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Abstract: In this paper, the function classes SP p(σ, ν) and UCSP(σ, ν) are investigated for the
normalized Wright functions. More precisely, several sufficient and necessary conditions are provided
so that the aforementioned functions are in these classes. Furthermore, several corollaries will follow
from our results.
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1. Introduction

Let A denote the class of analytic functions that are defined on the open unit disk
U = {z ∈ C : |z| < 1}, which can be written as

f (z) = z +
∞

∑
n=2

anzn, (1)

and T ⊂ A denote the class of analytic functions of the form

f (z) = z−
∞

∑
n=2
|an|zn, z ∈ U. (2)

A function f ∈ A is called a spiral-like function if

R

(
e−iσ z f ′(z)

f (z)

)
> 0, z ∈ U,

where |σ| < π/2 . Further, a function f ∈ A is called a convex spiral-like function if z f ′(z)
is a spiral-like function.

Definition 1. A function f ∈ A belongs to the subclass SP p(σ, ν) of the class of spiral-like
functions if the following condition is verified.

R

{
e−iσ

(
z f ′(z)

f (z)

)}
>

∣∣∣∣ z f ′(z)
f (z)

− 1
∣∣∣∣+ ν (z ∈ U; |σ| < π/2 ; 0 ≤ ν < 1).

Definition 2. A function f ∈ A is in the subclass UCSP(σ, ν) of the class of convex spiral-like
functions if z f ′(z) ∈ SP p(σ, ν).
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The abovementioned subclasses were introduced by Selvaraj and Geetha, see [1].
For functions f ∈ T , let us define the following subclasses.

SP pT (σ, ν) = SP p(σ, ν) ∩ T

and
UCSPT (σ, ν) = UCSP(σ, ν) ∩ T .

In particular, we see that SP p(σ, 0) = SP p(σ) is the class of uniformly spiral-like
functions and UCSP(σ, 0) = UCSP(σ) is the class of uniformly convex spiral-like func-
tions. These subclasses were introduced by Ravichandran et al. [2]. Further, Rønning [3]
introduced and investigated the subclasses SP p(0, 0) = SP and UCSP(0, 0) = UCV .
For further fascinating developments of a few linked uniformly spiral-like and uniformly
convex spiral-like subclasses, readers may be referred to [4–11].

Special functions have been used extensively in many practical applications in physics,
mathematics, and engineering. Recently, special functions have found many connections
with geometric function theory, see [12–26]. In this work, we consider the Wright function,
which is a well-known special function defined as

ϕ(γ, δ; z) =
∞

∑
n=0

1
Γ(γn + δ)

zn

n!
, γ > −1, δ, z ∈ C. (3)

Wright functions play a substantial role in many areas, including the asymptotic theory
of partitions, Mikusinski operational calculus, Green functions, and partial differential
equations of fractional order, see, for example [27–29].

Remark 1. For γ = 1 and δ = p + 1, the Bessel functions Jp(z) can be written as Wright
functions ϕ(1, p + 1;−z2/4), where

Jp(z) =
( z

2

)p
ϕ(1, p + 1;

−z2

4
) =

∞

∑
n=0

1
Γ(n + p + 1)

(z/2)2n+p

n!
.

Further, for γ > 0 and p > −1, the generalized Bessel function (or the Bessel–Wright
function) Jγ

p (z) ≡ ϕ(γ, p + 1;−z).

Observe that the Wright function ϕ(γ, δ, z) /∈ A. To overcome this shortcoming, in this
work, we consider the following normalized Wright functions:

Ψ(1)(γ, δ; z) := Γ(δ)zϕ(γ, δ; z) =
∞

∑
n=0

Γ(δ)
Γ(γn + δ)

zn+1

n!
, γ > −1, δ > 0, z ∈ U

and

Ψ(2)(γ, δ; z) := Γ(γ + δ)

(
ϕ(γ, δ; z)− 1

Γ(δ)

)
=

∞

∑
n=0

Γ(γ + δ)

Γ(γn + γ + δ)

zn+1

(n + 1)!
, γ > −1, γ + δ > 0, z ∈ U.

It is easily verified that

Ψ(1)(γ, δ; z) = z +
∞

∑
n=2

Γ(δ)
Γ(γ(n− 1) + δ)

zn

(n− 1)!
, γ > −1, δ > 0, z ∈ U, (4)

and
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Ψ(2)(γ, δ; z) = z +
∞

∑
n=2

Γ(γ + δ)

Γ(γ(n− 1) + γ + δ)

zn

n!
, γ > −1, γ + δ > 0, z ∈ U. (5)

Moreover, note that Ψ(1)(γ, δ; z) and Ψ(2)(γ, δ; z) satisfy the following equations.

γz(Ψ(1)(γ, δ; z))′ = (δ− 1)Ψ(1)(γ, δ− 1; z) + (γ + δ + 1)Ψ(1)(γ, δ; z),

Ψ(2)(γ, δ; z) = z +
∞

∑
n=2

Γ(γ + δ)

Γ(γ(n− 1) + γ + δ)

zn

n!
, γ > −1, γ + δ > 0, z ∈ U,

and

z(Ψ(2)(γ, δ; z))′ = Ψ(1)(γ, γ + δ; z) and V′γ,δ(z) =
Γ(δ)

Γ(γ + δ)
Vγ,γ+δ(z), (6)

where Vγ,δ(z) =
Ψ(1)(γ,δ;z)

z .
Furthermore, for the normalized Bessel function Jp(z), we have

−Ψ(1)(1, p + 1;−z) = Jp(z) := Γ(p + 1)z1−p/2 Jp(2
√

z). (7)

In recent years, several researchers have used the normalized Wright functions
(see [30–33]) to obtain some necessary and sufficient conditions so that they are in certain
classes of analytic functions with negative coefficients. Motivated with the aforementioned
works, several sufficient and necessary conditions are provided in the present work for
the normalized Wright functions Ψ(1)(γ, δ; z) and Ψ(2)(γ, δ; z) so that they are in classes
SP p(σ, ν) and UCSP(σ, ν). Many findings in the literature have been improved by our
main results, and new techniques have been added to the proofs, including geometric
proof.

To achieve our targeted results, we demand the following lemma.

Lemma 1 ([1]). A sufficient and necessary condition for a function f given by (1) to be in the
function class SP p(σ, ν) and a function f given by (2) to be in the function class SP pT (σ, ν) is

∞

∑
n=2

(2n− cos σ− ν)|an| ≤ cos σ− ν (|σ| < π/2 ; 0 ≤ ν < 1). (8)

Further, a necessary and sufficient condition for a function f given by (1) to be in the function
class UCSP(σ, ν) and a function f given by (2) to be in the function class UCSPT (σ, ν) is

∞

∑
n=2

n(2n− cos σ− ν)|an| ≤ cos σ− ν (|σ| < π/2 ; 0 ≤ ν < 1). (9)

2. Necessary and Sufficient Conditions for the Normalized Wright Functions to Be in
SP p(σ, ν) and UCSP(σ, ν)

Theorem 1. The function Ψ(1)(γ, δ; z) ∈ SP p(σ, ν) if the next condition is verified for γ ≥ 1.

δ(cos σ− ν) + (cos σ + ν− 2)(δ + 1)
(

e
1

δ+1 − 1
)
− 2e

1
δ+1 ≥ 0.

Proof. Since

Ψ(1)(γ, δ; z) = z +
∞

∑
n=2

Γ(δ)
Γ(γ(n− 1) + δ)

zn

(n− 1)!
,

then by (8), it suffices to show that

∞

∑
n=2

(2n− cos σ− ν)Γ(δ)
Γ(γ(n− 1) + δ)

1
(n− 1)!

≤ cos σ− ν.
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Let

k1(γ, δ; σ, ν) =
∞

∑
n=2

(2n− cos σ− ν)Γ(δ)
Γ(γ(n− 1) + δ)

1
(n− 1)!

.

Setting n = (n− 1) + 1 and by direct computations, we obtain

k1(γ, δ; σ, ν) =
∞

∑
n=2

2Γ(δ)
(n− 2)!Γ(γ(n− 1) + δ)

+
∞

∑
n=2

(2− cos σ− ν)Γ(δ)
(n− 1)!Γ(γ(n− 1) + δ)

.

By the assumption, γ ≥ 1, and hence Γ(n − 1 + δ) ≤ Γ(γ(n − 1) + δ), for n ∈ C,
remain true and is equipollent to

Γ(δ)
Γ(γ(n− 1) + δ)

≤ 1
(δ)n−1

, n ∈ C. (10)

Here, (δ)0 = 1 and (δ)n = Γ(n+δ)
Γ(δ) = δ(δ + 1)(δ + 2) · · · (δ + n− 1) is the well known

Pochhammer symbol.
By using Equation (10), we obtain

k1(γ, δ; σ, ν) ≤
∞

∑
n=2

2
(δ)n−1(n− 2)!

+
∞

∑
n=2

(2− cos σ− ν)

(δ)n−1(n− 1)!
.

Further, the inequality

(δ)n−1 = δ(δ + 1)(δ + 2) · · · (δ + n− 1) ≥ δ(δ + 1)n−2, n ∈ C (11)

remain true and this is equipollent to 1
(δ)n−1

≤ 1
δ(δ+1)n−2 , n ∈ C.

Using Equation (11), we obtain

k1(γ, δ; σ, ν) ≤
∞

∑
n=2

2

δ(δ + 1)n−2(n− 2)!
+

∞

∑
n=2

(2− cos σ− ν)

δ(δ + 1)n−2(n− 1)!

=
2
δ

e
1

δ+1 +
δ + 1

δ
(2− cos σ− ν)

(
e

1
δ+1 − 1

)
≤ cos σ− ν.

Hence,

δ(cos σ− ν) + (cos σ + ν− 2)(δ + 1)
(

e
1

δ+1 − 1
)
− 2e

1
δ+1 ≥ 0.

This accomplishes the proof of Theorem 1.

Theorem 2. The normalized Wright function Ψ(1)(γ, δ; z) ∈ UCSP(σ, ν) if the following condi-
tion is verified for γ ≥ 1.

δ(δ + 1)(cos σ− ν)− 2e
1

δ+1 + (δ + 1)(cos σ + ν− 6)e
1

δ+1 + (cos σ + ν− 2)(δ + 1)2
(

e
1

δ+1 − 1
)
≥ 0.

Proof. Since

Ψ(1)(γ, δ; z) = z +
∞

∑
n=2

Γ(δ)
Γ(γ(n− 1) + δ)

zn

(n− 1)!
,

then by (9), it suffices to show that

∞

∑
n=2

(2n2 − n(cos σ + ν))Γ(δ)
Γ(γ(n− 1) + δ)

1
(n− 1)!

≤ cos σ− ν.

Let

k2(γ, δ; σ, ν) =
∞

∑
n=2

(2n2 − n(cos σ + ν))Γ(δ)
Γ(γ(n− 1) + δ)

1
(n− 1)!

.
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Setting n = (n− 1) + 1, n2 = (n− 1)(n− 2) + 3(n− 1) + 1 and by straightforward
computation, we have

k2(γ, δ; σ, ν) =
∞

∑
n=3

2Γ(δ)
(n− 3)!Γ(γ(n− 1) + δ)

+
∞

∑
n=2

(6− cos σ− ν)Γ(δ)
(n− 2)!Γ(γ(n− 1) + δ)

+
∞

∑
n=2

(2− cos σ− ν)Γ(δ)
(n− 1)!Γ(γ(n− 1) + δ)

.

Using Equations (10) and (11), we obtain

k2(γ, δ; σ, ν) ≤
∞

∑
n=3

2

δ(δ + 1)n−2(n− 3)!
+

∞

∑
n=2

(6− cos σ− ν)

(n− 2)!δ(δ + 1)n−2 +
∞

∑
n=2

(2− cos σ− ν)

(n− 1)!δ(δ + 1)n−2

=
2

δ(δ + 1)
e

1
δ+1 +

6− cos σ− ν

δ
e

1
δ+1 +

(2− cos σ− ν)(δ + 1)
δ

(
e

1
δ+1 − 1

)
≤ cos σ− ν.

Hence,

δ(δ + 1)(cos σ− ν)− 2e
1

δ+1 + (δ + 1)(cos σ + ν− 6)e
1

δ+1 + (cos σ + ν− 2)(δ + 1)2
(

e
1

δ+1 − 1
)
≥ 0.

This accomplish the proof of Theorem 2.

By taking ν = 0 in Theorems 1 and 2, we immediately reach the next consequences.

Corollary 1. The function Ψ(1)(γ, δ; z) ∈ SP p(σ) if the following condition is verified for γ ≥ 1.

δ cos σ + (cos σ− 2)(δ + 1)
(

e
1

δ+1 − 1
)
− 2e

1
δ+1 ≥ 0.

Corollary 2. The function Ψ(1)(γ, δ; z) ∈ UCSP(σ) if the following condition is verified for
γ ≥ 1.

δ(δ + 1) cos σ− 2e
1

δ+1 + (δ + 1)(cos σ− 6)e
1

δ+1 + (cos σ− 2)(δ + 1)2
(

e
1

δ+1 − 1
)
≥ 0.

By picking σ = 0 in Corollary 1 and in Corollary 2, we immediately arrive at the next
consequences.

Corollary 3. Let γ ≥ 1 and δ > x0 ∼= 3.60234 where x0 is the numerical root of(
2− e

1
x+1

)
x− 3e

1
x+1 + 1 = 0,

then Ψ(1)(γ, δ; z) ∈ SP .

Proof. Let y =
(

2− e
1

x+1

)
x− 3e

1
x+1 + 1, x > 0. By straightforward computation, we have

y′ = 2−
(

1− x + 3
(x + 1)2

)
e

1
x+1 .

From the graph of the function g(x) = y′, we immediately can observe that g(x) = y′(x) > 0
for each x > 0 (see Figure 1b).
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1 2 3 4

-3

-2

-1

1

3.6

-4 -3 -2 -1 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) (b)

Figure 1. The graph of the function: (a) f (x) = y =
(

2− e
1

x+1

)
x− 3e

1
x+1 + 1 and (b) g(x) = y′ =

2−
(

1− x+3
(x+1)2

)
e

1
x+1 .

Thus, y(x) is an increasing function for x > 0.
Moreover, the graph of the function y(x) shows that the equation(

2− e
1

x+1

)
x− 3e

1
x+1 + 1 = 0,

has a numerical root that equals x0 = 3.60234 (see Figure 1a).

Therefore,
(

2− e
1

δ+1

)
δ− 3e

1
δ+1 + 1 ≥ 0 for every δ ≥ x0.

Thus, the proof is finished.

Corollary 4. Let γ ≥ 1 and δ > x1
∼= 7.01251 where x1 is the numerical root of(

2− e
1

x+1

)
x2 +

(
3− 7e

1
x+1

)
x− 8e

1
x+1 + 1 = 0,

then Ψ(1)(γ, δ; z) ∈ UCV .

Proof. Let y =
(

2− e
1

x+1

)
x2 +

(
3− 7e

1
x+1

)
x− 8e

1
x+1 + 1, x > 0. By straightforward com-

putation, we have

y′ = (4x + 3)−
(

2x + 7− x2 + 7x + 8
(x + 1)2

)
e

1
x+1 .

From the graph of function g(x) = y′, we can immediately observe that
g(x) = y′(x) > 0 for each x > 2.25 (see Figure 2b).

6.97 7.04 7.11 7.18

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

7.01

-1. -0.5 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5.

5

10

(a) (b)

Figure 2. The graph of function: (a) f (x) = y =
(

2− e
1

x+1

)
x2 +

(
3− 7e

1
x+1

)
x − 8e

1
x+1 + 1 and

(b) g(x) = y′ = (4x + 3)−
(

2x + 7− x2+7x+8
(x+1)2

)
e

1
x+1 .

Thus, y(x) is an increasing function for x > 2.25.
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Moreover, the graph of function y(x) shows that the equation(
2− e

1
x+1

)
x2 +

(
3− 7e

1
x+1

)
x− 8e

1
x+1 + 1 = 0,

has a numerical root equals x1 = 7.01251 (see Figure 1a).

Therefore,
(

2− e
1

δ+1

)
δ2 +

(
3− 7e

1
δ+1

)
δ− 8e

1
δ+1 + 1 ≥ 0 for every δ ≥ x1.

Thus, the proof is finished.

Theorem 3. The function Ψ(2)(γ, δ; z) ∈ SP p(σ, ν) if the next condition is verified for γ ≥ 1.

(cos σ− ν)(γ + δ) + (cos σ + ν)(γ + δ + 1)2
(

e
1

γ+δ+1 − 1
)
+ (γ + δ + 1)

(
2− cos σ− ν− 2e

1
γ+δ+1

)
≥ 0.

Proof. Since

Ψ(2)(γ, δ; z) = z +
∞

∑
n=2

Γ(γ + δ)

Γ(γ(n− 1) + γ + δ)

zn

n!
,

then by (8), it suffices to show that

∞

∑
n=2

(2n− cos σ− ν)Γ(γ + δ)

Γ(γ(n− 1) + γ + δ)

1
n!
≤ cos σ− ν.

Let

k3(γ, δ; σ, ν) =
∞

∑
n=2

(2n− cos σ− ν)Γ(γ + δ)

Γ(γ(n− 1) + γ + δ)

1
n!

.

By straightforward computation, we have

k3(γ, δ; σ, ν) =
∞

∑
n=2

2Γ(γ + δ)

(n− 1)!Γ(γ(n− 1) + γ + δ)
−

∞

∑
n=2

(cos σ + ν)Γ(γ + δ)

n!Γ(γ(n− 1) + γ + δ)
.

Using Equations(10) and (11), we obtain

k3(γ, δ; σ, ν) ≤
∞

∑
n=2

2

(γ + δ)(γ + δ + 1)n−2(n− 1)!
−

∞

∑
n=2

cos σ + ν

(γ + δ)(γ + δ + 1)n−2n!

=
2(γ + δ + 1)

γ + δ

(
e

1
γ+δ+1 − 1

)
− (cos σ + ν)(γ + δ + 1)2

γ + δ

(
e

1
γ+δ+1 − 1

γ + δ + 1
− 1

)
≤ cos σ− ν.

Hence,

(cos σ− ν)(γ + δ) + (cos σ + ν)(γ + δ + 1)2
(

e
1

γ+δ+1 − 1
)
+ (γ + δ + 1)

(
2− cos σ− ν− 2e

1
γ+δ+1

)
≥ 0.

This accomplishes the proof of Theorem 3.

If we set ν = 0 in Theorem 3, we immediately arrive at the next consequence.

Corollary 5. The normalized Wright function Ψ(2)(γ, δ; z) ∈ SP p(σ) if the following condition
is verified for γ ≥ 1.

(γ + δ) cos σ + cos σ(γ + δ + 1)2
(

e
1

γ+δ+1 − 1
)
+ (γ + δ + 1)

(
2− cos σ− 2e

1
γ+δ+1

)
≥ 0.

By picking σ = 0 in Corollary 5, we immediately arrive at the next consequence.

Corollary 6. Let γ ≥ 1 and δ > x2 ∼= 1.83392 where x2 is the numerical root of(
e

1
x+1 − 1

)
x2 − e

1
x+1 = 0,
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then Ψ(2)(γ, δ; z) ∈ SP .

Proof. Let y =
(

e
1

x+1 − 1
)

x2 − e
1

x+1 , x > 0. By straightforward computation, we have

y′ =
(

2x− x2 − 1
(x + 1)2

)
e

1
x+1 − 2x.

From the graph of function g(x) = y′, we immediately can observe that
g(x) = y′(x) > 0 for each x > 0 (see Figure 3b).

1.83 1.84 1.85

-0.02

-0.01

0.00

0.01

0.02

1.833

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

(a) (b)

Figure 3. The graph of function: (a) f (x) = y =
(

e
1

x+1 − 1
)

x2 − e
1

x+1 and (b) g(x) = y′ =(
2x− x2−1

(x+1)2

)
e

1
x+1 − 2x.

Thus, y(x) is an increasing function for x > 0.
Moreover, the graph of function y(x) shows that the equation(

e
1

x+1 − 1
)

x2 − e
1

x+1 = 0,

has a numerical root equal to x2 = 1.83392 (see Figure 3a).

Therefore,
(

e
1

δ+1 − 1
)

δ2 − e
1

δ+1 ≥ 0 for every δ ≥ x2.
Thus, the proof is finished.

Theorem 4. The function Ψ(2)(γ, δ; z) ∈ UCSP(σ, ν) if the following condition is verified for
γ ≥ 1.

(γ + δ)(cos σ− ν) + (cos σ + ν− 2)(γ + δ + 1)
(

e
1

γ+δ+1 − 1
)
− 2e

1
γ+δ+1 ≥ 0.

Proof. The function Ψ(2)(γ, δ; z) ∈ UCSP(σ, ν) if z(Ψ(2)(γ, δ; z))′ ∈ SP p(σ, ν), but from
Equation (1) z(Ψ(2)(γ, δ; z))′ = Ψ(1)(γ, γ + δ; z). Then, making use of Theorem 1, the proof
of the current theorem is finished.

If we set ν = 0 in Theorem 4, we immediately arrive at the next consequence.

Corollary 7. The normalized Wright function Ψ(2)(γ, δ; z) ∈ UCSP(σ) if the following condition
is verified for γ ≥ 1.

(γ + δ) cos σ + (cos σ− 2)(γ + δ + 1)
(

e
1

γ+δ+1 − 1
)
− 2e

1
γ+δ+1 ≥ 0.

By picking σ = 0 in Corollary 7, we immediately arrive at the next consequence.

Corollary 8. Let γ ≥ 1 and δ > x0 ∼= 3.60234 where x0 is the numerical root of(
2− e

1
x+1

)
x− 3e

1
x+1 + 1 = 0,
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then Ψ(2)(γ, δ; z) ∈ UCV .

3. Necessary and Sufficient Conditions for the Normalized Bessel Functions to Be in
SP p(σ, ν) and UCSP(σ, ν)

If we set γ = 1, δ = p + 1 and z = −z in Theorem 1, from Equation (7) we directly
obtain the next results.

Theorem 5. The function Jp(z) ∈ SP p(σ, ν) if the next condition is verified.

(p + 1)(cos σ− ν) + (cos σ + ν− 2)(p + 2)
(

e
1

p+2 − 1
)
− 2e

1
p+2 ≥ 0.

If we set ν = 0 in Theorem 5, we immediately arrive at the next consequence.

Corollary 9. The normalized Bessel function Jp(z) ∈ SP p(σ) if the following condition is verified.

(p + 1) cos σ + (cos σ− 2)(p + 2)
(

e
1

p+2 − 1
)
− 2e

1
p+2 ≥ 0.

By picking σ = 0 in Corollary 9, we immediately arrive at the next consequence.

Corollary 10. Let p > x0 − 1, where x0 ∼= 2.4898 is the numerical root of(
2− e

1
x+1

)
x− 3e

1
x+1 + 1 = 0,

then Jp(z) ∈ SP .

If we set γ = 1, δ = p + 1 and z = −z in Theorem 2, from Equation (7) we directly
have the next results.

Theorem 6. The function Jp(z) ∈ UCSP(σ, ν) if the following condition is verified.

(p + 1)(p + 2)(cos σ− ν)− 2e
1

p+2 + (p + 2)(cos σ + ν− 6)e
1

p+2

+ (cos σ + ν− 2)(p + 2)2
(

e
1

p+2 − 1
)
≥ 0.

If we set ν = 0 in Theorem 6, we arrive at the next corollary.

Corollary 11. The normalized Bessel function Jp(z) ∈ UCSP(σ) if the following condition
is verified.

(p+ 1)(p + 2) cos σ− 2e
1

p+2 +(p + 2)(cos σ− 6)e
1

p+2 +(cos σ− 2)(p+ 2)2
(

e
1

p+2 − 1
)
≥ 0.

By picking σ = 0 in Corollary 11, we arrive at the following corollary.

Corollary 12. Let p > x1 − 1, where x1
∼= 4.8523 is the numerical root of(

2− e
1

x+1

)
x2 +

(
3− 7e

1
x+1

)
x− 6e

1
x+1 + 1 = 0,

then Jp(z) ∈ UCV .

4. Conclusions

In the present work, we establish some sufficient and necessary conditions for the
normalized Wright functions Ψ(1)(γ, δ; z) and Ψ(2)(γ, δ; z) so that they are in the subclasses
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of normalized analytic functions SP p(σ, ν) and UCSP(σ, ν). Some interesting corollaries
and applications of the results are also discussed. Using the normalized Wright functions
Ψ(1)(γ, δ; z) and Ψ(2)(γ, δ; z) could inspire researchers to find new necessary and sufficient
conditions for these functions so that they are in different subclasses of normalized analytic
functions with negative coefficients defined in the open unit disk U.
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