
Citation: Kaewprasert, T.;

Niwitpong, S.-A.; Niwitpong, S.

Simultaneous Confidence Intervals

for the Ratios of the Means of

Zero-Inflated Gamma Distributions

and Its Application. Mathematics

2022, 10, 4724. https://doi.org/

10.3390/math10244724

Academic Editor: Christophe

Chesneau

Received: 15 November 2022

Accepted: 8 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Simultaneous Confidence Intervals for the Ratios of the Means
of Zero-Inflated Gamma Distributions and Its Application
Theerapong Kaewprasert, Sa-Aat Niwitpong * and Suparat Niwitpong

Department of Applied Statistics, Faculty of Applied Science, King Mongkut’s University of Technology
North Bangkok, Bangkok 10800, Thailand
* Correspondence: sa-aat.n@sci.kmutnb.ac.th

Abstract: Heavy rain in September (the middle of the rainy season in Thailand) can cause unexpected
events and natural disasters such as flooding in many areas of the country. Rainfall series that contain
both zero and positive values belong to the zero-inflated gamma distribution, which combines the bi-
nomial and gamma distributions. Precipitation in various areas of a country can be estimated by using
simultaneous confidence intervals (CIs) for the ratios of the means of multiple zero-inflated gamma
populations. Herein, we propose six simultaneous CIs constructed using the fiducial generalized CI
method, Bayesian and highest posterior density (HPD) interval methods based on the Jeffreys’rule
or uniform prior, and method of variance estimates recovery (MOVER). The performances of the
proposed simultaneous CI methods were evaluated using a Monte Carlo simulation in terms of the
coverage probabilities and expected lengths. The results from a comparative simulation study show
that the HPD interval based on the Jeffreys’rule prior performed the best in most cases, while in some
situations, the fiducial generalized CI performed well. All of the methods were applied to estimate
the simultaneous CIs for the ratios of the means of natural rainfall data from six regions in Thailand.

Keywords: zero-inflated gamma distribution; simultaneous confidence intervals; Bayesian estimation;
fiducial approach

MSC: 62F25

1. Introduction

The zero-inflated gamma (ZIG) distribution is suitable for fitting data comprising
both non-negative and zero observations: the proportion of zero values is binomially
distributed while the positive values follow a gamma distribution with shape and rate
parameters. Point and interval estimation and hypothesis testing are the two basic methods
used in probability and statistical inference to estimate a model parameter. The CI is the
most popular interval estimate method, and numerous researchers have concentrated on
the CI for the ZIG distribution. Meanwhile, Kaewprasert et al. [1] broadened the scope
by comparing the difference between the means of two ZIG distributions using fiducial
method, Bayesian methods, and highest posterior density (HPD). Wang et al. [2] created
CIs for the mean of a ZIG distributions based on fiducial inference, parametric bootstrap
(PB), and the method of variance estimates recovery (MOVER). Khooriphan et al. [3]
proposed Bayesian estimation of rainfall dispersion in Thailand using ZIG distributions.
Khooriphan et al. [4] proposed CIs for the ratio of variance of a ZIG distributions using
fiducial quantities, Bayesian credible intervals, and HPD intervals. Muralidharan and
Kale [5] proposed CIs for the mean of a modified gamma distribution with singularity
at zero.

Because of this, the mean is the most widely used unit for measuring central ten-
dency. It is possible to estimate the means from several populations by simultaneously
comparing the pairwise differences between their CIs for this parameter provided that
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each population is independently and identically distributed (i.i.d.). If we compare two
populations using the difference between their means, this difference is probably going to
be small, and thus firm and conclusive inference is difficult. Hence, when investigating
multiple populations, simultaneously comparing the ratios of the means is more accurate
than the differences between the means. Meanwhile, Ren et al. [6] provided simultaneous
CIs for the difference between the means of several ZIG distributions based on the fidu-
cial approach. Wang et al. [7] proposed CIs for the difference between the means of two
gamma populations. Maneerat et al. [8] constructed Bayesian CIs for a single mean and
the difference between two means of delta-lognormal distributions. Maneerat et al. [9]
created simultaneous CIs for the difference between the means of several delta-lognormal
distributions based on a PB, a fiducial generalized CI (GCI), the MOVER, and Bayesian
credible intervals. Malekzadeh and Kharrati-Kopaei [10] constructed simultaneous CIs
for the pairwise quantile differences of several heterogeneous two-parameter exponential
distributions. Jana and Gautam [11] proposed CIs of difference and ratio of means for
zero-adjusted inverse Gaussian distributions using MOVER and Bayesian approaches.
Long et al. [12] suggested population mean ratio estimators that used either the first or
third quartiles of the auxiliary variable. Indeed, Maneerat and Niwitpong [13] created CIs
for the ratio of the means of two delta-lognormal distributions using Bayesian credible
intervals, fiducial GCI, and MOVER. Zhang et al. [14] created simultaneous CIs for the
ratios of the means of several zero-inflated log-normal distributions using fiducial method
and the MOVER. Therefore, datasets of daily rainfall from the six regions in September
2021 were selected. These data comprise positive values that conform to a gamma distri-
bution rather than a lognormal distribution. However, creating simultaneous CIs for the
ratios of the means of several ZIG distributions has not yet been reported. Moreover, the
applicability of using simultaneous CIs for the ratios of the means of rainfall datasets from
several regions that fit ZIG distributions is also an interesting research topic.

In this study, we constructed simultaneous CIs for the ratio of the means of several
ZIG populations (k > 2), and we used k = 3 or 6 to estimate the ratio of the means of natural
rainfall datasets from six regions in Thailand during September at the height of the rainy
season. The fiducial GCI approach, Bayesian, and HPD interval methods based on the
Jeffreys’rule or uniform prior, and the MOVER were used to construct simultaneous CIs in
this study. The study of Ren et al. [6] served as our inspiration for adopting the fiducial ap-
proach to construct simultaneous CIs, while the use of several priors by Maneerat et al. [9]
served as our inspiration for developing simultaneous CIs for disparities in the HPD in-
terval and the MOVER. These studies motivated our contribution to this research area of
creating simultaneous CIs based on our suggested techniques to clarify the pairwise ratios
between the means of multiple ZIG distributions. We calculated the pairwise ratios of the
means of daily rainfall records from the Northern, Northeastern, Central, Eastern, Western,
and Southern regions of Thailand as a practical demonstration. Importantly, this method
could be applied to identify and foretell natural disasters in a specific region

The rest of this paper is organized as follows. In Section 2, we provide the method-
ologies for the methods to estimate the simultaneous CIs for the ratios of the means of
multiple ZIG populations. In Sections 3 and 4, we conduct simulation studies and analyze
a rainfall dataset from six regions in Thailand. Finally, a discussion and conclusions are
offered in Sections 5 and 6, respectively.

2. Materials and Methods

For k populations of observations, the probability of observing a zero response is
represented δi(0) in the ith group, while the nonzero observations fit a gamma distribution.
For sample

(
Xi1, Xi2, · · · , Xini

)
, i = 1, 2, · · · , k randomly generated from a ZIG distribution,

the f (xi) is derived as

f (xi) =

{
δi(0) ; xi = 0
δi(1)g(xi; αi, βi) ; xi > 0

,
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where g(xi; αi, βi) is the probability density function (pdf) of the gamma distribution
with shape parameter αi and rate parameter βi, and δi(1) = 1− δi(0). The probability of
containing zero observations follows binomial distribution denoted as ni(0) ∼ B(ni, δi(0)),
while ni = ni(0) + ni(1), where ni(0) and ni(1) are the numbers of zero and nonzero values,
respectively.

Krishnmoorthy et al. [15] and Krishnmoorthy and Wang [16] showed that Xi 6= 0 can
be transformed by using the cube-root approximation. As a result, Yi = X1/3

i ∼ N(µi, σ2
i )

follows a normal distribution with the mean and variance respectively given by

µi =

(
αi
βi

)1/3(
1− 1

9αi

)
and σ2

i =
1

9α1/3
i β2/3

i

.

Since Mi =
αi
βi

is the mean of a gamma distribution, µi and σ2
i can be respectively

rewritten to yield

µi = M1/3
i

(
1− 1

9βi Mi

)
and σ2

i =
1

9βi M
1/3
i

.

Thus, Mi =

(
µi
2 +

√
µ2

i
4 + σ2

i

)3

is the mean of a gamma distribution and λi = δi(1)

(
µi
2 +√

µ2
i

4 + σ2
i

)3

, where δi(1) = 1− δi(0), is the mean of a ZIG distribution.

The simultaneous CIs for the ratios of the means of several ZIG populations are what
we are interested in creating, and so

λil = λi/λl = δi(1)

µi
2
+

√
µ2

i
4

+ σ2
i

3

/δl(1)

µl
2
+

√
µ2

l
4

+ σ2
l

3

,

where i, l = 1, 2, · · · , k and i 6= l.
One can respectively replace δi(1), µi and σ2

i with their maximum likelihood estimators

as follows: δ̂i(1) = ni(1)/ni, µ̂i =
1

ni(1)
∑

ni(1)
j=1 x1/3

ij and σ̂2
i = 1

ni(1)−1 ∑
ni(1)
j=1

(
x1/3

ij − µ̂i

)2
. Thus

λ̂i = δ̂i(1)

(
µ̂i
2 +

√
µ̂2

i
4 + σ̂2

i

)3
.

Similarly, the simultaneous CIs for the ratios of the means of several ZIG populations
can be defined as

λ̂il = λ̂i/λ̂l = δ̂i(1)

 µ̂i
2
+

√
µ̂2

i
4

+ σ̂2
i

3

/δ̂l(1)

 µ̂l
2
+

√
µ̂2

l
4

+ σ̂2
l

3

. (1)

2.1. The Fiducial GCI Method

Hannig et al. [17] first introduced the fiducial generalized pivotal quantity (GPQ), a
subclass of the GPQ, to construct the simultaneous fiducial approach. Let Xi = (Xi1, Xi2, · · ·
, Xini ), i = 1, 2, · · · , k be a random sample from a ZIG distribution with parameter of in-

terest
(

µi, σ2
i , δi(1)

)
across k independent samples and assume that xi =

(
xi1, xi2, · · · , xini

)
,

i = 1, 2, · · · , k represents Xi observations. The GPQ of R(Xi; xi, µi, σ2
i , δi(1)) is referred to as

a fiducial GPQ if it satisfies the following two requirements:

1. The conditional distribution is parameter-free for each xi.
2. The observed value of R(Xi; xi, µi, σ2

i , δi(1)) at Xi = xi, r(xi; xi, µi, σ2
i , δi(1)) is the pa-

rameter of interest.
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From Yij = X1/3
ij ∼ N(µi, σ2

i ), Ȳi ≈ µi + Z σi√
ni(1)

and S2
i ≈ σ2

i

χ2
ni(1)−1

(ni(1)−1) are the sample

mean and variance of Yij, respectively, where Z and χ2
ni(1)−1 are standard normal and Chi-

squared distributions with ni(1) − 1 degrees of freedom, respectively. By replacing (Ȳi, Si)

with (ȳi, si) and estimating µi and σ2
i from the sample mean and variance, respectively,

we obtain

µi = ȳi +
Z√

χ2
ni(1)−1

√√√√(
ni(1) − 1

)
s2

i

ni(1)
and σ2

i =

(
ni(1) − 1

)
s2

i

χ2
ni(1)−1

.

Accordingly, the respective fiducial GPQs for µi, σ2
i and δi(1) are

Rµi = ȳi +
Z√

χ2
ni(1)−1

√√√√(
ni(1) − 1

)
s2

i

ni(1)
, (2)

Rσ2
i
=

(
ni(1) − 1

)
s2

i

χ2
ni(1)−1

(3)

and
Rδi(1)

∼ 1
2

Beta
(

ni(1), ni(0) + 1
)
+

1
2

Beta
(

ni(1) + 1, ni(0)

)
. (4)

Subsequently, the fiducial GPQ of λi is simply

Rλi = Rδi(1)

Rµi

2
+

√
R2

µi

4
+ Rσ2

i

3

.

Therefore, the fiducial GPQ for the ratios of the means of several ZIG distributions
can be written as

Rλil = Rλi /Rλl = Rδi(1)

Rµi

2
+

√
R2

µi

4
+ Rσ2

i

3

/Rδl(1)

Rµl

2
+

√
R2

µl

4
+ Rσ2

l

3

. (5)

Hence, the 100(1− γ)% two-sided simultaneous CI for λil based on the fiducial GCI
method can be written as Lil ≤ λil ≤ Uil , where Lil and Uil are the γ/2th and (1− γ/2)th
quantiles of Rλil , respectively.

2.2. The Bayesian Methods

The joint likelihood function of k independent ZIG distributions can be obtained from
the distribution of Xi, for i = 1, 2, · · · , k, with the unknown parameters µi, σ2

i , and δi(1),
as follows:

L
(

µi, σ2
i , δi(1)

)
∝

k

∏
i=1

(
1− δi(1)

)ni(0)
(

δi(1)

)ni(1)
(σ2

i )
−

ni(1)
2

× exp

[
− 1

2σ2
i

ni(1)

∑
j=1

(
x1/3

ij − µi

)2
]

.
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The Fisher information matrix of the unknown parameters can be represented as the second-
order partial derivative of the log-likelihood function with respect to the unknown parameters:

I
(

µi, σ2
i , δi(1)

)
= diag

[
n1

(1−δ1(1))δ1(1)

n1δ1(1)

σ2
1

n1δ1(1)

2(σ2
1 )

2 · · · · · · · · ·

nk
(1−δk(1))δk(1)

nkδk(1)

σ2
k

nkδk(1)

2(σ2
k )

2

]
.

The Jeffreys’ rule and uniform priors used to construct equal-tailed simultaneous CIs
and simultaneous HPD intervals are covered in the following subsections.

2.2.1. The Jeffreys Rule Prior

The square root of the determinant of the Fisher information matrix is used to calculate
the Jeffreys rule prior. It is common knowledge that gamma and binomial distributions

comprise a ZIG distribution. From the mean λi = δi(1)

(
µi
2 +

√
µ2

i
4 + σ2

i

)3
, the parameters

of interest are µi, σ2
i , and δi(1); Harvey and Van Der Merwe [18] used the Jeffreys rule prior

for these parameters as p(σ2
i ) ∝ 1/σ3

i and p(δi(1)) ∝ (1− δi(1))
−1/2δ1/2

i(1), respectively.
The joint posterior density function can be expressed as the likelihood function and

the prior distribution of a ZIG distribution as follows:

p
(

µi, σ2
i , δi(1) | xij

)
=

k

∏
i=1

1

Beta
(

ni(1) +
3
2 , ni(0) +

1
2

)(1− δi(1)

)(ni(0)+
1
2 )−1

δ
(ni(1)+

3
2 )−1

i(1)

×
√ni(1)√

2πσ2
i

exp

(
−

ni(1)

2σ2
i
(µi − µ̂i)

2

)( (ni(1)+1)σ̂2
i

2

) ni(1)+1

2

Γ
( ni(1)+1

2

)
×
(

σ2
i

)− ni(1)+1

2 −1
exp

(
−
(ni(1) + 1)σ̂2

i

2σ2
i

)
,

where µ̂i =
1

ni(1)
∑

ni(1)
j=1 x1/3

ij and σ̂2
i = 1

ni(1)−1 ∑
ni(1)
j=1

(
x1/3

ij − µ̂i

)2
.

The respective posterior distributions of µi, σi2, and δi(1) are obtained using integration as

p
(
µi | xij

)
∝

k

∏
i=1

√ni(1)√
2πσ2

i

exp

(
−

ni(1)

2σ2
i
(µi − µ̂i)

2

)
,

p
(

σ2
i | xij

)
∝

k

∏
i=1

(
(ni(1)+1)σ̂2

i
2

) ni(1)+1

2

Γ
( ni(1)+1

2

) (
σ2

i

)− ni(1)+1

2 −1
exp

(
−
(ni(1) + 1)σ̂2

i

2σi2

)
,

and

p
(

δi(1) | xij

)
∝

k

∏
i=1

1

Beta
(

ni(1) +
3
2 , ni(0) +

1
2

)(1− δi(1)

)(ni(0)+
1
2 )−1

δ
(ni(1)+

3
2 )−1

i(1) .

As indicated by µi(J) ∼ N
(

µ̂i,
σ2

i (J)
ni(1)

)
, σ2

i (J) ∼ IG
(

ni(1)+1
2 ,

(ni(1)+1)σ̂2
i

2

)
, and δi(1)(J) ∼

Beta
(

ni(1) +
3
2 , ni(0) +

1
2

)
, respectively, p

(
µi | xij

)
follows a normal distribution, p

(
σ2

i | xij
)
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follows an inverse gamma distribution, and p
(

δi(1) | xij

)
follows a beta distribution. The

result is that µi(J), σ2
i (J), and δi(1)(J) can be replaced, resulting in

λil(J) = δi(1)(J)

µi(J)
2

+

√
µ2

i (J)
4

+ σ2
i (J)

3

/δl(1)(J)

µl(J)
2

+

√
µ2

l (J)
4

+ σ2
l (J)

3

. (6)

Therefore, the 100(1− γ)% equal-tailed simultaneous CI and simultaneous HPD intervals
for λil based on the Bayesian method are Lil(J) ≤ λil(J) ≤ Uil(J), where Lil(J) and Uil(J)
are the lower and upper bounds of the intervals, respectively. We computed Lil(HPD.J)
and Uil(HPD.J) using the HPDinterval package in the R software package to determine the
100(1− γ)% simultaneous HPD intervals for λil .

2.2.2. The Uniform Prior

Bolstad and Curran [19] proposed that the uniform priors of µi, σ2
i and δi(1) are 1

(p(µi) ∝ 1, p(σ2
i ) ∝ 1 and p(δi(1)) ∝ 1, respectively) because the uniform prior has a

constant function for the prior probability. Subsequently, p(µi, σ2
i , δi(1)) ∝ 1 is the uniform

prior for a ZIG distribution for which the joint posterior density function is

p
(

µi, σ2
i , δi(1) | xij

)
=

k

∏
i=1

1

Beta
(

ni(1) + 1, ni(0) + 1
)(1− δi(1)

)(ni(0)+1)−1
δ
(ni(1)+1)−1
i(1)

×
√ni(1)√

2πσ2
i

exp

(
−

ni(1)

2σ2
i
(µi − µ̂i)

2

)( (ni(1)−2)σ̂2
i

2

) ni(1)−2

2

Γ
( ni(1)−2

2

)
×
(

σ2
i

)− ni(1)−2

2 −1
exp

(
−
(ni(1) − 2)σ̂2

i

2σ2
i

)
,

where µ̂i =
1

ni(1)
∑

ni(1)
j=1 x1/3

ij and σ̂2
i = 1

ni(1)−1 ∑
ni(1)
j=1

(
x1/3

ij − µ̂i

)2
.

The respective posterior distributions of µi, σi2, and δi(1) are obtained using integration as

p
(
µi | xij

)
∝

k

∏
i=1

√ni(1)√
2πσ2

i

exp

(
−

ni(1)

2σ2
i
(µi − µ̂i)

2

)
,

p
(

σ2
i | xij

)
∝

k

∏
i=1

(
(ni(1)−2)σ̂2

i
2

) ni(1)−2

2

Γ
( ni(1)−2

2

) (
σ2

i

)− ni(1)−2

2 −1
exp

(
−
(ni(1) − 2)σ̂2

i

2σi2

)
,

and

p
(

δi(1) | xij

)
∝

k

∏
i=1

1

Beta
(

ni(1) + 1, ni(0) + 1
)(1− δi(1)

)(ni(0)+1)−1
δ
(ni(1)+1)−1
i(1) .

Thus, the posterior distributions are µi(U) ∼ N
(

µ̂i,
σ2

i (U)
ni(1)

)
, σ2

i (U) ∼ IG
(

ni(1)−2
2 ,

(ni(1)−2)σ̂2
i

2

)
, and δi(1)(U) ∼ Beta

(
ni(1) + 1, ni(0) + 1

)
, respectively.
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To construct the equal-tailed simultaneous CI and simultaneous HPD intervals, µi(U),
σ2

i (U) and δi(1)(U) can be substituted into Equation (1).

2.3. Method of Variance Estimates Recovery (MOVER)

First introduced by Donner and Zou [20], the MOVER approach is applied to construct
the 100(1− γ)% two-sided simultaneous CI for λil = λi/λl , for which Lil(MOVER) ≤
λil(MOVER) ≤ Uil(MOVER), where Lil(MOVER) and Uil(MOVER) are the lower and
upper bounds of the interval, respectively expressed as

Lil(MOVER) =
λ̂iλ̂l −

√
(λ̂iλ̂l)2 − liul(2λ̂i − li)(2λ̂l − ul)

ul(2λ̂l − ul)
(7)

and

Uil(MOVER) =
λ̂iλ̂l +

√
(λ̂iλ̂l)2 − uill(2λ̂i − ui)(2λ̂l − ll)

ll(2λ̂l − ll)
, (8)

for i, l = 1, 2, · · · , k and i 6= l.

The parameters of interest in λi = δi(1)

(
µi
2 +

√
µ2

i
4 + σ2

i

)3
are δi(1), µi, and σ2

i , for

which it is possible to construct CIs. From Hannig’s [21] paper on the fiducial GPQ of δi(1)
in Equation (4), the 100(1− γ)% CI for δi(1) can be written as

CIδi(1)
= [lδi(1)

, uδi(1)
],

where lδi(1)
and uδi(1)

are the (γ/2)-th and (1− γ/2)-th quantiles of δi(1), respectively.

By using the CI definitions for parameters µi and σ2
i in Equations (2) and (3), respec-

tively, we can define the 100(1− γ)% CI for µi as

CIµi = [lµi , uµi ],

where

lµi = µ̂i −
Zi(γ/2)√

χ2
1−γ/2,ni(1)−1

√√√√(
ni(1) − 1

)
σ̂2

i

ni(1)
,

and

uµi = µ̂i +
Zi(γ/2)√

χ2
γ/2,ni(1)−1

√√√√(
ni(1) − 1

)
σ̂2

i

ni(1)
.

Thus, the 100(1− γ)% CI for σ2
i can be written as

CIσ2
i
= [lσ2

i
, uσ2

i
],

where

lσ2
i
=

(
ni(1) − 1

)
σ̂2

i

χ2
1−γ/2,ni(1)−1

,

and

uσ2
i
=

(
ni(1) − 1

)
σ̂2

i

χ2
γ/2,ni(1)−1

.



Mathematics 2022, 10, 4724 8 of 22

By ensuring that µ̂i =
1

ni(1)
∑

ni(1)
j=1 x1/3

ij and σ̂2
i = 1

ni(1)−1 ∑
ni(1)
j=1

(
x1/3

ij − µ̂i

)2
; Zi, i = 1, 2, · · · , k

follow a standard normal distribution, the 100(1− γ)% MOVER interval for λi becomes

CIλi = [li, ui].

Similarly, we can obtain CIλl = [ll , ul ]. Therefore, the 100(1− γ)% two-sided simultaneous
CI for λil based on the MOVER method can be obtained at [Lil(MOVER), Uil(MOVER)],
for i, l = 1, 2, · · · , k and i 6= l. This process is specified in Algorithm 1.

Algorithm 1 All six methods.

1. Begin loop M.
2. Generate Xi, i = 1, 2, · · · , k with sample size n1, n2, · · · , nk from ZIG(αi, βi, δi(1)).
3. Perform cube-root transformation on ni(1) nonzero observations and estimate δ̂i(1), µ̂i,

and σ̂2
i .

4. Get λi and λl by computing the parameter.
(a) Fiducial GCI: compute Rδi(1)

, Rδl(1)
, Rµi , Rµl , Rσ2

i
and Rσ2

l
.

(b) Bayesian and HPD based on Jeffreys rule prior: compute δi(1)(J), δl(1)(J), µi(J),
µl(J), σ2

i (J) and σ2
l (J).

(c) Bayesian and HPD based on uniform prior: compute δi(1)(U), δl(1)(U), µi(U),
µl(U), σ2

i (U) and σ2
l (U).

(d) MOVER: compute lδi(1)
, lδl(1)

, uδi(1)
, uδl(1)

, lµi , lµl , uµi , uµl , lσ2
i
, lσ2

l
, uσ2

i
and uσ2

l
.

5. Repeat steps (3) and (4) a total m (m = 2000) times.
6. Compute the 100(1− γ)% simultaneous CI for λil .

(a) Fiducial GCI: compute Rλil (γ/2) and Rλil (1− γ/2) using Equation (5).
(b) Bayesian based on Jeffreys rule prior: compute λil(J)(γ/2) and λil(J)(1− γ/2)

using Equation (6).
(c) HPD based on Jeffreys rule prior: using Equation (6) to compute λil(HPD.J)

by utilizing the HPDinterval package.
(d) Bayesian based on uniform prior: compute λil(U)(γ/2) and λil(U)(1− γ/2).
(e) HPD based on uniform prior: compute λil(HPD.U)(γ/2) and λil(HPD.U)(1−

γ/2).
(f) MOVER: Compute the simultaneous CIs based on MOVER using Equations (7)

and (8).
7. End loop M.

3. Simulation Study

We conducted simulation studies to assess how well the proposed methods perform
with finite samples using the following requirements:

1. Coverage probability (CP): the percentage of times that the true parameter value is
contained within the interval.

2. Expected length (EL): the average length of the simultaneous CIs.

The coverage probabilities and expected lengths are derived as

CP =
5000

∑
M=1

c(M)(L(M)
il ≤ λil ≤ U(M)

il )

5000
and EL =

5000

∑
M=1

(U(M)
il − L(M)

il )

5000
,

where c(M)(L(M)
il ≤ λil ≤ U(M)

il ) is the number of λil that is contained in the interval, L(M)
il

and U(M)
il are the lower and upper bounds of the interval respectively, and M is the total

number of simulations that were run for the study.
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For each scenario, the best-performing CI has a coverage probability above or close to
the nominal confidence level (0.95) and the shortest expected length. The performances
of the proposed methods were compared via a Monte Carlo simulation study carried
out with the aid of the R statistical software suite. For each set of parameters, 5000
iterations of the simulations were run. In addition, for each parameter combination,
2000 replications of the fiducial and Bayesian methods were performed. Figure 1 show a
flowchart for the simulation study. The chosen sample sizes were 30, 50, or 100. As reported
in Tables 1 and 2, we used 12 parameter settings for δi(1), αi, and βi = 1 with k = 3 or
k = 6.

Figure 1. A flowchart of the simulation study.
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Table 1. Simulation study parameter settings for δi(1), αi, and βi = 1 with k = 3.

Settings δ1(1) δ2(1) δ3(1) α1 α2 α3

1 0.3 0.3 0.3 1.5 1.5 1.5
2 0.3 0.3 0.3 2.0 2.0 2.0
3 0.3 0.3 0.3 2.5 2.5 2.5
4 0.3 0.3 0.3 3.0 3.0 3.0
5 0.5 0.5 0.5 2.5 2.5 2.5
6 0.5 0.5 0.5 3.0 3.0 3.0
7 0.5 0.5 0.5 3.5 3.5 3.5
8 0.5 0.5 0.5 4.0 4.0 4.0
9 0.8 0.8 0.8 5.0 5.0 5.0

10 0.8 0.8 0.8 5.5 5.5 5.5
11 0.8 0.8 0.8 6.0 6.0 6.0
12 0.8 0.8 0.8 6.5 6.5 6.5

Table 2. Simulation study parameter settings for δi(1), αi, and βi = 1 with k = 6.

Settings δ1(1) δ2(1) δ3(1) δ4(1) δ5(1) δ6(1) α1 α2 α3 α4 α5 α6

1 0.3 0.3 0.3 0.3 0.3 0.3 1.5 1.5 1.5 1.5 1.5 1.5
2 0.3 0.3 0.3 0.3 0.3 0.3 2.0 2.0 2.0 2.0 2.0 2.0
3 0.3 0.3 0.3 0.3 0.3 0.3 2.5 2.5 2.5 2.5 2.5 2.5
4 0.3 0.3 0.3 0.3 0.3 0.3 3.0 3.0 3.0 3.0 3.0 3.0
5 0.5 0.5 0.5 0.5 0.5 0.5 2.5 2.5 2.5 2.5 2.5 2.5
6 0.5 0.5 0.5 0.5 0.5 0.5 3.0 3.0 3.0 3.0 3.0 3.0
7 0.5 0.5 0.5 0.5 0.5 0.5 3.5 3.5 3.5 3.5 3.5 3.5
8 0.5 0.5 0.5 0.5 0.5 0.5 4.0 4.0 4.0 4.0 4.0 4.0
9 0.8 0.8 0.8 0.8 0.8 0.8 5.0 5.0 5.0 5.0 5.0 5.0

10 0.8 0.8 0.8 0.8 0.8 0.8 5.5 5.5 5.5 5.5 5.5 5.5
11 0.8 0.8 0.8 0.8 0.8 0.8 6.0 6.0 6.0 6.0 6.0 6.0
12 0.8 0.8 0.8 0.8 0.8 0.8 6.5 6.5 6.5 6.5 6.5 6.5

4. Results
4.1. Simulation Study

A computer with the AMD Ryzen 3 3250U with Radeon Graphics 8.00 GB of RAM
is used to conduct all of the simultaneous CIs. For each program run for all six proposed
approaches, we also compare the time consumption for the CIs with various simulation
study cases from the coverage probabilities and expected length of the six simultaneous
CI methods for k = 3 and 6 in Tables 3 and 4, respectively. The coverage probabilities
of the Bayesian and HPD interval based on Jeffreys rule or uniform priors were nearly
always equal to or greater than the nominal confidence level of 0.95. With settings 4
and 8, the fiducial GCI provided coverage probability greater than 0.95 even though their
expected lengths were shorter than the others, while the MOVER were less than the nominal
confidence level 0.95 in all case for k = 3 and 6. Thus, the simultaneous CIs for the ratios of
the means of multiple ZIG distributions cannot be constructed using the methods based
on the MOVER. Therefore, the Bayesian and HPD interval based on the Jeffreys rule or
uniform priors and the fiducial GCI should be used to compute the simultaneous CIs for
the ratios of the means of multiple ZIG distributions, because the CIs which provided the
coverage probabilities equal to or greater 0.95. After that, the expected lengths of these
CIs are considered to find the shortest length to be the best CI. In almost all settings, we
discovered that the expected lengths of HPD intervals based on the Jeffreys rule prior
was the smallest length of coverage probabilities over 0.95, while settings 4 and 8 the
fiducial GCI was the shortest length. The coverage probabilities and expected lengths of
the 95% simultaneous CI methods with various sample sizes are shown in Figures 2 and 3,
respectively, while those with various probabilities of nonzero values are displayed in
Figures 4 and 5, respectively.
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Table 3. Coverage probabilities and expected lengths for the 95% simultaneous CIs with λil(k = 3).

Settings (n1, n2, n3)

Coverage Probability (Expected Length)
Time (s)Fiducial

GCI Baye.Jef Baye.Uni HPD.Jef HPD.Uni MOVER

1 (30,30,30) 0.9165 0.9602 0.9743 0.9560 0.9700 0.9426 283.39
(1.6302) (1.9560) (2.2115) (1.7946) (1.9933) (2.1646)

(50,50,50) 0.9033 0.9632 0.9703 0.9602 0.9682 0.9432 284.09
(1.0923) (1.4044) (1.4763) (1.3293) (1.3913) (1.5019)

(100,100,100) 0.8899 0.9633 0.9666 0.9613 0.9647 0.9505 270.73
(0.7092) (0.9389) (0.9571) (0.9101) (0.9269) (1.0092)

(30,50,100) 0.9100 0.9609 0.9717 0.9610 0.9690 0.9342 209.83
(1.2505) (1.4883) (1.6258) (1.4097) (1.5086) (1.6496)

2 (30,30,30) 0.9374 0.9765 0.9854 0.9726 0.9804 0.9266 247.25
(1.4704) (1.8333) (2.0313) (1.6922) (1.8484) (1.7522)

(50,50,50) 0.9273 0.9762 0.9812 0.9767 0.9807 0.9310 269.32
(1.0177) (1.3464) (1.4039) (1.2778) (1.3279) (1.2522)

(100,100,100) 0.9206 0.9807 0.9827 0.9798 0.9816 0.9386 312.92
(0.6713) (0.9094) (0.9248) (0.8826) (0.8969) (0.8529)

(30,50,100) 0.9350 0.9791 0.9864 0.9798 0.9826 0.9207 211.88
(1.1299) (1.4033) (1.4983) (1.3389) (1.4095) (1.3463)

3 (30,30,30) 0.9547 0.9869 0.9921 0.9842 0.9888 0.9156 255.33
(1.3820) (1.7695) (1.9318) (1.6378) (1.7686) (1.4955)

(50,50,50) 0.9495 0.9884 0.9908 0.9870 0.9890 0.9256 263.27
(0.9710) (1.3080) (1.3581) (1.2435) (1.2874) (1.0849)

(100,100,100) 0.9447 0.9892 0.9903 0.9875 0.9886 0.9345 292.09
(0.6496) (0.8912) (0.9052) (0.8655) (0.8786) (0.7496)

(30,50,100) 0.9560 0.9893 0.9916 0.9864 0.9881 0.9196 203.86
(1.0559) (1.3507) (1.4220) (1.2944) (1.3485) (1.1532)

4 (30,30,30) 0.9666 0.9938 0.9960 0.9903 0.9928 0.9083 233.40
(1.3205) (1.7187) (1.8600) (1.5934) (1.7081) (1.3274)

(50,50,50) 0.9640 0.9948 0.9954 0.9922 0.9937 0.9150 257.29
(0.9448) (1.2869) (1.3323) (1.2242) (1.2640) (0.9768)

(100,100,100) 0.9609 0.9954 0.9953 0.9944 0.9949 0.9240 287.83
(0.6374) (0.8824) (0.8948) (0.8570) (0.8689) (0.6773)

(30,50,100) 0.9679 0.9935 0.9954 0.9923 0.9934 0.9072 198.29
(1.0204) (1.3296) (1.3894) (1.2769) (1.3226) (1.0352)

5 (30,30,30) 0.9101 0.9705 0.9764 0.9694 0.9742 0.9302 306.95
(0.8426) (1.1082) (1.1637) (1.0645) (1.1144) (1.0624)

(50,50,50) 0.9057 0.9738 0.9775 0.9712 0.9735 0.9402 298.94
(0.6205) (0.8350) (0.8570) (0.8130) (0.8334) (0.8101)

(100,100,100) 0.8993 0.9730 0.9746 0.9710 0.9716 0.9435 357.10
(0.4259) (0.5801) (0.5875) (0.5706) (0.5776) (0.5748)

(30,50,100) 0.9125 0.9724 0.9764 0.9721 0.9735 0.9308 241.91
(0.6510) (0.8515) (0.8732) (0.8349) (0.8542) (0.8332)

6 (30,30,30) 0.9351 0.9857 0.9892 0.9829 0.9872 0.9233 204.06
(0.8125) (1.0845) (1.1347) (1.0428) (1.0881) (0.9480)

(50,50,50) 0.9296 0.9851 0.9875 0.9823 0.9858 0.9318 263.42
(0.6036) (0.8221) (0.8422) (0.8009) (0.8196) (0.7264)

(100,100,100) 0.9250 0.9850 0.9864 0.9837 0.9855 0.9379 252.54
(0.4173) (0.5741) (0.5807) (0.5647) (0.5711) (0.5198)

(30,50,100) 0.9281 0.9816 0.9833 0.9800 0.9800 0.9200 204.76
(0.6299) (0.8361) (0.8548) (0.8208) (0.8377) (0.7459)
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Table 3. Cont.

Settings (n1, n2, n3)

Coverage Probability (Expected Length)
Time (s)Fiducial

GCI Baye.Jef Baye.Uni HPD.Jef HPD.Uni MOVER

7 (30,30,30) 0.9467 0.9894 0.9919 0.9874 0.9898 0.9156 308.69
(0.7920) (1.0685) (1.1148) (1.0279) (1.0700) (0.8608)

(50,50,50) 0.9454 0.9902 0.9914 0.9881 0.9898 0.9188 220.02
(0.5940) (0.8153) (0.8348) (0.7944) (0.8126) (0.6665)

(100,100,100) 0.9388 0.9886 0.9898 0.9884 0.9884 0.9316 317.59
(0.4111) (0.5694) (0.5754) (0.5602) (0.5659) (0.4782)

(30,50,100) 0.9472 0.9890 0.9906 0.9872 0.9865 0.9173 194.66
(0.6137) (0.8236) (0.8397) (0.8089) (0.8237) (0.6842)

8 (30,30,30) 0.9609 0.9934 0.9955 0.9920 0.9942 0.9089 277.01
(0.7804) (1.0601) (1.1047) (1.0204) (1.0607) (0.8020)

(50,50,50) 0.9559 0.9945 0.9956 0.9936 0.9944 0.9172 270.93
(0.5865) (0.8093) (0.8280) (0.7887) (0.8061) (0.6173)

(100,100,100) 0.9559 0.9947 0.9955 0.9936 0.9948 0.9303 347.70
(0.4065) (0.5652) (0.5717) (0.5561) (0.5623) (0.4445)

(30,50,100) 0.9588 0.9924 0.9932 0.9905 0.9910 0.9082 207.91
(0.6049) (0.8187) (0.8332) (0.8046) (0.8181) (0.6339)

9 (30,30,30) 0.8701 0.9589 0.9666 0.9557 0.9655 0.9268 230.70
(0.3935) (0.5351) (0.5624) (0.5266) (0.5531) (0.5321)

(50,50,50) 0.8590 0.9562 0.9637 0.9534 0.9604 0.9314 306.28
(0.2979) (0.4088) (0.4213) (0.4040) (0.4161) (0.4205)

(100,100,100) 0.8590 0.9556 0.9591 0.9535 0.9576 0.9456 257.02
(0.2070) (0.2858) (0.2901) (0.2832) (0.2874) (0.3046)

(30,50,100) 0.8585 0.9493 0.9552 0.9573 0.9524 0.9261 263.90
(0.3057) (0.4104) (0.4228) (0.4074) (0.4196) (0.4235)

10 (30,30,30) 0.8792 0.9627 0.9712 0.9624 0.9707 0.9164 205.61
(0.3906) (0.5338) (0.5607) (0.5253) (0.5514) (0.5066)

(50,50,50) 0.8777 0.9652 0.9716 0.9632 0.9690 0.9306 239.42
(0.2951) (0.4068) (0.4192) (0.4020) (0.4141) (0.3979)

(100,100,100) 0.8672 0.9630 0.9656 0.9602 0.9653 0.9409 348.64
(0.2056) (0.2847) (0.2892) (0.2821) (0.2865) (0.2894)

(30,50,100) 0.8762 0.9602 0.9635 0.9575 0.9612 0.9234 308.76
(0.3024) (0.4086) (0.4205) (0.4056) (0.4173) (0.4017)

11 (30,30,30) 0.8946 0.9718 0.9778 0.9703 0.9768 0.9126 209.98
(0.3865) (0.5305) (0.5570) (0.5221) (0.5477) (0.4789)

(50,50,50) 0.8875 0.9710 0.9750 0.9700 0.9740 0.9276 299.44
(0.2938) (0.4064) (0.4186) (0.4016) (0.4136) (0.3796)

(100,100,100) 0.8815 0.9698 0.9728 0.9681 0.9706 0.9354 283.05
(0.2041) (0.2839) (0.2881) (0.2813) (0.2855) (0.2756)

(30,50,100) 0.8916 0.9683 0.9706 0.9666 0.9687 0.9222 285.78
(0.3000) (0.4069) (0.4186) (0.4039) (0.4155) (0.3833)

12 (30,30,30) 0.9056 0.9750 0.9816 0.9747 0.9802 0.9129 214.65
(0.3847) (0.5293) (0.5560) (0.5209) (0.5467) (0.4609)

(50,50,50) 0.9020 0.9777 0.9818 0.9763 0.9809 0.9264 281.94
(0.2917) (0.4045) (0.4166) (0.3997) (0.4116) (0.3636)

(100,100,100) 0.8956 0.9736 0.9751 0.9722 0.9728 0.9303 286.10
(0.2030) (0.2829) (0.2872) (0.2804) (0.2846) (0.2639)

(30,50,100) 0.8984 0.9750 0.9758 0.9727 0.9748 0.9186 302.18
(0.2977) (0.4051) (0.4166) (0.4021) (0.4136) (0.3660)

Note: Bold denotes the best-performing method.
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Table 4. Coverage probabilities and expected lengths for the 95% simultaneous CIs with λil(k = 6).

Settings (n1, n2, n3, n4, n5, n6)

Coverage Probability (Expected Length)
Time (s)Fiducial

GCI Baye.Jef Baye.Uni HPD.Jef HPD.Uni MOVER

1 (30,30,30,30,30,30) 0.9183 0.9606 0.9754 0.9581 0.9712 0.9380 457.73
(1.6233) (1.9504) (2.2040) (1.7896) (1.9867) (2.1529)

(50,50,50,50,50,50) 0.8991 0.9604 0.9681 0.9577 0.9644 0.9419 497.40
(1.0906) (1.4020) (1.4737) (1.3268) (1.3888) (1.5002)

(100,100,100,100,100,100) 0.8904 0.9633 0.9664 0.9609 0.9642 0.9511 432.44
(0.7105) (0.9404) (0.9588) (0.9115) (0.9285) (1.0127)

(30,30,50,50,100,100) 0.9100 0.9616 0.9713 0.9630 0.9702 0.9391 543.09
(1.2243) (1.4732) (1.5988) (1.3935) (1.4851) (1.6181)

2 (30,30,30,30,30,30) 0.9392 0.9770 0.9861 0.9748 0.9824 0.9288 493.07
(1.4757) (1.8416) (2.0410) (1.6993) (1.8576) (1.7567)

(50,50,50,50,50,50) 0.9270 0.9787 0.9830 0.9758 0.9802 0.9292 485.92
(1.0121) (1.3392) (1.3966) (1.2713) (1.3214) (1.2424)

(100,100,100,100,100,100) 0.9231 0.9813 0.9824 0.9792 0.9812 0.9421 471.38
(0.6708) (0.9089) (0.9247) (0.8821) (0.8967) (0.8537)

(30,30,50,50,100,100) 0.9362 0.9800 0.9852 0.9795 0.9830 0.9311 545.98
(1.1152) (1.3976) (1.4871) (1.3305) (1.3977) (1.3345)

3 (30,30,30,30,30,30) 0.9557 0.9877 0.9922 0.9843 0.9890 0.9177 433.06
(1.3864) (1.7734) (1.9379) (1.6413) (1.7738) (1.5065)

(50,50,50,50,50,50) 0.9483 0.9895 0.9915 0.9866 0.9893 0.9242 534.74
(0.9687) (1.3043) (1.3540) (1.2399) (1.2834) (1.0823)

(100,100,100,100,100,100) 0.9436 0.9897 0.9909 0.9873 0.9886 0.9323 549.42
(0.6498) (0.8920) (0.9063) (0.8662) (0.8795) (0.7505)

(30,30,50,50,100,100) 0.9503 0.9880 0.9907 0.9862 0.9882 0.9171 419.67
(1.0499) (1.3507) (1.4200) (1.2905) (1.3436) (1.1514)

4 (30,30,30,30,30,30) 0.9694 0.9938 0.9961 0.9911 0.9940 0.9104 480.74
(1.3289) (1.7301) (1.8733) (1.6042 (1.7203) (1.3388)

(50,50,50,50,50,50) 0.9634 0.9939 0.9953 0.9926 0.9940 0.9162 427.10
(0.9445) (1.2864) (1.3321) (1.2239) (1.2640) (0.9716)

(100,100,100,100,100,100) 0.9622 0.9954 0.9959 0.9941 0.9948 0.9257 522.90
(0.6384) (0.8833) (0.8966) (0.8580) (0.8704) (0.6790)

(30,30,50,50,100,100) 0.9664 0.9938 0.9953 0.9924 0.9932 0.9090 494.16
(1.0107) (1.3246) (1.3814) (1.2683) (1.3124) (1.0272)

5 (30,30,30,30,30,30) 0.9084 0.9709 0.9770 0.9672 0.9747 0.9253 561.27
(0.8430) (1.1089) (1.1648) (1.0653) (1.1155) (1.0647)

(50,50,50,50,50,50) 0.9056 0.9742 0.9778 0.9721 0.9756 0.9374 540.49
(0.6213) (0.8367) (0.8585) (0.8146) (0.8350) (0.8103)

(100,100,100,100,100,100) 0.9016 0.9744 0.97587 0.9726 0.9738 0.9472 426.37
(0.4256) (0.5800) (0.5870) (0.5704) (0.5771) (0.5747)

(30,30,50,50,100,100) 0.9100 0.9729 0.9762 0.9706 0.9732 0.9309 572.72
(0.6443) (0.8466) (0.8680) (0.8283) (0.8475) (0.8255)

6 (30,30,30,30,30,30) 0.9326 0.9826 0.9866 0.9801 0.9842 0.9223 485.01
(0.8131) (1.0861) (1.1363) (1.0442) (1.0897) (0.9503)

(50,50,50,50,50,50) 0.9270 0.9841 0.9865 0.9823 0.9843 0.9322 539.26
(0.6044) (0.8232) (0.8434) (0.8017) (0.8208) (0.7279)

(100,100,100,100,100,100) 0.9236 0.9854 0.9863 0.9838 0.9848 0.9387 430.47
(0.4170) (0.5740) (0.5805) (0.5647) (0.5708) (0.5198)

(30,30,50,50,100,100) 0.9291 0.9831 0.9850 0.9812 0.9822 0.9244 584.41
(0.6263) (0.8348) (0.8537) (0.8177) (0.8349) (0.7451)
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Table 4. Cont.

Settings (n1, n2, n3, n4, n5, n6)

Coverage Probability (Expected Length)
Time (s)Fiducial

GCI Baye.Jef Baye.Uni HPD.Jef HPD.Uni MOVER

7 (30,30,30,30,30,30) 0.9466 0.9890 0.9918 0.9871 0.9899 0.9145 441.96
(0.7945) (1.0719) (1.1189) (1.0312) (1.0738) (0.8652)

(50,50,50,50,50,50) 0.9451 0.9902 0.9917 0.9890 0.9904 0.9261 474.42
(0.5938) (0.8150) (0.8344) (0.7941) (0.8121) (0.6662)

(100,100,100,100,100,100) 0.9412 0.9900 0.9904 0.9884 0.9892 0.9346 493.57
(0.4106) (0.5684) (0.5747) (0.5592) (0.5652) (0.4772)

(30,30,50,50,100,100) 0.9454 0.9900 0.9914 0.9889 0.9895 0.9200 452.55
(0.6122) (0.8242) (0.8413) (0.8078) (0.8234) (0.6809)

8 (30,30,30,30,30,30) 0.9569 0.9931 0.9950 0.9912 0.9929 0.9126 445.08
(0.7807) (1.0609) (1.1057) (1.0211) (1.0617) (0.7992)

(50,50,50,50,50,50) 0.9569 0.9941 0.9951 0.9929 0.9938 0.9191 538.73
(0.5865) (0.8093) (0.8282) (0.7887) (0.8063) (0.6195)

(100,100,100,100,100,100) 0.9535 0.9937 0.9943 0.9926 0.9933 0.9271 430.94
(0.4073) (0.5661) (0.5725) (0.5570) (0.5632) (0.4445)

(30,30,50,50,100,100) 0.9563 0.9921 0.9933 0.9907 0.9910 0.9100 620.11
(0.6021) (0.8171) (0.8324) (0.8012) (0.8152) (0.6300)

9 (30,30,30,30,30,30) 0.8660 0.9564 0.9662 0.9549 0.9645 0.9241 496.95
(0.3942) (0.5361) (0.5632) (0.5275) (0.5538) (0.5322)

(50,50,50,50,50,50) 0.8614 0.9558 0.9623 0.9547 0.9602 0.9346 461.39
(0.2976) (0.4088) (0.4213) (0.4039) (0.4161) (0.4195)

(100,100,100,100,100,100) 0.8516 0.9523 0.9558 0.9502 0.9533 0.9414 445.27
(0.2069) (0.2856) (0.2901) (0.2830) (0.2874) (0.3047)

(30,30,50,50,100,100) 0.8630 0.9540 0.9584 0.9515 0.9564 0.9311 514.16
(0.3045) (0.4108) (0.4229) (0.4073) (0.4193) (0.4222)

10 (30,30,30,30,30,30) 0.8786 0.9638 0.9724 0.9615 0.9702 0.9171 552.72
(0.3903) (0.5333) (0.5600) (0.5249) (0.5506) (0.5045)

(50,50,50,50,50,50) 0.8754 0.9642 0.9695 0.9623 0.9676 0.9305 560.22
(0.2953) (0.4071) (0.4195) (0.4022) (0.4144) (0.3983)

(100,100,100,100,100,100) 0.8695 0.9628 0.9651 0.9610 0.9638 0.9393 414.03
(0.2052) (0.2843) (0.2887) (0.2817) (0.2860) (0.2889)

(30,30,50,50,100,100) 0.8758 0.9623 0.9652 0.9609 0.9634 0.9253 480.58
(0.3011) (0.4083) (0.4203) (0.4048) (0.4167) (0.4000)

11 (30,30,30,30,30,30) 0.8926 0.9716 0.9784 0.9690 0.9767 0.9183 504.72
(0.3868) (0.5306) (0.5569) (0.5222) (0.5476) (0.4806)

(50,50,50,50,50,50) 0.8893 0.9724 0.9774 0.9706 0.9747 0.9276 514.94
(0.2928) (0.4051) (0.4173) (0.4003) (0.4123) (0.3797)

(100,100,100,100,100,100) 0.8824 0.9682 0.9706 0.9666 0.9692 0.9378 427.04
(0.2042) (0.2837) (0.2881) (0.2811) (0.2855) (0.2761)

(30,30,50,50,100,100) 0.8913 0.9697 0.9727 0.9679 0.9705 0.9232 460.11
(0.2989) (0.4068) (0.4189) (0.4034) (0.4152) (0.3817)

12 (30,30,30,30,30,30) 0.9023 0.9770 0.9824 0.9750 0.9810 0.9137 482.03
(0.3843) (0.5289) (0.5553) (0.5206) (0.5460) (0.4600)

(50,50,50,50,50,50) 0.8995 0.9769 0.9804 0.9751 0.9790 0.9240 453.36
(0.2914) (0.4042) (0.4164) (0.3994) (0.4114) (0.3633)

(100,100,100,100,100,100) 0.8965 0.9769 0.9797 0.9759 0.9777 0.9323 423.01
(0.2031) (0.2829) (0.2873) (0.2803) (0.2847) (0.2646)

(30,30,50,50,100,100) 0.9015 0.9750 0.9770 0.9737 0.9754 0.9178 521.84
(0.2970) (0.4056) (0.4175) (0.4022) (0.4139) (0.3659)

Note: Bold denotes the best-performing method.
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Figure 2. Coverage probabilities of the 95% simultaneous CIs with various sample sizes: (A) k = 3
and (B) k = 6.

Figure 3. Expected lengths of the 95% simultaneous CIs with various sample sizes: (A) k = 3 and
(B) k = 6.

Figure 4. Coverage probabilities of the 95% simultaneous CIs with various probabilities of nonzero
values: (A) k = 3 and (B) k = 6.

Figure 5. Expected lengths of the 95% simultaneous CIs with various probabilities of nonzero values:
(A) k = 3 and (B) k = 6.

4.2. Empirical Application of the Simultaneous CI Methods to Rainfall Data in Thailand

The study of Kaewprasert et al. [1] was utilized to estimate rainfall data from ZIG
distributions. Thailand was separated into six regions, from which rainfall datasets for
September 2021 from the following rain stations were used in this analysis as shown in
Table 5:

1. Northern (R1): Chiang Mai [22].
2. Southern (R2): Trang [23].
3. Northeastern (R3): Chaiyaphum [24].
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4. Eastern (R4): Prachin Buri [25].
5. Western (R5): Kanchanaburi [26].
6. Central (R6): Kamphaeng Phet [27].

Table 5. The daily rainfall data for September 2021 in Thailand by region.

Region Daily Rainfall (mm)

R1 0.2 6.5 14.5 0.0 0.0 79.0 0.0 5.0 44.5 40.0
20.0 3.6 4.2 16.0 47.7 26.7 10.1 3.0 0.0 4.1
20.2 27.8 0.0 13.0 63.5 50.0 25.0 0.0 7.3 2.4

R2 22.5 2.0 0.0 0.0 0.0 0.0 15.5 22.5 55.0 2.6
0.3 9.6 12.0 9.7 3.2 0.0 21.2 10.3 14.2 23.4
34.6 10.5 0.0 0.8 2.0 2.6 0.5 69.4 36.8 20.5

R3 14.4 0.5 22.5 4.6 20.5 2.0 0.0 0.0 24.2 24.4
0.4 12.0 8.5 1.9 10.0 2.5 0.0 0.0 16.4 0.0
23.4 11.5 8.1 76.2 30.3 22.9 2.0 1.8 13.0 0.0

R4 1.3 10.2 4.2 40.5 4.9 4.0 43.4 20.3 16.2 5.6
0.0 0.0 4.5 7.4 9.1 0.6 0.0 0.2 8.3 15.7
0.0 5.6 4.3 22.4 39.1 0.0 0.0 8.2 12.1 0.0

R5 28.1 11.5 4.2 3.4 0.0 3.4 4.3 0.2 0.0 2.9
10.7 0.0 1.3 0.0 9.1 15.9 0.0 0.8 5.2 15.1
32.1 3.9 8.9 2.6 15.1 18.1 4.0 0.0 1.0 0.0

R6 2.5 5.5 31.5 29.5 0.0 2.0 2.5 0.0 6.0 1.0
1.5 0.0 6.0 0.0 35.5 21.0 2.5 0.5 19.0 42.0
23.0 34.0 11.5 0.5 110.5 39.0 0.0 0.0 0.0 0.0

Figure 6 presents the distribution of these data and displays the right-skewness of
the daily rainfall datasets for the six regions. We used the minimum Akaike information
criterion (AIC) to test the fit of various distributions to the positive rainfall datasets, which
is defined as follows:

AIC = −2 ln L + 2h,

where h is the number of parameters and L is the likelihood function. The findings in Table 6
demonstrate that the gamma distribution was the best fit for all of the positive rainfall
datasets. Moreover, Figure 7 displays Q-Q plots of the positive daily rainfall datasets, which
confirm that they all follow a gamma distribution.

The parameter estimations were computed for the rainfall from six regions as shown in
Table 7. The 95% simultaneous CIs for the daily rainfall dataset from six regions of Thailand
in September 2021 are reported in Table 8. In accordance with the simulation results in the
previous section, the length of the HPD interval based on the Jeffreys rule prior was the
most suitable, thereby confirming its suitability for constructing the simultaneous CIs for
the ratio of the means of multiple ZIG distributions.

Table 6. AIC results to check the distributions of the positive daily rainfall data.

Distribution
AIC Value

R1 R2 R3 R4 R5 R6

Normal 218.2205 208.7326 204.8500 185.1858 167.2802 206.9620
Lognormal 205.5462 190.3452 181.1234 169.9121 152.2575 176.9593
Cauchy 221.9773 208.2171 201.1505 179.0343 167.1753 201.9837
Gamma 200.9070 186.5715 179.1330 166.2781 149.8757 175.7948
Logistic 217.8841 206.0280 198.2298 183.1289 165.8773 201.3254
t 219.9017 206.4851 197.5618 180.6719 167.3370 200.8800
Chi-squared 365.4868 319.1705 280.2808 230.0381 182.1760 356.7011
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Table 7. Parameter estimates for the six regions in Thailand.

Region ni δ̂i(1) α̂i β̂i µ̂i σ̂2
i λ̂i

R1 30 0.80 6.04 2.41 2.50 0.91 18.02
R2 30 0.80 5.03 2.25 2.22 0.87 13.56
R3 30 0.80 5.50 2.60 2.11 0.76 11.46
R4 30 0.77 6.61 3.18 2.07 0.58 9.66
R5 30 0.77 7.02 3.80 1.84 0.45 6.77
R6 30 0.73 4.24 1.88 2.24 1.17 14.18

Figure 6. The densities of the rainfall datasets for the six regions in Thailand: (A) Northern (B) South-
ern (C) Northeastern (D) Eastern (E) Western (F) Central.
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Figure 7. Q-Q plots of the nonzero part of the daily rainfall datasets from the six regions in Thailand:
(A) Northern (B) Southern (C) Northeastern (D) Eastern (E) Western (F) Central.
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Table 8. The ratios of the means of the daily rainfall datasets for September 2021 from six regions in Thailand with nominal 95% simultaneous CIs.

Comparisons
Fiducial GCI Baye.Jef Baye.Uni HPD.Jef HPD.Uni MOVER

Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length Lower Upper Length

R1/R2 0.9040 1.8757 0.9718 0.8589 1.9924 1.1335 0.8372 2.0129 1.1757 0.8026 1.8847 1.0820 0.8106 1.9693 1.1587 0.6092 2.5053 1.8961
R1/R3 1.1166 2.2003 1.0837 1.0109 2.3655 1.3546 1.0037 2.3999 1.3963 0.9668 2.2466 1.2798 0.9789 2.3602 1.3813 0.7461 3.0199 2.2738
R1/R4 1.3216 2.6334 1.3118 1.2689 2.6918 1.4230 1.2289 2.8345 1.6056 1.2299 2.6360 1.4060 1.1582 2.7093 1.5511 0.9295 3.5430 2.6135
R1/R5 1.9145 3.7167 1.8023 1.7490 3.8849 2.1358 1.7541 3.9409 2.1868 1.6744 3.7701 2.0957 1.6406 3.7805 2.1399 1.3383 5.0636 3.7253
R1/R6 0.8360 1.8253 0.9893 0.8090 1.9430 1.1340 0.7563 1.9498 1.1935 0.7698 1.8613 1.0916 0.7111 1.8740 1.1629 0.5473 2.5754 2.0281
R2/R3 0.8228 1.7424 0.9197 0.7836 1.7664 0.9827 0.7537 1.8064 1.0526 0.7794 1.7516 0.9722 0.7201 1.7555 1.0354 0.5805 2.5399 1.9594
R2/R4 0.9701 2.0173 1.0472 0.9323 2.0646 1.1323 0.9242 2.1853 1.2611 0.8857 1.9811 1.0954 0.8886 2.0863 1.1977 0.7249 2.9842 2.2593
R2/R5 1.4119 2.8559 1.4440 1.3331 2.9510 1.6179 1.2885 3.0643 1.7758 1.2804 2.8237 1.5434 1.2557 2.9678 1.7120 1.0441 4.2642 3.2201
R2/R6 0.6226 1.4222 0.7995 0.5916 1.4862 0.8947 0.5656 1.4844 0.9189 0.5789 1.4478 0.8690 0.5512 1.4502 0.8990 0.4243 2.1507 1.7264
R3/R4 0.8275 1.6981 0.8706 0.8017 1.7538 0.9521 0.7839 1.7946 1.0107 0.7799 1.7116 0.9317 0.7612 1.7558 0.9946 0.6018 2.4342 1.8324
R3/R5 1.1965 2.3640 1.1675 1.1355 2.4876 1.3521 1.1235 2.5914 1.4678 1.0843 2.4185 1.3342 1.0611 2.4607 1.3996 0.8666 3.4784 2.6118
R3/R6 0.5256 1.1701 0.6444 0.5015 1.2602 0.7587 0.4809 1.2962 0.8153 0.4598 1.1947 0.7349 0.4363 1.2085 0.7723 0.3533 1.7585 1.4051
R4/R5 1.0225 2.0077 0.9852 0.9767 2.0685 1.0919 0.9266 2.1553 1.2288 0.9451 2.0213 1.0762 0.9048 2.0736 1.1688 0.7385 2.7872 2.0488
R4/R6 0.4439 0.9873 0.5434 0.4303 1.0594 0.6291 0.3974 1.0325 0.6351 0.3871 0.9932 0.6061 0.3793 1.0057 0.6265 0.3005 1.4145 1.1140
R5/R6 0.3160 0.6915 0.3755 0.3034 0.7365 0.4331 0.2867 0.7564 0.4697 0.2906 0.7127 0.4221 0.2752 0.7307 0.4555 0.2103 0.9829 0.7726
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5. Discussion

We applied the approach laid out by Kaewprasert et al. [1] who generated CIs for
the mean and the difference between the means of several ZIG distributions by using
the fiducial GCI and Bayesian and HPD interval methods. The optimal approach was
discovered to be the HPD interval based on the Jeffreys rule prior. In addition, by utilizing
fiducial GCI, we expanded Zhang et al. [14] method for constructing simultaneous CIs for
distributions containing some zero observations. In the present study, we used the fiducial
GCI, Bayesian, HPD interval, and MOVER approaches to construct CIs to compare the
means of multiple ZIG distributions via simulation studies and using real rainfall datasets
containing zero observations from six regions in Thailand.

The outcomes of the simulation study with a range of sample sizes and probabilities
for nonzero values shed light on the analytical conduct of the simultaneous CIs. For k = 3
or 6, we discovered that the HPD interval based on the Jeffreys rule prior is the most
suitable approach for all of the scenarios tested. The coverage probabilities and expected
lengths of the 95% simultaneous CIs for k = 3 were comparable to those for k = 6 for
various sample sizes. Moreover, the expected lengths of the approaches decreased as the
probability of nonzero values was increased.

Importantly, the practicability of these methods was demonstrated by estimating the
ratios of the means of multiple daily rainfall datasets in September 2021 for the six areas in
Thailand. The selected rainfall station for each location had the same average number of
rainy days, resulting in the probabilities of nonzero values being roughly the same. The
results of this empirical application were in agreement with those of the simulation study
results in that the HPD interval based on the Jeffreys rule prior was the most appropriate.
Hence, it is possible to predict the ratio of rainfall in September of the following year
in regions of Thailand that have an average chance of frequent rainfall. Therefore, our
approach could be used to create an imminent natural alarm for natural disasters such as
floods and landslides to alert people to make preparations in advance.

6. Conclusions

Herein, six methods for constructing simultaneous CIs for the ratios of the means of
multiple ZIG distributions based on the fiducial GCI approach, Bayesian, and HPD interval
approaches based on the Jeffreys rule or uniform prior and MOVER are presented. Their
coverage probabilities and expected lengths from a simulation study indicate that the HPD
interval based on the Jeffreys rule prior performed the best in most cases, while in some
situations, the fiducial GCI performed well for both k = 3 and 6. Applying the methods
to compare the rainfall datasets for September 2021 from six regions in Thailand shows
that the HPD interval based on the Jeffreys rule prior and the fiducial GCI once again
performed the best, which is consistent with the simulation results. Hence, constructing
simultaneous CIs for the ratios of the means of multiple ZIG datasets should be carried out
by using the HPD interval based on the Jeffreys rule prior. For some applications, we offer
the fiducial GCI as an alternative approach. Researchers that are interested in analyzing
rainfall means can use the R package we developed. Future studies will investigate into
other statistical parameters like the coefficient of variation because they are important when
making statistical inferences. In addition, we discovered that the coefficient of variation is
an useful tool for evaluating rainfall dispersion. On CIs for the coefficient of variation of a
zero-inflated gamma population, there are few research studies published. Therefore, we
will investigate into this soon.
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Abbreviations
The following abbreviations are used in this manuscript:

AIC Akaike information criterion
Baye.Jef The Bayesian confidence interval based on Jefreys’rule prior
Baye.Uni The Bayesian confidence interval based on uniform prior
CI Confidence interval
CP Coverage probability
EL Expected length
GCI Generalized confidence interval
GPQ Generalized pivotal quantity
HPD Highest posterior density
HPD.Jef Highest posterior density based on Jefreys’rule prior
HPD.Uni Highest posterior density based on uniform prior
MOVER Method of variance estimates recovery
PB Parametric bootstrap
ZIG Zero-inflated gamma
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