
Citation: Bening, V.; Korolev, V.

Comparing Compound Poisson

Distributions by Deficiency:

Continuous-Time Case. Mathematics

2022, 10, 4712. https://doi.org/

10.3390/math10244712

Academic Editor: Iosif Pinelis

Received: 17 November 2022

Accepted: 8 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Comparing Compound Poisson Distributions by Deficiency:
Continuous-Time Case
Vladimir Bening 1,2 and Victor Korolev 1,2,3,4,*

1 Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University,
119991 Moscow, Russia

2 Moscow Center for Fundamental and Applied Mathematics, 119991 Moscow, Russia
3 Federal Research Center “Computer Science and Control”, Russian Academy of Sciences,

119333 Moscow, Russia
4 Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: vkorolev@cs.msu.ru

Abstract: In the paper, we apply a new approach to the comparison of the distributions of sums of
random variables to the case of Poisson random sums. This approach was proposed in our previous
work (Bening, Korolev, 2022) and is based on the concept of statistical deficiency. Here, we introduce
a continuous analog of deficiency. In the case under consideration, by continuous deficiency, we will
mean the difference between the parameter of the Poisson distribution of the number of summands in
a Poisson random sum and that of the compound Poisson distribution providing the desired accuracy
of the normal approximation. This approach is used for the solution of the problem of determination
of the distribution of a separate term in the Poisson sum that provides the least possible value of
the parameter of the Poisson distribution of the number of summands guaranteeing the prescribed
value of the (1− α)-quantile of the normalized Poisson sum for a given α ∈ (0, 1). This problem is
solved under the condition that possible distributions of random summands possess coinciding first
three moments. The approach under consideration is applied to the collective risk model in order to
determine the distribution of insurance payments providing the least possible time that provides the
prescribed Value-at-Risk. This approach is also used for the problem of comparison of the accuracy of
approximation of the asymptotic (1− α)-quantile of the sum of independent, identically distributed
random variables with that of the accompanying infinitely divisible distribution.

Keywords: limit theorem; compound Poisson distribution; Poisson random sum; asymptotic
expansion; asymptotic deficiency; kurtosis; accompanying infinitely divisible distribution
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1. Introduction

This paper is a complement to our previous work [1], where we considered a version
of the problem of stochastic ordering and proposed an approach based on the concept of de-
ficiency that is well-known in asymptotic statistics; see, e.g., [2] and later publications [3–6].
In the paper [1], we used the approach mentioned above in order to establish a kind of
stochastic order for the distributions of sums of independent random variables (r.v.s) based
on the comparison of the number of summands required for the distribution of the sum to
have the desired asymptotic properties (for the problems and methods related to stochastic
ordering, see, e.g., [7]). Here, we apply this approach to the comparison of the distributions
of sums of random variables to the case of Poisson random sums.

In statistics, as well as in [1], the deficiency is measured in integer units and corre-
spondingly has the meaning of either the number of additional observations required for a
statistical procedure to attain the same quality as the ‘optimal’ procedure in statistics or
the number of additional summands in the sum required to attain the desired accuracy of
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the normal approximation in [1]. Unlike these cases, in the present paper, we deal with
the compound Poisson distributions and introduce a continuous analog of deficiency. The
extension of the approach proposed in [1] for non-random sums of independent r.v.s to Pois-
son random sums is possible due to the asymptotic normality of the latter as the parameter
of the Poisson distribution of the number of summands infinitely grows. In the case under
consideration, by continuous deficiency, we mean the difference between the parameter
of the Poisson distribution of the number of summands in a Poisson random sum and
that of the compound Poisson distribution providing the desired accuracy of the normal
approximation. This approach is used for the solution of the problem of determination of
the distribution of a separate term in the Poisson sum that provides the least possible value
of the parameter of the Poisson distribution of the number of summands guaranteeing
the prescribed value of the (1− α)-quantile of the normalized Poisson sum for a given
α ∈ (0, 1).

This problem is solved under the condition that possible distributions of random
summands possess coinciding first three moments. Therefore, we can say that, in this
problem, we deal with ‘fine tuning’ of the distribution of a separate summand since we
assume that different possible distributions of random summands may differ only by their
kurtosis. In the setting under consideration, the best distribution delivers the smallest
value of the parameter of the compounding Poisson distribution. This problem is actually
a particular case of the problem of quantification of the accuracy of approximations of the
compound Poisson distributions provided by limit theorems of probability theory. The
main mathematical tools used in the paper are asymptotic expansions for the compound
Poisson distributions and their quantiles.

The formal setting mentioned above can be applied to solving some practical prob-
lems dealing with the collective risk insurance models where it is traditional to describe
the cumulative insurance payments by the compound Poisson process. The approach
under consideration makes it possible to determine the distribution of insurance payments
providing the least possible time that provides the prescribed Value-at-Risk.

To make the above-mentioned more clear, consider an insurance company that starts
its activity at time t0 = 0. Within the classical collective risk model [8], the total insurance
payments at some time t have the form of a sum of a random number (number of payments
by the time t) of independent identically distributed r.v.s (insurance payments), that is,
of a Poisson random sum. In this model, the number of insurance payments by time t
follows the Poisson process Nλ(t) with some intensity λ > 0. We assume that the parameter
λ is uncontrollable and fixed. Since Nλ(t) has the same distribution as N1(λt) and the
parameter λ is assumed fixed, the setting under consideration concerns the problem of
determination of the distribution of an individual insurance payment providing the least
possible t guaranteeing the prescribed Value-at-Risk for the average losses of the insurance
company within the time interval [0, t].

The approach considered in the paper can be used when the distributions of the
summands (possible losses) are known only up to their first three moments, and the exact
Value-at-Risk is not known for sure.

Within the framework of the collective risk model in the setting under consideration,
the problem consists in the description of the best strategy of the insurance company. Here,
the choice of the terms of a contract (e.g., the amount of insurance payment related to
each possible insurance event) is meant as a strategy. That is, a strategy consists in the
determination of the distribution of an insurance payment. Briefly, the problem is to choose
an optimal distribution of a separate insurance payment among the distributions that have
the same first three moments so that the desired goal is achieved within the least possible
time interval.

We also consider the application of the proposed approach to the study of the asymp-
totic properties of non-random sums of independent identically distributed r.v.s as com-
pared to those of the compound Poisson distributions with the same expectation. It is
well-known that, in many respects, these properties coincide. This phenomenon mani-
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fests itself, for example, in the form of the method of accompanying infinitely divisible
distributions (see, e.g., [9], Chapter 4, Section 24). Therefore, it is of certain interest to
investigate the accuracy of the approximation of the characteristics of sums of independent
r.v.s as compared to that of the accompanying infinitely divisible (that is, corresponding
compound Poisson) laws. This problem was studied by many specialists; see, e.g., [10–13]
and the references therein. Unlike most preceding works where the approximation of
distribution functions was discussed, here we consider the application of accompanying
laws to a somewhat inverse problem of approximation of quantiles.

The paper is organized as follows. Section 2 contains a short overview of the results
concerning the asymptotic expansions for compound Poisson distributions. Here we also
formulate basic lemmas to be used in the next sections. The main results are presented in
Section 3. In Section 3.1, we introduce the notion of the α-reserve in the collective risk model
and present some asymptotic expansions for this quantity. In Section 3.2, a continuous-time
analog of the notion of deficiency is introduced. Here we also prove some general results
concerning the continuous-time deficiency. In Section 3.3, we consider the problem of
comparison of compound Poisson distributions by deficiency and present the asymptotic
formula for the deficiency of one compound Poisson distribution with respect to the other.
In Section 3.4, we deal with the problem of comparison of the distributions of Poisson
random sums with those of non-random sums. Actually, this problem consists in the
comparison of the accuracy of approximation of the asymptotic (1− α)-quantile of the sum
of independent identically distributed random variables with that of the accompanying
infinitely divisible distribution.

2. Notation and Auxiliary Results

Throughout what follows, we will assume that all the random variables and processes
are defined on the same probability space (Ω,F,P). The expectation and variance with
respect to the measure P will be, respectively, denoted E and D. The set of real numbers
and natural numbers will be, respectively, denoted R and N. The distribution function of
the standard normal law will be denoted Φ(x),

Φ(x) =
1√
2π

∫ x

−∞
ϕ(y)dy, ϕ(x) =

1√
2π

exp
{
− x2

2

}
, x ∈ R.

The distribution of a random variable X will be denoted L(X).
Let X1, X2, . . . be independent identically distributed random variables. Let Nλ be the

random variable with the Poisson distribution with parameter λ. Assume that for each
λ > 0, the random variables Nλ, X1, X2, . . . are independent. Let Sλ be the Poisson random
sum, Sλ = X1 + . . . + XNλ

. If Nλ = 0, then Sλ is assumed to equal to zero. Assume that
EX1 = a and DX1 = σ2 > 0 exist. For integer k ≥ 0, denote EXk

1 = αk. Of course, α0 = 1,
α1 = a and α2 = σ2 + a2.

Recall some facts concerning the asymptotic expansions for the compound Poisson
distributions (sf. [8,14,15]).

Denote the characteristic functions of the random variables X1 and Sλ as f (t) and
hλ(t), respectively. It is well-known that if f (t) has r continuous derivatives, then, as t→ 0,
we have

f (t) = 1 + iat− α2t2

2
+ (it)2 ∑r−2

k=1
(it)kαk+2
(k + 2)!

+ o(tr). (1)

A random variable X1 is said to satisfy the Cramér condition (C), if

lim sup
|t|→∞

| f (t)| < 1. (2)
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For k = 0, 1, 2, . . . define the function Hk(x) : R→ R as

Hk(x) ≡ (−1)k φ(k)(x)
φ(x)

.

The function Hk(x), x ∈ R, so defined, is a polynomial of degree k and is called the
Hermite polynomial of degree k.

It is easy to calculate that

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15.

Let m be a nonnegative integer and qk ∈ R, k = 0, . . . , m. Consider the polynomial

q(x) = ∑m
k=0 qkxk.

Let H0(x), . . . , Hm(x) be Hermite polynomials. Let

Q(x) = ∑m
k=0 qk Hk(x).

Then it is easy to make sure that the function v(t) = q(it) exp{−t2/2} is the Fourier
transform of the function V(x) = Q(x)φ(x). Throughout what follows, we will assume
that r ≥ 3 is a fixed integer number.

For a complex z, let

f̃ (z) = ∑r−2
k=1

αk+2zk

(k + 2)!
.

Obviously, f̃ (z) is a polynomial of degree ≤ r − 2 with real coefficients; moreover,
f̃ (0) = 0. From (1), it follows that

f (t)− 1− iat +
α2t2

2
= (it)2 f̃ (it) + o(tr)

as t→ 0. For λ > 0 and a complex z let

pλ(z) = ∑r−2
k=1

1
k!

[
z2

α2
f̃
(

z√
λα2

)]k

. (3)

It can be easily made sure that there exist integer m ≥ 3 and polynomials qk(z) with
real coefficients, k = 3, . . . , m, not depending on λ such that

pλ(z) = ∑m
k=3 λ−k/2+1qk(z) (4)

for all λ > 0 and complex z. Moreover, these polynomials qk(z) are uniquely determined
by (3) and (4). Let

qk(z) = ∑Lk
j=3 qk,jzj (5)

be the corresponding representation of qk(z) with qk,j ∈ R (j = 3, . . . , Lk), Lk ≥ 3
(k = 3, . . . , m). Let Hj(x) be the Hermite polynomials. For x ∈ R and k = 3, . . . , m let

Rk(x) = −∑Lk
j=3 qk,j Hj−1(x). (6)

The function Rk(x) is called the Edgeworth polynomial of degree k.
For λ > 0 and complex z from (3) and (4), we easily obtain

pλ(z) = ∑(r−2)2+2
k=3 λ−k/2+1 ∑ k−2

r−2≤j≤k−2 αk,jzk+2(j−1),
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where
j!αk,j = ∑ 3≤n1≤...≤nj≤r

n1+...+nj=k+2(j−1)

αn1 · . . . · αnj

n1! · . . . · nj!
α
−k/2−j+1
2 .

Therefore, in (4) and (5), we should set m = (r − 2)2 + 2 and Lk = 3(k − 2) (k =
3, . . . , m).

For x ∈ R, λ > 0 and r ∈ N define the functions Gλ,r(x) as

Gλ,r(x) = Φ(x) + φ(x)∑r
k=3 λ−k/2+1Rk(x).

In particular, for r = 3, we have

R3(x) = − α3

6α3/2
2

H2(x)

and
Gλ,3(x) = Φ(x)− α3

6α3/2
2

√
λ
(x2 − 1)φ(x). (7)

For r = 4, we have

R4(x) = − α4

24α2
2

H3(x)−
α2

3

72α3
2

H5(x)

and

Gλ,4(x) = Φ(x)− α3

6α3/2
2

√
λ
(x2 − 1)φ(x)− φ(x)

λ

[
α4

24α2
2
(x3 − 3x)−

α2
3

72α3
2
(x5 − 10x3 + 15x)

]
. (8)

Moreover, if κ3(Sλ) and κ4(Sλ) are the skewness and kurtosis of the random variable
Sλ,

κ3(Sλ) ≡ E

(
Sλ − ESλ√

DSλ

)3

= E

(
Sλ − α1λ√

λα2

)3

=
α3√

λα3/2
2

,

κ4(Sλ) ≡ E

(
Sλ − ESλ√

DSλ

)4

− 3 = E

(
Sλ − α1λ√

λα2

)4

− 3 =
α4

λα2
2

,

then (7) and (8) can be rewritten as

Gλ,3(x) = Φ(x)− κ3(Sλ)

6
Φ(3)(x)

and

Gλ,4(x) = Φ(x)− κ3(Sλ)

6
Φ(3)(x) +

κ4(Sλ)

24
Φ(4)(x) +

κ2
3(Sλ)

72
Φ(6)(x).

Lemma 1. Let r > 3. Assume that the distribution of the random variable X1 satisfies the Cramér
condition (C) (see (2)). Then

sup
x

∣∣∣∣P( Sλ − aλ√
λ(a2 + σ2)

< x
)
− Gλ,r(x)

∣∣∣∣ = o
(
λ−r/2+2),

that is,

lim
λ→∞

λr/2−1 sup
x

∣∣∣∣P( Sλ − aλ√
λ(a2 + σ2)

< x
)
− Gλ,r(x)

∣∣∣∣ = 0.

This statement is a particular case of Theorem 4.4.1 in [15].
Our further reasoning is based on the following general statement dealing with the

asymptotic behavior of the quantiles of univariate distributions of a random process.
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Let Z(t), t ≥ 0, be a random process. Assume that for each t ≥ 0 the distribution of
the random variable Z(t) is continuous. For β ∈ (0, 1) and t ≥ 0, the left β-quantile of the
random variable Z(t) will be denoted uβ(t):

uβ(t) = inf{u : P(Z(t) < u) ≥ β}.

Lemma 2. Assume that, as t→ ∞, the distribution function of the random process Z(t) admits
the asymptotic expansion of the form

P(Z(t) < x) = Ψ0(x) + t−1/2Ψ1(x) + t−1Ψ2(x) + o(t−1).

Moreover, let the functions Ψ′′0 (x), Ψ′1(x) and Ψ2(x) be continuous and Ψ′0(x) > 0. Then for
any β ∈ (0, 1), we have

uβ(t) = uβ −
Ψ1(uβ)

Ψ′0(uβ)
√

t
+

Ψ′0(uβ)Ψ1(uβ)Ψ′1(uβ)−
(
Ψ′0(uβ)

)2Ψ2(uβ)− 1
2 Ψ2

1(uβ)Ψ′′0 (uβ)(
Ψ′0(uβ)

)3t
+ o(t−1),

where uβ is the left β-quantile of the distribution function Ψ0(x): Ψ0(uβ) = β.

For the proof of this statement, see [15], Section 4.5.

Remark 1. If we set

uβ(t) = uβ −
Ψ1(uβ)

Ψ′0(uβ)
√

t
+

Ψ′0(uβ)Ψ1(uβ)Ψ′1(uβ)−
(
Ψ′0(uβ)

)2Ψ2(uβ)− 1
2 Ψ2

1(uβ)Ψ′′0 (uβ)(
Ψ′0(uβ)

)3t
,

then it is not difficult to make sure that under the conditions of Lemma 2, we have

P(Z(t) < uβ(t)) = β + o(t−1).

From Lemmas 1 and 2, it follows that if α4 = EX4
1 < ∞ and the random variable X1

satisfies the Cramér (C) condition (2), then

P

(
Sλ − aλ√
λ(a2 + σ2)

< x
)
= Φ(x) +

Ψ1(x)√
λ

+
Ψ2(x)

λ
+ o(λ−1) (9)

where

Ψ1(x) = − α3

6α3/2
2

φ(x)H2(x), Ψ2(x) = −φ(x)
[

α4

24α2
2

H3(x) +
α2

3

72α3
2

H5(x)
]

.

Therefore, setting t = λ, Z(t) = Sλ, Ψ0(x) = Φ(x), from Lemma 2, we obtain the
following result. For β ∈ (0, 1), let wβ(λ) and uβ be the β-quantiles of the random variable
Sλ and of the standard normal distribution, respectively.

Lemma 3. Let EX4
1 < ∞, and let the random variable X1 satisfy the Cramér (C) condition (2).

Then, as λ→ ∞, we have

wβ(λ) = aλ + uβ

√
λα2 +

α3H2(uβ)

6α2
+

+
1√

λα5/2
2

[
α2

3
72
(

H5(uβ)− 2H2(uβ)H3(uβ) + 4uβ H2
2(uβ)

)
+

α4α2

24
H3(uβ)

]
+ o(λ−1/2)

where Hk(x) are the Hermite polynomials.
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3. Main Results
3.1. The Asymptotic Expansions for the α-Reserve in the Collective Risk Model

Let X1, X2, . . . be independent identically distributed r.v.s such that

X2
1 > 0, |X1|4+δ < ∞, δ > 0. (10)

Assume that the r.v. X1 satisfies the Cramér (C) condition (2). For t > 0, let the r.v. Nt
have the Poisson distribution with parameter λt, where λ > 0 is a fixed parameter. Assume
that for each t > 0 the r.v.s Nt, X1, X2, . . . are independent. Consider the Poisson random sum

St = X1 . . . + XNt .

In terms of the collective risk model, the r.v.s Xj can be interpreted as individual
insurance claims, and the r.v. St can be interpreted as the total insurance payment of an
insurance company by the time t.

Let α ∈ (0, 1). Define the standardized α-reserve C∗α(t) by the formula

P

(
St − λtEX1√

λtEX2
1

≥ C∗α(t)
)
= α + o(t−1), t→ ∞. (11)

Along with the set X1, X2, . . . consider another set Y1, Y2, . . . of independent identically
distributed r.v.s such that

Y2
1 > 0, |Y1|4+δ < ∞, δ > 0. (12)

Assume that the r.v. Y1 satisfies the Cramér (C) condition (2). Also assume that for
each t > 0, the r.v. Nt having the Poisson distribution with parameter λt is independent of
the set Y1, Y2, . . . Denote

Tt = Y1 + . . . + YNt .

In the same way as (11), define the standardized α-reserve C∗∗α (t) for the sequence
Y1, Y2, . . . as

P

(
Tt − λtEY1√

λtEY2
1

≥ C∗∗α (t)
)
= α + o(t−1), t→ ∞.

Lemmas 2 and 3 directly imply the following statement. For α ∈ (0, 1) let uα be the
1− α-quantile of the standard normal distribution, that is, Φ(uα) = 1− α.

Theorem 1. Let α ∈ (0, 1) and the r.v.s X1, X2, . . . and Y1, Y2, . . . satisfy conditions (10), (12) and
(2). Then, as t→ ∞,

C∗α(t) = uα +
EX3

1(u
2
α − 1)

6
√

λt(EX2
1)

3/2
+

1
12λtEX2

1

[
(EX3

1)
2

EX2
1

(5uα − 2u3
α) +

EX4
1

2(EX2
1)

2
(u3

α − 3uα)

]
+ o(t−1),

C∗∗α (t) = uα +
EY3

1 (u
2
α − 1)

6
√

λt(EY2
1 )

3/2
+

1
12λtEY2

1

[
(EY3

1 )
2

EY2
1

(5uα − 2u3
α) +

EY4
1

2(EY2
1 )

2
(u3

α − 3uα)

]
+ o(t−1).

We see that if the first three moments of X1 and Y1 coincide, then C∗α(t) and C∗∗α (t)
differ only by the terms of order O(t−1).

Now if we define the α-reserves C̃∗α(t) and C̃∗∗α (t) as

P
(
St ≥ C̃∗α(t)

)
= α + o(t−1), and P

(
Tt ≥ C̃∗∗α (t)

)
= α + o(t−1), t→ ∞,

then

C̃∗α(t) =
√

λtEX2
1 · C

∗
α(t) + λtEX1 and C̃∗∗α (t) =

√
λtEY2

1 · C
∗
α(t) + λtEY1.
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3.2. A Continuous-Time Analog of Deficiency

In this section, we will propose an approach to the comparison of the two compound
Poisson distributions in terms of the ‘continuous’ analog of deficiency. For the traditional
definition of deficiency as the number of additional observations required for a statistical
procedure to attain the desired quality, we refer the reader to the papers [1–3,5,6]. Here, we
will introduce its continuous-time analog.

Consider two stochastic processes X(t) and Y(t), t ≥ 0. We will be interested in the
asymptotic behavior of the probabilities of X(t) and Y(t) to exceed a given threshold.

For α ∈ (0, 1) let cα(t) be the asymptotic (1− α)-quantile of X(t):

P
(
X(t) ≥ cα(t)

)
= α + o(t−1), t→ ∞.

Lemma 2 directly implies the following statement.

Proposition 1. Assume that there exist distribution function G(x) and the functions g1(x) and
g2(x) such that

sup
x∈R

∣∣∣P(X(t) < x
)
− G(x)− 1√

t
g1(x)− 1

t
g2(x)

∣∣∣ = o(t−1), (13)

where the functions G(x), g1(x) and g2(x) are smooth enough. Then the the asymptotic (1− α)-
quantile of X(t) admits the asymptotic expansion

cα(t) = cα −
g1(cα)

G′(cα)
√

t
− 1

t

[
G′′(cα)g2

1(cα)

2(G′(cα))3 +
G′(cα)g2(cα)− g1(cα)g1

′(cα)

(G′(cα))2

]
+ o(t−1),

where cα is the (1− α)-quantile of the distribution function G(x), that is, G(cα) = 1− α.

Assume that the asymptotic expansion for the distribution function of Y(t) has
the form

P
(
Y(t) < x

)
= G(x) +

1√
t
g1(x) +

1
t

g2(x) + o(t−1), (14)

where the functions G(x), g1(x) and g2(x) are smooth enough. The asymptotic expansion (14)
differs from that for the distribution function of X(t) in Proposition 1 only by the term of
order t−1, that is, the two distributions are close enough.

Define the positive function m(t), t > 0, by the equality

P
(√

t Y(m(t)) ≥ cα(m(t))
)
= α + o(t−1), t→ ∞. (15)

If m(t) − t = d + o(1), d ∈ R, t → ∞, then the number d is called the asymptotic
deficiency of the distribution L(Y(t)) with respect to the distribution L(X(t)). In other
words, d is the asymptotic ‘additional’ time required for the process Y(t) to attain the
quantile of the same order as that of X(t).

Theorem 2. Assume that conditions (13) and (14) hold. Then the asymptotic deficiency d of the
distribution L(Y(t)) with respect to the distribution L(X(t)) has the form

d =
2
[
g2(cα)− g2(cα)

]
G′(cα)cα

+ o(1).

The proof of this statement repeats that of Theorem 3.1 in [1] up to notation (further-
more, unfortunately, in formula (16) of [1], the coefficient

√
n analogous to

√
t in (15) of the

present paper was erroneously omitted).
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3.3. The Comparison of Compound Poisson Distributions by Deficiency

In this section, we will discuss the asymptotic deficiency of the compound Poisson
distributions providing a given (1− α)-quantile of the normalized Poisson random sums.
For this purpose, we will use Theorem 2.

Define the average Poisson random sums St and Tt by the formulas

St =
St − λtEX1

t
√

λEX2
1

, Tt =
Tt − λtEY1

t
√

λEY2
1

.

Define the asymptotic deficiency d ∈ R of Tt with respect to St by the formula

P
(√

t · Tt ≥ C∗α(t)
)
= α + o(t), t→ ∞,

where t = t+ d+ o(1), that is, d is the ‘additional time’ required for the normalized average
Poisson random sum

√
t · Tt to exceed the asymptotic α-reserve C∗α(t) of the normalized

average Poisson random sum
√

t · St.
To apply Theorem 2, assume that

EX3
1

(EX2
1)

3/2
=

EY3
1

(EY2
1 )

3/2
. (16)

Condition (16) holds, e.g., if the first three moments of X1 and Y1 coincide.
Theorem 2 directly implies the following statement.

Theorem 3. Assume that the r.v.s Nt, X1, X2, . . . ; Y1, Y2, . . . satisfy conditions (2), (10) and (16).
Then, as t→ ∞, the ‘additional time’ d has the form

d =
(3− u2

α)

12

[
EX4

1
(EX2

1)
2
−

EY4
1

(EY2
1 )

2

]
+ o(1). (17)

Remark 2. If EX1 = EY1 = 0, then (17) can be rewritten as

d = 1
12 (3− u2

α)
(
κ4(X1)−κ4(Y1)

)
+ o(1),

That is, in this case, the continuous-time analog of asymptotic deficiency is determined by the
difference of kurtoses.

3.4. Comparing the Distributions of Poisson Random Sums with Those of Non-Random Sums

It is well-known that the asymptotic properties of non-random sums of independent
identically distributed r.v.s coincide with those of the compound Poisson distributions
with the same expectation. This phenomenon manifests itself, for example, in the form
of the method of accompanying infinitely divisible distributions (see, e.g., [9], Chapter 4,
Section 24). Therefore, it is of certain interest to investigate the accuracy of the approxima-
tion of the characteristics of sums of independent r.v.s as compared to that of the accompa-
nying infinitely divisible (that is, corresponding compound Poisson) laws. This problem
was studied by many specialists, see, e.g., [10–13]. Unlike most preceding works where the
approximation of distribution functions was discussed, here we consider the application of
accompanying laws to a somewhat inverse problem of approximation of quantiles.

Here, we will not assume the possibility of the interpretation of the presented results
in terms of a collective risk model where at least the expectations of Xj should be positive.
Assume that the independent identically distributed r.v.s X1, X2, . . . are standardized:

EX1 = 0, EX2
1 = 1. (18)
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Again, let Nt be an r.v. with the Poisson distribution with parameter λt, where
λ > 0 is fixed. Assume that for each t > 0 the random variables Nt, X1, X2, . . . are
independent. Consider the problem of comparison of the distribution of a normalized
Poisson random sum

S∗t =
X1 + . . . + XNt√

λt

with the distribution of the corresponding non-random sum

U∗t =
X1 + . . . + X[λt]√

[λt]

as t→ ∞, where the symbol [a] denotes the integer part of a real number a. For definiteness,
if Nt = 0, then S∗t is assumed to be equal to zero.

If conditions (18), (10) and (2), then Lemmas 1 and 2 imply (see (9)) that, as t→ ∞,

P(S∗t < x) = Φ(x)−
EX3

1

6
√

λt
ϕ(x)(x2 − 1)−

− ϕ(x)
24λt

[
EX4

1(x3 − 3x) +
(EX3

1)
2

3
(x5 − 10x + 15x)

]
+ o(t−1), (19)

whereas the classical theory of asymptotic expansions in the central limit theorem (e.g.,
see [16]) yields that

P(U∗t < x) = Φ(x)−
EX3

1

6
√
[λt]

ϕ(x)(x2 − 1)−

− ϕ(x)
24[λt]

[
(EX4

1 − 3)(x3 − 3x) +
(EX3

1)
2

3
(x5 − 10x + 15x)

]
+ o(t−1). (20)

Note that (19) and (20) differ in that, in (19), the kurtosis of X1 is present in the non-
normalized form κ∗4 (X1) = EX4

1 , whereas in (20), there stands the normalized kurtosis
κ4(X1) = EX4

1 − 3.
From the obvious inequalities

λt− 1 ≤ [λt] ≤ λt

it follows that, as t→ ∞,

1
λt
≤ 1

[λt]
≤ 1

λt− 1
=

1
λt

(
1 +

1
λt

+ O(t−2)
)

and
1√
[λt]

=
1√
λt

+ O(t−3/2).

Therefore, relation (20) can be rewritten as

P(U∗t < x) = Φ(x)−
EX3

1

6
√

λt
ϕ(x)(x2 − 1)−

− ϕ(x)
24λt

[
E(X4

1 − 3)(x3 − 3x) +
(EX3

1)
2

3
(x5 − 10x + 15x)

]
+ o(t−1). (21)

Denote U∗t = U∗t /
√

t. Let α ∈ (0, 1). Define the asymptotic (1− α)-quantile Cα(t) of
S∗t by the relation

P
(
S∗t ≥ Cα(t)

)
= α + o(t−1), t→ ∞.
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Define the number d ∈ R by the formula

P
(√

t U∗t ≥ Cα(t)
)
= α + o(t−1), t→ ∞,

where t = t + d + o(1). Now relations (19), (21) and Theorem 2 directly imply the follow-
ing statement.

Theorem 4. Let α ∈ (0, 1). Assume that the r.v.s Nt, X1, X2, . . . satisfy conditions (18), (10) and
(2). Then

d =
3− u2

α

4
+ o(1)

as t→ ∞, where Φ(uα) = 1− α.

Remark 3. The quantity d can be interpreted as the asymptotic deficiency of the distribution of a
non-random sum with respect to the corresponding accompanying compound Poisson distribution.
Note that under the conditions of Theorem 4, d does not depend on the distribution of X1. If
α > 0.0417..., then d is asymptotically positive, that is, the (accompanying) compound Poisson
distribution of the r.v. S∗t provides better accuracy for the approximation of the asymptotic (1− α)-
quantile of U∗t .

4. Conclusions

This paper is a continuation of our previous work [1] and deals with a version of
the problem of stochastic ordering. We follow an approach based on the concept of
deficiency, which is well-known in asymptotic statistics. In the present paper, we considered
compound Poisson distributions and introduced a continuous analog of deficiency. It was
suggested to understand the continuous deficiency as the difference between the parameter
of the compounding distribution of a Poisson random sum and that of the compound
Poisson distribution providing the desired accuracy of the normal approximation. The
asymptotic representations for the continuous deficiency were obtained under the condition
that possible distributions of random summands possess coinciding first three moments.
Therefore, we can say that, in this problem, we deal with ‘fine tuning’ of the distribution
of a separate summand since we assume that different possible distributions of random
summands can differ only by their kurtosis. In the setting under consideration, the best
distribution delivers the smallest value of the parameter of the compounding Poisson
distribution. The main mathematical tools used in the paper are asymptotic expansions
for the compound Poisson distributions and their quantiles. The formal setting mentioned
above was applied to solving some practical problems dealing with the collective risk
insurance models where it is traditional to describe the cumulative insurance payments
by the compound Poisson process. The approach under consideration makes it possible
to determine the distribution of insurance payments providing the least possible time
that provides the prescribed Value-at-Risk. We also considered the application of the
proposed approach to the study of the asymptotic properties of non-random sums of
independent identically distributed r.v.s as compared to those of the compound Poisson
distributions with the same expectation. We investigate the accuracy of the approximation
of the characteristics of sums of independent r.v.s as compared to that of the accompanying
infinitely divisible (that is, corresponding compound Poisson) laws. Unlike most preceding
works where the approximation of distribution functions was discussed, here we considered
the application of accompanying laws to a somewhat inverse problem of approximation
of quantiles.
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