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Abstract: Regression adjustment is often used to estimate average treatment effect (ATE) in random-
ized experiments. Recently, some penalty-based regression adjustment methods have been proposed
to handle the high-dimensional problem. However, these existing high-dimensional regression
adjustment methods may fail to achieve satisfactory performance when the covariates are highly
correlated. In this paper, we propose a novel adjustment estimation method for ATE by combining the
semi-standard partial covariance (SPAC) and regression adjustment methods. Under some regularity
conditions, the asymptotic normality of our proposed SPAC adjustment ATE estimator is shown.
Some simulation studies and an analysis of HER2 breast cancer data are carried out to illustrate the
advantage of our proposed SPAC adjustment method in addressing the highly correlated problem of
the Rubin causal model.

Keywords: average treatment effect; highly correlated covariates; regression adjustment; rubin causal
model; semi-standard partial covariance
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1. Introduction

Accompanied by the rapid development in information technology, people have oppor-
tunities to collect a massive amount of data in many fields, such as genomics, biomedicine,
aerography and so on, where the dimension of covariates p often far exceeds the sample size
n. Despite the promising application prospects, there are many problems and challenges
among statistical inference for high-dimensional data. For instance, the sample covariance
matrix is huge and noninvertible under the setting p > n, the unimportant covariates are
highly correlated with the response variable because they are associated with the impor-
tant covariates ([1]). To deal with these problems and challenges, many penalty-based
approaches have been proposed to select important covariates and estimate the unknown
parameters simultaneously, including Lasso ([2]), SCAD ([3]) and Elastic-net ([4]) penalties.
The above literatures mainly focus on considering the regression models and traditional
correlations between the covariates and response variable.

In some cases, the traditional correlations cannot fully depict the influence mecha-
nism of variables. Researchers have studied the causal relations among the variables and
developed the Rubin causal (Neyman-Rubin) models (see [5,6]); details can be found in
Refs. [7,8]. For the case of high-dimensional data, Refs. [9,10] suggested that standard high-
dimensional penalty-based methods can be used to estimate the average treatment effect
(ATE). Ref. [11] developed a risk-consistent regression adjustment approach for ATE using
Lasso penalty in [2]. Ref. [12] proposed Lasso-adjusted ATE estimator by combining the
Lasso penalty and regression adjustment method, and showed that the proposed method
can reduce the variance of unadjusted ATE estimator in [6]. Ref. [13] further considered
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the multicollinearity problem in high dimensions, and proposed an Elastic-net adjustment
method for ATE.

However, the correlations between the important and unimportant covariates are usu-
ally higher than those of the important covariates in high-dimensional settings (see [14,15]).
Under this status, the irrepresentable condition ([16]) could fail such that the Lasso-based
penalty methods may fail to correctly estimate the signs and distinguish the important and
unimportant covariates. Then, the corresponding adjustment ATE estimator may perform
poorly. So far, many research scholars have considered the highly correlated problem in
high dimensions and provided some effective methods to undertake variable selection.
For example, Ref. [17] proposed the Peter-Clark-simple (PC-simple) algorithm to select
the important covariates using partial correlation, Ref. [18] developed the factor-adjusted
regularized model selection (Farm-Select) method. Ref. [19] gave the semi-standard partial
covariance (SPAC) method to effectively choose covariates which have a direct effect on the
response variable, and showed that the SPAC outperforms the PC-simple and Farm-Select
methods when the original irrepresentable condition in Ref. [16] fails. Nevertheless, these
variable selection methods have not yet been used on the fields of causal inference.

In this paper, we consider the estimation problem of ATE in the Rubin causal model
with highly correlated covariates. The main contributions of this paper are four-fold. Firstly,
the SPAC adjustment estimator is developed by a novel combination of the SPAC variable
selection and regression adjustment methods. Secondly, the framework is an extension of
that in [19] to study the causal inference and [12] to handle the highly correlated problem.
Thirdly, the theoretical property is shown under some regularity conditions. Fourthly,
the performance of our proposed SPAC adjustment method is satisfactory, which can be
observed by the numerical results of a real data analysis and some simulation studies.

The rest of this article is organized as follows. In Section 2, the SPAC adjustment
method for ATE is proposed for the Rubin causal model with highly correlated covariates
in high dimensions, and the asymptotic property of the proposed SPAC-Lasso adjustment
estimator for ATE is also developed under some regularity conditions. In Section 3, some
simulation studies are assigned to assess the effectiveness of our proposed SPAC adjustment
method. In Section 4, the proposed estimation approach is applied to an HER2 breast cancer
dataset. Some concluding discussions are provided in Section 5. The Appendix A is devoted
to some Lemmas related to the proof of theorem.

Notation 1. For the sake of description, some notations are introduced as follows. For any column
vector u = (u1, . . . , up)T and a subset S ⊂ {1, . . . , p}, let ‖u‖1 = ∑

p
j=1 |ui|, ‖u‖2

2 = ∑
p
j=1 u2

i

and ‖u‖∞ = maxi=1,...,p|ui|, uS = {uj : j ∈ S}, SC denotes the complement of S, |S| denote
the cardinality of S. For a matrix D, DT and D−1 denote the transpose and inverse of matrix D,

respectively. The notation “ L−→” denotes the convergence in distribution.

2. Methodology and Theoretical Property
2.1. Spac Adjustment Method for ATE

We frame our analysis in terms of the Rubin causal model. Let i be the units in the
population of size n, Yi be the potential outcome variable, xi = (xi1, . . . , xip)

T ∈ Rp be the
p-dimensional covariates with p far exceeding the sample size n, the full design matrix
of the experiment be X = (x1, . . . , xn)T, each covariate Xj = (x1j, . . . , xnj)

T (j = 1, . . . , p) is
standardized with XT

j Xj = n and ∑n
i=1 xij = 0. The observed data xi (i = 1, . . . , n) can be

viewed as independent identically distributed (i.i.d.) from a distribution with mean 0 and
positive definite covariance matrix Σp×p, and all the diagonal elements of Σ are equal to 1.
Each unit is randomly assigned to the treatment group or control group, and the treatment
indicator is denoted by Ti with Ti = 1 for a treated individual and Ti = 0 otherwise. Then,
the observed potential outcome for individual i is

Yobs
i = TiYi(1) + (1− Ti)Yi(0),
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where Yi(1) and Yi(0) are the corresponding potential outcomes under treatment and
control groups, respectively, that is, Yobs

i = Yi(1) for Ti = 1, Yobs
i = Yi(0) for Ti = 0. The

numbers of the treated and control units are equal to nA = |A| and nB = |B|, respectively,
with A = {i ∈ {1, . . . , n} : Ti = 1}, B = {i ∈ {1, . . . , n} : Ti = 0}, and nA + nB = n.

In randomized experiments, the sample is often not randomly taken from the popu-
lation (superpopulation) of interest (see [12,13,20]). In this paper, we focus on ATE in the
finite sample, which is defined as

τ = Y1 −Y0, (1)

where Y1 = n−1 ∑n
i=1 Yi(1) and Y0 = n−1 ∑n

i=1 Yi(0) are the average responses if all indi-
viduals receive treatment or not. Clearly, the averages of potential outcomes over the whole
population Y1 and Y0 are fixed. Based on the idea of replacing the population averages
Ys (s = 0, 1) with the sample averages, a nature unadjusted ATE estimator is obtained
as follows,

τ̂unadj =
1

nA
∑
i∈A

Yi(1)−
1

nB
∑
i∈B

Yi(0). (2)

As pointed out by [12,21,22], the information of covariates xi can often be used to adjust
the estimator in (2) in hope of improving estimation precision. For the high-dimensional
data, Ref. [12] proposed the following Lasso-adjusted ATE estimator

τ̂Lasso =
{

YA − (xA − x)Tβ̂A
Lasso

}
−
{

YB − (xB − x)Tβ̂B
Lasso

}
, (3)

where YA = n−1
A ∑i∈A Yi(1), YB = n−1

B ∑i∈B Yi(0), xA = n−1
A ∑i∈A xi, xB = n−1

B ∑i∈B xi,
x = n−1 ∑n

i=1 xi, and the terms xw − x for w = A and B illustrate the fluctuations between
the subsample and full sample of covariates. The adjustment vectors β̂w

Lasso are obtained
based on the Lasso penalty,

β̂w
Lasso = argmin

β∈Rp

[
1

2nw
∑
i∈w

{
Yobs

i −Yw − (xi − xw)
Tβ
}2

+ λw

p

∑
j=1
|β j|
]

, w = A, B, (4)

where λw > 0 are regularization parameters for Lasso.
However, traditional penalty-based methods fail to effectively estimate the signs and

select the important covariates when the important and unimportant covariates are highly
correlated, see the details in [19]. This is especially critical in high-dimensional settings.
To solve this problem, the SPAC method is proposed to capture the signal strengths of
important covariates while eliminating the effects of covariates that are not directly related
with the potential outcome variable Y but highly correlated with important covariates. The
SPAC between Yobs and the j-th covariate Xj is defined as

γj = β j/d1/2
jj , j = 1, . . . , p, (5)

where djj is the j-th diagonal element of precision matrix Σ−1, 1/d1/2
jj = {Var(Xj|X−j)}1/2

= (1− R2
j )

1/2 (see Refs. [23,24]), where X−j = {Xk : k = 1, ..., j− 1, j + 1, ..., p}, Rj denotes
the multiple correlations between the j-th covariate Xj and all the other covariates. In
particular, γj is the same as β j if Xj is independent of the other covariates. Otherwise, the
SPAC γj mitigates the effect of correlations among the covariates by using (1− R2

j )
1/2 to

multiply β j. Obviously, β j = 0 if and only if γj = 0 for j = 1, . . . , p. Hence, the SPAC
estimator of adjustment vector can be obtained by replacing β j in (4) with γj,

γ̂w
SPAC−Lasso = argmin

γ∈Rp

[
1

2nw
∑
i∈w

{
Yobs

i −Yw − (xi − xw)
TD̂γ

}2
+ λw

p

∑
j=1

d̂jj|γj|
]

, (6)
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where w = A, B, D̂ = diag{d̂1/2
11 , . . . , d̂1/2

pp }, d̂jj is the consistent estimator of the j-th
diagonal element of precision matrix. In detail, d̂jj can be adopted as the constrained
L1-minimization estimation (CLIME, [25]), residual variance estimator ([26]), robust ma-
trix estimator ([27]). Consequently, the adjustment vectors β̂w

SPAC−Lasso can be given by
using (5),

β̂w
SPAC−Lasso = D̂γ̂w

SPAC−Lasso, w = A, B. (7)

Then, the SPAC-Lasso adjustment estimator of ATE is defined as

τ̂SPAC−Lasso =
{

YA − (xA − x)Tβ̂A
SPAC−Lasso

}
−
{

YB − (xB − x)Tβ̂B
SPAC−Lasso

}
. (8)

Similarly, we can obtain the SPAC-SCAD estimator of ATE by using the SCAD penalty
in (6). The performance of our proposed SPAC adjustment methods (SPAC-Lasso and SPAC-
SCAD) will be compared with those of the existing ATE estimation methods (unadjusted,
Lasso-adjusted, SCAD-adjusted, Elastic-net adjusted) in the following simulation studies,
and the theoretical property of the SPAC-Lasso adjustment estimator will be shown in the
following subsection.

2.2. Regularity Conditions and Theoretical Property

For Rubin causal model in randomized experiments, there are no assumptions for
the relationship between potential outcome variable Y and covariates x. To study the
theoretical property of the proposed estimator τ̂SPAC−Lasso, we make the following linear
decomposition and define the approximate sparsity, which are similar to that in [12].

Decomposition of the potential outcomes. The potential outcome can be divided
into a linear term of covariates and an error term, which is formed as,

Yi(1) = Y1 + (xi − x)TβA + eA
i , Yi(0) = Y0 + (xi − x)TβB + eB

i , i = 1, . . . , n, (9)

where x = n−1 ∑n
i=1 xi, βA and βB are p-dimensional vectors of coefficients. In the above

decomposition (9), all the quantities are fixed and deterministic numbers, and eA = eB = 0,
where eA = n−1 ∑n

i=1 eA
i , eB = n−1 ∑n

i=1 eB
i .

Definition 1. Similar to [12,13], we define the approximate sparsity measures sA
λ and sB

λ for
treatment and control groups as

sA
λ =

p

∑
j=1

min
{∣∣∣βA

j

∣∣∣λ−1
A , 1

}
, sB

λ =
p

∑
j=1

min
{∣∣∣βB

j

∣∣∣λ−1
B , 1

}
,

which are more flexible than sw = |{j : βw
j 6= 0}| with w = A, B. sA

λ and sB
λ are allowed to grow

with n, sλ = max
{

sA
λ , sB

λ

}
.

In addition, the following regularity conditions are also needed to obtain the asymp-
totic normality of the proposed SPAC-Lasso adjustment estimation.

(C1) p̃A = nA/n→ pA and p̃B = nB/n→ pB as n→ ∞, and pA ∈ (0, 1), pB ∈ (0, 1).
(C2) For j = 1, . . . , p, there is a fixed constant L > 0 such that n−1 ∑n

i=1(xij − (x)j)
4 ≤ L,

n−1 ∑n
i=1(e

A
i )

4 ≤ L and n−1 ∑n
i=1(e

B
i )

4 ≤ L.
(C3) The eigenvalues of the sample covariance matrix n−1XTX are bounded away from

zero and infinity.
(C4) There exists a constant B > 0 such that ‖βA‖1 ≤ B, ‖βB‖1 ≤ B.
(C5) Let δn be the maximum covariance between the error terms and the covariates

δn = max
ω=A,B

{
max

j

∣∣∣∣ 1n n

∑
i=1

(xij − (x)j)
(

eω
i − eω

)∣∣∣∣}.
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Assume that δn = o
(
1/(sλ

√
log p)

)
and (sλlog p)/

√
n = o(1).

(C6) Let Σ∗ = n−1 ∑n
i=1 D̂−1(xi − x)(xi − x)TD̂−1. There exist constants C0 > 0 and ξ > 1,

such that ∥∥∥hS
γ∗

∥∥∥
1
≤ C0sλ‖Σ∗hγ∗‖∞, ∀hγ∗ ∈ C,

where C =
{

hγ∗ :
∥∥∥hSc

γ∗

∥∥∥
1
≤ ξ

∥∥∥hS
γ∗

∥∥∥
1

}
and S =

{
j : |βA

j | > λA or |βB
j | > λB

}
.

(C7) Let ν = min{1/70, (3p̃A)
2/70, (3− 3p̃A)

2/70}. For some constants c > 0, L0 > 0,
0 < η < (ξ − 1)/(ξ + 1) and 1/η < M < ∞, the regularization parameters of the
SPAC-Lasso satisfy that

λA ∈ (
1
η

, M]×
(2c(1 + ν)L1/2

p̃A
√

L0

√
2log p

n
+

δn√
L0

)
,

λB ∈ (
1
η

, M]×
(2c(1 + ν)L1/2

p̃B
√

L0

√
2log p

n
+

δn√
L0

)
.

Condition (C1) is a basic assumption for the probability of receiving the treatment or
control. Condition (C2) is a moment condition for xij and error terms ew

i (w = A, B), which
is similar to the conditions in [12,21,22]. Conditions (C3) and (C4) are some regularity
conditions for high-dimensional statistical inference (see [12,13,28,29]). Conditions (C5)–
(C7) are needed to show the convergence rate for β̂SPAC−Lasso, and assumed based on the
definition of approximate sparsity. These assumptions are similar to those in [12,13], and
are weaker than the assumptions for strict sparsity.

Theorem 1. Suppose that regularity conditions (C1)–(C7) hold, as n→ ∞, then

√
n(τ̂SPAC−Lasso − τ)

L−→ N(0, σ2),

where

σ2 = lim
n→∞

[
1− pA

pA
σ2

eA +
pA

1− pA
σ2

eB + 2σeAeB

]
,

and σ2
eA = n−1 ∑n

i=1(e
A
i )

2, σ2
eB = n−1 ∑n

i=1(e
B
i )

2, σeAeB = n−1 ∑n
i=1 eA

i eB
i .

Theorem 1 shows that the asymptotic normality of the proposed SPAC-Lasso ad-
justment estimator τ̂SPAC−Lasso for highly correlated covariates based on the approximate
sparsity measures and appropriate tuning parameters λA and λB. Without loss of generality,
we assume that Y1 = 0, Y0 = 0 and x = 0. The assumptions and the results in Theorem 1
are similar to that in [12,13].

Proof. According to the decomposition of Yi(1) and Yi(0) in (9), we have

√
n(τ̂SPAC−Lasso − τ) =

√
n
(

YA − xT
A β̂A

SPAC−Lasso

)
−
√

n
(

YB − xT
B β̂B

SPAC−Lasso

)
=
√

n
(

xT
AβA + eA − xT

A β̂A
SPAC−Lasso

)
−
√

n
(

xT
BβB + eB − xT

B β̂B
SPAC−Lasso

)
=
√

n(eA − eB)︸ ︷︷ ︸
I1

−
√

n
(

xT
AhA − xT

BhB
)

︸ ︷︷ ︸
I2

, (10)

where hA = β̂A
SPAC−Lasso − βA and hB = β̂B

SPAC−Lasso − βB, eA = n−1
A ∑i∈A eA

i , eB =

n−1
B ∑i∈B eB

i . Combining the Theorem 1 in [21] and replacing a and b with eA and eB, we

have I1
L−→ N(0, σ2), where σ2 is defined in Theorem 1.
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By using the Hölder inequality, we have∣∣∣xT
AhA

∣∣∣ ≤ ‖xA‖∞‖hA‖1.

Invoking Lemma 1 in [13] and conditions (C1)–(C2), we have

‖xA‖∞ = Op

(√
log p

n

)
. (11)

According to (5), we obtain that

hA = β̂A
SPAC−Lasso − βA = D̂γ̂A

SPAC−Lasso −DγA

= D̂
(

γ̂A
SPAC−Lasso − γA

)
+
(

D̂−D
)

γA

= D̂hA
γ +

(
D̂−D

)
γA, (12)

where hA
γ = γ̂A

SPAC−Lasso − γA, D = diag
{

d1/2
11 , . . . , d1/2

pp

}
.

Using Lemma A3 in the following Appendix A, we have

‖hA
γ ‖1 = op

(
1√

log p

)
.

Together with (12) and conditions (C3)–(C4), we have ‖hA‖1 = op

(
1√

log p

)
. Then,

√
n xT

AhA =
√

n ·Op

(√
log p

n

)
· op

(
1√

log p

)
= op(1).

Similarly, we can obtain that
√

n xT
BhB = op(1). Hence, we have I2 = op(1). This completes

the proof of Theorem 1.

3. Simulation Studies

In this section, the performance of the proposed SPAC-Lasso, SPAC-SCAD adjustment
estimators are evaluated, and compared with those of the unadjusted estimator (unadj) and
the penalty-based regression adjustment estimators (Lasso, SCAD, Enet). The R package
“glmnet” is used to solve the problems of the Elastic-net and Lasso. To implement the SCAD
and SPAC-SCAD methods, a = 3.7 is chosen and the R package “ncvreg” is used ([3]). In
addition, the estimation of precision matrix is implemented by the R package “fastclime”
of [30]. For each regression adjustment method, the tuning parameter is selected by the
10-fold cross-validation. The results are based on 2000 repeated simulations.

The potential outcomes are generated as follows,

Yi(1) =
p

∑
j=1

xijβ j + z + eA
i , i = 1, . . . , n,

Yi(0) =
p

∑
j=1

xijβ j + eB
i , i = 1, . . . , n,

where n = 250, p = 500, 1000 and 2000, z ∼ U(0, 2), β = (β1, ..., βp)T is the coefficient
vector, error terms eA

i and eB
i are i.i.d generated from N(0, 1). The covariates vector xi =

(xi1, ..., xip)
T is drawn from a multivariate normal distribution N(0p×1, Σp×p), and the

covariance matrix Σp×p has the following block-exchangeable structure,
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Σp×p =

 Σ11
q×q Σ12

q×(p−q)

(Σ12
q×(p−q))

T Σ22
(p−q)×(p−q)

,

where q is the number of the non-zero elements, and

(Σ11)s,j =

{
1 s = j
α1 s 6= j

, (Σ12)s,j = α2, (Σ22)s,j =

{
1 s = j
α3 s 6= j

.

Here, the parameter vector α = (α1, α2, α3) measures the correlations of covariates. To
explore the effect of the correlations of covariates, we consider three different choices of α
as α = (0.1, 0.3, 0.8), (0.2, 0.5, 0.9) and (0.5, 0.7, 0.9). For the coefficient vector β, the first q
coefficients take the nonzero values while the remaining p− q elements are set to zero. In
this simulation, we set q = 9 and let

β = (1, 1, 1, 1.5, 1.5, 1.5, 2, 2, 2, 0, . . . , 0)T.

From the generated data, we randomly assign nA = 125 units to the treatment group
A and the remaining nB = n− nA = 125 units to the control group B.

To assess the finite-sample performance of our proposed SPAC adjustment method
(SPAC-Lasso, SPAC-SCAD), we compute the |Bias|, the standard deviations (SD) and
the root-mean square errors (RMSE) of each estimator. In our simulation studies, |Bias|
represents absolute difference between the estimated ATE and the true ATE. The numerical
results are shown in Table 1.

Table 1. Finite sample performance of the ATE estimators.

α = (0.1, 0.3, 0.8) α = (0.2, 0.5, 0.9) α = (0.5, 0.7, 0.9)

p Methods |Bias| SD RMSE |Bias| SD RMSE |Bias| SD RMSE

p = 500

unadj 0.0040 0.7855 0.7855 0.0058 0.8778 0.8778 0.0035 1.1844 1.1844
Lasso 0.0021 0.1155 0.1155 0.0085 0.1512 0.1515 0.0028 0.1643 0.1643
SCAD 0.0010 0.0948 0.0948 0.0159 0.2358 0.2364 0.0019 0.2839 0.2839
Enet 0.0023 0.1098 0.1098 0.0086 0.1533 0.1535 0.0032 0.1645 0.1646

SPAC-Lasso 0.0014 0.1068 0.1068 0.0020 0.1050 0.1050 0.0008 0.1099 0.1099
SPAC-SCAD 0.0011 0.0946 0.0946 0.0016 0.0977 0.0978 0.0013 0.1284 0.1284

p = 1000

unadj 0.0052 0.7796 0.7796 0.0162 0.9152 0.9153 0.0429 1.1905 1.1913
Lasso 0.0009 0.1199 0.1199 0.0027 0.1515 0.1515 0.0093 0.1494 0.1497
SCAD 0.0003 0.0918 0.0918 0.0043 0.2403 0.2404 0.0132 0.2665 0.2669
Enet 0.0013 0.1136 0.1136 0.0025 0.1524 0.1524 0.0087 0.1523 0.1526

SPAC-Lasso 0.0001 0.1051 0.1051 0.0007 0.1075 0.1075 0.0036 0.0955 0.0956
SPAC-SCAD 0.0002 0.0916 0.0916 0.0000 0.0971 0.0971 0.0044 0.1157 0.1158

p = 2000

unadj 0.0104 0.7765 0.7766 0.0556 0.9237 0.9254 0.0696 1.2492 1.2512
Lasso 0.0013 0.1200 0.1201 0.0010 0.1658 0.1658 0.0092 0.1801 0.1804
SCAD 0.0004 0.0997 0.0997 0.0037 0.2521 0.2521 0.0134 0.2620 0.2623
Enet 0.0020 0.1158 0.1158 0.0027 0.1659 0.1659 0.0063 0.1879 0.1880

SPAC-Lasso 0.0005 0.1074 0.1074 0.0004 0.1045 0.1045 0.0040 0.1104 0.1105
SPAC-SCAD 0.0002 0.0991 0.0991 0.0013 0.0969 0.0969 0.0034 0.1459 0.1459

From the results in Table 1, we observe the following results.
(1) When α = (0.1, 0.3, 0.8), our proposed SPAC methods (SPAC-Lasso, SPAC-SCAD)

outperform the unadj method in terms of SDs and RMSEs, and have similar performance
with Lasso, SCAD and Enet. Specifically, the SPAC adjustment method reduces the RMSE
of unadjusted estimator (unadj) by 86–88%.

(2) As the correlations of covariates α increase, the superiority of the proposed SPAC
adjustment method becomes obvious. For example, when p = 2000 and α = (0.5, 0.7, 0.9),
the RMSEs of SPAC-Lasso and SPAC-SCAD are 39% and 45% smaller than those of the
Lasso and SCAD, respectively.
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The variable selection performance is assessed by the mean number of selected nonzero
coefficients (S), the false negative rate (FNR), and false positive rate (FPR). The FNR and
FPR are defined as

FNR :
∑

p
j=1 I(β̂ j = 0, β j 6= 0)

∑
p
j=1 I(β j 6= 0)

, FPR :
∑

p
j=1 I(β̂ j 6= 0, β j = 0)

∑
p
j=1 I(β j = 0)

,

where I(·) is the indicator function. The FNR and FPR indicate the proportion of important
covariates which are not selected and the proportion of selected unimportant covariates,
respectively. The smaller false rates (FNR and FPR) indicate a better performance for
variable selection. The variable selection results are listed in the following Table 2.

Table 2. Variable selection results for treatment and control groups.

α = (0.1, 0.3, 0.8) α = (0.2, 0.5, 0.9) α = (0.5, 0.7, 0.9)

p Methods S FNR FPR S FNR FPR S FNR FPR

p = 500

Lasso 17.650 0.000 0.018 34.636 0.140 0.054 43.091 0.170 0.073
SCAD 9.009 0.000 0.000 12.937 0.552 0.018 32.333 0.819 0.063
Enet 18.271 0.000 0.019 36.085 0.154 0.058 45.158 0.182 0.077

SPAC-Lasso 9.007 0.000 0.000 9.000 0.000 0.000 9.000 0.000 0.000
SPAC-SCAD 9.000 0.000 0.000 9.000 0.000 0.000 8.937 0.007 0.000

p = 1000

Lasso 20.116 0.000 0.011 40.922 0.260 0.035 47.313 0.103 0.040
SCAD 9.325 0.000 0.000 21.004 0.755 0.019 38.149 0.886 0.037
Enet 20.841 0.000 0.012 42.743 0.266 0.036 49.456 0.114 0.042

SPAC-Lasso 9.193 0.000 0.000 9.005 0.000 0.000 9.000 0.000 0.000
SPAC-SCAD 9.000 0.000 0.000 9.000 0.000 0.000 8.984 0.000 0.000

p = 2000

Lasso 20.083 0.000 0.006 42.091 0.277 0.018 54.969 0.281 0.024
SCAD 9.082 0.000 0.000 20.077 0.716 0.009 42.502 0.958 0.021
Enet 20.748 0.000 0.006 44.270 0.286 0.019 58.556 0.293 0.026

SPAC-Lasso 9.218 0.000 0.000 9.002 0.000 0.000 9.000 0.000 0.000
SPAC-SCAD 9.000 0.000 0.000 9.000 0.000 0.000 8.974 0.003 0.000

From Table 2, we obtain the following results.
(1) When the important covariates and unimportant covariates are weakly correlated

α2 = 0.3 of α = (0.1, 0.3, 0.8), the SCAD and our proposed SPAC-Lasso, SPAC-SCAD
adjustment methods perform well in terms of S, FNRs and FPRs, where the false rates
(FNRs and FPRs) are nearly 0. In comparison, the proportions of the selected unimportant
variables (FPR) of Lasso and Enet are relatively large, which is also reflected in the number
of selected nonzero elements (S).

(2) When the correlations of covariates increase, the proposed SPAC adjustment
method (SPAC-Lasso and SPAC-SCAD) has satisfactory performance, while the existing
penalty-based regression adjustment methods (Lasso, SCAD, Enet) perform badly. The
mean numbers of the selected nonzero coefficients (S) of our proposed method are close to
the number of true nonzero elements 9, but the existing adjusted methods fail to correctly
select the nonzero and zero coefficients (relatively large FNRs and FPRs). For example,
when α = (0.5, 0.7, 0.9), the proportions of important covariates which are not selected
(FNR) of SCAD exceed 0.819, while the largest FNR of SPAC-SCAD is only 0.007.

To further assess the performance of our proposed SPAC adjustment method, we
calculate the mean of variance estimates (MVE) for σ in Theorem 1, the mean cover-
age probability (MCP) and mean interval length (MIL) of the 95% confidence intervals
[τ̂ − Z0.975 · σ̂/

√
n, τ̂ + Z0.975 · σ̂/

√
n], where Zα is the α quantile of the standard normal

distribution. We then compare the results of proposed method with those of the existing
unadjusted (unadj) and penalty-based regression adjustment methods (Lasso, SCAD, Enet)
in Table 3.

For the unadjusted method, the variance estimator is defined as

σ̂2
unadj =

n
nA
· 1

nA − 1 ∑
i∈A

{
Yi(1)−YA

}2
+

n
nB
· 1

nB − 1 ∑
i∈B

{
Yi(1)−YB

}2.
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For the adjustment methods (SPAC-Lasso, SPAC-SCAD, Lasso, SCAD, Enet), we give the
following Neyman-type conservative estimate of the variance σ2, which is similar to that
in [12,13].

σ̂2 =
n

nA
σ̂2

eA +
n

nB
σ̂2

eB ,

where

σ̂2
eA =

1

nA − d f A ∑
i∈A

{
Yi(1)−YA − (xi − xA)

Tβ̂A
}2

,

σ̂2
eB =

1
nB − d f B ∑

i∈B

{
Yi(0)−YB − (xi − xB)

Tβ̂B
}2

,

and d f A = ‖β̂A‖0 + 1 and d f B = ‖β̂B‖0 + 1 are degrees of freedom for treatment and
control groups, respectively. β̂A and β̂B are estimated adjustment vectors and obtained by
different penalties (Lasso, SCAD, Enet) and SPAC methods (SPAC-Lasso, SPAC-SCAD) in
(4) and (7).

Table 3. The performance of the variance estimates and confidence intervals.

α = (0.1, 0.3, 0.8) α = (0.2, 0.5, 0.9) α = (0.5, 0.7, 0.9)

p Methods MVE MCP MIL MVE MCP MIL MVE MCP MIL

p = 500

unadj 12.638 0.956 3.133 14.293 0.952 3.543 18.832 0.949 4.669
Lasso 2.257 0.984 0.560 2.415 0.953 0.599 2.464 0.937 0.611
SCAD 2.066 0.994 0.512 3.645 0.942 0.904 4.322 0.945 1.071
Enet 2.179 0.985 0.540 2.430 0.951 0.603 2.511 0.938 0.622

SPAC-Lasso 2.204 0.988 0.546 2.107 0.988 0.522 2.207 0.986 0.547
SPAC-SCAD 2.065 0.994 0.512 1.993 0.990 0.494 2.427 0.979 0.602

p = 1000

unadj 12.217 0.940 3.029 14.500 0.945 3.595 18.441 0.947 4.572
Lasso 2.297 0.982 0.569 2.433 0.949 0.603 2.283 0.943 0.566
SCAD 2.092 0.995 0.519 3.801 0.952 0.942 4.157 0.948 1.031
Enet 2.209 0.982 0.548 2.443 0.950 0.606 2.330 0.944 0.578

SPAC-Lasso 2.233 0.991 0.554 2.204 0.986 0.546 1.980 0.987 0.491
SPAC-SCAD 2.094 0.995 0.519 2.076 0.992 0.515 2.243 0.983 0.556

p = 2000

unadj 12.646 0.961 3.135 14.984 0.953 3.715 20.061 0.954 4.974
Lasso 2.224 0.982 0.551 2.542 0.942 0.630 2.534 0.918 0.628
SCAD 2.051 0.987 0.509 3.856 0.941 0.956 4.161 0.949 1.032
Enet 2.137 0.980 0.530 2.561 0.946 0.635 2.650 0.916 0.657

SPAC-Lasso 2.171 0.991 0.538 2.147 0.989 0.532 2.165 0.986 0.537
SPAC-SCAD 2.046 0.989 0.507 2.042 0.993 0.506 2.591 0.973 0.642

From Table 3, we observe that:
(1) When α = (0.1, 0.3, 0.8), the proposed SPAC adjustment method (SPAC-Lasso, SPAC-

SCAD) performs better than the unadjusted (unadj) method, and performs similarly to the
penalty-based adjustment methods (Lasso, SCAD, Enet) in terms of MVE, MCP and MIL.

(2) When the important and unimportanr covariates are highly correlated, the coverage
probabilities of proposed SPAC adjustment method (SPAC-Lasso, SPAC-SCAD) are higher than
those of the unadj, Lasso, SCAD and Enet methods, the MVE-values of SPAC-Lasso and SPAC-
SCAD are smaller than those of the other methods. For example, when α = (0.5, 0.7, 0.9), the
MCPs of Lasso, SCAD and Enet methods are uniformly below 0.950, while the MCP-values
of SPAC-Lasso and SPAC-SCAD are aound 0.980.

(3) The mean interval lengths (MILs) of the SPAC-Lasso and SPAC-SCAD are shorter
than those of the unadj, Lasso, SCAD and Enet. Particularly, when α = (0.5, 0.7, 0.9), the
MIL-values of SPAC-Lasso and SPAC-SCAD are 10–14% and 38–46% shorter than those of
the Lasso and SCAD, respectively.
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4. A Real Data Analysis

In the clinic, the human epidermal growth factor receptor type 2 (HER2) is considered
as an important indicator in the classification of the breast cancer. Overexpression or
amplification of HER2 (HER2+) might account for around 20% of early breast cancers. As a
monoclonal antibody, trastuzumab (also known as Herceptin) has been shown to improve
the event-free survival rate and the results of chemotherapy in patients with HER2+ breast
cancer ([31]).

In this section, we shall consider the estimation problem of the average treatment
effect (trastuzumab) and apply the proposed SPAC adjustment method to the dataset based
on a NeoAdjuvant Herceptin (NOAH) randomized clinical trial. The dataset was originally
demonstrated in [31] and collected in the Gene Expression Omnibus (GSE50948), and
further studied by Refs. [13,32,33].

There were n = 156 patients in the trail: 63 patients received trastuzumab and
neoadjuvant chemotherapy (treatment group, Ti = 1) and 93 patients received neoadjuvant
chemotherapy alone (control group, Ti = 0), i = 1, . . . , n. The pathological complete
response (pCR) was measured by the absence of residual invasive breast cancer and viewed
as the potential outcome variable Yi. For each patient, 54,675 gene probes were observed
and regarded as the covariates.

The dimension of covariates p = 54,675 is much larger than the sample size n = 156,
we first apply the sure independence screening (SIS) method proposed in [1] to exclude
some insignificant variables and reduce the dimension p to a suitable size. Following the
suggestions of [13,34], the genes with little variation in intensity (i.e., for j-th gene satisfies
max(Xj)−min(Xj) ≤ k with a given value k) are also removed. Then, p∗ = 2573 gene
probes are retained. Based on the dataset, we apply six methods (unadj, Lasso, SCAD, Enet
and our proposed SPAC-Lasso and SPAC-SCAD) to estimate ATE. The tuning parameters
of five regression adjustment methods (Lasso, SCAD, Enet, SPAC-Lasso and SPAC-SCAD)
are chosen by 10-fold cross validation. For each method, we calculate the ATE estimator
(τ̂), the number of the selected nonzero coefficients (S), asymptotic variance estimator (σ̂)
and 95% confidence interval length (L). The numerical results are presented in Table 4.

Table 4. The performance of different methods for the treatment effect estimation of trastuzumab.

unadj Lasso SCAD Enet SPAC-Lasso SPAC-SCAD

τ̂ 0.2555 0.2491 0.2488 0.2473 0.2454 0.2435
S − 16.500 17.000 20.000 15.000 8.500
σ̂ 0.9670 0.8031 0.8519 0.7566 0.7136 0.7317
L 0.3035 0.2521 0.2674 0.2375 0.2240 0.2296

The results in Table 4 show that all the ATE estimates are around 0.250. Combing
this with that in [13,31,32], the trastuzumab indeed alleviates the patient’s conditions and
improve the prognosis. In addition, we find that the numbers of covariates selected by the
SPAC adjustment method (SPAC-Lasso, SPAC-SCAD) are less than those selected by Lasso,
SCAD and Enet, which is consistent with the discovery in the simulation studies. The
estimated asymptotic variances (σ̂) and 95% confidence interval lengths (L) of SPAC-Lasso
and SPAC-SCAD are smallest. Specially, the values of σ̂ of SPAC-Lasso and SPAC-SCAD
are 11% and 14% smaller than those of the Lasso and SCAD, respectively, which implies
that our proposed SPAC adjustment method can improve the asymptotic performance of
the existing unadjusted and penalty-based regression adjustment methods.

5. Conclusions

In this paper, we studied the estimation problem of ATE for Rubin causal model
when the covariates are highly correlated. We proposed the SPAC adjustment method
(SPAC-Lasso, SPAC-SCAD) for ATE by combining SPAC variable selection method, Lasso
and SCAD penalty functions, and regression adjustment technique, which is an extension
for the SPAC method of high-dimensional regression models. In theory, we showed the
asymptotic normality of the proposed SPAC-Lasso adjustment estimator under some
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regularity conditions. By some simulation studies and a real data analysis, we showed
the advantages of our proposed method in terms of estimating average treatment effect
and selecting the important covariates. Thus, the proposed SPAC adjustment method
can improve the estimation accuracy for the Rubin causal model with highly correlated
covariates.
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Appendix A. Some Lemmas and Their Proofs

This Section will provide three Lemmas that are needed for the proof of Theorem 1.
We will drop the superscript on hγ, e, γ and γ̂ and focus on the proof for treatment group
A, as the same analysis can be applied to control group B.

Lemma A1. LetM1 =

{∥∥∥ 1
nA

∑
i∈A

X̃i(ei − eA)
∥∥∥

∞
+
∥∥∥ 1

nA
∑

i∈A
X̃i(xi − xA)

T(D− D̂)γ
∥∥∥

∞
≤

ηλA}, where eA = n−1
A ∑i∈A eA

i . Suppose that regularity conditions (C1)–(C7) hold, then

P(M1) ≥ 1− 2
p

.

Proof. Recalling X̃i, we have

1
nA

∑
i∈A

X̃i(ei − eA) =
1

nA
∑
i∈A

D̂−1(xi − xA)(ei − eA)

= D̂−1 ·
(

1
nA

∑
i∈A

xiei − xAeA

)
.

By the condition (C3) and the sufficient accuracy of CLIME estimator d̂jj, there exists
constants L0 and L1 such that for a sufficiently large n,

L0 ≤ d11, . . . , dpp, d̂11, . . . , d̂pp ≤ L1,

then combined with the triangle inequality, we have

∥∥∥ 1
nA

∑
i∈A

X̃i(ei − eA)
∥∥∥

∞
= max

1≤j≤p
d̂−1/2

jj

(
1

nA
∑
i∈A

xijei − xAj eA

)

≤ L−1/2
0

∥∥∥∥∥ 1
nA

∑
i∈A

xiei − xAeA

∥∥∥∥∥
∞
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≤ L−1/2
0

∥∥∥∥∥ 1
nA

∑
i∈A

xiei

∥∥∥∥∥
∞︸ ︷︷ ︸

J1

+L−1/2
0 ‖xAeA‖∞︸ ︷︷ ︸

J2

, (A1)

where xAj is the j-th element of xA.
For the first term J1 in (A1), we have

J1 ≤
∥∥∥∥∥ 1

nA
∑
i∈A

xiei −
1
n

n

∑
i=1

xiei

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1
n

n

∑
i=1

xiei

∥∥∥∥∥
∞

≤
∥∥∥∥∥ 1

nA
∑
i∈A

xiei −
1
n

n

∑
i=1

xiei

∥∥∥∥∥
∞

+ δn,

where δn is defined in condition (C5). By condition (C2) and Cauchy-Schwarz inequality,
we have

1
n

n

∑
i=1

x2
ije

2
i ≤

(
1
n

n

∑
i=1

x4
ij

)1/2(
1
n

n

∑
i=1

e4
i

)1/2

≤ L.

Using Lemma S1 in [12], we can show that

P

(∥∥∥∥ 1
nA

∑
i∈A

xiei −
1
n

n

∑
i=1

xiei

∥∥∥∥
∞
> tn

)
≤ 2exp

{
log p− nA p̃At2

n
(1 + ν)2L

}
= 2exp{−log p} = 2

p
,

where tn = (1 + ν)L1/2 p̃−1
A

√
2log p

n . Hence,

P(J1 ≤ tn + δn) ≥ 1− 2
p

. (A2)

For the second term J2 in (A1), using the condition (C2) and Lemma 1 in [13], we have

P

(
‖xAeA‖∞ ≤

(1 + ν)L1/2

p̃A

√
2log p

n

)
≥ 1− 2

p
. (A3)

Together with (A2) and (A3), it is easy to see that

P

(∥∥∥ 1
nA

∑
i∈A

X̃i(ei − eA)
∥∥∥

∞
≤ L−1/2

0 (2tn + δn)

)
≥ 1− 2

p
. (A4)

Due to X̃i = D̂−1(xi − xA), we have∥∥∥ 1
nA

∑
i∈A

D̂−1(xi − xA)(xi − xA)
T(D− D̂)γ

∥∥∥
∞

≤ 1√
L0

Op

(
M1

√
log p

n

)
·
∥∥∥ 1

nA
∑
i∈A

(xi − xA)(xi − xA)
Tγ
∥∥∥

∞

=
1√
L0

Op

(
M1

√
log p

n

)
·
∥∥∥ 1

nA
∑
i∈A

xixT
i γ− xAxT

Aγ
∥∥∥

∞

≤ 1√
L0

Op

(
M1

√
log p

n

)
·
(∥∥∥ 1

nA
∑
i∈A

xixT
i γ
∥∥∥

∞
+
∥∥∥xAxT

Aγ
∥∥∥

∞

)

≤ 1√
L0

Op

(
M1

√
log p

n

)
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·
(∥∥∥( 1

nA
∑
i∈A

xixT
i −

1
n

n

∑
i=1

xixT
i

)
γ
∥∥∥

∞
+
∥∥∥ 1

n

n

∑
i=1

xixT
i γ
∥∥∥

∞
+
∥∥∥xAxT

Aγ
∥∥∥

∞

)

≤ 1√
L0

Op

(
M1

√
log p

n

)

·
(∥∥∥ 1

nA
∑
i∈A

xixT
i −

1
n

n

∑
i=1

xixT
i

∥∥∥
∞
· ‖γ‖1 + ‖γ‖1 +

∥∥∥xAxT
A

∥∥∥
∞
· ‖γ‖1

)
, (A5)

where M1 > 0. By Cauchy-Schwarz inequality and condition (C2), we have

1
n

n

∑
i=1

x2
ijx

2
ik ≤

( 1
n

n

∑
i=1

x4
ij

) 1
2
( 1

n

n

∑
i=1

x4
ik

) 1
2 ≤ L.

Combined with Lemma S1 in [12], we have

P

(∥∥∥ 1
nA

∑
i∈A

xixT
i −

1
n

n

∑
i=1

xixT
i

∥∥∥
∞
≥ (1 + ν)L1/2

p̃A

√
3log p

n

)
≤ 2

p
.

By Lemma 1 in [13], we have

∥∥∥xAxT
A

∥∥∥
∞
≤ (‖xA‖∞)2 = op

(√
log p

n

)
.

Recall the definition for SPAC and condition (C4), we have

‖γ‖1 =
p

∑
j=1

∣∣∣∣∣∣ β j√
djj

∣∣∣∣∣∣ ≤ 1√
L0

p

∑
j=1
|β j| ≤

B√
L0

.

Together the above results, we have

I2 =
∥∥∥ 1

nA
∑
i∈A

X̃i(xi − xA)
T(D− D̂)γ

∥∥∥
∞
= Op

(√
log p

n

)
. (A6)

By (A4), (A6) and condition (C7), we have

P

(∥∥∥ 1
nA

∑
i∈A

X̃i(ei − eA)
∥∥∥

∞
+
∥∥∥ 1

nA
∑
i∈A

X̃i(xi − xA)
T(D− D̂)γ

∥∥∥
∞
≤ ηλA

)
≥ 1− 2

p
.

Then the proof is finished.

Lemma A2. LetM2 =

{∥∥∥∥ 1
nA

∑
i∈A

X̃iX̃T
i −

1
n

n
∑

i=1
D̂−1xixT

i D̂−1
∥∥∥∥

∞
≤ C1

√
log p

n

}
and C1 =

2(1 + ν)L1/2( p̃AL0)
−1. Suppose that regularity conditions (C1)–(C3) hold, then

P(M2) ≥ 1− 2
p

.

Proof. From the definition of X̃i in (A9), we have

∥∥∥∥∥ 1
nA

∑
i∈A

X̃iX̃T
i −

1
n

n

∑
i=1

D̂−1xixT
i D̂−1

∥∥∥∥∥
∞

≤ 1
L0

∥∥∥∥∥ 1
nA

∑
i∈A

xixT
i −

1
n

n

∑
i=1

xixT
i − xAxT

A

∥∥∥∥∥
∞
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≤ 1
L0

∥∥∥∥∥ 1
nA

∑
i∈A

xixT
i −

1
n

n

∑
i=1

xixT
i

∥∥∥∥∥
∞︸ ︷︷ ︸

(∗)

+
1
L0

∥∥∥xAxT
A

∥∥∥
∞︸ ︷︷ ︸

(∗∗)

, (A7)

the last inequation is obtained by triangle inequality.
By Cauchy-Schwarz inequality and condition (C2), we have

1
n

n

∑
i=1

x2
ijx

2
ik ≤

( 1
n

n

∑
i=1

x4
ij

)1/2( 1
n

n

∑
i=1

x4
ik

)1/2
≤ L.

Invoking Lemma S1 in [12] and nA/n = p̃A in condition (C1), we can bound the first
term (∗) in (A7) as follows,

P

(∥∥∥∥∥ 1
nA

∑
i∈A

xixT
i −

1
n

n

∑
i=1

xixT
i

∥∥∥∥∥
∞

≥ (1 + ν)L1/2

p̃A

√
3log p

n

)
≤ 2exp{−log p} = 2

p
. (A8)

For the second term (∗∗) in (A7), we have

∥∥∥xAxT
A

∥∥∥
∞
≤ ‖xA‖2

∞ = op

(√
log p

n

)
.

Together with (A8), we have

P

(∥∥∥∥∥ 1
nA

∑
i∈A

X̃iX̃T
i −

1
n

n

∑
i=1

D̂−1xixT
i D̂−1

∥∥∥∥∥
∞

≤ C1

√
log p

n

)
≥ 1− 2

p
.

Then the proof is finished.

Lemma A3. Suppose that regularity conditions (C1)–(C7) hold, then

‖hγ‖1 = op

(
1√

log p

)
,

where hγ = γ̂SPAC−Lasso − γ.

Proof. Note the SPAC estimator γ̂SPAC−Lasso is defined by

γ̂SPAC−Lasso = argmin
γ

[
1

2nA
∑
i∈A

{
Yi(1)−YA − (xi − xA)

TD̂γ
}2

+ λA

p

∑
j=1

d̂jj|γj|
]

,

which can be rewritten as

γ̂∗ = argmin
γ∗

[
1

2nA
∑
i∈A

{
Yi(1)−YA − X̃T

i γ∗
}2

+ λA

p

∑
j=1
|γ∗j |

]
, (A9)

where X̃i = D̂−1(xi − xA), γ∗ = D̂2γ.
Then, the Karush-Kuhn-Tucker (KKT) condition for γ̂∗ is

1
nA

∑
i∈A

X̃i

{
Yi(1)−YA − X̃T

i γ̂∗
}
= λAκ, (A10)
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where κ is the subgradient of ‖γ∗‖1 at γ∗ = γ̂∗, that is

κ ∈ ∂‖γ∗‖1

∣∣∣
γ∗=γ̂∗

with

{
κj ∈ [−1, 1], if γ̂∗j = 0,

κj = sign(γ̂∗j), otherwise.

By the decomposition of Yi(1) in (9), we have

Yi(1)−YA = (xi − xA)
Tβ + ei − eA

= (xi − xA)
TDγ + ei − eA

= X̃T
i γ∗ + (ei − eA) + (xi − xA)

T(D− D̂)γ.

Hence, (A10) can be expressed as

1
nA

∑
i∈A

X̃iX̃T
i (γ∗ − γ̂∗) +

1
nA

∑
i∈A

X̃i(ei − eA) +
1

nA
∑
i∈A

X̃i(xi − xA)
T(D− D̂)γ = λAκ, (A11)

where D = diag{d1/2
11 , . . . , d1/2

pp }. Premultiplying (A11) by −hT
γ∗ = (γ∗ − γ̂∗)T, we have

λA(γ∗ − γ̂∗)
Tκ =

1
nA

∑
i∈A

(γ∗ − γ̂∗)
TX̃iX̃T

i (γ∗ − γ̂∗)−
1

nA
∑
i∈A

hT
γ∗ X̃i(ei − eA)

− 1
nA

∑
i∈A

hT
γ∗ X̃i(xi − xA)

T(D− D̂)γ.

Then, we have

1
nA

∑
i∈A

(
X̃T

i hγ∗

)2
≤λA(‖γ∗‖1 − ‖γ̂∗‖1) +

1
nA

∑
i∈A

hT
γ∗ X̃i(ei − eA)

+
1

nA
∑
i∈A

hT
γ∗ X̃i(xi − xA)

T(D− D̂)γ.

Based on Hölder inequality, the above inequation can be written as

1
nA

∑
i∈A

(
X̃T

i hγ∗

)2
≤λA(‖γ∗‖1 − ‖γ̂∗‖1) + ‖hγ∗‖1

∥∥∥ 1
nA

∑
i∈A

X̃i(ei − eA)
∥∥∥

∞

+ ‖hγ∗‖1

∥∥∥ 1
nA

∑
i∈A

X̃i(xi − xA)
T(D− D̂)γ

∥∥∥
∞

.

Using Lemma A1 in the Appendix, we have

1
nA

∑
i∈A

(
X̃T

i hγ∗

)2
≤ λA(‖γ∗‖1 − ‖γ̂∗‖1 + η‖hγ∗‖1).

According to the triangle inequality and the definition of hγ∗ = γ̂∗ − γ∗, we have

‖γ∗‖1 − ‖γ̂∗‖1 ≤ 2
∥∥∥γSc

∗

∥∥∥
1
+
∥∥∥γ̂S
∗ − γS

∗

∥∥∥
1
−
∥∥∥γ̂Sc

∗ − γSc

∗

∥∥∥
1

=
∥∥∥hS

γ∗

∥∥∥
1
−
∥∥∥hSc

γ∗

∥∥∥
1
+ 2
∥∥∥γSc

∗

∥∥∥
1
.

Hence,

1
nA

∑
i∈A

(
X̃T

i hγ∗

)2
≤λA

(∥∥∥hS
γ∗

∥∥∥
1
−
∥∥∥hSc

γ∗

∥∥∥
1
+ 2
∥∥∥γSc

∗

∥∥∥
1
+ η‖hγ∗‖1

)
≤λA

[
(η − 1)

∥∥∥hSc

γ∗

∥∥∥
1
+ (1 + η)

∥∥∥hS
γ∗

∥∥∥
1
+ 2
∥∥∥γSc

∗

∥∥∥
1

]
.
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Noting that n−1
A ∑i∈A

(
X̃T

i hγ∗

)2
≥ 0, and by the definition of sλ in Definition 1,

we have

(1− η)
∥∥∥hSc

γ∗

∥∥∥
1
≤ (1 + η)

∥∥∥hS
γ∗

∥∥∥
1
+ 2
∥∥∥γSc

∗

∥∥∥
1
≤ (1 + η)

∥∥∥hS
γ∗

∥∥∥
1
+

2L1√
L0

sλλA. (A12)

Next we will consider two cases for (1 + η)
∥∥∥hS

γ∗

∥∥∥
1
+ 2L1L0

−1/2sλλA, respectively.

(i) (1 + η)
∥∥∥hS

γ∗

∥∥∥
1
+ 2L1L0

−1/2sλλA ≥ (1− η)ξ
∥∥∥hS

γ∗

∥∥∥
1
. By (A12), we have

‖hγ∗‖1 =
∥∥∥hS

γ∗

∥∥∥
1
+
∥∥∥hSc

γ∗

∥∥∥
1
≤
∥∥∥hS

γ∗

∥∥∥
1
+

(1 + η)

1− η

∥∥∥hS
γ∗

∥∥∥
1
+

2L1sλλA√
L0(1− η)

=

(
1 + η

1− η
+ 1
)∥∥∥hS

γ∗

∥∥∥
1
+

2L1sλλA√
L0(1− η)

≤ 2L1sλλA√
L0(1− η)

(
2

(1− η)ξ − (1 + η)
+ 1
)

.

Combining the above results with conditions (C5) and (C7), we can show that sλλA =

o

(
1√

log p

)
.

(ii) (1 + η)
∥∥∥hS

γ∗

∥∥∥
1
+ 2L1L0

−1/2sλλA < (1− η)ξ
∥∥∥hS

γ∗

∥∥∥
1
. By (A12), we can obtain that∥∥∥hSc

γ∗

∥∥∥
1
≤ ξ

∥∥∥hS
γ∗

∥∥∥
1
.

By condition (C6), we have

‖hγ∗‖1 =
∥∥∥hS

γ∗

∥∥∥
1
+
∥∥∥hSc

γ∗

∥∥∥
1
≤ (1 + ξ)

∥∥∥hS
γ∗

∥∥∥
1
≤ (1 + ξ)C0sλ‖Σ∗hγ∗‖∞. (A13)

Using (A11) and Lemma A1, and combining with the triangle inequality, we can
show that∥∥∥∥∥ 1

nA
∑
i∈A

X̃iX̃T
i hγ∗

∥∥∥∥∥
∞

≤
∥∥∥∥∥ 1

nA
∑
i∈A

X̃iX̃T
i hγ∗ −

1
nA

∑
i∈A

X̃i(ei − eA)−
1

nA
∑
i∈A

X̃i(xi − xA)
T(D− D̂)γ

∥∥∥∥∥
∞

(A14)

+

∥∥∥∥∥ 1
nA

∑
i∈A

X̃i(ei − eA)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1
nA

∑
i∈A

X̃i(xi − xA)
T(D− D̂)γ

∥∥∥∥∥
∞

≤(1 + η)λA,

where the last inequality holds on the setM1 of Lemma A1. When the eventsM1 andM2
of Lemma A2 hold, we have∥∥∥∥∥ 1

n

n

∑
i=1

D̂−1xixT
i D̂−1hγ∗

∥∥∥∥∥
∞

≤
∥∥∥∥∥ 1

n

n

∑
i=1

D̂−1xixT
i D̂−1hγ∗ −

1
nA

∑
i∈A

X̃iX̃T
i hγ∗

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1
nA

∑
i∈A

X̃iX̃T
i hγ∗

∥∥∥∥∥
∞

≤C1

√
log p

n
‖hγ∗‖1 +

∥∥∥∥∥ 1
nA

∑
i∈A

X̃iX̃T
i hγ∗

∥∥∥∥∥
∞

.
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By condition (C5) and (A14), we can show that

‖hγ∗‖1 ≤ (1 + ξ)C0

(
sλ

√
log p

n
‖hγ∗‖1 + (1 + η)sλλA

)
≤ (1 + ξ)C0{o(1)‖hγ∗‖1 + (1 + η)sλλA}.

Hence, we obtain that ‖hγ∗‖1 = op

(
1√

log p

)
by using the conditions (C5) and (C7).

Combining the cases (i) and (ii), we know that ‖hγ∗‖1 = op

(
1√

log p

)
holds. Accord-

ing to the definitions of hγ, hγ∗ and γ̂∗, we have

‖hγ‖1 = ‖γ̂SPAC−Lasso − γ‖1 = op

(
1√

log p

)
.

Then the proof is finished.
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