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Abstract: It is challenging to control and optimize the aluminum electrolysis process due to its non-
linearity and high energy consumption. Reducing the cell voltage is crucial for energy consumption
reduction. This paper presents an intelligent method of predicting and optimizing cell voltage based
on the evaluation of modeling the comprehensive cell state. Firstly, the Savitzky–Golay filtering
algorithm(SGFA) is adopted to denoise the sample data to improve the accuracy of the experimental
model. Due to the influencing factors of the cell state, a comprehensive evaluation model of the
cell state is established. Secondly, the model of the least squares supports vector machine (LSSVM)
is proposed to predict the cell voltage. In order to improve the accuracy of the model, the state
transition algorithm (STA) is employed to optimize the structure parameters of the model. Thirdly,
the optimization and control model of the cell voltage is developed by an analysis of the technical
conditions. Then, the STA is used to realize the optimization of the front model. Finally, the actual
data were applied to the experiments of the above method, and the proposed STA was compared
with other methods. The results of experiments show that this method is efficient and satisfactory.
The optimization value of average cell voltage based on the STA-LSSVM is 3.8165v, and it can be used
to guide process operation. The DC power consumption is 11,971 KW·h per tonne of aluminum, with
a reduction in power consumption of 373 KW·h. This result guarantees the reduction of aluminum
electrolysis energy consumption.

Keywords: aluminum electrolysis process; cell voltage; LSSVM; STA; SGFA

MSC: 93C10

1. Introduction

The aluminum electrolysis industry uses an enormous amount of electricity, with
electricity costs accounting for 30–40% of the total production costs. Aluminum electrolysis
production becomes more expensive as the cost of electricity rises. As a result, one of the
primary goals of aluminum factories is to achieve energy-efficient production in aluminum
electrolysis [1,2]. The primary approach to energy reduction is to reduce the DC power in
the aluminum electrolysis process. Academic and industry researchers have conducted
various studies. Lan et al. [3] analyzed the effects of aluminum level, alumina concentration,
cell temperature, mole ratio, and noise value on current efficiency and proposed a theoreti-
cal method to improve current efficiency by optimizing the relevant technical conditions.
Li et al. [4] proposed a modal analysis method to clarify how the anode-cathode distance
(ACD) and length–width ratio of cells affected interfacial stability; the results indicate that
the stability is enhanced as the increase of ACD for a 500-KA electrolysis cell and the critical
ACD is derived as 0.041 m, which is preferable for stabilizing the cell and reducing energy
consumption. Tu et al. [5] proposed a monitoring method of equivalent series resistance
(ESR) and capacitance to stabilize aluminum electrolytic production by timely detection of
problematic aluminum electrolytic capacitors and indirectly improve the current efficiency.
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The theoretical methods to reduce the DC power consumption of aluminum electrolysis
are proposed in the above literature. However, with the development of modern process
digitization, the above-mentioned methods have become difficult to apply to modern
aluminum electrolysis processes.

Aluminum electrolysis production is a high-energy, non-linear process with many
parameters that affect the cell state during operation. These parameters are an important
basis for determining the current state of the aluminum electrolytic cell. When the cell state
is good, the production is stable, the current efficiency is high, and the probability of failure
is low. Therefore, determining the aluminum electrolytic cell state is necessary. To address
the challenge of classifying cell state, Zhang et al. [6] used current efficiency as a basis for
evaluating cell state. Cui et al. [7] simply divide the aluminum electrolytic cell state into a
cold stroke, normal, and hot stroke according to the temperature range of different cells.
Lin et al. [8] extracted the features of the cell state from the cell voltage transient curve and
used an artificial neural network for cell state diagnosis. Most of the current methods of
classifying cell states are based on single indicators, such as current efficiency, electrolyte
temperature, and instantaneous voltage, without judging it from a global perspective.

With the development of modern industrial digitization, data mining is widely used
for complex industrial control. Fan et al. [9] proposed an NSGA-II algorithm based on
a function-based evolutionary operator and obtained the optimal set of Pareto solutions
with uniform distribution to achieve the purpose of efficiency and consumption reduction.
Li et al. [10] proposed a multi-objective optimal control strategy based on quantum opti-
mization to optimize the current efficiency and DC power consumption of the aluminum
electrolysis process. Xu et al. [11] established a genetic algorithm-multiple extreme learning
machine (ELM) based model for optimizing the cell voltage in the electrolytic aluminum
production process to reduce power consumption. Yi et al. [12] built a deep learning-
based anode effect prediction model to optimize aluminum electrolysis production. These
research methods have poor practicality and do not better reduce energy consumption.

During actual production, when the cell state is poor, the operator can change the
electrolytic cell from poor to excellent by adjusting the process parameters, and when the
cell is in a good state, energy consumption can be further reduced by reducing the cell
voltage. The relationship between the cell voltage and the relevant technical conditions
cannot simply be modeled by mathematical expressions [13]. LSSVM [14], an extension
of support vector machine (SVM) [15], exhibits good generalization performance, low
computational complexity, and high prediction accuracy, which is suitable for non-linear,
high-dimensional, and small sample application scenarios. The cell voltage prediction
model using this algorithm can well describe the relationship between cell voltage and tech-
nical conditions. Currently, researchers usually optimize the LSSVM parameters [16–19]
or construct suitable kernel functions [20–22] to improve the performance of LSSVM al-
gorithms. STR is a new intelligent optimization algorithm proposed by Dr. Zhou in
2012 [23,24]. This algorithm is a new intelligent randomness global optimization algorithm,
compared with some algorithms that are easy to fall into local optimality and have a general
search range. The algorithm aims to solve optimization problems and find the optimal
global solution or the approximate optimal solution [25,26]. However, these methods only
provide the analysis of cell state and produce good results in dealing with the problem of a
single objective optimization. This makes it difficult to obtain satisfactory optimization.

In the aluminum electrolysis process, simply reducing cell voltage without considering
other parameters can affect the current efficiency and stability of the electrolytic cell. This
will result in decreasing the amount of product in the electrolysis process. So, this paper
explains a comprehensive model of evaluating the cell state and presents a method of
optimizing the cell voltage from a global perspective. First, applying the data of actual
aluminum production, in this paper, the cell state was divided into excellent, good, and
poor cell states based on K-means++. In order to improve the accuracy of the cell state
evaluation model, SGFA was used to remove noise from the original data. The experimental
results show that the evaluation model has high accuracy. In the case of a good cell state,
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the cell voltage is modeled by the LSSVM, and the model parameters are optimized by
STA. To verify the effectiveness of the model, we compared the optimized LSSVM with the
traditional LSSVM, backpropagation (BP) neural network, and extreme learning machines
(ELM). After achieving the cell voltage estimation model, a cell voltage optimization model
was constructed, then the STA was applied to optimize cell voltage and search for a set
of optimized operation parameters, which can make the cell state turn to the optimal
state. The optimal cell voltage can reach 3.8165 v, and the direct consumption per ton of
aluminum production can be reduced by 373 KW·h in theory. These results demonstrate
the validity of the method.

2. Data Processing Based on DBSCAN Algorithm
2.1. The Processing of Aluminum Electrolysis

Charles Martin Hall and Paul Heroult invented a method for the electrolysis of primary
aluminum, which is the only method of producing metallic aluminum in the contemporary
industry [27]. An electrolytic cell is an aluminum electrolysis reaction device, mainly
divided into electrical insulation, cathode structure, superstructure, and busbar structure;
the schematic diagram of an electrolytic cell is depicted in Figure 1. With carbon material
as two poles and alumina-cryolite melting as an electrolyte, the electrochemical reaction
is carried out on the two poles in the electrolytic cell after a strong direct current is ap-
plied. Aluminum ions are released after the addition of alumina dissolution, while an
electrochemical reaction occurs near the anode to generate intermediate products, which
react with the carbon anode as shown in Equation (1). Under the electrolyte layer, there
is a layer of liquid aluminum, which is set in a performed carbon liner. At this time, the
number of aluminum cations at the metal/electrolyte interface gradually decreases, and a
reduction reaction takes place. The reaction is shown in Equation (2). Equation (3) presents
the total reaction. The electrochemical reaction between molten alumina and carbon during
electrolysis produces liquid aluminum and gaseous carbon dioxide, the exhaust gas is
purified and vented, and the recovered fluoride is returned to the electrolytic cell [28].
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Figure 1. The schematic of aluminum electrolytic cell.

On the anode:
3O2− + 1.5C− 6e = 1.5CO2 (1)

On the cathode:
2Al3+ + 6e = 2Al (2)

The total reaction:
AL2O3 + 1.5C = 2Al + 1.5CO2 (3)

The work conducted by the current is the product of current, voltage, and time.
Under the premise of a certain current, the DC power consumption = 2980 * (average cell
voltage)/(current efficiency). The energy consumption of aluminum electrolysis is closely
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related to cell voltage; the lower the voltage, the lower the power consumption. So it is
crucial to control the cell voltage in production. The reduction of energy consumption is
achieved by controlling the production of aluminum electrolysis at low voltage under good
cell conditions in this paper and a certain current.

2.2. Experimental Data Preprocessing

Due to the inherent defects of the electrolysis cell acquisition equipment and the
changes in the production environment of the cell, the collected data signal is always
inevitably contaminated by noise. The accuracy cannot be satisfying if the signal is fed
to the model without denoising. In this subsection, the SGFA is used to denoise the
aluminum electrolysis data. The SGFA is improved from the moving smoothing algorithm
proposed by Savitzky and Golay [29] and is also called local least squares polynomial-
based smoothing [30]. It has been widely used in various fields of data smoothing and
denoising since its publication [31–33]. This algorithm can remove noise while preserving
the information of the original data signal and the shape of the curve. The expression of
SGFA, which is essentially window sliding convolution, is as follows.

ŷi =
n

∑
j=−n

ωjyi+j (4)

where ŷi(i = 1, . . . , N) is the result of SGFA, ωj(j = −n, . . . , n) is the SGFA weight, yi+j
is the corresponding original time signal value, n is the half window size of SGFA, ωj is
calculated using a local least squares fit of a polynomial function over the window.

f (t) = c1 ϕ1(t) + c2 ϕ2(t) + . . . + cM ϕM(t) (5)

where ϕ1(t), ϕ2(t), . . . , ϕM(t) is the fitted basis function, and the coefficients c1, c2, . . . , cM
can be obtained by (6).

c = (AT A)
−1

ATb (6)

Considering the size of the computation and the goodness of the fit, Formula (7) is
applied to the sliding window to do the fitting operation on the data points in it.

f (t) = c1 + c2t + c3t2 (7)

where ϕ1(t) = 1, ϕ2(t) = t, ϕ1(t) = t2. When the window width is 2n + 1, then the matrix
A is:

A =


ω1 ω1t1 ω1t2

1
ω2 ω2t2 ω2t2

2
...

...
...

ω2n+1 ω2n+1t2n+1 ω2n+1t2
2n+1

 (8)

According to Formulas (5) and (7)~(9), the SGFA weights in the following equation
can be obtained.

w = B(AT A)
−1

ATdiag(ω)y (9)

where B = [1 ti t2
i ] is a set of row vectors composed of the corresponding timing points of

the SGFA result ŷi, diag(ω) is a diagonal matrix composed of ωi weights, y is a vector of
2n + 1 values among the corresponding sliding window.

Data normalization [34] can improve the efficiency of the algorithm and can reduce the
proportion of the distance accounted for by different attributes of overly large values and
relatively small initial values in the data domain, so the data were scaled between 0 and 1
to facilitate a comprehensive comparative evaluation of each indicator of the aluminum
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electrolysis data and to visualize the aluminum electrolysis production. In this paper, the
data are de-scaled using Equation (10).

x∗i =
xi − xmin

xmax − xmin
(10)

where xmin and xmax denote the minimum and maximum values of the parameter variables,
xi and x∗i denote the data before and after the normalization of the variable, respectively.

3. Cell State Evaluation Analysis Model
3.1. Comprehensive Evaluation Index of Cell State

The aluminum electrolytic cell states show the good or bad production condition
of the electrolysis cell, a better cell state indicates higher current aluminum production
efficiency, and the aluminum yield and quality can be improved. However, in the process
of electrolysis, maintaining the heat balance and material balance of the electrolysis cell are
two key factors for the production of aluminum. If the balance is disrupted, the state of
the electrolysis cell will develop in the direction of a sick cell, with failures such as hot or
cold cell, anode effect, and even accidents, resulting in casualties. Therefore, in order to
correctly evaluate the current state of the electrolysis cell and to issue specific instructions
for different cell states, a cell state evaluation model based on the K-means++ algorithm is
proposed in this paper.

In order to more conveniently and qualitatively determine the cell state, a compre-
hensive evaluation index d of the cell state, which consists of DC power consumption W
and current efficiency η, is defined. The closer the current efficiency is to 100%, the more
efficient the electrolysis cell production. The definition of the cell state space is shown in
Equation (11).

(u, v) = (
W −Wopt

Wopt
, 1− η) (11)

where Wopt is the optimized DC power consumption of 12,200 kW per ton of aluminum [35],
(u, v) is the distance W and η from the ideal state, the distance reflects the level of the cell
state, i.e., the closer, the better. The comprehensive evaluation index of the cell state is
defined in (12).

d =
√

u2 + v2 (12)

where the size of d measures the good or bad state of the cell; the closer d is to 0, the better
the cell state; the larger d is, the worse the cell state.

3.2. Evaluation Model of Cell State Based on K-Means++ Algorithm

The change of cell voltage in the actual production of electrolysis cell affects the DC
power consumption and current efficiency, so it is necessary to control the cell voltage in
a reasonable range in order to ensure aluminum production. Noise caused by the anode
effect disrupts the balance in the cell. The material balance is the balance between the
aluminum fluoride feeding amount and aluminum discharge amount, and the aluminum
discharge amount is directly related to the current efficiency calculation formula. If the
electrolysis temperature is too high, the current efficiency reduces, and the power consump-
tion increases. It is important to maintain a reasonable level of electrolyte and aluminum
because they affect the balance of the thermal field and magnetic field in the cell, which is
crucial to the smooth and effective operation of the cell and, eventually, the quantity and
quality of aluminum.

To sum up the mechanism analysis, the important process parameters affecting DC
power consumption and current efficiency include cell voltage, noise, aluminum fluoride
feeding amount, electrolyte temperature, electrolyte level, aluminum level, and aluminum
output. In this paper, these parameters are used as the relevant parameters for the cluster
evaluation of cell states.
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K-means++ algorithm [36], an improved version of the K-means algorithm, follows
the principle of “the farther the cluster centers are, the better”. It aggregates data with the
same characteristics into clusters and determines the number of clusters efficiently.

(1) Determine the number of clusters. The Elbow method and silhouette coefficient
method are both methods to evaluate the clustering effect of the current clustering number
K. The value of the current clustering number K can be weighed by the two methods.

The elbow method [37] is also called the error square sum method. Its core idea is
that the increase of the clustering classification number K makes the degree of similarity
within each class higher and the degree of similarity between classes smaller. When the
value of K increases to a certain point, the value of the error square sum drops sharply.
When the shape of the inflection point on the SSE and K relationship graph is similar to the
elbow, and the curve slope reaches the maximum, the current K value can be preliminarily
determined as the best. The calculation formula of the square sum of the elbow method
error is shown in Equation (13).

SSE =
K

∑
i=1

∑
p∈Ci

|p−mi|
2

(13)

where p is the samples in category i, mi is the mean value of the samples in cluster i.
The silhouette coefficient method is another important method to evaluate the cluster

value. The calculation formula is shown in (14). The higher the S(i) value, the lower the
similarity between clusters, the higher the similarity within clusters, and the better the
clustering effect. The highest number of clusters in S(i) indicates that the current K value
of the cluster is the best choice.

S(i) =
b(i)− a(i)

max{a(i), b(i)} (14)

where a(i) is the intra-cluster dissimilarity, which refers to the average of the dissimilarity
between vector i and each sample point within the cluster, b(i) is the inter-cluster dissimilar-
ity, which refers to the minimum of the average dissimilarity of vector i and other clusters,
reflecting the degree of separation, and S(i) is the silhouette coefficient value.

(2) Select the initial cluster center. This part is the main difference between K-means++
and K-means algorithm. K-means++ algorithm can obtain more satisfying clustering
results by setting different locations as aggregation centers with higher probability dis-
tance. Assume that the eigenvector samples of n aluminum electrolytic cell state data are
U = {u1, u2, . . . un}. Each sample is composed of cell state-associated parameter character-
istics: ui = [vi1, vi2, vi3, vi4, vi5, vi6, vi7], the data samples are divided into K categories, the
cluster center of each category is C = {c1, c2, . . . , cK}, and the composition of each cluster
center is ci = [pi1, pi2, pi3, pi4, pi5, pi6, pi7].

The realization steps of K-means++ algorithm is described as follows:
Step 1: Randomly select a sample point in the sample group as the initial cluster

center z1.
Step 2: Calculate the distance D between each sample point ui and the nearest cluster

center ck. The calculation Formula (15) is as follows:

D(ui, ck) =

√√√√ 7

∑
j=1

(vij − pkj)
2 (15)
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Step 3: Calculate the probability of each sample point being selected as a new cluster
center. The calculation formula of probability P is shown in Formula (16), and then select
the next cluster center according to the roulette method.

P =
D(u)2

∑
u∈U

D(u)2 (16)

Step 4: Repeat Step 2 and Step 3 until K initial cluster centers are selected.
(3) Judge the attribution of feature vector samples and update the cluster center.

After selecting the initial clustering center C0 =
{

c0
1, c0

2, . . . , c0
k
}

, the standard K-means
algorithm is used to calculate the Euclidean distance from each feature vector to the
aggregation center:

D(ui, c0
k) =

√√√√ 7

∑
j=1

(vij − pkj)
2 (17)

After calculating the Euclidean distance, each feature vector is assigned to the nearest
cluster. After calculating the attribution of each feature sample, the average value of each
feature is calculated according to the sample vector in each cluster, and the cluster center C
is updated. Repeat the above steps until the change of the cluster center is less than the set
threshold, then the clustering ends.

(4) Calculate the value range of d of all cell states according to the clustering results.

4. Optimization of Cell Voltage
4.1. Soft Sensing Modeling of Cell Voltage Based on STA-LSSVM

When the evaluation results of the cell state are excellent and good, energy consump-
tion can be reduced by lowering the cell voltage. In the current electrolytic cell industry,
lowering the cell voltage means reducing the pole distance. However, simply reducing
the pole distance will definitely affect the current efficiency and stability of the aluminum
electrolytic cell and ultimately reduce aluminum production. Therefore, in order to reduce
the cell voltage without decreasing the current efficiency, the parameters that affect the cell
voltage can only be adjusted within a reasonable range.

There are many cell voltage parameters that affect the change of aluminum electrolysis.
Cell resistance and current intensity directly reflect the change in cell voltage. Alumina
concentration, electrolyte temperature, and molecular ratio have significant effects on the
change of electrolyte conductivity, thus affecting the stability of cell voltage. Moreover, an
important reason for the anode effect is that the cell voltage rises rapidly when the alumina
concentration is low, which destroys the balance state of the electrolytic cell; The electrode
distance is the distance from the anode bottom to the cathode aluminum liquid mirror. It
has a direct impact on cell resistance, resulting in cell voltage change. The temperature of
the electrolyte is affected by the height of the aluminum liquid. The height of aluminum
liquid changes the thermal balance of the electrolytic cell and then changes the voltage
stability of the cell; less anode wetted area causes the anode effect, so the electrolyte level
needs to be maintained in a reasonable range to prevent the anode effect from affecting the
voltage. When the aluminum level is too high, the heat dissipation in the cell increases,
causing the cell bottom to become cold, affecting the thermal balance of the cell and thus
affecting the cell voltage stability. Based on the above analysis, the parameters that affect the
cell voltage (y) are the pole distance (x1), electrolyte level (x2), cell resistance (x3), alumina
concentration (x4), aluminum level (x5), current intensity (x6), and molecular ratio (x7).

In this paper, we use the least squares support vector machine to build a cell voltage
prediction model. The LSSVM algorithm has a strong classification capability and requires
less training time to train non-linear data with a large time delay and strong coupling. Based
on the previous research, we found that the STA is better and more effective in reducing
energy consumption by comparing the average value of the cell voltage optimized by ALO
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and STA [38], so we decided to optimize the LSSVM prediction model by STA. The specific
aluminum electrolyzer voltage prediction schematic is shown in Figure 2.
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STA treats a solution to the optimization problem as a state and finds the optimal
solution by iterating and updating the state, which is regarded as a state transition process.
The STA framework is shown as follows:{

xk+1 = Akxk + Bkuk
yk+1 = f (xk+1)

(18)

where xk = [x1, x2, . . . , xn]
T is a current state, it represents a candidate solution of the

current optimization scheme, Ak or Bk is a state transition matrix with randomness and an
operator of the basic state transition algorithm, uk is a function of xk containing historical
state; f (·) is the objective function or evaluation function; yk is the fitness function value at
point xk.

The state transfer-based optimization-seeking algorithm uses four state transformation
operators [39], including rotation transformation, translation transformation, expansion
transformation, and axial transformation, to solve a continuous optimization problem
through evolution.

(1) (rotation transformation, RT):

xk+1 = xk + α
1

n‖xk‖2
Rrxk (19)

(2) (translation transformation, TT):

xk+1 = xk + βRt
xk − xk−1
‖xk − xk−1‖2

(20)
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(3) (expansion transformation, ET):

xk+1 = xk + γ′Rexk (21)

(4) (axesion transformation, AT):

xk+1 = xk + δRaxk (22)

where xk ∈ Rn, α are the rotation factor, β is the translation factor, γ′ and δ are the stretch
factor and coordinate factor, respectively. They are all positive numbers greater than zero.
Rr ∈ Rn×n is a random matrix whose elements obey a uniform distribution of [−1,1], ‖xk‖2
is a Euclidean or 2-parametric number; Rt ∈ R is a random variable whose elements obey
a uniform distribution between [0, 1]. The translation transformation is an algorithm for
a line search, mainly along the vector direction from xk−1 to point xk and with xk as the
starting point for a line search of maximum length β. Re ∈ Rn×n is a random diagonal
array whose internal elements follow a standard normal distribution. Ra ∈ Rn×n represents
a random diagonal sparse matrix with non-zero elements only at one position and the
elements absolutely obeying the standard normal distribution. Finally, for the properties of
these four operators: the rotation transform is able to control the accuracy of the solution
and accomplish the performance of the local search. It guarantees the optimal solution
within a hypersphere of maximum radius α. The translation transform not only balances
the local search and the global search but also refines the one-dimensional search. The
stretching transformation is theoretically able to stretch each element in xk to the range of
(−∞,+∞), allowing a global search to be completed.

The parameters of LSSVM should be chosen reasonably for the reasons that these
parameters uniquely define a specific model and, at the same time, determine the model’s
precision that greatly affects the accuracy and effectiveness of cell voltage optimization.
In this paper, with RBF is chosen as the kernel function of LSSVM, there are only two
parameters that need to be determined, the kernel function’s parameter σ and punishment
factor γ. The STA algorithm is used to find the optimal parameters for better learning
performance of LSSVM.

The realization steps of the STA-LSSVM algorithm are as follows:
Step 1: The input training set is divided into a training set and a test set.
Step 2: The parameters of the LSSVM model, the parameter σ of the Gaussian radial

basis kernel function, and the punishment factor γ, are used as the two merit-seeking
parameters to be identified for each set of the state transfer algorithm.

Step 3: Set STA parameters, such as iteration number and search enforcement (SE),
Rotation factor α, translation factor β, expansion factor and coordinate factor δ.

Step 4: Generate the initial solution. Each solution of STA represents the combination
option of two parameters (σ, γ) that determine the LSSVM performance.

Step 5: During each iteration, the STA uses four operational operators in turn to
generate candidate solutions, and the solution with a better fitness value for the training
set is reserved for the next iteration.

Step 6: If the termination condition is met, the algorithm optimization process stops,
and the LSSVM model training is completed. If the termination condition is not met, return
to Step 5.

Step 7: In the test dataset, the STA-LSSVM model was used to predict the cell voltage
and output the prediction results.

The flow chart of STA-LSSVM to build a cell voltage prediction model implementation
is shown in Figure 3.
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4.2. Cell Voltage Optimization Model Based on STA

After the LSSVM prediction model is established, to realize the optimal control of the
cell voltage and achieve the purpose of consumption reduction, it is necessary to find the
optimal cell voltage y and its corresponding optimal technical conditions X under normal
operating conditions.

Under normal operating conditions, the adjustment of the pole distance is an impor-
tant tool for regulating the energy balance of the cell. The variation in the length of the
pole distance directly affects the cell voltage. In various types of electrolytic cells, the pole
distance is generally kept between 3.6~5 cm; a very important condition for the stable and
efficient operation of electrolytic cells in aluminum production is to maintain a reasonable
electrolyte level, which is between 14~23 cm. The alumina concentration represents the
material balance in the cell and ranges from 1.9%~3.5%; in the production of aluminum
electrolysis, the aluminum level can significantly affect the current efficiency. The molecular
ratio is used to measure the acidity and alkalinity of the electrolyte and is traditionally char-
acterized by the molecular ratio of NaF to AlF3. The molecular ratio should be maintained
in the range of 2.1~2.7 and should not be at a lower level. In summary, the seven variables
for the mechanistic analysis are set as pole distance (x1), electrolyte level (x2), cell resistance
(x3), alumina concentration (x4), aluminum level (x5), current intensity (x6), molecular ratio
(x7), and the optimal control model for cell voltage is established as shown in Equation (23).
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Based on the above analysis, the mathematical description of the optimization model
can be stated as follows:

miny = g(x1, x2, x3, x4, x5, x6, x7)

s.t.



3.9 ≤ x1 ≤ 5
18 ≤ x2 ≤ 22
11 ≤ x3 ≤ 13

0.015 ≤ x4 ≤ 0.035
20 ≤ x5 ≤ 28

171 ≤ x6 ≤ 174
2.1 ≤ x7 ≤ 2.7

(23)

The objective of Formula (15) is to find the lowest value of cell voltage under the
seven constraints obtained from process analysis and gray correlation analysis, which can
be regarded as a multi-objective optimization problem with multiple constraints. In this
paper, STA is used to optimize the cell voltage optimization control model. Its optimization
steps are:

Step 1: Random initialisation. Set the basic parameters of the algorithm and randomly
generate SE = 50 states within a set range, each state representing a set of 7 × 1 cell voltage
parameters.

Step 2: Using the cell state parameters in each initial state as input to the cell voltage
prediction model, the fitness function value for each initial state is obtained, and the state
with the lowest fitness value is taken as the current optimal set parameter value, with the
corresponding fitness value taken as the optimal cell voltage.

Step 3: The iteration starts. The state is transformed according to the four optimization
operators of the STA, and the value of the fitness function is calculated for the transformed
state. The current state is changed only when the optimal value is obtained, updating
the cell voltage value and the optimal setting parameters; otherwise, the optimal state is
maintained.

Step 4: Determine if the difference between the adaptation value is less than the set
threshold or if the maximum number of iterations is 1000, the algorithm ends if one of
these criteria is met and the cell voltage optimization value y∗ is obtained; otherwise, go to
Step 3.

The flowchart of optimization based on STA cell voltage is shown in Figure 4.
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5. Analysis of Experimental Results
5.1. Data Clustering Analysis

The experiments were carried out on a platform of MATLAB2020a. Moreover, the data
used in these experiments were collected from an aluminum factory in China. The accuracy
of the experimental model can be improved by using SGFA to denoise the temperature
data of the aluminum electrolytic cell.

The time-domain waveform in Figure 5 shows the comparison of results before and
after noise removal. There are slight burrs on the curve before data preprocessing. After
the SGFA filters the noise, the curve becomes smooth, the random error is reduced, and the
side effects of noise on the model convergence speed and accuracy are eliminated.
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5.2. Cell State Evaluation

After preprocessing and normalizing the data samples, the cell state is evaluated to
obtain a cell state evaluation standard based on comprehensive indicators. After the elbow
method and silhouette coefficient method have determined that the optimal cluster number
is three categories, the production data is divided into three cell states according to the
principle that the cluster centers of the K-means++ algorithm should be as far apart as
possible, and the final cluster centers are determined through continuous iteration. The
parameter indexes of each cluster center are shown in Table 1.

Table 1. Cluster sample center.

Category Cell
Voltage/V Noise/mV Aluminum Fluoride

Feeding Amount/kg
Electrolyte

Temperature/◦C
Electrolyte
Level/cm

Aluminum
Level/cm

Aluminum
Output/kg d

Class 1 4.035 19.74 17.72 952.60 17.11 28.29 1332 0.0499
Class 2 4.010 21.43 23.61 960.63 19.78 24.60 1280 0.1021
Class 3 4.048 19.45 21.38 961.08 19.77 24.18 1200 0.2312

When the number of clusters is set to three categories, the degree of sample division is
high. Among 276 samples, 96 samples are classified as Class 1, at this time, d is the smallest,
and they are rated as excellent cells; 102 samples are classified as Class 2, and d value is in
the middle, and they are rated as good cell; 78 samples are classified as Class 3, and d is
the larger value, which is rated as a poor cell. The comprehensive indicator of cell state is
used to evaluate the cell state of each category. Through the indicator, we can classify the
cell state data collected in real-time. The specific cell state evaluation results are shown in
Table 2.

Table 2. Evaluation results of the status of aluminum electrolytic cells.

Level Comprehensive
INDICATORS d State Reaction

Class 1 0.0183~0.0665 (Excellent cell) High current efficiency, low energy
consumption, and stability

Class 2 0.0835~0.1387 (good cell) High current efficiency, medium
energy consumption

Class 3 0.1848~0.3012 (poor cell) Low current efficiency, high energy
consumption, and instability

After the clustering analysis of samples, the coordinate system is established based on
three characteristics of normalized electrolyte level, electrolyte temperature, and aluminum
output, and the clustering distribution is shown in Figure 6. It can be seen that three colors
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represent different cell state cluster groups. Samples can be clearly divided into three
clusters in high-dimensional space, showing a good clustering effect.
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After obtaining the training sample cluster center in Table 1, we verify the cell state
evaluation model with 40 additional groups of data and calculate the Euclidean distance
between the on-site data samples and the cluster center of the three cell states. The current
calculation sample is put to the class whose cluster center is the nearest. Note that the
sample classification cell state is the real cell state at this time. The predicted cell state of
the sample at this time is evaluated according to the comprehensive evaluation parameter
d of the cell state of the sample if the evaluation parameter d of the cell state of the sample
is not in the range of cell state evaluation. While the current sample prediction cell state
should be categorized into the class using Table 1 by judging which type of d value is the
closest to the test sample. The final experimental results are shown in Table 3.

Table 3. Evaluation results of the status of aluminum electrolytic cells.

Level Number of Sample Cell States Number of Correct Classifications

Class 1 20 19
Class 2 10 10
Class 3 10 10

Table 3 shows that in the verification experiment of 40 groups of sample data, the cell
state of one Class 1 data was wrongly judged, 39 groups were judged correctly, and the
final accuracy rate was 97.5%.

5.3. Prediction of Cell Voltage

The STA-LSSVM model, LSSVM model, BP model, and ELM model are used to predict
the cell voltage respectively and compared with the expected value.

In order to verify the prediction performance of STA-LSSVM, LSSVM before opti-
mization, ELM, and BP neural network, were used to compare with it in this paper. The
experimental data were obtained from an aluminum factory in China, and the cell states
were all excellent or good. A total of 165 sets of training data and 30 sets of test data
were used to train and validate the STA-LSSVM model, respectively. The seven indicators
were used as input data and will be used as output data to train the LSSVM model. The
parameters of each model are: the empirical method selects the LSSVM kernel function
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parameter is 20, and the punishment coefficient is 20; the extreme learning machine has
15 hidden layers and the activation function the Sigmoid function; the BP neural network
has 5 hidden layers and a learning rate of 0.1 and a training number of 100 rounds with a
target threshold of 0.00001. The structure of the LSSVM after STA optimization parameters
was (σ, γ) = (80.6, 46.8). In order to predict the accuracy of the model prediction, the mean
absolute error (MAE) and mean square error (MSE), and the coefficient of determination
(R2) was selected as evaluation criteria in this paper to judge the prediction and regression
effect comprehensively. The model’s prediction result curve is shown in Figures 7 and 8.
The performance evaluation indicators and the prediction result indicators are shown in
Table 4.

From Figures 7 and 8, it can be seen that the LSSVM model without STA optimization
has a poor prediction effect. For better prediction of cell voltage, this paper optimizes
the LSSVM prediction model using the STA algorithm. We compared the results with
ALO-LSSVM, BP, ELM, and LSSVM, as shown in Table 4.
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Table 4. Index of the voltage estimation with different models.

Model MSE MAE R2

BP [40] 0.797 × 10−4 0.0068 0.9254
ELM [11] 1.29 × 10−4 0.0086 0.8825

LSSVM [41] 0.981 × 10−4 0.0064 0.9100
ALO-LSSVM [38] 0.99 × 10−4 0.0049 0.9426

STA-LSSVM 0.505 × 10−4 0.0046 0.9562

As can be seen from the accuracy indicators in Table 4, the STA-LSSVM inherited
the learning ability and the robustness of the LSSVM. The method outperforms the other
algorithms in terms of MAE, MSE, and R2 evaluation indexes. It has a better fit and can
accurately determine the trend of the true value. The results show that the proposed
model has good prediction accuracy and can be used for the optimization of aluminum
electrolytic voltage.

In summary, the cell voltage soft-measurement model established by STA-LSSVM
has better learning ability and generalization ability and has higher precision, which can
accurately predict the cell voltage of the aluminum electrolysis process.

5.4. Optimization of Cell Voltage

In the cell voltage prediction experiment, the optimal LSSVM parameters (σ, γ) =
(80.6, 46.8) are obtained after training. In order to further verify the effectiveness and
stability of the STA algorithm, the cell voltage was optimized 30 times separately by
STA, ALO, SCA, and GWO. Then, the experimental results are compared in Figure 9
and Table 5. V represents the average value of the optimized voltage, Std represents the
standard deviation.
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Table 5. Comparison of the results of STA, ALO, SCA, and GWO optimization.

Model V(v) Std (10−4)

STA 3.8175 7.6761
ALO [38] 3.8203 20
SCA [42] 3.8266 29

GWO [43] 3.8229 14

As we can see in Figure 9 and Table 5 hat the cell voltage optimized by ALO, SCA and
GWO is not only larger but also has more fluctuation than STA, which indicates that ALO,
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SCA, and GWO are more likely to obtain the optimal local solution during the process of
searching for optimal cell voltage. Therefore, when aiming at the optimization problem
of cell voltage, STA has a better searching ability than ALO, SCA, and GWO. After the
experiment, the technical conditions of the optimized cell voltage by STA are shown in
Table 6. y* is value of optimal cell voltage, and xi* (i = 1, . . . 7) is the corresponding
technical condition.

Table 6. Results of the cell voltage optimization.

Technical Conditions y*

3.9795 cm

3.8165 V

x2
∗ 22.0000 cm

x3
∗ 0.0121 mΩ

x4
∗ 3.5%

x5
∗ 22.7850 cm

x6
∗ 171.5982 kA

x7
∗ 2.7000

The average current efficiency in the actual production process of the electrolysis
cell is about 95%. The DC power consumption = 2980 * (average cell voltage)/(current
efficiency), assuming that the actual production maintains the optimal cell voltage value
of the experimental results, the DC power consumption value can be calculated using the
DC power consumption equation with a current efficiency of 95%. Table 7 shows the DC
power consumption before and after optimization.

Table 7. Comparison table of DC power consumption before and after optimization.

Index Pre-Optimization Post-Optimization

W 12,344 kW·h/t 11,971KW·h/t
∆W 373KW·h/t

The cell voltage optimization method proposed in this paper has a DC power con-
sumption of 11,971 KW·h per tonne of aluminum, with a reduction in power consumption
of 373 KW·h, while maintaining the same current efficiency for energy saving and con-
sumption reduction. Given the fact that in the aluminum electrolysis process, with the
cell life increasing and the electrolysis conditions varying, an aluminum electrolytic cell
will change accordingly. These impact the mapping relations between cell voltage and
relevant technical conditions. Therefore, in order to maintain self-adaptability, the cell
voltage estimation model should be updated and optimized regularly.

6. Discussion

In the era of industrial digitalization, using data mining technology to control cell
voltage optimally can significantly improve aluminum electrolysis production efficiency
and make the aluminum electrolysis process more intelligent. In this work, we aim to
reduce energy consumption by reducing the cell voltage and maintaining a certain DC
current while the aluminum electrolytic cell is in good condition. The experimental results
show that the energy consumption of aluminum electrolysis production can be significantly
reduced through this method.

The DC power consumption of the aluminum electrolysis production process is di-
rectly related to the average cell voltage and current efficiency. The energy consumption
is reduced by optimizing the relevant technical conditions to improve the current effi-
ciency [3,5,10]. With the development of modern industrial digitalization, by establishing
an optimal control model of the cell voltage and optimizing the cell voltage in the elec-
trolytic aluminum production process, production can be optimized [11,12]. Under the
condition that the average voltage is as small as possible and the current efficiency is as
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large as possible, the consumption reduction of aluminum electrolysis can be achieved.
At the same time, based on the findings from the literature review and our experiment,
we know that the cell voltage can only be reduced to a certain limit. Only when the volt-
age is reduced and the cell condition is kept in a good state can the stable and reduced
consumption production of aluminum electrolysis be achieved.

In real production, aluminum electrolysis data collection can be difficult, which leads
to uneven distribution of experimental samples or even unlabeled data. In the follow-up
study, we can consider conducting aluminum electrolysis data augmentation experiments
to better solve the problems of uneven samples and unlabeled learning. In addition, we
should continue the in-depth analysis of cell voltage and look for a better cell voltage
design scheme.

7. Conclusions

With the research on saving energy by optimizing the cell voltage as the background,
this paper proposes a method to optimize cell voltage based on the cell voltage estimation
model. Because it is difficult to select parameters for LSSVM, the STA is adopted to optimize
the parameters of LSSVM by establishing the cell voltage estimation model. In addition
to improving the accuracy of the cell voltage estimate model, our method thoroughly
synthesizes the learning and generalization capabilities of LSSVM and is effective in finding
the ideal optimal cell voltage value. To sum up, the proposed cell voltage intelligent
optimization method can not only minimize the dependence on the operators’ actual
production experience but also reduce power consumption effectively.
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