
Citation: Jin, K.; Zhu, T.; Gu, Z.;

Sun, X. Latin Matchings and Ordered

Designs OD(n− 1, n, 2n− 1).

Mathematics 2022, 10, 4703. https://

doi.org/10.3390/math10244703

Academic Editor: Emeritus Mario

Gionfriddo

Received: 14 November 2022

Accepted: 7 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Latin Matchings and Ordered Designs OD(n − 1, n, 2n − 1) †

Kai Jin 1,* , Taikun Zhu 1 , Zhaoquan Gu 2 and Xiaoming Sun 3

1 School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University,
Shenzhen 518107, China

2 School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen),
Shenzhen 518055, China

3 Institute of computing technology, Chinese Academy of Sciences, Beijing 100864, China
* Correspondence: jink8@mail.sysu.edu.cn; Tel.: +86-135-3424-1548
† This paper is an extended version of our paper published in 18th Conference in Autonomous Agents and

Multiagent Systems (AAMAS’19).

Abstract: This paper revisits a combinatorial structure called the large set of ordered design (LOD).
Among others, we introduce a novel structure called Latin matching and prove that a Latin match-
ing of order n leads to an LOD(n − 1, n, 2n − 1); thus, we obtain constructions for LOD(1, 2, 3),
LOD(2, 3, 5), and LOD(4, 5, 9). Moreover, we show that constructing a Latin matching of order n is
at least as hard as constructing a Steiner system S(n− 2, n− 1, 2n− 2); therefore, the order of a Latin
matching must be prime. We also show some applications in multiagent systems.

Keywords: combinatorial design; ordered design; Hamming code; error-correcting code; hat guessing
game; Latin matching; antipodal matching; Latin square and hypercube; multiagent system

MSC: 05B15; 05B30; 94B99; 93A16

1. Introduction

Combinatorial designs have found applications in various fields, including experi-
ment design, cryptography, and computer science. Some examples include the random
pattern testing of VLSI chips, authentication code design, and the derandomization of
algorithms [1–3]. Motivated by these applications, the theory of combinatorial designs
has drawn much attention and has been rapidly developing for many years [4–6]. On the
other hand, the study of combinatorial designs promotes the study of geometry, group
theory, coding theory, and other related fields of mathematics. In this paper, we revisit a
combinatorial structure called ordered design, and we provide new such designs and their
new applications.

An ordered design with parameters t, n, v, written as OD(t, n, v), is an n× (v
t)t! array

with v entries, such that each column has n distinct entries, and any t rows contain each
column tuple of t distinct entries exactly once [7–9]. A large set of ordered design OD(t, n, v),
written as LOD(t, n, v), is a collection of OD(t, n, v), such that any n-permutation of [v]
appears in exactly one OD (as one of its column) [7,10]. Throughout, [v] = {1, . . . , v}.

This paper mainly focuses on OD(t, n, v) and LOD(t, n, v) where t = n− 1, and we
abbreviate OD(n− 1, n, v) and LOD(n− 1, n, v) as OD(n, v) and LOD(n, v), respectively.

Example 1. An OD(3, 5) is as follows.
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 4 5 1 3 4 5 1 2 4 5 1 2 3 5 1 2 3 4
3 5 2 4 4 1 5 3 5 4 1 2 3 5 2 1 2 1 4 3

The main agenda of this paper is investigating the existence of OD(n, 2n − 1). Teir-
linck [10] proved the existence of LOD(n− 1, 2n− 2) and hence OD(n− 1, 2n− 2) for prime

Mathematics 2022, 10, 4703. https://doi.org/10.3390/math10244703 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244703
https://doi.org/10.3390/math10244703
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3720-5117
https://orcid.org/0000-0001-7365-9576
https://orcid.org/0000-0001-7546-852X
https://orcid.org/0000-0002-0281-1670
https://doi.org/10.3390/math10244703
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244703?type=check_update&version=2

Mathematics 2022, 10, 4703 2 of 18

n (see Section 3 for an introduction). However, the existence of OD(n− 1, 2n− 2) is necessary
but insufficient for the existence of OD(n, 2n− 1) (Lemma 1).

A closely related problem is the existence of perpendicular array PA(n, 2n− 1) (see a
definition in Section 2), which was settled affirmatively as early as the 1990s [7]. Recently,
Jin [11] reported two explicit constructions of PA(n, 2n− 1) by utilizing the well-known
lexicographic matching and modular matching between ([2n−1]

n−1) and ([2n−1]
n), i.e., the set of

(n− 1)-element subsets of [2n− 1] and the set of n-element subsets of [2n− 1].
The main contribution of this paper is as follows. First, we introduce a novel and

interesting notion called Latin matching. The Latin matching of order n is a perfect match-
ing between ([2n−1]

n−1) and ([2n−1]
n) with several remarkable properties; see its definition in

Section 2. We construct Latin matchings of orders 2, 3, 5. Case n = 5 is the most nontrivial
for which we apply the Hamming code Hamming(8, 4, 4) or, equivalently, the Steiner system
S(3, 4, 8). We then show that a Latin matching of order n leads to an LOD(n, 2n− 1); thus,
we obtain LOD(2, 3), LOD(3, 5), LOD(5, 9). In particular, LOD(5, 9) has not been reported
in literature. In addition, we show that constructing a Latin matching of order n is at
least as hard as constructing a Steiner system S(n− 2, n− 1, 2n− 2) (a notoriously difficult
problem); as one corollary, the order of a Latin matching must be prime.

A byproduct of our work is a set of 4 mutually orthogonal Latin squares (MOLS) of
order 5 (built from our LOD(3, 5)). The existence of 4 MOLS of order 5 is known [8](p. 163),
but our construction might be simpler (Remark 5). Another byproduct is an LOD6(3, 9, 9)
(built from our LOD(5, 9); see Section 7.2). An ODλ(t, n, v) is an n× (λ(v

t)t!) array with v
entries such each column has n distinct entries and any t rows contain each column tuple
of t distinct entries exactly λ times [7,8]. An LODλ(t, n, v), is a collection of ODλ(t, n, v),
such that any n-permutation of [v] appears in exactly one OD (as one of its column) [7,10].

Applications of Latin matchings and related designs in multiagent systems (e.g.,
hat guessing games, scheduling tournaments, secret sharing schemes) are discussed in
Section 7.

The Latin matching of order 5 is highly symmetric (e.g., cyclic and flipping-invariant;
see Figure 1) and deserves more attention in the filed of combinatorial design in the future.

2. Preliminaries

Let G(n, v) be the graph whose vertices are the n-permutations of [v], and two vertices
are connected if their Hamming distance is 1. The Hamming distance of (a1, . . . , an) and
(b1, . . . , bn) is the number of i, such that ai 6= bi.

We assume that the reader is familiar with the maximal independent (vertex) set (MIS).
α(G) denotes the size of MIS of G. The following propositions are trivial (proof omitted).

Proposition 1. The columns of an OD(n, v) constitute an independent set of G(n, v).

Proposition 2. α(G(n, v)) ≤ (v
t)t!.

Proposition 3. α(G(n, v)) = (v
t)t! if and only if there exists an OD(n, v). If the equality holds,

an MIS of G(n, v) corresponds to an OD(n, v).

As G(n, v) has (v
n)n! = (v

t)t!(v−n+ 1) vertices, an LOD(n, v) is a collection of v−n+ 1
disjoint OD(n, v) where two OD(n, v) are disjoint if they do not share a common column.

Proposition 4. An LOD(n, v) is a vertex coloring of G(n, v) using v− n + 1 colors.

We now introduce a notion called Latin function that interprets OD from another angle. A
Latin function (LF) with parameters n, v, written as LF(n, v), maps each (n− 1)-permutation
(a1, . . . , an−1) of [v] to a number f (a1, . . . , an−1) ∈ [v] \ {a1, . . . , an−1}, admitting the follow-
ing property: If two (n− 1)-permutations have Hamming distance 1, their images under f
are distinct. This property is referred to as the Latin property.

Mathematics 2022, 10, 4703 3 of 18

Clearly, an OD(n, v) is equivalent to an LF(n, v); given an OD(n, v) A, we can choose
any row of A to be the output and the remaining n− 1 rows as the input, and define a Latin
function LF(n, v); given a LF(n, v) f , we can reversely obtain an OD(n, v).

A symmetric Latin function (SLF) with parameters n, v, written as SLF(n, v), refers to
an LF(n, v) admitting the following symmetric property: if (a1, . . . , an−1) is a permutation
of (b1, . . . , bn−1), then f (a1, . . . , an−1) = f (b1, . . . , bn−1).

A Latin matching (LM) with parameters n, v, written as LM(n, v), refers to an SLF(n, v)
admitting the following injective property: if {a1, . . . , an−1} 6= {b1, . . . , bn−1}, it holds that
{a1, . . . , an−1, f (a1, . . . , an−1)} 6= {b1, . . . , bn−1, f (b1, . . . , bn−1)}. In particular, for v = 2n− 1,
the Latin matching LM(n, v) = LM(n, 2n− 1) is called a Latin matching of order n. Due
to the injective property, F : {a1, . . . , an−1} → {a1, . . . , an−1, f (a1, . . . , an−1)} is a perfect
matching from ([2n−1]

n−1) to ([2n−1]
n). This suggests the name “Latin matching”.

For 1 ≤ t < n < v, a perpendicular array with parameters λ; t, n, v, denoted by
PAλ(t, n, v) or PA(t, n, v) when λ = 1, is an n by λ(v

t) matrix over [v] such that: (I) all
entries in any specific column are distinct, and (II) each set of t rows contain each t-element
subset of [v] as a column exactly λ times [7,8]. A large set of perpendicular array PAλ(t, n, v),
written as LPAλ(t, n, v) or LPA(t, n, v) when λ = 1, is a collection of PAλ(t, n, v) such that
any n-permutation of [v] appears in exactly one PA (as one of its column) [7].

Lemma 1. An OD(t, n, v) implies an OD(t− 1, n− 1, v− 1).

Proof. Select those columns in which the last row is v, and delete the last row.

3. Related Work

Some important known results about ODs are summarized in the following.

1. Teirlinck,1988 [10] If v = pαl
1 . . . ps

αs , where, p1, . . . , ps are distinct primes, satisfying
αi(pi− 1) > t for all i, there is an LOD(t, t+ 1, t+ v). As a corollary, there are infinitely
many LOD(n, v) for all n, and there is an LOD(n− 1, 2n− 2) for all prime n.

2. Teirlinck and Lindner, 1988 [12] For v ≥ 3, v /∈ {6, 14, 62}, there is an LOD(2, 3, v).
There is an OD(2, 3, 6), but no LOD(2, 3, 6) exists (this is the 36-generals problem).

3. Teirlinck, 1990 [13] For odd v ≥ 4, v 6= 7, there is an OD(3, 4, v).
4. Teirlinck, 1992 [7] (this is a survey)

(a) There is no OD(3, 4, 7) (page 569). We verified this result.
(b) An OD(2, n, n) exists if and only if an affine plane of order n exists (page 575).
(c) An LOD(t, n, v) implies an LOD(t− 1, n− 1, v− 1) (page 570).
(d) An ODλ(t, v, v) implies an LODλ(t, v, v) (page 571).
(e) An LOD(2, n, q) exists for every prime power q ≥ n; an LOD(3, n, q + 1) exists

for every prime power q ≥ n− 1; an LOD(4, n, 11) exists for 4 ≤ n ≤ 11; and
an LOD(5, n, 12) exists for 5 ≤ n ≤ 12 (page 578).

5. Ray-Chaudhuri and Zhu, 1997 [14] If an LODλ(t, t + 1, v) and an LODλ′(t, t + 1, v′)
exists, such that (v− t)/λ = (v′ − t)/λ′, then an LODλ+λ′(t, t + 1, v + v′ − t) exists.
In particular, if an LODλ(t, t + 1, t + v) exists, then an LODsλ(t, t + 1, t + sv) exists for
all positive s. Moreover, for any n, v, there is an LODλ(n, v) for some finite λ.

Ordered design (OD) is closely related to the perpendicular array (PA) and orthogonal
array (OA). In fact, in the seminal work of Rao [9], OD and PA are called OA Types I
and II, respectively. Moreover, it is a trivial fact that every OD is a PA. OA has been
studied even more extensively than OD and PA; the definition and an exposition of
this structure can be found in [4]. Many connections between OA and OD are shown
in [7,9,14]. Some important known results about PA, especially PA(t, t + 1, v), are in-
troduced in the following. Among others, there exist PA3(3, 9, 9) [15], and PA(3, 5, 5),
PA(3, 8, 8), PA(3, 32, 32), PA2(4, 5, 5), PA4(4, 9, 9), PA2(4, 5, 11) [16]. The authors in Ref. [17]
showed that, for an even v, there exists a PA(3, 4, v) if and only if v 6= 0 (mod 6). More-
over, there exist PA(3, 4, v) for v ∈ {5, 7, 11, 13, 17, 23, 25, 29, 49, 53, 65, 85, 89, 97}, and there

Mathematics 2022, 10, 4703 4 of 18

is a PA3(3, 4, v) if and only if v ≥ 4. In Ref. [11], the authors showed two explicit con-
structions of PA(t, t + 1, 2t + 1). The survey in [7] showed that a PAλ(t, k, k) implies
an LPAλ(t, k, k) (page 571), and there exist (1) LPA(3, k, 8) for 3 ≤ k ≤ 8; LPA(5, k, 8)
for 5 ≤ k ≤ 8; (2) LPA(3, k, 32) for 3 ≤ k ≤ 32; LPA(29, k, 32) for 29 ≤ k ≤ 32; and
(3) LPA(t, t + 1, t + (t + 1)/d) for all d dividing t + 1.

Another combinatorial design closely related to OD/LOD is the Steiner system (SS).
A Steiner system (SS) with parameters t, n, v, written as S(t, n, v), is a v-element set S
together with a set of n-element subsets of S, called blocks, with the property that each
t-element subset of S is contained in exactly one block [5,8,18]. Many connections between
OD/LOD and SS are shown in [7]; indeed, an OD is called an ordered Steiner system by
Teirlinck [10]. Important existing results of SS are introduced in Section 6. Here, we mention
an astonishing result on this topic: Keevash [6] showed that, for a fixed t, n, there exist
S(t, n, v) for a large enough v satisfying certain necessary conditions.

4. Major Findings

This section presents two major findings of this paper. First, there exist Latin matchings
of order 2, 3,5. Second, an LOD(n, 2n− 1) can be constructed from an LM(n, 2n− 1).

We first show how to construct LM(5, 9) from Hamming(8, 4, 4).
A Latin function f is cyclic if

f ({i1 + 1, . . . , in−1 + 1}) ≡ f ({i1, . . . , in−1}) + 1, (1)

where the numbers are taken modulo by (2n− 1).
We constructed an LM(5, 9) f that was cyclic. Since cyclic, the function can be indicated

by (9
4)/9 = 14 values. We used 14 pictures to illustrate these values, as shown in Figure 1.

Each picture contains 9 small circles labelled with 1 to 9 lying in clockwise order, four of
which are solid (black) and four of which are hollow (white) except for the ninth small circle,
which is special. If the four solid circles are labeled by i1, i2, i3, i4, this picture indicates that
f ({i1, i2, i3, i4}) = 9. For example, the first picture indicates that f ({3, 4, 5, 6}) = 9.

1
2
345

6
7
8 9

Figure 1. A Latin matching of order 5 defined according to (2).

Each picture can be represented by a binary word a1a2 . . . a8 (e.g., 00111100 and
01011010 for the first two pictures) – if ai = 1, the small circle labelled as i is solid; otherwise,
it is hollow. The key part of this construction lies in selecting these binary words. We use
the 14 codewords of Hamming(8, 4, 4) defined in the following equation that are not all
zeros and not all ones. {

a5 = a1 ⊕ a2 ⊕ a3, a6 = a1 ⊕ a2 ⊕ a4,

a7 = a1 ⊕ a3 ⊕ a4, a8 = a2 ⊕ a3 ⊕ a4.
(2)

Proposition 5. For each 4-permutation (a1, . . . , a4) of [9] = {1, . . . , 9}, the value of f (a1, . . . , a4)
is well-defined by the above figure and belongs to [9] \ {a1, . . . , a4}.

Proof. For each 4-element subset {i1, i2, i3, i4} ∈ ([9]4), we prove that f ({i1, i2, i3, i4}) is
indicated by one of the above pictures. These 4-element subsets can be partitioned into

Mathematics 2022, 10, 4703 5 of 18

(9
4)/9 = 14 groups. Those subsets that are equivalent under cyclic rotation are in the same

group (so, a group is {i1 + j, i2 + j, i3 + j, i4 + j} | 1 ≤ j ≤ 9).
On the other hand, the positions of the solid circles among the 14 pictures are distinct

under cyclic-rotating; see Figure 1. So, each group is taken care by exactly one picture.

Lemma 2. Function f defined above is indeed an LM(5, 9).

Proof. A well-known property of Hamming(8, 4, 4) is that the Hamming distance between
the codewords is at least 4. This property is useful in proving the Latin property of f :

Suppose to the opposite that f is not Latin. There should be two 4-element subsets
A, B of [9] with exactly three common elements such that they are both mapped to 9 under
f . If we translate A and B into w length 8 binary codes a and b, we know that d(a, b) ≥ 4
according to the well-known property of Hamming(8, 4, 4) mentioned above, where d(a, b)
denotes the Hamming distance between a and b. On the other hand, d(a, b) = 2 since sets
A, B are of size 4 and they share exactly three common elements, which is contradictory.

The symmetric property is naturally admitted by f according to the construction of f .
The positions of four hollow circles in the 14 pictures are distinct under cyclic rotation (see
Figure 1), which implies the injective property of f . Altogether, f is a Latin matching.

Remark 1. The Hamming code given by (2) is not the original Hamming code – the 8 bits are
rearranged here, and it admits a symmetric property that is not admitted by the original one:

if a1 . . . a8 is a codeword, its reverse a8 . . . a1 is also a codeword.

We do not know whether this variant of Hamming code has been found in literature.

Remark 2. In addition to the Latin, symmetric, injective, and cyclic properties, the following
properties of f are also noteworthy. Recall bijection F : {a1, . . . , a4} → {a1, . . . , a4, f (a1, . . . , a4)}
from ([9]4) to ([9]5). Suppose F maps A to B. We claim that

(1) F maps [9]/B to [9]/A, and
(2) F maps {9− a | a ∈ A} to {9− b | b ∈ B}.
The first claim follows from the (trivial) fact that

if a1 . . . a8 is a codeword, its flip ā1 . . . ā8 is also a codeword,

where x̄ = 1− x. The second claim follows from the reverse property in Remark 1.

The Hamming code Hamming(8, 4, 4) is equivalent to the Steiner system S(3, 4, 8). For
constructing Latin matchings of higher orders, it is actually more appropriate to use Steiner
systems than Hamming codes. We show the reasons in Section 6.

Two more constructions of LM(5, 9). The LM(5, 9) shown in Figure 1 is not the unique
LM(5, 9). Two other cyclic Latin matchings of order 5 are drawn in Figure 2, which are
found by using computer programs. These two matchings can also be constructed from
codewords of different Hamming(8, 4, 4)s.

Constructions of an LM(2, 3) and an LM(3, 5).
An LM(2, 3) f is easy to find. For example,

f ({1}) = 2, f ({2}) = 3, f ({3}) = 1. (3)

This LM is also cyclic.
Next, we give a cyclic LM(3, 5). We use two binary codes of length 4 in this case, one

is 0110 and the other is 1001, which means that f ({2, 3}) = 5 and f ({1, 4}) = 5. We leave it
as an easy exercise for the reader to verify that f is indeed an LM(3, 5).

As a summary of this subsection, we showed that

Theorem 1. There exist (cyclic) Latin matchings of orders 2, 3, 5.

Mathematics 2022, 10, 4703 6 of 18

a5 = a1 ⊕ a2 ⊕ a4

a6 = a2 ⊕ a3 ⊕ a4

a7 = a1 ⊕ a3 ⊕ a4

a8 = a1 ⊕ a2 ⊕ a3

a4 = a8 ⊕ a7 ⊕ a5

a3 = a7 ⊕ a6 ⊕ a5

a2 = a8 ⊕ a6 ⊕ a5

a1 = a8 ⊕ a7 ⊕ a6

Figure 2. Two more Latin matchings of order 5 (which are symmetric to each other).

4.1. Construction of LOD from LM

Lemma 3. A Latin matching of order n implies an LOD(n, 2n− 1).

Proof. Let f be a Latin matching of order n (i.e., f is a LM(n, 2n− 1)). Define

I1 =
{
(f ({i1, . . . , in−1}), i1, i2, . . . , in−1) | {i1, . . . , in−1} ∈ ([2n−1]

n−1)
}

,
I2 =

{
(i1, f ({i1, . . . , in−1}), i2, . . . , in−1) | {i1, . . . , in−1} ∈ ([2n−1]

n−1)
}

,
. . .

In =
{
(i1, i2, . . . , in−1, f ({i1, . . . , in−1})) | {i1, . . . , in−1} ∈ ([2n−1]

n−1)
}

.

(4)

Ij contains a set of vertices of G(n, 2n− 1). The following facts imply an n-coloring of
G(n, 2n− 1), which further implies an LOD(n, 2n− 1) by Proposition 4.

1. I1, . . . , In are independent sets of G(n, 2n− 1).
2. I1, . . . , In are disjoint and they contain all the vertices of G(n, 2n− 1).

We prove the two facts in the following.
Fact 1 follows immediately from the Latin property of f .
To prove Fact 2, we only need to prove the disjointness part. If I1, . . . , In are disjoint,

we can compute that I1 ∪ . . . ∪ In has the same amount of vertices as G(n, 2n− 1).
Now, suppose that Ij and Ik share a vertex (u1, . . . , un).
Denote J = {u1, . . . , un} \ uj and K = {u1, . . . , un} \ uk. Clearly, J 6= K.
As (u1, . . . , un) ∈ Ij, we know uj = f (J). As (u1, . . . , un) ∈ Ik, we know uk = f (K).
Recall the matching F : {a1, . . . , an−1} → {a1, . . . , an−1, f (a1, . . . , an−1)} in the defini-

tion of LM. We see F(J) = J ∪ f (J) = J ∪ uj = {u1, . . . , un} = K ∪ uk = K ∪ f (K) = F(K).
Therefore, F is not a perfect matching; the injective property is violated, which is contradic-
tory.

The coloring of G(n, v) in the above proof can be summarized as follows. For any
vertex (u1, . . . , un) of G(n, 2n− 1) (according to the bijective property), there must be a
unique i ∈ [n], such that F({u1, . . . , un} \ ui) = {u1, . . . , un}, and we color the vertex by i.

Corollary 1. There exist LOD(2, 3), LOD(3, 5), LOD(5, 9).

Remark 3. The approach for constructing LODs from LMs only works for the case v = 2n− 1.
When v ≥ 2n, an LM(n, v) does not imply an LOD(n, v). When v ≤ 2n− 2, there is actually no
LM(n, v). (As (v

n−1) > (v
n), no SLF can satisfy the injective property.)

Remark 4. Graph G(n, 2n− 1) can be reformulated as an incomplete n-dimensional hypercube,
and coloring this graph by n colors is a variant of a high-dimensional Latin square problem [1,19].

Mathematics 2022, 10, 4703 7 of 18

We build the incomplete hypercube as follows. Initially, this hypercube has side length 2n− 1
and consists of (2n− 1)n unit cells, each of which is denoted by a coordinate (a1, . . . , an) where
a1, . . . , an ∈ [2n − 1]. Then, we remove cells for which a1, . . . , an are not distinct. Clearly,
the vertices of G(n, v) correspond to the remaining cells, and two vertices are connected if their
corresponding cells are in the same orthogonal line (lines that are parallel to one of the n axes).

Finding an n-coloring of G(n, v) is equivalent to coloring the cells of the incomplete hypercube
such that the colors of cells in any orthogonal line are a permutation of all n colors.

Unlike the complete hypercube case, the above incomplete case does not always has a solution.

5. An Orthogonal Property of the OD(n, 2n − 1)’s Obtained from LM(n, 2n − 1)

Recall I1, . . . , In in the proof of Lemma 3, which are independent sets of G(n, 2n− 1).
We saw that I1, . . . , In constitute an LOD(n, 2n − 1). So, each Ij (1 ≤ j ≤ n) gives an
OD(n, 2n− 1), denoted by Aj (each element in Ij serves as a column of Aj). We state that

Theorem 2. n ODs A1, . . . , An are pairwise orthogonal to each other.

See Definition 1 for the concept of “orthogonal” between OD(n, 2n− 1)’s.

Definition 1. An OD(n, 2n− 1) is canonical if its columns are sorted in lexicographical order;
see Example 1. As the first n− 1 rows are fixed (after sorting), a canonical OD(n, 2n− 1) A can
be indicated by its last row (i.e., the n-th row) An,1, . . . , An,c, where c = (2n− 1)!/n!.

Two canonical OD(n, 2n − 1)s A, B are orthogonal if for every pair (x, y) such that
x 6= y, x ∈ [2n− 1], y ∈ [2n− 1], the size of {i | An,i = x, Bn,i = y} is a constant c

(2n−1)(2n−2) .
Moreover, two OD(n, 2n− 1)s are orthogonal if their canonical forms are orthogonal.

Proof of Theorem 2. First, we introduce two matrices, X and Y. We use X to represent
the submatrix with the first n− 1 rows of any canonical OD(n, 2n− 1). For ease of discus-
sion, assume that A1, . . . , An are already in canonical form. Therefore, A1, . . . , An share
the same first n − 1 rows, that is X. We choose the last row of Ai (1 ≤ i ≤ n) to be
the i-th row of Y. Denote by Sk the set of numbers in the k-th column of X; formally,
Sk = {X1,k, . . . , Xn−1,k}.

Claim 1. The k-th column of Y is a permutation of [2n− 1] \ Sk. Thus, every column of [XY] is
a permutation of [2n− 1]. (Example: for n = 5, the first column is (1, 2, 3, 4, 6, 9, 5, 8, 7)T .)

Proof. Abbreviate X1,k, . . . , Xn−1,k, Y1,k, . . . , Yn,k as x1, . . . , xn−1, y1, . . . , yn, respectively.
Clearly, y1, . . . , yn belong to [2n− 1] \ Sk. It remains to show that yi 6= yj (i < j).
Due to the construction of Y and (4),

xi = f (x1, . . . , xi−1, yi, xi+1, . . . , xn−1) (i < n) (5)

yn = f (x1, x2, . . . , xn−1). (6)

Case 1: i < j < n. We prove it by contradiction. Suppose yi = yj = e. Apply-
ing (5), we obtain xi = f (Sk ∪ {e} \ {xi}) and xj = f (Sk ∪ {e} \ {xj}), which means
Sk ∪ {e} \ {xi} and Sk ∪ {e} \ {xj} are both mapped to Sk ∪ {e} under F : {a1, . . . , an−1} →
{a1, . . . , an−1, f (a1, . . . , an−1)}, violating the injective property of f .

Case 2: i < j = n. The proof is similar to Case 1. Suppose yi = yn = e(i < n).
Applying (5) and (6), we obtain xi = f (Sk ∪ {e} \ {xi}) and e = f (Sk), which means both
Sk and Sk ∪ {e} \ {xi} are mapped to Sk ∪ {e}, violating the injective property of f .

Claim 2. All columns of Y′ are distinct, where Y′ is the submatrix of Y without the last row.

Proof. Fix any set S = {x1, . . . , xn−1} ∈ ([2n−1]
n−1) and denote z = f (x1, . . . , xn−1). According

to the definition of X, exactly one column of X equals (xπ1 , . . . , xπn−1)
T for each permutation

Mathematics 2022, 10, 4703 8 of 18

(π1, . . . , πn−1) of [n− 1]. Let Yπ1,...,πn−1 denote the column of Y for which this column of X
equals (xπ1 , . . . , xπn−1)

T . A simple connection between Y1,...,n−1 and Yπ1,...,πn−1 is as follows.

If Y1,...,n−1 = (y1, . . . , yn−1, z)T , then Yπ1,...,πn−1 = (yπ1 , . . . , yπn−1 , z)T . (7)

We prove this connection in the following. Because Y1,...,n−1 = (y1, . . . , yn−1, z)T , by
the definition of X and Y, we have xi = f (S∪ {yi} \ {xi}) (1 ≤ i ≤ n− 1). This implies that
xπi = f (S ∪ {yπi} \ {xπi}) (1 ≤ i ≤ n− 1), which means Yπ1,...,πn−1 = (yπ1 , . . . , yπn−1 , z)T .

Let S′ = [2n− 1] \ (S ∪ {z}). By the injective property of f , if S is taken over ([2n−1]
n−1),

set S ∪ {z} is taken over by ([2n−1]
n) and thereby S′ would be taken over by ([2n−1]

n−1). On the
other hand, due to the connection in (7), for any fixed S′, each permutation of S′ appears
as a column of Y′. Together, each (n− 1)-permutation of [2n− 1] appears once in Y′. This
further implies Claim 2, by counting the number of (n− 1)-permutations of [2n− 1].

Claim 3. Y is an OD(n, 2n− 1).

Proof. It suffices to show that the Hamming distance between two distinct columns of Y is
at least 2. Following Claim 2, the distance is at least 1. We prove that the distance is not 1.
Suppose that Y has two columns Yj, Yk with Hamming distance 1.

Case 1: Yi,j 6= Yi,k for some i < n (i.e., the difference is not at the last row).
Denote the j-th and k-th column of Y by (y1, . . . , yn)T and (y1, . . . , yi−1, y′i, yi+1, . . . , yn)T ,

respectively. Let S = [2n− 1] \ {y1, . . . , yn}. Via Claim 1, the set of elements in the j-th
column of X is S, and that in the k-th column of X is S∪{yi} \ {y′i}. Following the definition
of X and Y, we obtain f (S) = yn = f (S ∪ {yi} \ {y′i}), violating the Latin property of f .

Case 2: Yn,j 6= Yn,k (i.e., the difference is at the last row).
Denote the j-th and k-th column of Y by (y1, . . . , yn)T and (y1, . . . , yn−1, y′n)T , respec-

tively. Let S = [2n− 1] \ {y1, . . . , yn−1}. By Claim 1, the set of elements in the j-th column
of X is S \ {yn}, and that in the k-th column of X is S \ {y′n}. Following the definition of X
and Y, we obtain f (S \ {yn}) = yn and f (S \ {y′n}) = y′n, violating the injective property
of f .

As a consequence of Claim 3, A1, . . . , An are pairwise orthogonal to each other.

Remark 5. For n = 3, each of the independent sets I1, I2, I3 (constructed from the LM(3, 5) f
introduced above Theorem 1) represents a Latin square of order 5. To this end, the diagonal should
be filled with 1, . . . , 5 in these squares; see Figure 3 for an illustration. As a corollary of Theorem 2,
these three Latin squares are mutually orthogonal Latin squares (MOLS) of order 5.

Moreover, if we define another Latin square M to be Mi,j = (j− i + 5) mod 5 + 1, it can be
verified that M together with the three Latin squares above are a set of 4 MOLS of order 5. Although
a set of 4 MOLS of order 5 is known [8](p. 163), our construction might be easier to remember: it is
simply built upon the Latin matching that is described by the two codewords of 0110 and 1001.

Remark 6. In the proof of Theorem 2, we showed that matrix Y is an OD(n, 2n− 1), where the
i-th row of Y is the last row of Ai (1 ≤ i ≤ n). We can further prove that Y is actually the same OD
as An when the underlying Latin matching f admits the “flip property” defined below. (Because
this equivalence between Y and An is trivial, we leave the easy proof as an exercise to the readers.)

Recall Remark 2. Recall F : {a1, . . . , an−1} → {a1, . . . , an−1, f (a1, . . . , an−1)} from ([2n−1]
n−1)

to ([2n−1]
n). f has the flip property if: F(A) = B implies F([2n − 1] \ B) = [2n − 1] \ A.

Equivalently, f has the flip property if: f (S) = z implies f ([2n− 1] \ (S ∪ {z})) = z.
Our LM(2, 3) does not admit the flip property.

Mathematics 2022, 10, 4703 9 of 18

f 4 5 1 2 3 2 3 4 5 1 4 5 1 2 3 2 3 4 5 1
i 1 2 3 4 5 1 2 3 4 5 2 3 4 5 1 3 4 5 1 2
j 2 3 4 5 1 3 4 5 1 2 1 2 3 4 5 1 2 3 4 5

i 1 2 3 4 5 1 2 3 4 5 2 3 4 5 1 3 4 5 1 2
f 4 5 1 2 3 2 3 4 5 1 4 5 1 2 3 2 3 4 5 1
j 2 3 4 5 1 3 4 5 1 2 1 2 3 4 5 1 2 3 4 5

i 1 2 3 4 5 1 2 3 4 5 2 3 4 5 1 3 4 5 1 2
j 2 3 4 5 1 3 4 5 1 2 1 2 3 4 5 1 2 3 4 5
f 4 5 1 2 3 2 3 4 5 1 4 5 1 2 3 2 3 4 5 1

1 5 4 3 2
3 2 1 5 4
5 4 3 2 1
2 1 5 4 3
4 3 2 1 5

1 3 5 2 4
5 2 4 1 3
4 1 3 5 2
3 5 2 4 1
2 4 1 3 5

1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

I1

I2

I3

Figure 3. Construction of MOLS of order 5. If there is a column (a, b, c)T in a table on the left, fill it in
with number c at the cell at row a and column b in the corresponding square on the right.

6. Connections between SLF and SS with Implications

SLFs are special LFs, whereas LFs are equivalent to ODs. This section provides some
necessary conditions for the existence of SLF(n, 2n− 1) and SLF(n, v).

First, we show a lemma that sandwiches an SLF between two Steiner systems.
In this paper, we mainly focus on S(n− 1, n, v) and it as S(n, v).

Example 2. The 14 codewords used in drawing Figure 1 constitute an S(4, 8). A proof is as follows.
Consider the 3-element subsets of [8]. We prove that each subset is contained as a subset of exactly
one block (a block is corresponding to a codeword here). First, applying the fact that the Hamming
distance of the codewords is at least 4, each subset is contained in at most one block. Therefore,
the 14 blocks cover 14× 4 = 56 different 3-element subsets of [8]. Further, since the number of
3-elements of [8] is (8

3) = 56, each 3-element subset of [8] is contained in exactly one block.

Lemma 4. An S(n, v) implies an SLF(n, v), and an SLF(n, v) implies an S(n− 1, v− 1).

Proof. First, given an S(n, v), denoted by S , we construct an SLF(n, v). For each block
B = {a1, . . . , an} in S and each i ∈ [n], define f (B \ {ai}) = ai. Check that the image of
every (n− 1)-element subset of [v] is determined, since S is an S(n, v). We now prove
by contradiction that f is Latin and hence an SLF(n, v). Suppose that f is not Latin. This
implies that there exist {b1, . . . , bn−2, c} and {b1, . . . , bn−2, d} that are mapped to the same
element a, which means that we have two blocks {b1, . . . , bn−2, c, a} and {b1, . . . , bn−2, d, a}
in S . It follows that {b1, . . . , bn−2, a} is contained by two blocks, which is contradictory.

Next, given an SLF(n, v), denoted by f , we construct an S(n− 1, v− 1). Because f is
an LF(n, v) and an LF(n, v) is equivalent to an OD(n, v), function f is equally likely to take
any value among 1, . . . , v. So, the number of (n− 1)-element subsets of [v] that are mapped
to value v is (v

n−1)/v. Denote m = (v
n−1)/v. Each such subset mapped to v can be described

by a binary string of length v− 1 that contains (n− 1) 1’s. Let S be the set of these m strings
(each called a block). We claim that S is an S(n− 1, v− 1). The proof is as follows. Because
f is Latin, each (n− 2)-element subset of [v− 1] is contained in at most one block. This
further implies that the blocks in S cover m(n− 1) = (v

n−1)(n− 1)/v = (v−1
n−2) different

(n− 2)-element subsets of [v− 1]. However, the number of (n− 2)-element subsets of
[v− 1] is (v−1

n−2). Therefore, each (n− 2)-element subset is contained in exactly one block.

Applying Lemma 4, we can rapidly derive a few results about SLF from the studies
of SS, which are shown below. Designing SSs is notoriously difficult. Very little is known
about the existence of SS, especially for t > 5.

Proposition 6. A necessary condition for the existence of SLF(n, 2n− 1) is that n is a prime.

Mathematics 2022, 10, 4703 10 of 18

As a corollary, the order of a Latin matching must be a prime.

Proof. If an SLF(n, 2n− 1) exists, there must be an S(n− 1, 2n− 2) according to Lemma 4.
Moreover, it is known that if S(t + 1, v) exists, gcd(v − t, lcm(1, . . . , t + 1)) = 1 [7]. In
particular, if S(n− 1, 2n− 2) exists, gcd(n, lcm(1, . . . , n− 1)) = 1, i.e., n is a prime.

Proposition 7. 1. There is an SLF(6, 12).
2. There is no SLF(11, 21). Therefore, a Latin matching of order 11 does not exist.
3. There is no SLF(13, 25). Therefore, a Latin matching of order 13 does not exist.

Proof. Applying Lemma 4 with the existence of S(6, 12) [18], we obtain Part 1.
Since there is no S(5, 15) [20], there is no S(5 + 5, 15 + 5) = S(10, 20).
Since there is no S(5, 17) [21], there is no S(5 + 7, 17 + 7) = S(12, 24).
Applying these with Lemma 4, we obtain Parts 2 and 3, respectively.

Proposition 8. An SLF(n, 2n) exists if and only if S(n, 2n) exists.

Proof. Use Lemma 4 with the interesting fact that S(n, 2n) exists if and only if S(n− 1, 2n− 1)
exists [22].

We were most curious about the existence of SLF(n, 2n− 1) (for prime n). Using Lemma 4,
one might be tempted to design an S(n, 2n− 1), in order to find an SLF(n, 2n− 1). However,
there is no S(n, 2n− 1) according to the division condition gcd(v− t, lcm(1, . . . , t + 1)) = 1
(here, v− t = t + 1 = n). So, we have to approach SLF(n, 2n− 1) in other ways.

Further Investigation on the Existence or Nonexistence of SLF(n, 2n− 1) for Prime n

We saw that SLF(n, 2n− 1) exists for n = 2, 3, 5, but not for n ∈ {11, 13} Proposition 7)
or composite n (Proposition 6). We consider n = 7 and n = 17 below.

Theorem 3. There is no SLF(7, 13). So, there is no Latin matching of order 7.

Proof. Suppose f is an SLF(7, 13). Recall the proof of Lemma 4, which indicates that f is
equally likely to be any value among 1, . . . , 13, and that all those 6-element subsets of [13]
mapped to 13 constitute an S(6, 12) (each such subset forms a block, and the set of these
blocks form an S(6, 12).) In fact, for each i ∈ [13], those 6-element subsets of [13] mapped to
i constitute an S(6, 12), denoted by Si. Clearly, f is fixed as long as S1, . . . , S13 are given. On
the other hand, it is widely known that an S(6, 12) exists and is unique up to isomorphism
(this combinatorial design is also known as the small Witt design W12) [18].

We can use a computer program to test all possible choices of (S1, . . . , S13). First,
generate all the S(6, 12)s (the number of S(6, 12) is 5040) from the unique one up to
isomorphism. Then, choose an S(6, 12) for each i ∈ [13] and check if S1, . . . , S13 constitute
an SLF(7, 13). The rough complexity of this exhaustive searching program would be
504013. Nevertheless, the program can be optimized by some trivial pruning (we omitted
the details) and can be rendered very fast. The searching result denies an SLF(7, 13); see
Appendix A.

We now quickly discuss the situation of n = 17 for which the answer is unknown.
According to Lemma 4, a necessary condition is the existence of S(16, 32). Unfortunately, it
is not known whether S(16, 32) exists. In fact, it is not known whether S(5, 21) exists [23],
let alone S(5 + 11, 21 + 11). However, it is known that S(4, 20) exists [8,23].

For prime n ≥ 17, a key subproblem is the existence of S(n− 1, 2n− 2). To the best of
our knowledge, the existence of S(n− 1, 2n− 2) for prime n ≥ 17 has not been settled.

Remark 7. A constant weight code with parameters n, d, w is a set of codewords (vectors) of
length n and weight w, and with a Hamming distance at least d between codewords [24–26]. The
maximal possible number of codewords in a constant weight code is usually denoted by A(n, d, w).

Mathematics 2022, 10, 4703 11 of 18

An S(n− 1, 2n− 2) exists if A(2n− 2, 4, n− 1) equals its trivial upper bound. However,
the study of constant weight code so far does not imply or deny the existence of S(n− 1, 2n− 2).

Table 1 summarizes our knowledge on Latin matchings and LF(n, 2n− 1)s.

Table 1. On the existence of LF(n, 2n− 1) and Latin matchings.

order n 2, 3, 5 7, 11, 13 prime ≥ 17 4 composite ≥ 6

Latin matching Yes No Unknown No No

LF(n, 2n− 1) Yes Unknown Unknown No [7] (p. 569) Unknown

There exist LF(n, 2n − 1)s that are not SLFs. For example, we can construct some
LF(3, 5)s from the OD(3, 5) shown in Example 1, and none of them is an SLF.

An LF(n, 2n− 1) exists only if there exists an LF(n− 1, 2n− 2) (Lemma 1). Teirlinck
gave an OD(n− 1, 2n− 2) (and hence an LF(n− 1, 2n− 2)) for any prime n [10].

7. Applications
7.1. Cooperation via Ordered Designs in Hat Guessing Games

Hat guessing games have drawn much attention among mathematicians, computer
scientists, coding theorists, and even the press due to their relations to graph theory, circuit
complexity, network coding, and auctions [27–32]. Some versions of hat guessing games
are used in derandomizing protocols in circuit complexity and derandomizing auctions
in auction mechanism design due to the innate similarities between these games, and the
number-on-forehead models in complexity [33,34] and the bid-independent auctions [35].
Moreover, these games are attractive because their optimal solutions have many unexpected
connections to coding theory [33,34]. In this paper, we consider a variant of such games
called unique-supply hat guessing game, defined below, which is a special case of the finite-
supply hat guessing game studied in [29,31].

• Assume there are n players and v hats with different colors 1, . . . , v. (the supply for hats
of any specific color is unique; in other words, each hat is unique). A dealer randomly
places one hat to each of the n players (according to uniform distribution).

• Each player can observe the colors of the hats of other players, but cannot see and has
to guess the color they receive. All players must guess simultaneously.

• The n players act as a team, and the team wins if all players are right. The question is
how to design the best cooperative strategy to obtain the maximal winning probability.

• Parameters (n, v) are known to the players. No communication is allowed between
players after the game starts; communication via wait used in some hat puzzles is also
forbidden. However, it is permissible for them to discuss a strategy beforehand.

Example 3. For n = 2, the following strategy is optimal: Player 1 guesses (B− 1) mod v after
observing color B of their teammate, whereas Player 2 guesses (A + 1) mod v after observing
color A of their teammate. Clearly, the players both simultaneously guess right or both fail.

A placement of the v hats to n players can be represented by an n-permutation
(a1, . . . , an) of [v], which is a vertex in G(n, v); vice versa. The winning placements of a
strategy s refer to those placements for which a team wins when they adopt strategy s.
α(G) is the cardinality of the maximal independent (vertex) set of graph G.

Lemma 5. The winning placements of any strategy form an independent set of G(n, v). Moreover,
given an independent set I of G(n, v), the winning placements of some strategy contains I. As a
corollary, finding the optimal strategy is equivalent to finding the MIS of G(n, v); the maximal
winning probability of the team is given by α(G(n, v)) divided by the number of vertices of G(n, v).

Mathematics 2022, 10, 4703 12 of 18

Proof. A strategy s cannot win two adjacent vertices (i.e., placements). Why? Suppose
(a1, . . . , an) and (a1, . . . , ai−1, a′i, ai+1, . . . an) are winning placements of s that are adjacent.
The i-th player cannot distinguish the placements, as their observation is invariant. So their
guess should be consistent in two cases, which is wrong in one case.

Given an independent set I of G(n, v), the following strategy wins all placements in
I. For each player, there is at most one vertex (a1, . . . , an) in I that is consistent with their
observation (since all such placements are clearly adjacent yet I is independent). The player
guesses according to the mentioned vertex if it exists, or arbitrarily otherwise.

Combining Lemma 5 with Proposition 3, we obtain

Corollary 2. The maximal winning probability equals 1
v−n+1 if and only if there is an OD(n, v).

Recall the MIS Ic (1 ≤ c ≤ n) of G(n, 2n− 1) introduced in (4). An optimal strategy
wins all the vertices in IC as analyzed above. In the following, we give an explicit description
of this optimal strategy using underlying Latin function f instead of set Ic.

Explicit description for the strategy that wins all the placements in Ic: Given a
placement a = (a1, . . . , an), denote Ai = {a1, . . . , an} \ {ai} for each i ∈ [n], which is the
set of colors observed by player i. Player c guesses gc = f (Ac). Player i (i 6= c) guesses gi,
where gi denotes the unique number g /∈ Ai \ {ac} such that f (Ai \ {ac} ∪ {g}) = ac (note
that ac is known by player i and the uniqueness of g follows from the Latin property).

When a ∈ Ic, every player guesses right, i.e., gi = ai (1 ≤ i ≤ n). The trivial proof is
omitted.

Remark 8. (1) In the strategy corresponding to Ic, player c can be regarded as the leader of the
team. This does not mean that they would answer earlier than the others. Instead, everybody figures
out what the leader would do and searches for the unique answer that is consistent with the leader.

(2) For making the decision, each player only checks the set of colors of other players and the
color of the leader (if they are not the leader). Therefore, the n− 1 members other than the leader c
can be indistinguishable if the above strategy is applied.

To sum up, we show how to use our combinatorial design called Latin matching to
solve a variant of hat guessing games. This application of the Latin matching has the same
favor as the application of the Hamming code in the original hat guessing game [29,31].
Unfortunately, the Latin matching does not always exist just as the Hamming code.

7.2. Apply Known LOD(n, 2n− 1) to Construct Other Ordered Designs

Recall matrices X and Y in the proof of Theorem 2, which are constructed from
I1, . . . , In (who form LOD(n, 2n− 1)). Let Z = [XY], which has 2n− 1 rows. We claim that

(1) for n = 3, matrix Z is an OD(2, 5, 5);
(2) for n = 5, matrix Z is an OD6(3, 9, 9) (note: Z is not an OD(4, 9, 9)).

Claim (1) easily follows from Theorem 2. Claim (2) does not immediately follow from
Theorem 2. We used a computer program to prove this claim; see Appendix B. We can
further obtain LOD(2, 5, 5) and LOD6(3, 9, 9) applying Point 4-(d) in Section 3.

7.3. Applications of Ordered Designs or Large Set of Ordered Designs in Experimental Designs,
Error-Correcting Codes, Secret-Sharing Scheme, Tournament Scheduling, etc.

Applications of combinatorial design theory in experimental design have a long
history; see a textbook written in the 1980s [3] . Specifically, the connections between
ordered designs and experimental design (such as factorial experiments) can be found in [9,36]
and the references within. Some other applications of perpendicular arrays in [9,36] are
also applications of ordered designs because ordered designs are perpendicular arrays.

An LOD(n, v), which is equivalent to a (v− n + 1)-coloring of G(n, v), can be used in
error-correcting code. Let a = (a1, . . . , an) denote a vertex in G(n, v). The color of a is c(a).

Mathematics 2022, 10, 4703 13 of 18

Because c(a) changes whenever exactly one of a1, . . . , an changes, this value can serve as
the one-error detecting bit when we send message a1, . . . , an.

An LOD(n, v) is also useful in secret-sharing schemes. Suppose n persons want to
hold a secret s ∈ [v− n + 1]. Assign each person i a number ai in [v], so that a = (a1, . . . , an)
is a vertex in G(n, v) with color s (in the given LOD). It can be easily observed that (1)
n persons together can obtain the secret, and (2) every n− 1 persons cannot obtain any
information about the secret.

Ordered designs have connections to Latin squares and MOLS (see Remark 5 and [9]),
orthogonal arrays, and Steiner systems. In fact, ordered designs are called orthogonal arrays of
type I by Rao [9] or ordered Steiner systems by Teirlinck [10]. All these mentioned combinatorial
designs have found a variety of applications, and ordered designs may find similar applica-
tions. In particular, the Latin squares can be used for sampling [37,38] cryptography [39], and
for scheduling tournaments and processors of parallel computer [40–42]. The n-coloring of
G(n, 2n− 1) shown in Section 4.1 is essentially a Latin hypercube (see Remark 4) that has
analogous applications. We do not dwell on applications of Steiner systems and orthogonal
arrays, and we refer the reader to [1,2,4].

8. Concluding Remarks

We proposed a new combinatorial structure called Latin matchings and showed that a
Latin matching of order n leads to an LOD(n, 2n− 1), thus obtaining an LOD(5, 9), among
others. Latin matchings and the more general structures called symmetric Latin functions
have strong connections to Steiner systems, as shown in Lemma 4. Due to these connections,
designing Latin matchings is at least as difficult as designing Steiner systems.

The Latin matching of order 5 given in Figure 1 derived from Hamming(8, 4, 4) is a perfect
matching between ([9]4) and ([9]5) with several remarkable properties (see Remarks 1 and 2). The
existence of such an interesting matching is surprising and might have more applications.
We end this paper by pointing out several unsolved problems.

1. Does an OD(4, 9, 9) exist?
2. Does an LF(6, 11) exist? Does an LF(n, 2n− 1) exist for a composite n?
3. Does an LF(7, 13) exist? Moreover, does an LOD(7, 13) exist?
4. Does an SLF(17, 33) exist? Does an S(16, 32) exist?
5. Is it true that every SLF(n, 2n− 1) is a Latin matching? (we verified that this holds

for n = 2, 3, 5, and we conjecture that this holds for all n.)
6. Is it true that every Latin matching is isomorphic to a cyclic Latin matching?

Author Contributions: Conceptualization, K.J.; methodology, K.J., T.Z. and X.S.; validation, Z.G. and
X.S.; formal analysis, K.J., T.Z. and Z.G.; writing—original draft preparation, K.J.; writing—review
and editing, X.S. and Z.G.; project administration, K.J.; funding acquisition, K.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (no.62002394);
and Shenzhen Science and Technology Program (Grant No. 202206193000001, 20220817175048002).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Zhiyi Huang and Ce Jin for taking part in some discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

Mathematics 2022, 10, 4703 14 of 18

OD Ordered design
LOD Large set of ordered design
MIS Maximal independent (vertex) set
SS Steiner system
SLF Symmetric Latin function
LM Latin matching
OA Orthogonal array

Appendix A. C++ Program for the Proof of Theorem 3
#include <memory.h>
#include <fstream>
using namespace std;

unsigned int power2[32]; // power2[i]= i th power of 2.
int S[132][12]; //This is the unique S(5,6,12) upto isomorphism.
int P[5040][12]; //the number of different S(5,6,12) after permutation is 5040.
void inputSP(){

power2[0] = 1;
for (int i = 1; i < 32; i++) power2[i] = power2[i - 1] + power2[i - 1];
//Next, read S and P from txt files (generated by other programs).
ifstream finS("S.txt");
for (int i = 0; i < 132; i++)

for (int j = 0; j < 12; j++) finS >> S[i][j];
finS.close();
ifstream finP("P.txt");
for (int i = 0; i < 5040; i++)

for (int j = 0; j < 12; j++) finP >> P[i][j];
finP.close();

}

bool used[6];
int a[6], tP6;
int P6[720][6];
void searchP6(int i){ // generate all 720 permutations of {0,..,5}

if (i == 6) memcpy(P6[tP6++], a, sizeof(a));
else

for (int j = 0; j < 6; j++)
if (!used[j]){

used[j] = true; a[i] = j;
searchP6(i + 1);
used[j] = false;

}
}
int Ind[4826809];

/* For any 6-permutation (y[0],...,y[5]) of [0,13),
regard (y[0],...,y[5]) as a number Y of 6 digits in base-13 system.

Note that 13^6=4826809. So, Y is in the range [0,4826809).
Ind[Y] stores the index of (y[0],...,y[5]), which is in [0, 13 choose 6).
All permutations of the 6-element subset have the same index.*/

void computeInd(){
searchP6(0);
int tInd = 0;
for (int a = 0; a < 13; a++)

for (int b = a + 1; b < 13; b++)
for (int c = b + 1; c < 13; c++)

for (int d = c + 1; d < 13; d++)
for (int e = d + 1; e < 13; e++)

for (int f = e + 1; f < 13; f++){
int x[6];
x[0] = a; x[1] = b; x[2] = c; x[3] = d; x[4] = e; x[5] = f;
// x represents a 6-element subset of [0,13).
// all permutations of x have the same index.
for (int i = 0; i < 720; i++){ //find all permutations y of x

int C = 1, s = 0, y[6];
for (int j = 0; j < 6; j++){
y[j] = x[P6[i][j]];
s += C * y[j];

Mathematics 2022, 10, 4703 15 of 18

C *= 13;
}
Ind[s] = tInd;

}
tInd ++;

}
}

unsigned int U[13][5040][54];
/*recall S_1,...,S_13 in the proof of Theorem~13.

Supposing that we choose the k-th S(5,6,12) to be S_{h+1},
it consumes 132 6-element subsets of [0,13).

Let U[h][k] be the set of the 132 indices of these subsets.
Then, {13 choose 6} = 1716. The indices are in [0,1716).
We use 32*54>1716 bits, i.e., 54 unsigned integers to store U[h][k]*/

void computeU(){
for (int h = 0; h < 13; h++){

int t = 0, L[12]; // L represents [0,13)\{h}.
for (int j = 0; j < 13; j++)

if (j != h) L[t++] = j;
for (int k = 0; k < 5040; k++){

for (int i = 0; i < 132; i++){
int C = 1, s = 0;
for (int j = 0; j < 12; j++)

if (S[i][j] == 1){
s += C * L[P[k][j]];
C *= 13;

}
U[h][k][Ind[s] >> 5] += power2[Ind[s] & 31];

}
}

}
}
unsigned int mask[54];
bool disjoint(const unsigned int addmask[54]){

for (int i = 0; i < 54; i++)
if ((addmask[i] & mask[i]) > 0) return false;

return true;
}
int choice[13];
bool ans = false;
void searchSolution(int i){

if (i > 3) printf("%d %d %d %d\n", choice[0], choice[1], choice[2], choice[3]);
if (i == 13) ans = true;
else

for (int k = 0; k < 5040; k++)
if (disjoint(U[i][k])){

choice[i] = k;
for (int j = 0; j < 54; j++) mask[j] += U[i][k][j];
searchSolution(i + 1);
for (int j = 0; j < 54; j++) mask[j] -= U[i][k][j];

}
}

int main(){
inputSP(); computeInd(); computeU();
searchSolution(0);
if (ans) printf("Find a solution");
return 0;

}

Appendix B. C++ Program for the Proof Claim (2) in Section 7.2
#include <iostream>
#include <memory.h>
using namespace std;

int f[512]; // the Latin matching
int A1[9][9][9][9];

Mathematics 2022, 10, 4703 16 of 18

int A2[9][9][9][9];
int A3[9][9][9][9];
int A4[9][9][9][9];
int A5[9][9][9][9];
int Z[9][3024];

void getLM(){
int a[9];
for (int i = 1; i < 15; i++){ // 14 codewords

a[1] = i & 1;
a[2] = (i & 2) / 2;
a[3] = (i & 4) / 4;
a[4] = (i & 8) / 8;
int X = a[1] ^ a[2] ^ a[3] ^ a[4];
a[5] = X ^ a[4];
a[6] = X ^ a[3];
a[7] = X ^ a[2];
a[8] = X ^ a[1];
int S = 0;
for (int j = 1; j <= 8; j++)

if (a[j] == 1) S += (1 << j);
for (int j = 0; j < 9; j++){

f[S] = j;
S *= 2;
if (S >= 512) S -= 511;

}
}

}

void computeA(){
for (int i1 = 0; i1 < 9; i1++)

for (int i2 = 0; i2 < 9; i2++)
if (i2 != i1)

for (int i3 = 0; i3 < 9; i3++)
if (i3 != i1 && i3 != i2)

for (int i4 = 0; i4 < 9; i4++)
if (i4 != i1 && i4 != i2 && i4 != i3){

int f0 = f[(1<<i1)+(1<<i2)+(1<<i3)+(1<<i4)];
A1[f0][i1][i2][i3] = i4;
A2[i1][f0][i2][i3] = i4;
A3[i1][i2][f0][i3] = i4;
A4[i1][i2][i3][f0] = i4;
A5[i1][i2][i3][i4] = f0;

}
}

void computeZ(){
int t = 0;
for (int i = 0; i < 9; i++)

for (int j = 0; j < 9; j++)
if (j != i)

for (int k = 0; k < 9; k++)
if (k != i && k != j)

for (int l = 0; l < 9; l++)
if (l != i && l != j && l != k){

Z[0][t] = i;
Z[1][t] = j;
Z[2][t] = k;
Z[3][t] = l;
Z[4][t] = A1[i][j][k][l];
Z[5][t] = A2[i][j][k][l];
Z[6][t] = A3[i][j][k][l];
Z[7][t] = A4[i][j][k][l];
Z[8][t] = A5[i][j][k][l];
t++;

}
}

bool test(int i, int j, int k){

Mathematics 2022, 10, 4703 17 of 18

int T[9][9][9];
memset(T, 0, sizeof(T));
for (int col = 0; col < 3024; col++){

int a = Z[i][col];
int b = Z[j][col];
int c = Z[k][col];
T[a][b][c]++;
if (T[a][b][c] > 6) return false;

}
return true;

}

int main(){
getLM(); computeA(); computeZ();
for (int i = 0; i < 9; i++)

for (int j = i+1; j < 9; j++)
for (int k = j+1; k < 9; k++)
if (!test(i,j,k)) {

printf("no %d%d%d\n", i,j,k);
return 1;

}
printf("checked that it is OD.6(3,9,9)"); return 0;

}

References
1. Colbourn, C.; van Oorschot, P. Applications of Combinatorial Designs in Computer Science. ACM Comput. Surv. 1989, 21, 223–250.

[CrossRef]
2. Gopalakrishnan, K.; Stinson, D.; Cheriton, D. Applications of Orthogonal Arrays to Computer Science. In Proceedings of the

Sixth International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December, 2006; pp. 149–164.
3. Raghavarao, D. Constructions and Combinatorial Problems in Design of Experiments; Dover books on advanced mathematics; Dover

Publications: New York, NY, USA, 1988.
4. Hedayat, A.; Sloane, N.; Stufken, J. Orthogonal Arrays Theory and Applications; Springer: New York, NY, USA, 1999. [CrossRef]
5. Beth, T.; Jungnickel, D.; Lenz, H. Design Theory; Cambridge University Press: Cambridge, UK, 1999.
6. Keevash, P. The Existence of Designs. arXiv 2014, arXiv:1401.3665.
7. Teirlinck, L. Large Sets of Disjoint Designs and Related Structures. In Contemporary Design Theory: A Collection of Surveys, 1st ed.;

Dinitz, J., Stinson, D., Eds.; Wiley-Interscience: Hoboken, NJ, USA, 1992; Chapter 12, pp. 561–592.
8. Bierbrauer, J. Ordered Designs, Perpendicular Arrays, and Permutation Sets. In Handbook of Combinatorial Designs, 2nd ed.;

Colbourn, C., Dinitz, J., Eds.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006; Chapter 38, pp. 543–547.
9. Rao, C. Combinatorial Arrangements Analogous to Orthogonal Arrays. Sankhya Indian J. Stat. Ser. A 1961, 23, 283–286.
10. Teirlinck, L. On Large Set of Disjoint Ordered Design. Ars Comb. 1988, 17, 31–37.
11. Jin, K. On 1-factorizations of Bipartite Kneser Graphs. Theor. Comput. Sci. 2020, 838, 81–93. . [CrossRef]
12. Teirlinck, L.; Lindner, C. The Construction of Large Sets of Idempotent Quasigroups. Eur. J. Comb. 1988, 9, 83–89. [CrossRef]
13. Teirlinck, L. Generalized Idempotent Orthogonal Arrays. In Coding Theory and Design Theory: Part II, Design Theory, 1st ed.;

Ray-Chaudhuri, D., Ed.; Springer: New York, NY, USA, 1990; pp. 368–378.
14. Ray-Chaudhuri, D.; Zhu, T. Orthogonal arrays and ordered designs. J. Stat. Plan. Inference 1997, 58, 177–183. [CrossRef]
15. Bierbrauer, J.; Van Trung, T. Some highly symmetric authentication perpendicular arrays. Des. Codes Cryptogr. 1991, 1, 307–319.

[CrossRef]
16. Stinson, D.; Teirlinck, L. A Construction for Authentication/secrecy Codes from 3-homogeneous Permutation Groups. Eur. J.

Comb. 1990, 11, 73–79. [CrossRef]
17. Kramer, E.; kreher, D.; Rees, R.; Stinson, D. On perpendicular arrays with t ≥ 3. Ars Comb. 1989, 28, 215–223.
18. Rosa, A. Topics on Steiner Systems; North-Holland Publishing Company: Amsterdam, The Netherland, 1980.
19. McKay, B.; Wanless, I. A Census of Small Latin Hypercubes. SIAM J. Discret. Math. 2008, 22, 719–736. [CrossRef]
20. Mendelsohn, N.; Hung, S. On the Steiner systems S(3, 4, 14) and S(4, 5, 15). Util. Math. 1972, 1, 5–95.
21. Östergård, P.; Pottonen, O. There Exists No Steiner System S(4,5,17). J. Comb. Theory Ser. A 2008, 115, 1570–1573. [CrossRef]
22. Kramer, E.; Mesner, D. Intersections Among Steiner Systems. J. Comb. Theory Ser. A 1974, 16, 273–285. [CrossRef]
23. Wikipedia. Steiner System. 2022. Available online: https://en.wikipedia.org/wiki/Steiner|underlinetag|system (accessed on

1 December 2022).
24. Brouwer, A.; Etzion, T. Some New Distance-4 Constant Weight Codes. Adv. Math. Commun. 2011, 5, 417–424.
25. Nurmela, K.; Kaikkonen, M.; Östergård, P. New Constant Weight Codes from Linear Permutation Groups. IEEE Trans. Inf. Theory

2006, 43, 1623–1630. [CrossRef]
26. Van Pul, C.; Etzion, T. New Lower Bounds for Constant Weight Codes. IEEE Trans. Inf. Theory 1989, 35, 1324–1329. [CrossRef]

http://doi.org/10.1145/66443.66446
http://dx.doi.org/10.1007/978-1-4612-1478-6
http://dx.doi.org/10.1016/j.tcs.2020.06.003
http://dx.doi.org/10.1016/S0195-6698(88)80031-3
http://dx.doi.org/10.1016/S0378-3758(96)00068-7
http://dx.doi.org/10.1007/BF00124606
http://dx.doi.org/10.1016/S0195-6698(13)80058-3
http://dx.doi.org/10.1137/070693874
http://dx.doi.org/10.1016/j.jcta.2008.04.005
http://dx.doi.org/10.1016/0097-3165(74)90054-5
https://en.wikipedia.org/wiki/Steiner|underlinetag|system
http://dx.doi.org/10.1109/18.623163
http://dx.doi.org/10.1109/18.45293

Mathematics 2022, 10, 4703 18 of 18

27. The-New-York-Time. Why Mathematicians Now Care about Their Hat Color. 2001. Available online: http://www.nytimes.com/
2001/04/10/science/why-mathematicians-now-care-about-their-hat-color.html (accessed on 1 December 2022).

28. Lenstra, H.; Seroussi, G. On Hats and Other Covers. In Proceedings of the IEEE International Symposium on Information Theory,
Lausanne, Switzerland, 30 June–5 July, 2002; pp. 342–342.

29. Butler, S.; Hajiaghayi, M.; Kleinberg, R.; Leighton, T. Hat Guessing Games. SIAM Rev. 2009, 51, 399–413. [CrossRef]
30. Ma, T.; Sun, X.; Yu, H. A New Variation of Hat Guessing Games. In Proceedings of the International Computing and

Combinatorics Conference, Dallas, TX, USA, 14–16 August 2011; Springer: Berlin/Heidelberg, Germany, 2011, pp. 616–626.
31. Feige, U. You Can Leave Your Hat On (If You Guess Its Color); Technical Report; The Weizmann Institute of Science: Rehovot,

Israel, 2004.
32. Jin, K.; Jin, C.; Gu, Z. Cooperation via Codes in Restricted Hat Guessing Games. In Proceedings of the AAMAS’19: Proceedings

of the 18th International Conference on Autonomous Agents and MultiAgent Systems, Montreal, QC, Canada, 13–17 May 2019;
pp. 547–555.

33. Ebert, T.; Merkle, W.; Vollmer, H. On the Autoreducibility of Random Sequences. SIAM J. Comput. 2003, 32, 1542–1569. [CrossRef]
34. Aspnes, J.; Beigel, R.; Furst, M.; Rudich, S. The Expressive Power of Voting Polynomials. In Proceedings of the 23rd ACM

Symposium on Theory of Computing, New Orleans, LA, USA, 5–8 May 1991; pp. 402–409.
35. Ben-Zwi, O.; Newman, I.; Wolfovitz, G. Hats, Auctions and Derandomization. Random Struct. Algorithms 2015, 46, 478–493.

[CrossRef]
36. Majumdar, D.; Martin, R. Efficient designs based on orthogonal arrays of type I and type II for experiments using units ordered

over time or space. Stat. Methodol. 2004, 1, 19–35. [CrossRef]
37. Ramya, L.; Nehru Viji, S.; Arun Prasad, P.; Kanagasabai, V.; Gautham, N. MOLS sampling and its applications in structural

biophysics. Biophys. Rev. 2010, 2, 169–179. [CrossRef] [PubMed]
38. Wikipedia. Latin Hypercube Sampling. 2022. Available online: https://en.wikipedia.org/wiki/Latin|underlinetag|hypercube|

underlinetag|sampling (accessed on 1 December 2022).
39. Schmidt, N. Latin Squares and Their Applications to Cryptography. Master’s Thesis, Boise State University, Boise, ID, USA, 2016.
40. Schellenberg, P.; van Rees, G.; Vanstone, S. The existence of balanced tournament designs. Ars Comb. 1977, 3, 303–318.
41. Robinson, D. Constructing an annual round-robin tournament played on neutral grounds. Math. Chron. 1981, 10, 73–82.
42. Mendelsohn, E.; Rodney, P. The existence of court balanced tournament designs. Discret. Math. 1994, 133, 207–216. [CrossRef]

http://www.nytimes.com/2001/04/10/science/why-mathematicians-now-care-about-their-hat-color.html
http://www.nytimes.com/2001/04/10/science/why-mathematicians-now-care-about-their-hat-color.html
http://dx.doi.org/10.1137/080743470
http://dx.doi.org/10.1137/S0097539702415317
http://dx.doi.org/10.1002/rsa.20512
http://dx.doi.org/10.1016/j.stamet.2004.08.003
http://dx.doi.org/10.1007/s12551-010-0039-y
http://www.ncbi.nlm.nih.gov/pubmed/28510038
https://en.wikipedia.org/wiki/Latin|underlinetag|hypercube|underlinetag|sampling
https://en.wikipedia.org/wiki/Latin|underlinetag|hypercube|underlinetag|sampling
http://dx.doi.org/10.1016/0012-365X(94)90027-2

	Introduction
	Preliminaries
	Related Work
	Major Findings
	Construction of LOD from LM

	An Orthogonal Property of the OD(n,2n-1)'s Obtained from LM(n,2n-1)
	Connections between SLF and SS with Implications
	Applications
	Cooperation via Ordered Designs in Hat Guessing Games
	Apply Known LOD(n,2n-1) to Construct Other Ordered Designs
	Applications of Ordered Designs or Large Set of Ordered Designs in Experimental Designs, Error-Correcting Codes, Secret-Sharing Scheme, Tournament Scheduling, etc.

	Concluding Remarks
	Appendix A
	Appendix B
	References

