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Abstract: In two-action generalized polymatrix games, Nash equilibria are support-type-symmetric,
i.e., determined by supports for each type of player. We show that such a property does not generalize
straightforwardly for games with at least three actions or where interaction weights have different
signs (neither all positive nor negative). A non-trivial condition on interaction weights must be
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1. Introduction

In finite games, understanding the structure and complexity of the set of equilibria is a
longstanding problem, both from a practical and theoretical standpoint. Identifying invari-
ances in the game structure, for example, by looking at permutations of players that induce
the same payoff structure, allows distinguishing between diversity and multiplicity of
equilibria. Say we consider a partition of players into same-type blocks of indistinguishable
players. Given an equilibrium, any other strategy based on a permutation of players within
same-type blocks is also an equilibrium. As the complexity of equilibria may depend on the
number of same-type blocks, it becomes relevant to study the relationship between the type
space and the equilibrium set. The importance of this notion of symmetry in games, known
since the foundational work of von Neumann, Morgenstern, Nash, or Gale, continues to be
explored to study how symmetries translate from game structure to equilibria ([1–8]).

We can take the question further: does the existence and size of same-type blocks in a
given game induce any other structural property on its equilibrium set? In particular, when
can same-type players play different strategies in equilibrium? How different can these
strategies be?

For general two-action games of pairwise interaction, the authors of [9] show that
same-type blocks of players can split into at most three groups in equilibrium: two in pure
strategies and one in the same nondegenerate mixed strategy. Equilibria are support-type
symmetric: for each type, supports determine strategies; hence, same-type blocks can play
at most three because that is the number of possible supports. Each allocation of players
to pure and mixed strategies determines the associated equilibrium and considering all
possibilities characterizes the equilibrium set.

Our goal is to extend the result from two-action to n-action games, for n ∈ N. We
consider a generalized version of the class of polymatrix games with a presence-based
assumption on interactions. Polymatrix games are a natural extension from standard bima-
trix games which have drawn considerable attention, particularly in applications, for being
succinctly representable, amenable to computational and algorithmic approaches, and the

Mathematics 2022, 10, 4696. https://doi.org/10.3390/math10244696 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244696
https://doi.org/10.3390/math10244696
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8188-9475
https://orcid.org/0000-0003-2953-6688
https://doi.org/10.3390/math10244696
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244696?type=check_update&version=2


Mathematics 2022, 10, 4696 2 of 13

natural ground for studying games of network interactions ([10–18]). These are finite games
where the utility stems from pairwise or dyadic interactions. The sum of weights in some
given interaction matrix (possibly weighted, directed, and state-dependent) determines
payoffs. Hence, utility functions are multilinear in the strategy profile. The generalized
version allows for affine transformations of the utility function, which can accommodate,
for example, endowments, costs, or preferences, as seen in many applications.

Presence-based is a common and convenient assumption, with a long history under
different names, and most commonly known as Independence of Irrelevant Alternatives
(IIA), dating back to Arrow’s work. For example, in the context of social choice theory, it
means, broadly speaking, that given two alternatives, a and b, changes in other options
will not change how players rank a relative to b. However, early in the field, [19] noted the
problematic nature of using the same name in different contexts. Here the assumption is
made on interactions and not on a preference relation. In presence-based games, it only
matters if players choose the same action or a different one (i.e., are present or not). The
assumption only impacts games with at least three possible actions, where it could matter
what action is the different one. It is a commonly used assumption, but here we choose a
new name to avoid misinterpretations.

In this class of games, the expected utility from a mixed strategy becomes additively
separable, and the pure strategy payoff dependence on other players is linear. Furthermore,
the impact players of the same type have on one another sets a limit for the difference in
their expected payoffs in equilibrium. When we associate this with the fact that payoffs
must be the same for every action in a mixed strategy, we find a limitation to asymmetries in
equilibria involving same-type players. We call Nash equilibria support-type-symmetric if
all players of the same type using the same support choose the same strategy. Knowing who
plays what support determines support-type symmetric equilibria. We derive a condition
for support-type symmetry: a restriction on interaction weights relative to the supports
used. The condition comes from guaranteeing a non-zero determinant for a linear system
in terms of the mixed strategies of same-type players using the same support. We observe
that this condition is trivially satisfied for two-action games and games with interaction
matrices where all entries have the same sign (all positive or all negative). The latter may
cause it to go unnoticed and erroneously assumed as a general property of the class of
games studied here, polymatrix or even of finite games in general.

In the next section, we formally setup the class of games treated. Section 3 contains
the main results. We then provide consequences and corollaries and illustrate the results
with examples before concluding.

2. Setup

Consider standard n-person games with a set I ≡ {1, . . . , nI} of players, or individuals
(we will refer to players and individuals interchangeably). Each player has to choose,
independently and simultaneously, an element from its finite action set Ai. Let us denote a
pure strategy profile by s = (s1, . . . , snI ) ∈ A1 × · · · × AnI ≡ S . A generalized polymatrix
game is defined by an utility function u : I × S → R, which determines the payoff of a pure
strategy profile s for player i ∈ I , denoted u(i; s), and given by

u(i; s) = ωi
si
+ ∑

j∈I\{i}
αij(si, sj),

where αij(si, sj) ∈ R represents how j impacts the payoff of i in strategy profile s, and
ωi

a ∈ R represents a personal payoff/cost for player i of choosing a. We can also call
generalized polymatrix games the general class of finite games of pairwise interaction.

In the case that for all i ∈ I , ωi
a = 0, for all a ∈ Ai, the above reduces to the class of

polymatrix games. We consider the possibility of ωi
a 6= 0, not only to obtain a more general

result, but also because most applications include such a component. For example, it could
represent prices if each action is a product or service; a toll to control resource use (if actions
are resources) or traffic (web or otherwise) if actions are routes; or it could also represent
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the players’ valuation of alternatives if it stems from the distribution of preferences. Note
also that we may consider a common action set for all players, A =

⋃Ai, and let ωi
a = −∞

whenever a /∈ Ai. It produces the same set of Nash equilibria as when players have different
action sets. Thus, for notation simplicity, and without loss of generality, we will assume
all players have the same action set A ≡ {1, . . . , nA}, which leads to the pure strategy set
S ≡ AnI .

A mixed strategy for player i is represented by a vector ~σi = (σi
1, . . . , σi

nA) in the
simplex ∆nA , where ~σi(a) ≡ σi

a is the probability that ~σi assigns to a ∈ A and naturally
∑a∈A σi

a = 1. The support of a mixed strategy, supp(~σi), is the subset of pure strategies to
which~σi assigns positive probability. A mixed-strategy profile of the game is an element
of ∆ ≡ (∆nA)nI with its coordinates being the mixed strategies of every individual i ∈ I ,
denoted σ = (~σ1, . . . ,~σnI ).

2.1. Presence Based Games

We will study the class of generalized presence-based polymatrix games. In presence-
based games, an action’s payoff depends only on what is relative to that action, namely,
the players who also choose that action (hence the word presence). Many applications, if
not most, have this assumption, for example, congestion or conformity games (congestion
depends on the use of some resource but not (directly) on the use of other resources).

Presence-based (PB). A generalized polymatrix game is presence-based if for all i, j ∈ I and
a ∈ A, we have αij(a, b) = 0 for all b ∈ A \ {a}.

The assumption is a common and convenient one, with a long history, in the spirit
of what is most commonly known as Independence of Irrelevant Alternatives, dating back
to Arrow’s work. For example, in the context of social choice theory, it means, broadly
speaking, that given two alternatives, a and b, changes in other alternatives will not change
how players rank a relative to b. However, since early in the field, it was noted the
problematic nature of using this same name for similar ideas in different contexts, as they
may refer to different assumptions (see, for example, [19] for an early discussion). To avoid
a misinterpretation, we choose a different name and call this a presence-based influence.
Here the assumption is made on interactions and not on a preference relation directly
(players influence each other dichotomically, i.e., whether they make the same or a different
decision), similar to Independence of Irrelevant Choices as in [20] or No Spillovers as in [21].
Observe that, instead of 0, we could have chosen any constant in the definition. In particular,
that means the equilibrium set of a two-action game is isomorphic to that of a two-action
PB game, as satisfying the assumption requires only a shift-variable transformation (see for
example [9] or [10]).

For PB generalized polymatrix games, the utility function can be rewritten in reduced
notation using α

ij
a ≡ αij(a, a). Given a strategy profile s, let us denote the set of individuals

who choose a ∈ A by s−1(a) ⊂ I . Then, we have,

u(i; s) = ωi
si
+ ∑

j∈s−1(si)\{i}
α

ij
si .

The expected utility function determining the payoff to individual i of the mixed-
strategy profile σ, is (with the standard slight abuse of notation) u(i; σ) ≡ ∑ ∏nI

j=1 σ
j
sj u(i; s),

which leads to

u(i; σ) = ∑
a∈A

σi
a

(
ωi

a + ∑
j 6=i

α
ij
a σ

j
a

)
.

(To understand how to get the above expression, observe that the payoff impact when i
and j interact is the same whatever the strategies of other individuals. By linearity of the
expected value, one can keep the strategies of i and j fixed and separate the product of
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other players’ strategies, one by one, into a sum of all the possibilities for the remaining
players, which equates to 1 since they are a probability distribution. See for example [22].)

2.2. Types

It is useful to partition the set of players into subsets of indistinguishable players. We
will do this through a type map, in some general type space T, which induces a natural
equivalence relation in the strategy space, in terms of the equilibrium set. (The type map
is known a priori and reveals symmetries of the utility profile. Given any equilibrium,
a permutation of strategies for players of the same type is also an equilibrium.) Let
~ωi ≡ (ωi

1, . . . , ωi
nA) ∈ RnA be the vector of action coordinates. Types are defined as follows:

if two individuals j1, j2 ∈ I have the same type tj1 = tj2 = t ∈ T, then,

1. ~ωj1 = ~ωj2 ;

2. For all i ∈ I and a ∈ A we have α
ij1
a = α

ij2
a ≡ αit

a , and α
j1i
a = α

j2i
a ≡ αti

a .

We denote the set of individuals of type t by It and the profile ~ωt through coordi-
nates ωt

a. With this, we can characterize a game by a reduced representation through
ω ≡ (~ω1, . . . , ~ωnT ) and a set of matrices N ≡ {N1, . . . , NnA} where for each a ∈ A, Na is a
nT × nT matrix with entries αtt

a .

2.3. Class of Games Analyzed

In this work, whenever we say games, we will mean PB generalized polymatrix games,
and we refer to different games by two distinguishing features: (i) the number of types nT ;
and (ii) the number of decisions nA. We denote the corresponding class of games by ΓnT ,nA
and a particular game in such a class by ΓnT ,nA(ω;N ). Changing nT or nA has different
impacts and produces different challenges. Our focus is on the impact of the interaction
structure N . In particular, how properties that are known for nA = 2 hold when nA (the
number of decisions) increases.

Note that ΓnT ,nA includes games based on networks given a priori. Namely, networks
that may be directed (if αrt 6= αtr), weighted (if αrt are not only 0 or 1), and state-dependent
(because αrt

a can depend on a). We can, of course, consider that nT = nI , that is, each player
has different connections (or a different utility function).

3. Main Result: Support Type-Symmetries in Nash Equilibria

Let σ−{i,j} denote the strategies of all other players except i and j. Consider the value
of a given pure strategy a for an individual i of type t, not taking into account another given
player j,

Vt
a (σ−{i,j}) ≡ ωt

a + ∑
j′ 6=i,j

α
tj′
a σ

j′
a .

Let σ ∈ ∆ be a mixed-strategy Nash equilibrium and i, j ∈ It two players of the same
type t. Observe that the payoff for i is u(i; σ) = Vt

a (σ−{i,j}) + αtt
a σ

j
a for all a ∈ supp(~σi),

thus for any action a ∈ supp(~σi) ∩ supp(~σj),

u(i; σ)− u(j; σ) = αtt
a

(
σ

j
a − σi

a

)
.

That is, the impact that players of the same type have on each other creates a bound
for the difference in equilibrium payoffs for strategies with intersecting supports. Consider
now, for each type t, the following partition of the action set according to the influence that
individuals of type t have on each other,

A−t ≡ {a ∈ A : αtt
a < 0}; A0

t ≡ {a ∈ A : αtt
a = 0}; A+

t ≡ {a ∈ A : αtt
a > 0}.

The set A−t is the subset of actions that individuals of type t do not like to do together.
The subsets A0

t and A+
t are, respectively, those actions that individuals of type t are

indifferent or like to do together. Now partition the support of a mixed strategy ~σi of
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individual i ∈ It according to these subsets. Define supp(~σi)
− ≡ supp(~σi) ∩ A−t , and

analogously, define supp(~σi)
0 and supp(~σi)

+.

Remark 1 (Type utility ordering). Let σ ∈ ∆ be a mixed strategy Nash equilibrium and consider
a player i ∈ It. The following holds for all j ∈ It,

1. given a ∈ supp(~σi)
+, if σi

a < σ
j
a, then u(i; σ) > u(j; σ);

2. given a ∈ supp(~σi)
−, if σi

a > σ
j
a, then u(i; σ) > u(j; σ);

3. given a ∈ supp(~σi) ∩ supp(~σj) \ A0
t , σi

a = σ
j
a ⇔ u(i; σ) = u(j; σ).

Points 1–3 in Remark 1 lead to the following Lemma regarding the support of strategies
that yield different equilibrium payoffs for players of the same type.

Lemma 1 (Type-asymmetry obstructions). Let σ ∈ ∆ be a non-degenerated mixed-strategy
profile that is a Nash equilibrium. Consider two individuals of the same type i, j ∈ It such that
~σi 6=~σj and u(i; σ) > u(j; σ). The following holds

1. supp(~σi)
+ ⊆ supp(~σj)

+;
2. supp(~σi)

0 = ∅;
3. supp(~σi)

− 6= ∅.

Furthermore, if supp(~σi) = supp(~σj) ≡ a, then

∑
a∈a

1
αtt

a
= 0. (1)

A consequence of the above Lemma for any given Nash equilibrium σ, is that given
some type t, for any i, j ∈ It such that ~σi 6= ~σj, if supp(~σi)

0 6= ∅, then u(i; σ) ≤ u(j; σ).
Furthermore, if it also holds that supp0(~σj) 6= ∅ then u(i; σ) = u(j; σ). The choice of
support limits the difference in individual strategies. In particular, when for some game,
the condition of Equation (1) never holds, then individuals choosing the same support will
have to play the same strategy. Based on this idea, we will build the next definition and
results. The proof of Lemma 1 is in the Appendix A.

Definition 1 (Mixed Type-Symmetry condition MTS). A subset A ⊆ A satisfies the mixed
type-symmetry condition (MTS) for a given type t if

∑
a′∈A

∏
a∈A\{a′}

αtt
a 6= 0.

Note that the MTS is incompatible with Equation (1) of Lemma 1. The formulas are
the same for any support a such that a ∩A0

t is empty. However, the MTS allows a ∩A0
t to

be a singleton. These are the only two possibilities if a satisfies the MTS condition.
Let us define, for two players i, j ∈ It and two actions a1, a2 ∈ A, the following

difference
∆Vt(a1, a2; σ−{i,j}) ≡ Vt

a1
(σ−{i,j})−Vt

a2
(σ−{i,j}).

Note that this does not depend on the order of i and j. Using Lemma 1 we will prove that
the MTS condition will force these players to play the same, unique, strategy.
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Theorem 1 (Support type-symmetry). In a Nash equilibrium, if two individuals of the same
type i, j ∈ It choose the same support, a ⊂ A, and the support satisfies the MTS condition for type
t, then~σi = ~σj. Furthermore, the support a uniquely determines their (equilibrium) strategy in
terms of the strategies of the other individuals σ−{i,j}. In the case of non-singleton supports it is
given by the solution to

σa∗ =
∏a∈a\{a∗} αtt

a + ∑a

(
∆Vt(a, a∗; σ−{i,j})∏a′∈a\{a∗ ,a} αtt

a′

)
∑a∈a ∏a′∈a\{a} αtt

a′
,

for all a∗ ∈ a.

Note that the strategy characterized above is an intersection of best responses, not
the unique best response. That is why in the theorem, we mention it as an equilibrium
strategy and not the best response to σ−{i,j}. Observe also that because of the MTS condition,
the denominator is not zero, and the strategy is well-defined. Naturally, it must satisfy
being a probability, in particular ∆Vt(a, a∗; σ−{i,j}) contains ∆ωt(a1, a2) ≡ ωt

a1
−ωt

a2
, which

means there is a set of action coordinates for which the expression is in (0, 1) and such an
equilibrium is possible. When a ∩A0

t = ∅, i.e., when there are no zeros among αtt
a for all

a ∈ a, the expression reduces to

σa∗ =
1 + ∑a(∆Vt(a, a∗; σ−{i,j})/αtt

a )

1 + ∑a 6=a∗(α
tt
a∗/αtt

a )
, for a, a∗ ∈ a.

The determining point for a strategy involving some a∗ ∈ a is the relation between
∆Vt(a, a∗; σ−{i,j}) and αtt

a∗ .

4. Consequences and Corollaries

In this section, we briefly discuss the consequences of Theorem 1 for some typical
games: (i) the case where the weights in the network are all non-negative (conformity
games); (ii) the case where interaction matrices are the same for every action, that is, the
set N is a singleton; and (iii) the case where there are only two possible actions, i.e., the
action space A has only two elements. We abusively called this section consequences
and corollaries because the results here are a consequence of Theorem 1, but some would
require small computations or reasoning relating more than one of the previous remarks
or results.

Proposition 1 (Conformity games). If for a given type t, At satisfies the MTS and A−t = ∅,
then all equilibria involve a unique strategy for type t.

Proof. Follows from putting together Lemma 1 and Remark 1.

Consider now the class of games ΓnT ,nA(ω; {N}), where N is the nT × nT network,
with entries αtt′ . (It is possible to consider the extended nI × nI network, but there is no
relevant information added, except for the number of players of each type.) These are
games with a constant network (does not depend on the strategies chosen). In this case, the
mixed type-symmetry condition (MTS) for a given type t is αtt 6= 0, and it is independent
of the support choice.
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Corollary 1 (Constant network). Consider a game with a constant network. Given a type t, if
αtt > 0, all strategies are type-symmetric. If αtt < 0, all strategies with the same support are
type-symmetric. Furthermore, given some non-singleton support a, and two individuals i1, i2 ∈ It,
the strategy is

σa∗ =

1 + 1
αtt ∑a ∆ωt(a, a∗) + ∑

j 6=i1,i2
σ

j
a − ∑

j 6=i1,i2
σ

j
a∗

na
,

where na is the cardinal of the support a.

In the class of games with only two possible actions, that is ΓnT ,2, there are only three
possibilities of supports (including singletons). If the action set (i.e., the two possible
actions) satisfy the MTS condition, then players of the same type can either play a pure
strategy or the same nondegenerate mixed strategy, i.e., nondegenerate mixed strategies
are type-symmetric in equilibrium.

Corollary 2 (Heterogeneous two-action games). Consider the class ΓnT ,2 where A = {a1, a2}.
If for some type t we have αtt

1 + αtt
2 6= 0, then all individuals of type t either play a pure strategy or

the same strictly mixed strategy.

In the particular case of Γ1,2, i.e., state-dependent network games with only one type
of individuals and two possible actions, we have N = {α1, α2}. Let us define aggregate
indicators, for a given strategy σ, indicating the number of players using, respectively, a
mixed or pure strategy,

m(σ) ≡ #{i ∈ It : 0 < σi
a < 1, a ∈ A}, and, l1(σ) ≡ #{i ∈ It : σi

a1
= 1}.

Let us define the decision threshold T(l1) ≡ −(α1 + α2)l1 + α2(n− 1).

Corollary 3 (Homogeneous two-action games). Consider the class Γ1,2, with only one type of
individuals and two possible actions A = {a1, a2}. Let σ be a Nash equilibrium. If α1 + α2 6= 0,
then σ induces a partition of I in at most three groups: two subsets using pure strategies and one
subset with the following mixed strategy,

σa1 =
T(l1)− ∆ω(a1, a2)

(α2 + α1)(m− 1)
,

and σa2 = 1− σa1 .

5. Illustrative Examples (Numeric)

Let us go through some numerical examples which can help illustrate the work. As
the results are for each type of player, it is sufficient to consider one type. However, we
need at least three actions to clarify the richness of the equilibrium structure in a given
game. Consider then the class Γ1,3, with I = {1, 2, . . . , 8} (eight) players of the same type,
and three actions A = {a, b, c}. The possible supports for nondegenerate mixed strategies
in this class are {a, b}, {a, c}, {b, c} and {a, b, c}.

A member of Γ1,3 (a game) is completely defined by action coordinates ω and interac-
tion structure N . For clarity we will omit the type superscripts, as there is only one type.
SupposeN = {r + 1, r, r− 1} for some constant r ∈ R (note that the three matrices Na = αa
for a ∈ A are 1× 1 because there is only one type). We can check the MTS condition for
each of the possible supports:

1. for {a, b} it is r + (1 + r) = 2r + 1;
2. for {a, c} it is (r− 1) + (1 + r) = 2r;
3. for {b, c} it is (r− 1) + r = 2r− 1;
4. for {a, b, c} it is r(r− 1) + (r + 1)(r− 1) + (r + 1)r = 3r2 − 1.
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The condition depends on the value of r, and we will now consider the different cases
(note that the above values are also the denominators for the strategy defined in Theorem 1
for each support). Let us also define la as the number of players who choose a given support
a ⊆ A in an equilibrium.

5.1. r = 2 (Conformity)

For every ω the game Γ1,3(ω; {3, 2, 1}) is a conformity game. Thus, by Proposition 1,
in equilibrium, we must have, for all supports, la = 8 (i.e., all players (8) must use the
same mixed strategy in equilibrium). Furthermore, all possible supports satisfy the MTS
condition. Therefore, Theorem 1 gives us the strategies associated with each support.

Suppose, for example, we take the game with ω = (1,−2, ωc) for some constant
ωc ∈ R. Let us denote q = (q, 1− q) the strategy associated with {a, b}. Then, for all i, j,

∆V(b, a; q−{i,j}) = −2 + 6 · 2(1− q)− 1− 6 · 3q = 9− 30q,

which allows us to compute q using Theorem 1. We obtain q = 2+9−30q
5 , therefore we obtain

q = (11/35, 24/35). The strategy produces payoff u(i, q) = 336/35, so q is an equilibrium
if players do not want to change to c, thus if ωc ≤ 336/35.

We can proceed analogously for the rest of the two-action supports, finding (ωc+6
28 , 22−ωc

28 )
for {a, c}, which is an equilibrium if −6 < ωc < 22; and (1 − ωc

9 , ωc
9 ) for {b, c} with

0 < ωc < 9.
For the strategy associated with {a, b, c}, let p = (pa, pb, 1− pa − pb). Then, for all i, j,

we obtain

∆V(b, a; p−{i,j}) = −2 + 12pb − 1− 18pa = −3 + 12pb − 18pa,

∆V(c, a; p−{i,j}) = ωc + 6(1− pa − pb)− 1− 6 · 3pa = ωc + 5− 24pa − 6pb,

thus

pa =
2 · 1 + (−3 + 12pb − 18pa) · 1 + (ωc + 5− 24pa − 6pb) · 2

11
,

hence, pa =
9+2ωc

77 . If we proceed similarly to find pb, we obtain p = ( 9+2ωc
77 , 30+3ωc

77 , 38−5ωc
77 ),

with the restriction −9/2 < ωc < 38/5.
Note that the set of equilibria can only contain the above strategies and, eventually,

pure strategies. It may happen they all coexist in the equilibrium set if 0 < ωc < 38/5, but
for some other games (values of ωc), just some of the strategies are equilibrium or none. For
example, if ωc = 20, there is a unique nondegenerate mixed strategy: the one associated
with {a, c}.

5.2. r = −2 (Congestion)

In this case, we obtain Γ1,3(ω; {−1,−2,−3}), a congestion game for all ω. That means
that equilibria of the type found in the previous case may exist. However, there may also
be equilibria where players choose different supports. Namely, that means each support
may have more than one associated strategy, i.e., where la < 8. However, if the MTS
condition is satisfied, all players using the same support must play the same strategy. For
r = −2 all possible supports satisfy the MTS. Thus, we can use Theorem 1 to find the
respective strategy.

For example, suppose we take ω = (1, 6, 7), and let us look for an equilibrium where
l{a,b} = 3 and l{a,c} = 5. (Not all possibilities exist always. Here, ω was chosen carefully
so that this possibility exists.) Theorem 1 applies, but now strategies are interconnected.
Suppose p = (p, 1 − p) and q = (q, 1 − q) are strategies such that supp(p) = {a, b}
and supp(q) = {b, c}. Proceeding analogously as before, to find p and q, we find for i, j
playing p,

∆V(b, a; p−{i,j}) = 6 + (l{a,b} − 2) · (−2)(1− p) + l{b,c} · (−2)q− 1− (l{a,b} − 2)(−1)p,
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so ∆V(b, a; p−{i,j}) = 3− 10q + 3p. Using the equation in Theorem 1, we obtain

p =
−2 + 3− 10q + 3p

−3
,

which is p = 1−10q
−6 . (The expression given in Theorem 1 still carries p because it gives the

strategy of 2 players written in terms of the other players, and here there are 3 who use
p.) We proceed similarly to find q, and then solving for both we obtain p = ( 1

2 , 1
2 ) and

q = ( 2
5 , 3

5 ). We observe that Theorem 1 only guarantees the same payoff in all actions in the
support. However, these strategies are, in fact, an equilibrium of the game, as players using
p do not have an incentive to change to c because u(i, p) = 0 > 7 + 5(−3)(3/5) = −2, and
analogously for q because u(i, q) = −1/5 > 1− 3/2 = −1/2.

Note that the equilibrium we found here is σ = (p, p, p, q, q, q, q, q) or any permuta-
tion, as players are indistinguishable.

5.3. r = 0

In the case of games Γ1,3(ω; {1, 0,−1}), besides all the possibilities presented in the
previous examples, we have one support, {a, c}, which does not satisfy the MTS condition.
Therefore, there may be equilibria in which players of the same type use different strategies
with the same support, if that support is {a, c}. If a given strategy with support {a, c} is
part of an equilibrium, then all choices of a probability distribution over {a, c} for the same
players are also an equilibrium. However, we note that these are rare or frontier cases.

For example, suppose we take ω = (1,−2, ωc) as in the first example, and let
L{a,c} ⊆ I be the set of players i such that supp(~σi) = {a, c} in some strategy profile
σ. Note that #L{a,c} = l{a,c}. For σ to be an equilibrium, it would be necessary that for all
i ∈ L{a,c} the following (payoffs for a and c) holds

1 + ∑
j∈I\L{a,c}

σ
j
a + ∑

i∈L{a,c}

σi
a = ωc + (−1) ∑

j∈I\L{a,c}

σ
j
c + (−1) ∑

i∈L{a,c}

(1− σi
a),

which leads to
ωc = −1− l{a,c} − ∑

j∈I\L{a,c}

σ
j
c − ∑

j∈I\L{a,c}

σ
j
a.

As such, there is only one value of ωc (one game) for which the given strategy can be
part of an equilibrium. Furthermore, ωc must also satisfy the interval restriction imposed
by the strategies of remaining players, which sometimes is unfeasible. It is in opposition
to what we saw in the first example (r = 2), where there was an interval associated with
each ωc.

6. Concluding Remarks

The main idea of this paper can be summarized following an approach analogous
to [2] or [1]: given a type t and a vector~σ ∈ ∆nA , let us call a group to the maximal subset of
individuals of the same type that choose the exact same strategy, G(t,~σ) ≡ {i ∈ It :~σi =
~σ} ⊆ I . A strategy profile σ naturally induces a partition of I into groups. Let #P(A) be
the cardinal of the power set of A.

Remark 2 (Groups). For every game ΓnT ,nA if every A ⊆ A satisfies the MTS condition for every
type t, then, in a Nash equilibrium, the number of groups is bounded by (#P(A)− 1)nT . If there
exists A ⊆ A such that A does not satisfy the MTS condition, then the number of groups may
be nI .

Verifying if every element in P(A) satisfies the MTS condition naturally grows in
complexity, but that is one of the points in this note: the generalization of support-type-
symmetries from the class of two action games is not straightforward, nor is its complexity.
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Nevertheless, it is trivially satisfied in games where all weights in the interaction matrix
are non-zero and have the same sign.

Remark 3 (Groups in conformity and congestion games). For congestion games, the number of
groups in a Nash equilibrium is bounded by (#P(A)− 1)nT . For conformity games, it is bounded
by nT .

We have focused the analysis on strategies with the same support. Nevertheless, for
different supports the MTS condition still implicitly carries the idea that, for same type
players, different strategies force the intersection of supports to some null externality set.
We concretize this in the following remark, which relates to Remark 1.

Remark 4. Let σ be a Nash equilibrium of some game Γ. Let A∗ ⊆ A be a maximal subset
A∗ ⊆ supp(~σi) ∩ supp(~σj) for which the MTS condition holds. If u(i; σ) = u(j; σ), then for all

a ∈ A∗ players must use the same probability, that is σi
a = σ

j
a.
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Appendix A. Proofs

Appendix A.1. Lemma 1

Proof. Consider a Nash equilibrium σ where~σi 6=~σj and u(i; σ) > u(j; σ).
Proof of (i). Suppose there is a ∈ A such that a ∈ supp(~σi)

+ and a /∈ supp(~σj)
+.

Let us observe that player j would have an incentive to change to the pure strategy a,
which concludes the proof. As σ is a Nash equilibrium and a /∈ supp(~σj)

+ we have
u(i; σ) = Vt

a (σ−{i,j}) + αtt
a 0. Since individuals i and j are of the same type, if j changes to a,

then u(j; a, σ−j) = Vt
a (σ−{i,j}) + αtt

a σi
a. Hence, as αtt

a > 0, we have u(j; a, σ−j) > u(i; σ) >
u(j; σ).

Proof of (ii). Suppose a ∈ supp(~σi)
0. Then, by a similar reasoning we obtain

u(j; a, σ−j) = u(i; σ) > u(j; σ).
Proof of (iii). Suppose supp(~σi)

− = ∅. From (i) and (ii) we have supp(~σi) =

supp(~σi)
+ ⊆ supp(~σj)

+. If σ
j
a < σi

a for some a ∈ supp(~σj), then a ∈ supp(~σi)
+ thus

a ∈ supp(~σj)
+, as such by Remark 1-(i), u(j; σ) > u(i; σ) which contradicts the initial

assumption for σ. As such, we must have σi
a ≤ σ

j
a for all a ∈ supp(~σi). As supp(~σi)

0 = ∅
by (ii) (above), Remark 1-(iii) forces σi

a < σ
j
a for all a ∈ supp(~σi). This establishes the

contradiction since ∑i σi
a = ∑j σ

j
a = 1 and supp(~σi) ⊆ supp(~σj).

Let us now prove the last part of the Lemma. First, note that as each individual earns
the same in every pure strategy contained in the support of its mixed strategy, the following
must hold for every pair of decisions a, a′ ∈ supp(~σi),

αtt
a′σ

j
a′ − αtt

a σ
j
a = Vt

a (σ−{i,j})−Vt
a′(σ−{i,j}).

Furthermore, this must hold both for i and j, since V does not depend on either.
Suppose now that supp(~σi) = supp(~σj). This originates a unique system of equations
for the strategy of both individuals. If the strategies of two individuals of the same
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type are different, i.e., ~σi 6= ~σj, this implies that the system associated with the above
equations, together with the constraint ∑i σi

a = 1, does not have a unique solution. Let us
label the elements of the support supp(~σi) = {1, . . . , nσ} and use the variable reduction
σnσ = 1−∑a σa. The system can be reduced, and its coefficients can be represented by the
following (nσ − 1)× (nσ − 1) square matrix

B ≡



αtt
1 −αtt

2 0 · · · · · · 0
αtt

1 0 −αtt
3 0 · · · 0

...

...
. . . 0

αtt
1 0 · · · · · · 0 −αtt

nσ−1
αtt

1 + αtt
nσ

αtt
nσ

· · · · · · · · · αtt
nσ


The first term of the determinant of the above matrix, calculated in terms of the last

row, is
(−1)nσ−1+1(αtt

1 + αtt
nσ
)(−1)nσ−2 ∏

a 6={nσ ,1}
αtt

a ,

and the remaining terms are (changing column 1 to ‘place’ a∗ − 1)

∑
a∗∈{2,...,nσ−1}

(−1)nσ−1+a∗αtt
nσ
(−1)1+a∗−1αtt

1 (−1)nσ−3 ∏
a 6={nσ ,a∗ ,1}

αtt
a .

Rearranging the last expression, (noting all exponents of the −1 terms even out)
we obtain

∑
a∗∈{2,...,nσ−1}

∏
a 6=a∗

αtt
a ,

hence,
det(B) = (αtt

1 + αtt
nσ
) ∏

a 6={nσ ,1}
αtt

a + ∑
a∗∈{2,...,nσ−1}

∏
a 6=a∗

αtt
a ,

therefore,
det(B) = ∏

a 6=nσ

αtt
a + ∏

a 6=1
αtt

a + ∑
a∗∈{2,...,nσ−1}

∏
a 6=a∗

αtt
a ,

and finally,
det(B) = ∑

a∗∈supp(~σi)
∏

a 6=a∗
αtt

a .

To conclude observe that for two players of the same type to play different strategies
with the same support we need to have det(B) = 0. Noting that supp(~σi)

0 = ∅

det(B) = 0⇒ ∑
a∈supp(~σi)

1
αtt

a
= 0.

Appendix A.2. Theorem 1

Let us start by the following auxiliary result

Claim 1. Let A be a matrix with zero in all entries except in the diagonal and columns j1 and j2.
We have that

det(A) = (aj1 j1 aj2 j2 − aj2 j1 aj1 j2) ∏
i 6={j1,j2}

aii

Proof of Claim. Start by observing that a diagonal matrix with one non zero column has
as its determinant the product of the diagonal entries. Now, for the case with two columns
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non-zero j1 and j2, we will observe that the only minors with non-zero determinant are of
the form mentioned before. Let us say we develop the determinant by column j1. There
are only two minors that do not have a column with zeros, and thus non-zero determinant.
These are the ones with coefficient aj1 j1 and aj2 j1 . The first minor is in the aforementioned
case. The second minor, with a change of the (old) column j2 to the place of the (old) column
j1 (which was eliminated), becomes also the aforementioned case.

Proof of Theorem 1. The proof follows from the proof of Lemma 1 by finding the solution
to the system

αtt
a′σ

j
a′ − αtt

a σ
j
a = Vt

a (σ−{i,j})−Vt
a′(σ−{i,j}),

using Cramer rule (this is probably not the simplest nor the more elegant approach).
The solution is unique when the MTS condition is satisfied. Note that it is sufficient to
write the system in terms of action 1. As before, let us label the elements of the support
supp(~σi) = {1, . . . , nσ} and use the variable reduction σnσ = 1− ∑a σa. Let Ba∗ be the
following matrix

αtt
1 −αtt

2 0 · · · 0 Vt
2 −Vt

1 0 · · · 0
αtt

1 0 −αtt
3 0 Vt

3 −Vt
1 · · · 0

αtt
1 0

. . . 0
...

... · · · 0
... −αtt

a∗−1
... · · · 0

... 0
... 0 · · · 0

... 0 · · ·
... −αtt

a∗+1 · · · 0
... 0 · · ·

...
... 0

. . . 0

αtt
1 0 · · · · · · 0

... 0 0 −αtt
nσ−1

αtt
1 + αtt

nσ
αtt

nσ
· · · · · · αtt

nσ
Vt

nσ
−Vt

1 + αtt
nσ

αtt
nσ

· · · αtt
nσ


For a subset A∗ ⊂ A let us define P(A∗) ≡ ∏a∈A\A∗ αtt

a . We will simplify notation by
using P(a1, a2) to mean P({a1, a2}) and also omit the superscripts relative to type t since
the proof is performed over type t only. Developing the determinant by the last row, there
are two terms not in αnσ . These are (as before changing column 1 to ‘place’ a∗ − 1 in the
corresponding non-diagonal minor)

(−1)n−1+1(α1 + αnσ )(Va∗ −V1)P(a∗, 1, nσ)(−1)n−3

+(−1)n−1+a∗(Vnσ −V1 + αnσ )(−1)a∗−2P(a∗, nσ)(−1)n−3.

This leads to

−(α1 + αnσ )(Va∗ −V1)P(a∗, 1, nσ) + (Vnσ −V1 + αnσ )P(a∗, nσ),

and finally,

P(a∗)− (Va∗ −V1)P(a∗, nσ)− (Va∗ −V1)P(a∗, 1) + (Vnσ −V1)P(a∗, nσ).

Now the other terms are (adjusting the matrix columns and using Claim 1)

∑
a 6=1,a∗ ,nσ

(−1)n−1+aαnσ (−1)a−2(α1(Va∗ −V1)− α1(Va −V1))P(1, a, nσ, a∗)(−1)n−4

so we obtain
∑

a 6=1,a∗ ,nσ

((Va −V1)− (Va∗ −V1))P(a, a∗)
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rearranging
∑

a 6=1,a∗ ,nσ

(Va −V1)P(a, a∗)− (Va∗ −V1) ∑
a 6=1,a∗ ,nσ

P(a, a∗).

Putting all terms together

det(Ba∗) = P(a∗) + ∑
a 6=a∗

(Va −V1)P(a, a∗)− (Va∗ −V1) ∑
a 6=a∗

P(a, a∗)

and finally,
det(Ba∗) = P(a∗) + ∑

a
(Va −Va∗)P(a, a∗).

The solution, by Cramer rule, is

det(Ba∗)

det(B)
=

P(a∗) + ∑a(Va −Va∗)P(a, a∗)
∑a ∏a′ 6=a αtt

a′

when there are no zeros among αtt
a , dividing byP(a∗),

det(Ba∗)

det(B)
=

1 + ∑a(Va −Va∗)(α
tt
a )
−1

αtt
a∗ ∑a(α

tt
a )
−1 .
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