by [17]:

MAE =
ε

∑
i=1

1
ε

∣∣∣∣Pi −Oi

∣∣∣∣ , (42)

The MAE training and testing used in this paper are

MAE Training =
ε

∑
i=1

1
ε

∣∣∣∣ fmax − fi

∣∣∣∣2 , (43)

MAE Testing =
ε

∑
i=1

1
ab

∣∣∣∣GPRM2SAT − LPRM2SAT

∣∣∣∣ . (44)

3.1.2. Mean Absolute Percentage Error (MAPE)

MAPE measures the size of the error in percentage. The formula of MAPE can be
computed as [19]

MAPE =
ε

∑
i=1

100
ε

|Pi −Oi|
|Oi|

, (45)

MAPE formula for training error is given as:

MAPE Training =
ε

∑
i=1

100
ε

| fmax − fi|
| fi|

, (46)

and for testing error, the formula of MAPE is

MAPE Testing =
ε

∑
i=1

100
ε

∣∣GPRM2SAT − LPRM2SAT

∣∣
|ab| , (47)

3.1.3. Global Minimum Ratio (Zm)

Global minimum ratio measures the ratio between total global minimum energy and
the total number of runs. Global minimum energy can be obtained if the final energy
is within the tolerance value [30]. The value of Zm can be obtained by the following
formula [21]:

Zm =
1
ab

ε

∑
i=1

GPRM2SAT (48)
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3.1.4. Jaccard Similarity Index (JSI)

The final neuron state retrieved by the DHNN-RANMAX2SATES, DHNN-
RANMAX2SATGA, and DHNN-RANMAX2SATEA models will be analyzed by using
a similarity metric. The similarity metric that will be chosen in this paper is Jaccard simi-
larity index utilized in [15]. The Jaccard similarity index is ratio of the similarity between
two distinct datapoints. It also has been used in global evaluation. The Jaccard index for
DHNN is as follows:

JSI =
l

l + m + n
(49)

where
l is the number of ( fmax, fi) where both elements have the value of 1
m is the number of ( fmax, fi) where fmax is 1 and fi is −1
n is the number of ( fmax, fi) where fmax is −1 and fi is 1.

3.2. Baseline Methods

Note that this paper uses simulated data that generate randomly by computer program.
The DHNN model is compatible to binary and bipolar representations. This paper utilizing
bipolar representation in terms of logical structure that corresponds 1 defines as true and
−1 defines as false. Moreover, bipolar neuron states used to evaluate the asynchronous
neuron update in the DHNN model [30]. Furthermore, the bipolar representation converges
faster than binary representations. This paper does not consider the binary structure that
consists of 0 and 1 because the value of 0 that exists in the binary structure can eliminate
important parameters. The use of bipolar and binary representative can be differentiated
in the computation of finding synaptic weight. The 0 value in binary representation will
lead to wrong synaptic weight or delete the synaptic weight. Thus, this helps the proposed
model to converge faster.

The effective relaxation method and the activation function in DHNN can improve
the stable final state of the neurons. In this paper, the Sathasivam relaxation method is
used to retrieve correct neuron states and improve the proposed model. This is because the
Sathasivam relaxation method helps neurons to hold or pause before resuming in exchange
for information. This method also helps to reduce neuron oscillation and increases the
efficiency of the network in finding stable neuron states. Earlier, the conventional model
was Wan Abdullah’s logic programming based on McCulloch–Pitts function. However, [30]
stated that the results of McCulloch–Pitts function retrieve more local minimum energy and
it consumes more time to retrieve global minimum energy. Therefore, hyperbolic tangent
activation function (HTAF) is proved to be most stable activation function compared to
McCulloch–Pitts and Elliot Symmetric Activation Function in [32]. Hence, HTAF was
chosen because of its capability to train squashing neuron states before being classified
into final neuron states in this study. Table 2 shows the parameters used for DHNN-
RANMAX2SAT, Tables 3 and 4 show the parameters used in this study.

Table 2. List of parameters used in DHNN model.

Parameter Parameter Value

Tolerance value (tol) 0.001 [28]
Number of combinations (a) 100 [28]

Number of learnings (ε) 10,000
Number of trials (b) 100 [28]
Order of clauses (k) 1,2

Number of neurons (NN) (50, 300)
Threshold time simulation 24 h

Relaxation rate (R) 3 [30]
Activation function Hyperbolic Tangent Activation Function (HTAF) [32]
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Table 3. List of GA parameters used in training phase.

Parameter Parameter Value

Number of generations 100
Selection rate 0.1 [19]

Crossover rate 1 [19]
Mutation rate 0.01 [19]

Type of selection Random

Table 4. List of EA parameters used in training phase.

Parameter Parameter Value

Number of populations 120 [28]
Number of parties 4 [28]

Positive advertisement rate 0.5 [27]
Negative advertisement rate 0.5 [27]

Candidate selection Highest fitness
Type of voter’s attraction Random

Type of state flipping Random
Number of strings on election day 2

3.3. Experimental Design

The proposed hybrid networks during training phase and testing phase of DHNN-
RANMAX2SAT are DHNN-RANMAX2SATES, DHNN-RANMAX2SATEA, and DHNN-
RANMAX2SATGA. All proposed DHNN-RANMAX2SAT models will be implemented
in Dev C++ Version 5.11 coding software with a specification of a 3.1 GHz Intel Core i5
processor with 4 GB RAM in the Windows 10 operating system. The simulation will be
carried out in only one device to avoid biases. The output is run by Dev C++ coding
software and the graph is illustrated by MATLAB.

4. Results and Discussion

In this section, the performance of the three models, DHNN-RANMAX2SATES,
DHNN-RANMAX2SATEA, and DHNN-RANMAX2SATGA, will be discussed. Note
that the data will be divided into two phases. The first data phase will define the in-
crement of 2SAT of non-redundant variables in Random Maximum 2 Satisfiability where
50 ≤ NN ≤ 210 and the second data phase will define the increment of 1SAT of non-
redundant variables in Random Maximum 2 Satisfiability where 210 < NN ≤ 300. This is
important in order to observe the behavior of the 1SAT and 2SAT in Random Maximum
2 Satisfiability. In both phases, the clauses with two redundant variables are included to
represent the maximum satisfiable part. The number of neurons is limited to 300 due to
threshold time stimulation that is fixed to 24 h. An exhaustive search took more than 24 h
in the stimulation for number of neurons more than 300. Therefore, number of neurons is
limited to 300 for the Genetic Algorithm and Election Algorithm based on proposed logical
structure to maintain the parallelism and produce comparable results. The result will be
discussed according to training error, testing error, energy analysis, and similarity analysis.

4.1. Training Error

ES, GA, and EA facilitate the training phase to check clause satisfaction. Algorithm
approaches are utilized in this study to alter the parameters of the machine learning model
and get an optimized solution. Thus, GA and EA play an important role in explainable
artificial intelligence. The synaptic weight management by the proposed models is observed
for all logical combinations of PRM2SAT in this section. The optimal training phase is defined
as the capability of the proposed model to minimize the cost function that can generate
the optimal synaptic weight according to the Wan Abdullah (WA) method [13]. In order to
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achieve minimized cost function, in this study, ES, GA, and EA will be implemented and
compared. Figure 3 below illustrates the RMSE training, MAE training, and MAPE training
of the proposed model.
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(i) Observe that, as the total number of neurons increases, the value of RMSE training,
MAE training, and MAPE training increases for DHNN-RANMAX2SATES, DHNN-
RANMAX2SAEA, and DHNN-RANMAX2SAGA. We can also observe that there is
a drastic increase in phase 2 compared to phase 1 in the graphs. This is due to the
non-systematic logical structure that consists of first order clauses in phase 2 having
the chances of getting a satisfied interpretation being low compared to second order
clauses in phase 1 which makes the graph increase. Therefore, overall, when the
number of neurons increases, the number of satisfied interpretations decrease which
makes the training errors increase due to the complexity of the logical structure [16].

(ii) According to Figure 3, it is noticeable that the highest training error is shown at
NN = 300 by DHNN-RANMAX2SATES compared to DHNN-RANMAX2SATEA
and DHNN-RANMAX2SATGA. This is due to less stability of the neurons during the
training phase and ES derives the wrong synaptic weight. Since ES is operated by
a random search method, the complexity to get correct synaptic weight will increase
as the number of neurons increases.

(iii) Observe that as the number of neurons increases, DHNN-RANMAX2SATGA manages
to achieve low training error compared to DHNN-RANMAX2SATES. Note that the
operator of crossover with crossover rate of 1 in the Genetic Algorithm is able to
change the fitness of the population frequently by using the fitness function [19].
Moreover, the mutation rate of 0.01 based on [19] is able to obtain the optimum
fitness. Therefore, it is easy for the chromosomes to achieve an optimal cost function
to retrieve the correct synaptic weight.

(iv) However, based on the graph above, DHNN-RANMAX2SATEA outperformed DHNN-
RANMAX2SATES and DHNN-RANMAX2SATGA as the number of neurons in-
creased. Lower training error indicates the better accuracy of our model. This is
due to proposed metaheuristic in which EA enhanced the training phase of DHNN.
DHNN-RANMAX2SAEA is efficient in retrieving global minimum energy due to the
global search and local search operators of EA [27]. This indicates that the optimization
operators in EA enhanced the training phase of DHNN-RANMAX2SATEA. The high-
est rate of positive advertisement and negative advertisement chosen based on [27]
that quickens the process of obtaining the candidate with maximum fitness. By diving
the solution spaces during training phase, the synaptic weight management improved
and the proposed model achieves the optimal training phase successfully.

4.2. Testing Error

An optimal testing phase is when the proposed model manages to retrieve the final
neuron state that produces a global minimum solution. Good synaptic weight management
of the proposed model will result in obtaining a global minimum solution. Therefore,
the main focus on analyzing the testing error is to observe the quality of the solution
whether the final neuron state produces the global minimum or local minimum solution
by Equation (20). Figure 4 demonstrates the performance of DHNN-RANMAX2SATES,
DHNN-RANMAX2SATEA, and DHNN-RANMAX2SATEA during the testing phase.

(i) According to Figure 4, the graphs show similar trends for DHNN-RANMAX2SATES,
DHNN-RANMAX2SATEA, and DHNN-RANMAX2SATGA gives a constant graph
for both phase 1 and phase 2 as the number of neurons increases. This is due to
the logical structure becoming more complex as it contains a greater number of the
neuron. In this case, as the number of neurons increases, the logical structure fails to
retrieve more final states that lead to global minimum energy.

(ii) Based on Figure 4, RMSE testing, MAE testing, and MAPE testing of DHNN-
RANMAX2SATES increases at 50 ≤ NN ≤ 210. ES is a searching algorithm. The
training phase could be affected by the nature of ES which will continuously affect the
testing phase, thus resulting in a high value of testing error. Wrong synaptic weights
retrieved during the testing phase due to the inefficiency of synaptic weight manage-
ment. The complexity of the network increases when NN > 210 resulting in a constant
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graph with maximum values of RMSE testing, MAE testing, and MAPE testing. Thus,
the DHNN-RANMAX2SATES model starts retrieving the non-optimal states.

(iii) According to the graphs, the accumulated errors are mostly 0 for DHNN-
RANMAX2SATGA for RMSE testing, MAE testing, and MAPE testing. This is due to
metaheuristics GA consisting of an optimization operator which can help to improve
the solution. It can be deduced that GA barely gets trapped in the local minima solu-
tions. The operators of GA always search for optimal solutions which correspond to
the global minimum energy. Moreover, mutation operator in GA reduced the chances
for the bit string to retrieve local minima solutions. Thus, this resulted in a zero value
of RMSE testing, MAE testing, and MAPE testing as the number of neurons increases.

(iv) Notice that the graphs of RMSE testing, MAE testing, and MAPE testing of DHNN-
RANMAX2SATEA also show a constant graph that achieves zero testing error as
the number of neurons increases. Lower errors of RMSE testing, MAE testing, and
MAPE testing define the effectiveness of proposed model to generates more global
minimum energy. This is due to the effective synaptic weight management during
training phase of DHNN-RANMAX2SATEA. The presence of local search and global
search operator in EA that divides the solution spaces during training phase is the
main reason that improves the synaptic weight management during retrieval phase.
This leads DHNN-RANMAX2SATEA to produce global minimum energy in the
testing phase.

(v) Generally, we can say that DHNN-RANMAX2SATEA and DHNN-RANMAX2SATGA
outperformed DHNN-RANMAX2SATES in terms of RMSE testing, MAE testing, and
MAPE testing. This indicates that ES failed to retrieve optimal synaptic weight
during the training phase and consequently affected the testing phase, thus result-
ing in local minima solution. Meanwhile, GA and EA find more variation of the
solution (more global solution). Therefore, DHNN-RANMAX2SATEA and DHNN-
RANMAX2SATGA help the network to reduce generating local minimum energy by
achieving zero for RMSE testing, MAE testing, and MAPE testing.
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4.3. Energy Analysis (Global Minimum Ratio)

The Global Minimum Ratio (Zm) produced by DHNN-RANMAX2SATES, DHNN-
RANMAX2SATEA, and DHNN-RANMAX2SATGA during the retrieval phase is shown in
Figure 5. The amount of global minimum energy produced by the network can determine
the efficiency of network. Therefore, if the global minimum ratio of the proposed network
is close to 1, most of the solutions in the network reached correct final state during the
retrieval phase. In the network, 10,000 bit strings solutions will be produced by each
stimulation. For example, 0.9981 global minima ratio value defines 9981 bit strings are
global minimum energy and only 19 bit strings are local minimum energy. In [20], it was
discussed how the energy produced at the end of the process correlates with the global
minima ratio.
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(i) According to the graph, DHNN-RANMAX2SATES shows a decrease in the graph
when 50 ≤ NN ≤ 210 with Zm almost 0. At this stage, ES is only able to produce
much less global minimum energy because most of the solutions are trapped at sub-
optimal states. When the number of neurons increases in ES, the network becomes
more complex. Thus, the local field is not able to generate the correct state of the
neuron as the number of neuron increases. Hence, we can observe a constant graph at
Zm = 0 when NN > 210.

(ii) However, DHNN-RANMAX2SATGA manages to achieve Zm almost 1 as the total
number of neurons increases which indicates that most of the final neuron state in the
solution space achieved global minimum energy [19]. The complexity of the searching
technique has been reduced by implementing GA. The crossover stage improves
the unsatisfied bit string with the highest fitness. The bit strings improved when it
achieved the highest fitness as the number of generations increased. Therefore, GA
produces many bit strings that achieved global minimum energy compared to the
exhaustive search method.

(iii) Therefore, DHNN-RANMAX2SATEA also manages to achieve Zm almost 1 as the
total number of neurons increases. This indicates that DHNN-RANMAX2SATEA
manages to obtain stable final neuron states. The reason is due to the capability of
DHNN-RANMAX2SATEA in achieving optimal training phase which results in an
optimal testing phase where global minimum energy will be produced. Moreover,
EA produces a bit string with less complexity by partitioning the solution space into
4 parties. The number of local solutions produced at the end of computation will be
reduced by the effective relaxation method by choosing a relaxation rate of 3 [30].

(iv) Generally, based on the outcomes of DHNN-RANMAX2SATES, DHNN-
RANMAX2SATEA, and DHNN-RANMAX2SATGA is able to withstand the com-
plexity up to 300 neurons. It was observed that more than 99% of final state of the
neuron in DHNN-RANMAX2SATGA and DHNN-RANMAX2SATEA achieved the
global minimum solution. However, it was observed that 0.1% of final state of the neu-
ron in DHNN-RANMAX2SATES achieved the global minimum solution. Therefore,
DHNN-RANMAX2SATGA and DHNN-RANMAX2SATEA outperformed DHNN-
MAX2SATES as the number of neurons increased in terms of global minimum ratio.
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4.4. Similarity Analysis (Jaccard Similarity Index)

Figure 6 shows the JSI produced by DHNN-RANMAX2SATES, DHNN-
RANMAX2SATEA, and DHNN-RANMAX2SATGA models. Similarity analysis was per-
formed to analyze the final neuron state by comparing the retrieved neuron state with
the benchmark neuron state. The JSI was chosen to investigate the quality of the solu-
tions produced by DHNN-RANMAX2SATES, DHNN-RANMAX2SATGA, and DHNN-
RANMAX2SATEA.
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(i) Based on Figure 6, DHNN-RANMAX2SATES shows the highest JSI at NN = 50. This
indicates the major deviation and bias in the final states generated. The high value
of JSI indicates that the model achieves overfitting as the DHNN-RANMAX2SATES
model failed to produce differences in the final states of the neuron. However, there
is a decrease in trend from NN = 130 to NN = 170. The JSI is decreasing, showing
that the final neuron state generated is varied as the neuron increased [15]. This is
due to the fewer benchmark neurons generated during the retrieval phase by the
proposed model.

(ii) However, Jaccard has stopped getting any value when NN > 210 because all the
solutions retrieved by the network are local solutions. This is because the nature of
ES that operates based on trial and error could affect the minimization of the cost
function. Since ES failed to produce optimal synaptic weight in training phase, it
affects the final neuron states produced by the model at the end of computation.

(iii) According to Figure 6, we can see that the fluctuation for DHNN-RANMAX2SATGA
and DHNN-RANMAX2SATEA increased. This is due to the total number of neu-
rons increases. This increases the chances for the neuron to be trapped at the local
minima. A higher number of total clauses imply more training error during the
training phase which causes less variation of the final solution than the benchmark
solution. Thus, this causes the trend of JSI for DHNN-RANMAX2SATGA and DHNN-
RANMAX2SATEA to increase.

(iv) However, DHNN-RANMAX2SATEA has the lowest index value for Jaccard when
NN = 90. In this case, the neuron retrieved from DHNN-RANMAX2SATEA has
a lowest similarity with the benchmark state. The higher number of neuron variations
produced by the network obtains lower value similarity index. This shows that the
network produces less overfitting of the final states of the neuron.
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4.5. Statistical Analysis

A Friedman Test was conducted for all DHNN-RANMAX2SAT models based on the
results of RMSE Training. The analysis from the Friedman Test provided an insight whether
the performance of the DHNN model in terms of RMSE Training is statistically significant
or not. Initially, the null hypothesis, Hθ is defined, whereby Hθ = there is no significance
in terms of RMSE Training between all models. The degree of freedom (d f ) considered is
d f = 2 with a significance level of α0 = 0.05 (95% confidence interval). Subsequently, the
attained p-value was 0.000045 with a Chi square value of χ2 = 20. By observing that the
value of p is much less than α0 = 0.05, the Hθ is rejected. This implies that the performance
of each DHNN-RANMAX2SAT model in the training phase is not equal or statistically
significant. Hence, the superiority of DHNN-RANMAX2SATEA as reported in Figure 3a is
acknowledged. As DHNN-RANMAX2SATEA achieved the highest rank of 1 as compared
to other algorithms, this highlights the importance of implementing an optimal training
algorithm to minimize the satisfiable clauses of RANMAX2SAT.

5. Conclusions

One of the significant milestones in AI is to create DHNN that has the ability to learn
optimally. This can be done by implementing flexible logic into DHNN. This paper serves
as a benchmark to more implementation of non-satisfiability in DHNN. First, this study in-
troduces a new logical rule, namely RANMAX2SAT, by combining two logical formulations,
that is, Satisfiable and Non-Satisfiable. Note that, each clause in RANMAX2SAT contains
redundant variables and this is the first attempt to introduce non-systematic logic into
MAX2SAT (Refer Equation (3)). Second, the proposed RANMAX2SAT was implemented
into DHNN or DHNN-RANMAX2SAT as a symbolic rule that governs the connection
of the neurons. This can be done by comparing the cost function in Equation (8) with
the energy function in Equation (13). It is worth mentioning that the ising spin of the
neuron in DHNN-RANMAX2SAT is following the work of [33], where the dynamic is
converged to the nearest local minimum energy. Third, the proposed model was optimized
by using EA or DHNN-RANMAX2SATEA that was inspired by socio-political metaheuris-
tics. The proposed EA was used to find the interpretation that leads to minimized cost
function. In the perspective of Equation (3), the proposed EA will only learn the Satisfiable
logic that formulates the whole logical formulation. Again, this is the first introduction
of EA in optimizing the learning of DHNN that is not Satisfiable and has nonzero cost
function. Finally, the quality of solution of DHNN-RANMAX2SAT model was tested in
terms of various performance metrics. According to the experimental results, the proposed
DHNN-RANMAX2SATEA outperformed other existing DHNN models in terms root mean
square error, mean absolute error, mean absolute percentage error, global minima ratio,
and Jaccard similarity analysis. It was observed that most of 99% of the final state of the
neurons in DHNN-RANMAX2SATEA achieved global minimum solution. This shows
that the proposed DHNN-RANMAX2SATEA managed to achieve the optimal training and
testing phase which indicates the possibility of the RANMAX2SAT becoming an optimal
symbolic rule for DHNN. As for future work, there are several interesting directions that
are worth exploring. The proposed RANMAX2SAT can be implemented in another subset
of ANN such as Boolean Neural Network [34], Graph Neural Network [35], or Kohonen
Neural Network [36]. Due to the nature of RANMAX2SAT, it is interesting to observe
the potential cost function of the mentioned ANN variants. In terms of learning phase,
recent metaheuristics algorithm such as Black hole Algorithm [37], Driving Training-Based
Optimization [38], Honey Badger Algorithm [39], Harmony Search-based Algorithm [40],
and Gradient-based Optimizer [41] can also be implemented. The key here is to embed
the feature of RANMAX2SAT into the objective function of the mentioned algorithms.
Moreover, it would be worth exploring other effective algorithms to ensure the neuron in
DHNN always converges to the global minimum energy. For instance, implementation of
the Mutation operator [42] and memristor [43] were reported to increase the search space
of the DHNN. Finally, the robust DHNN-RANMAX2SATEA has good potential to become
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good forecasting model for various real-life modeling that is random in nature such as
flood modeling, seismic modeling, and tsunami modeling. This can inspire the next imple-
mentation of large-scale logic mining design incorporated with DHNN-RANMAX2SATEA,
which has the ability to classify and forecast.
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Appendix A

To better understand the Algorithm 3, the process Election Algorithm will be explained
with an illustrative example. EA is utilized to obtain the optimal solution for PRM2SAT
that minimizes the cost function during the training phase of the DHNN. Example of
RANMAX2SAT formulation is taken from Equation (6).

(i) Initialization population and forming initial parties.

The population that consists of candidates and voters will be initialized. In this illustra-
tive example, 20 individuals of a random population, NPopEA will be initialized. The indi-
viduals consist of candidates and voters and can be represented as Si = [S1, S2, S3, . . . , S20]
where Si = {−1, 1}. The solution space partitioned into 4 parties. Thus, the population of
20 are divided into 4 parties. Each individual will be calculated for their eligibility based
on Equation (30). The individual with the highest eligibility will be the first candidate and
will be highlighted as orange. Tables A1–A4 show the voters and candidates in Party 1,
Party 2, Party 3, and Party 4, respectively.

Table A1. S2 selected as candidate in Party 1.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S1 1 1 −1 −1 1 1 1 1 6
S2 −1 1 1 1 −1 −1 1 1 6
S3 1 −1 1 1 −1 −1 −1 −1 4
S4 1 1 1 1 −1 −1 −1 −1 4
S5 1 1 −1 1 −1 −1 −1 1 5

Table A2. S6 selected as candidate in Party 2.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S6 1 1 1 1 −1 −1 1 1 6
S7 −1 1 −1 1 −1 −1 −1 −1 4
S8 1 −1 −1 −1 −1 1 −1 −1 4
S9 1 −1 −1 −1 −1 1 −1 1 5
S10 1 −1 1 1 −1 −1 −1 −1 4
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Table A3. S14 selected as candidate in Party 3.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S11 1 1 1 1 1 1 −1 −1 5
S12 1 1 −1 −1 1 1 −1 −1 4
S13 1 1 1 −1 −1 −1 −1 1 4
S14 −1 1 1 1 −1 −1 1 1 6
S15 −1 −1 −1 −1 1 1 −1 −1 4

Table A4. S18 selected as candidate in Party 4.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S16 1 1 1 1 −1 −1 −1 −1 4
S17 −1 −1 −1 −1 −1 1 −1 −1 4
S18 −1 1 −1 −1 −1 1 1 1 5
S19 −1 −1 −1 −1 1 1 −1 −1 4
S20 −1 −1 −1 −1 −1 −1 −1 −1 3

(ii) Positive Advertisement

The number of voters, vj
i that will be influenced by the candidate, Lj calculated by

Equation (32) with σp = 0.5. Therefore, NS = 2 influenced voters will be selected randomly.
The number of neuron states that will be updated by the influenced will be determined
based on the Equation (34). The candidate Lj will be replaced if a voter has a higher
eligibility value than that candidate. Note that the individual highlighted with red is
denoted as the new candidate, Lj. The individual highlighted green is denoted as an old
candidate, Lj. The individual highlighted with blue is denoted as influenced voters. The
neuron state that has been updated is highlighted with yellow. Tables A5–A8 show the
process of positive advertisement in Party 1, Party 2, Party 3, and Party 4, respectively.

Table A5. S2 remained as candidate in Party 1.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S1 1 1 −1 −1 1 1 1 1 6
S2 −1 1 1 1 −1 −1 1 1 6
S3 1 −1 1 1 1 1 −1 −1 5
S4 1 1 1 1 1 1 −1 −1 5
S5 1 1 −1 1 −1 −1 −1 1 5

S3 and S4 are the influenced voters and have undergone state flipping process. Since
S3 and S4 have lower fitness than S2; S2 will remain as the candidate.

Table A6. S6 remained as candidate in Party 2.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S6 1 1 1 1 −1 −1 1 1 6
S7 −1 1 −1 1 1 1 −1 −1 5
S8 1 −1 −1 −1 1 −1 −1 −1 4
S9 1 −1 −1 −1 −1 1 −1 1 5
S10 1 −1 1 1 −1 −1 −1 −1 4
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S7 and S8 are the influenced voters and have undergone state flipping process. Since
S7 and S8 have lower fitness than S6 and S6 will remain as the candidate.

Table A7. S13 selected as candidate in Party 3.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S11 1 1 1 1 1 1 −1 −1 5
S12 1 1 −1 −1 1 −1 1 −1 5
S13 1 1 1 −1 −1 1 1 1 7
S14 −1 1 1 1 −1 −1 1 1 6
S15 −1 −1 −1 −1 1 1 −1 −1 4

S12 and S13 are the influenced voters and have undergone state flipping process. Since
S13 has higher fitness than S14, S13 will be selected as the candidate.

Table A8. S19 selected as candidate in Party 4.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S16 1 1 1 1 −1 −1 −1 −1 4
S17 −1 −1 −1 −1 −1 1 1 1 5
S18 −1 1 −1 −1 −1 1 1 1 5
S19 −1 −1 −1 −1 1 1 1 1 6
S20 −1 −1 −1 −1 −1 −1 −1 −1 3

S17 and S19 are the influenced voters and have undergone state flipping process. Since
S19 has higher fitness than S18, S19 will be selected as the candidate.

(iii) Negative Advertisement

The number of voters v∗i that will be attracted by the candidate Lj can be calculated by
Equation (28) with σn = 0.5. Note that Party 1 will attract voters from Party 3 and Party
2 will attract voters from Party 4. The number of neuron states that will be updated by
the influenced will be determined based on the Equation (38). The candidate Lj will be
replaced if a voter has a higher eligibility value than that candidate. Note that Individual
highlighted with red is denoted as the new candidate, Lj. The individual highlighted green
is denoted as an old candidate, Lj. The individual highlighted with blue is denoted as
attracted voters v∗i in the new party and gray in the old party. The neuron state that has
been updated is highlighted with yellow. Tables A9–A12 show the process of negative
advertisement in Party 1, Party 2, Party 3, and Party 4, respectively.

Table A9. S2 remained as candidate in Party 1.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S1 1 1 −1 −1 1 1 1 1 6
S2 −1 1 1 1 −1 −1 1 1 6
S3 1 −1 1 1 1 1 −1 −1 5
S4 1 1 1 1 1 1 −1 −1 5
S5 1 1 −1 1 −1 −1 −1 1 5
S15 −1 −1 −1 −1 1 1 1 1 6

Party 1 gained S15 from Party 3. S2 will remain as the candidate Party 1.
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Table A10. S18 selected as candidate in Party 1.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA
S6 1 1 1 1 −1 −1 1 1 6
S7 −1 1 −1 1 1 1 −1 −1 5
S8 1 −1 −1 −1 1 −1 −1 −1 4
S9 1 −1 −1 −1 −1 1 −1 1 5
S10 1 −1 1 1 −1 −1 −1 −1 4
S18 −1 1 1 1 1 −1 1 1 7

Party 2 gained S18 from Party 4. Since S18 has higher fitness than S6, S18 will be
selected as the candidate.

Table A11. Party 3 lost S15 to Party 1.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S11 1 1 1 1 1 1 −1 −1 5
S12 1 1 −1 −1 1 −1 1 −1 5
S13 1 1 1 −1 −1 1 1 1 7
S14 −1 1 1 1 −1 −1 1 1 6
S15 −1 −1 −1 −1 1 1 −1 −1 4

Table A12. Party 4 lost S18 to Party 2.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA

S16 1 1 1 1 −1 −1 −1 −1 4
S17 −1 −1 −1 −1 −1 1 1 1 5
S18 −1 1 −1 −1 −1 1 1 1 5
S19 −1 −1 −1 −1 1 1 1 1 6
S20 −1 −1 −1 −1 −1 −1 −1 −1 3

(iv) Coalition

Two parties will be grouped together where the individual with the highest eligibility
value in the coalition party will be candidate Lj. The number of neuron states that will
be updated by all voters v∗i will be determined based on the Equation. The candidate Lj
will be replaced if a voter has a higher eligibility value than the candidate. Note that the
individual highlighted with red is denoted as the new candidate Lj. The neuron state that
has been updated is highlighted with yellow. Table A13 shows the coalition of Party 1 and
Party 4 and Table A14 shows coalition of Party 2 and Party 3.

Table A13. Coalition of Party 1 and Party 4.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA
S1 −1 −1 1 1 −1 −1 −1 −1 6
S2 −1 1 1 1 −1 −1 1 1 6
S3 1 1 −1 1 1 1 1 1 5
S4 1 1 1 1 −1 −1 1 1 5
S5 1 1 −1 −1 1 1 1 1 5
S15 1 1 1 1 −1 −1 −1 −1 4
S16 1 1 1 1 −1 −1 −1 −1 6
S17 1 1 1 1 −1 −1 1 1 4
S19 1 1 1 1 −1 −1 −1 −1 6
S20 −1 −1 −1 −1 −1 −1 1 1 3

Note that Party 1 coalited with Party 4. The individual S2 remained as candidate of this coalition party.
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Table A14. Coalition of Party 2 and Party 3.

Si A B X1 Y1 X2 Y2 Z1 Z2 fRM2SATEA
S6 1 1 −1 −1 1 1 1 1 6
S7 −1 1 −1 1 −1 −1 −1 −1 4
S8 1 −1 −1 1 −1 −1 −1 −1 4
S9 1 −1 −1 −1 −1 1 1 −1 5
S10 1 −1 −1 −1 −1 −1 −1 −1 3
S18 −1 1 1 1 1 −1 1 1 7
S11 1 1 1 1 −1 −1 −1 −1 4
S12 1 1 −1 −1 −1 −1 −1 −1 3
S13 −1 −1 −1 1 1 −1 −1 −1 5
S14 −1 1 1 −1 1 1 −1 1 6

Note that Party 2 coalited with Party 3. The individual S18 remained as candidate of this coalition party.

(v) Election Day

The final eligibility of all candidates from both coalition parties will be compared. If
the eligibility value of the candidate is maximum ( fRM2SATEA = 7), the candidate will be
elected. In this case, since S18 achieved the maximum eligibility value and higher eligibility
value than S2, S18 selected as the winner.
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