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Abstract: The paper presents a rigorous perturbation analysis of the QR decomposition A = QR
of an n × m matrix A using the method of splitting operators. New asymptotic componentwise
perturbation bounds are derived for the elements of Q and R and the subspaces spanned by the
first p ≤ m columns of A. The new bounds are less conservative than the known bounds and
are significantly better than the normwise bounds. An iterative scheme is proposed to determine
global componentwise bounds in the case of perturbations for which such bounds are valid. Several
numerical results are given that illustrate the analysis and the quality of the bounds obtained.
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1. Introduction

The QR decomposition of a matrix A ∈ Rn×m with n ≥ m as the factorization

A := Q
[

R
0

]
, (1)

where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rm×m is the upper triangular matrix.
The matrices Q and R are referred to as the Q-factor and the R-factor, respectively. Further
on, we shall assume that the matrix A has rank m, i.e., it has full column rank. In such a
case, the matrix R is nonsingular, and the matrix Q can be represented as

Q = [Q1, Q2], Q1 ∈ Rn×m, Q2 ∈ Rn×(n−m),

whereR(Q1) = R(A) and the columns of Q2 form an orthonormal basis for the comple-
mentary subspaceR(A)⊥ ([1], Ch. 1). Thus,

A = Q1R. (2)

The representation (2) is frequently called QR factorization of A, and it is unique up to
the signs of the diagonal elements of R. The matrix Q2 is not unique but has to obey the
orthogonality condition

QTQ =

[
QT

1 Q1 QT
1 Q2

QT
2 Q1 QT

2 Q2

]
=

[
Im 0
0 In−m

]
. (3)

In practice, the matrix A is subject to perturbations of different kinds (model inconsis-
tencies, measurement and rounding errors), which leads to the necessity of investigating
the sensitivity of the different elements of the QR decomposition to perturbations in the
data, i.e., to perform a perturbation analysis of the decomposition [2]. Further on, we
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assume that the matrix A is subject to an additive perturbation δA ∈ Rn×m and that there
exist another pair of matrix Q̃ and upper triangular matrix R̃ such that

Ã = Q̃
[

R̃
0

]
, Ã = A + δA. (4)

The purpose of the perturbation analysis of the QR decomposition is to find bounds
on the sizes of δQ = Q̃−Q and δR = R̃− R as functions of the size of δA for sufficiently
small perturbations of A [3,4]. Due to the non-uniqueness of the matrix Q2, its perturbation
is also non-unique. Thus, in the perturbation analysis, one usually considers only the
perturbations of the matrix Q1, which are uniquely defined by the perturbations of A.
However, in the analysis, we shall need to use an arbitrary matrix Q2 that satisfies the
orthogonality condition (3).

The sizes of the perturbations δA, δQ1 and δR in the QR factorization are measured by
using some of the matrix norms, and, in this case, we call the respective analysis normwise
perturbation analysis. Sometimes, however, we are interested in the size of perturbations in
individual elements of δQ1 and δR, and, in such a case, the analysis is called componentwise
perturbation analysis [5]. In the cases when the estimated vector or matrix has components
that differ greatly in size, the normwise estimate does not produce reliable results, and it is
preferable to use the componentwise perturbation analysis.

The perturbation analysis of the QR decomposition was performed for the first time
by Stewart [6], and improved results were presented by Sun [7] and Stewart [8]. Using
a different approach, Chang, Paige and Stewart [9] gave new asymptotic perturbation
bounds for the R-factor. Additional improvements of the normwise perturbation bounds
of the QR-decomposition were proposed by Chang and Stehlé [10] and Li and Wei [11].
Different componentwise estimates of the perturbations of the Q-factor and the R-factor
were derived by Sun [12], Zha [13], Chang and Paige [14] and Chang [15].

A general approach, based on the use of the so-called splitting operators, which can be
used in the perturbation analysis of several unitary decompositions, was proposed in [16];
for details, see [17]. The method of the splitting operators can be used to determine norm-
wise as well as componentwise perturbation bounds of different unitary decompositions;
see [18–22]. This method was implemented by Sun [23], who obtained improved normwise
perturbation bounds of the QR decomposition.

This paper presents a rigorous componentwise perturbation analysis of the QR decom-
position based on the method of splitting operators. The analysis presented aims at finding
normwise and componentwise perturbation bounds for infinitely small perturbations
(asymptotic bounds) as well as for finite perturbations (global bounds). The main result is
the obtaining of new asymptotic componentwise perturbation bounds that produce less
conservative estimates of the QR decomposition perturbations. A particular case of these
bounds is the asymptotic normwise bounds of the QR decomposition derived previously.

This is demonstrated by an example that the new componentwise perturbation bounds
of the R factor can be several orders of magnitude smaller than the normwise perturbation
bound of this factor. An iterative scheme is proposed to determine global componentwise
bounds in the case of perturbations for which such bounds exist. The analysis conducted in
this paper is unified with the perturbation analysis of the Schur decomposition presented
in [20] and can be easily extended to the case of complex matrices.

In Section 2, we introduce the basic scheme of the perturbation analysis. Section 3 is
devoted to determining normwise and componentwise perturbation bounds of the matrix
Q1. In Section 4, we present estimates for the perturbations of the column subspaces of
A, and, in Section 5, we derive bounds of the elements of R. An iterative scheme for
finding global componentwise perturbation bounds of the QR decomposition is proposed
in Section 6. A comparison with some of the known methods for perturbation analysis of
the QR decomposition is performed in Section 7, and our conclusions are made in Section 8.
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The numerical results presented in the paper were obtained with MATLAB® R2020b [24]
using IEEE double precision arithmetic with roundoff unit u ≈ 1.11× 10−16.

2. Bounding the Basic Perturbation Parameters

Let
Q := [q1, q2, . . . , qn], qj ∈ Rn

and the unperturbed and perturbed matrices of the orthogonal factor of the QR decomposi-
tion be

Q := [q1, q2, . . . , qn],

Q̃ := [q̃1, q̃2, . . . , q̃n],

q̃j := qj + δqj, j = 1, 2, . . . n,

respectively. Define the perturbation matrix

δQ1 := [δq1, δq2, . . . , δqm], δqj ∈ Rn.

It follows from (1) and (4) that

δqT
i aj = −q̃T

i δaj = 0, 1 ≤ j ≤ m, j < i ≤ n. (5)

The column aj can be obtained from the QR factorization (2) as

aj =
j

∑
k=1

rkjqk, 1 ≤ j ≤ m. (6)

Substituting (6) in (5) yields

j

∑
k=1

rkjδqT
i qk = −q̃T

i δaj. (7)

Since Q̃TQ̃ = In, it follows that

QTδQ = −δQTQ− δQTδQ

and
δqT

i qj = −qT
i δqj − δqT

i δqj, 1 ≤ j ≤ m, j < i ≤ n. (8)

Using (8), Equation (7) can be written as

j

∑
k=1

rkjqT
i δqk +

j

∑
k=1

rkjδqT
i δqk = q̃T

i δaj. (9)

Equation (9) represents a system of

ν = n(n− 1)/2−m(m− 1)/2 = m(2n−m− 1)/2

nonlinear algebraic equations for the ν unknown quantities

x` := qT
i δqj, ` = i + (j− 1)n− j(j + 1)

2
, 1 ≤ j ≤ m, j < i ≤ n.
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These quantities, which we call basic perturbation parameters, are elements of the strict
lower part of the matrix δW = QTδQ1. More precisely, one has that

x = vec(Low(δW)),

or, equivalently,
x = Ωvec(δW),

where

Ω := [diag(ω1, ω2, . . . , ωm)] ∈ Rν×nm,

ωk :=
[
0(n−k)×k, In−k

]
∈ R(n−k)×n, k = 1, 2, . . . , m,

ΩTΩ = Iν, ‖Ω‖2 = 1.

Define the lower triangular matrix

M := Ω(RT ⊗ Im)ΩT ∈ Rν×ν

whose elements are determined entirely from the elements of R. It can be shown that

n

∑
k=i

tikqT
k δqj = Mx.

The matrix M has the form

M =



r11 0 . . . 0 0 0 . . . 0 . . . 0
0 r11 . . . 0 0 0 . . . 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . r11 0 0 . . . 0 . . . 0
0 r12 . . . 0 r22 0 . . . 0 . . . 0
0 0 . . . 0 0 r22 . . . 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . r12 0 0 . . . r22 . . . 0
...

...
...

...
...

...
...

...
. . .

...
0 0 . . . r1,m 0 0 . . . r2,m . . . rmm



,

which shows that this matrix is nonsingular if the diagonal elements of R are nonzero. The
matrix M is called the perturbation operator matrix.

From (9), we obtain that
Mx = f − ∆x (10)

where
f = vec(Low(F)) = Ωvec(F) ∈ Rν, F = Q̃TδA

and the vector ∆x ∈ Rν has components

∆x
` = ∑

j
k=1 rkjδqT

i δqk, ` = i + (j− 1)n− j(j + 1)
2

, (11)

1 ≤ j ≤ m, j < i ≤ n.

containing second-order terms in the perturbations δqi, i = 1, 2, . . . , n.
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An asymptotic (linear) approximation of x is obtained from (10) neglecting the second-
order term ∆x,

x = M−1 f . (12)

The norm of this approximation obeys

‖x‖2 ≤ ‖M−1‖2‖ f ‖2,

which shows that the size of the linear bound of ‖x‖2 depends on 1/σmin(M) = ‖M−1‖2.
As shown by Sun [23],

‖M−1‖2 ≤ ‖A†‖2.

Since
‖ f ‖2 ≤ ‖δA‖F,

one obtains the asymptotic normwise bound

‖x‖2 ≤ ‖M−1‖2‖δA‖F.

Since the matrix M is lower triangular, it is usually inverted with high precision.
Using (12), one can obtain asymptotic componentwise bounds on the perturbation vector x.
Since

x` = M−1
`,1:ν f , ` = 1, 2, . . . ν, (13)

it follows that
|x`| ≤ ‖M−1

`,1:ν‖2‖ f ‖2, ` = 1, 2, . . . , ν

and using the inequality ‖ f ‖2 ≤ ‖δA‖F, one obtains the asymptotic bound

|x`| ≤ xlin
` := ‖M−1

`,1:ν‖2‖δA‖F. (14)

The quantity cond(x`) = ‖M−1
`,1:ν‖2 can be considered as a componentwise condition

number [25] of the element x`.

Example 1. Consider the 4× 3 matrix

A =


18 −6 −18

6 −2 −8
−9 3.001 7

9 −3 −10


and assume that it is perturbed by

δA = c · 10−k · A0,

A0 =


7 −4 1
−4 2 −9

1 6 −5
−8 −4 3

,

where c and k are varying parameters. The QR decompositions of matrices A and A + δA are
computed by the function qr of MATLAB®. In the given case, the perturbation operator matrix M
is of order ν = 6 and ‖M−1‖2 = 1.71871× 103.

The exact absolute values of the elements of the vector x and their linear approximations
computed according to (12) for three perturbations δA = 10−11 A0, 5× 10−9 A0, and 3× 10−6 of
different size, are given to five decimal digits in the third and fourth columns of Table 1, respectively.
It is seen that the elements of the linear estimate xlin closely follow the corresponding elements of the
exact perturbation vector |x|.



Mathematics 2022, 10, 4687 6 of 28

Table 1. Exact basic perturbation parameters and their linear and nonlinear estimates.

‖δA‖F x` = qT
i δqj |x`| xlin

` xnonl
`

1 2 3 4 5

1.78326× 10−10 x1 = qT
2 δq1 6.48563× 10−13 7.80510× 10−12 7.80510× 10−12

x2 = qT
3 δq1 3.81408× 10−12 7.80510× 10−12 7.80510× 10−12

x3 = qT
4 δq1 3.12632× 10−12 7.80510× 10−12 7.80510× 10−12

x4 = qT
3 δq2 6.73721× 10−9 2.04508× 10−7 2.04508× 10−7

x5 = qT
4 δq2 6.00990× 10−8 2.04508× 10−7 2.04508× 10−7

x6 = qT
4 δq3 6.70820× 10−8 2.28281× 10−7 2.28281× 10−7

8.91628× 10−8 x1 = qT
2 δq1 3.24302× 10−10 3.90255× 10−9 3.90335× 10−9

x2 = qT
3 δq1 1.90707× 10−9 3.90255× 10−9 3.90340× 10−9

x3 = qT
4 δq1 1.56317× 10−9 3.90255× 10−9 3.90340× 10−9

x4 = qT
3 δq2 3.36826× 10−6 1.02254× 10−4 1.02280× 10−4

x5 = qT
4 δq2 3.00486× 10−5 1.02254× 10−4 1.02280× 10−4

x6 = qT
4 δq3 3.35398× 10−5 1.14140× 10−4 1.14193× 10−4

5.34977× 10−5 x1 = qT
2 δq1 1.94581× 10−7 2.34153× 10−6 2.75590× 10−6

x2 = qT
3 δq1 1.14424× 10−6 2.34153× 10−6 2.82650× 10−6

x3 = qT
4 δq1 9.37903× 10−7 2.34153× 10−6 2.81974× 10−6

x4 = qT
3 δq2 1.99332× 10−3 6.13524× 10−2 7.59140× 10−2

x5 = qT
4 δq2 1.77825× 10−2 6.13524× 10−2 7.65532× 10−2

x6 = qT
4 δq3 1.97618× 10−2 6.84843× 10−2 9.92798× 10−2

3. Bounding the Perturbations of the Matrix Q1

Consider the matrix

δW = QTδQ1 := [δw1, δw2, . . . , δwm], δwj ∈ Rn.

The strictly lower part of this matrix contains elements of the form

qT
i δqj, 1 ≤ j ≤ m, j < i ≤ n,

which can be substituted by the corresponding elements x`, ` = i + (j− 1)n− j(j+1)
2 of the

vector x. The elements of the strictly upper part of δW are of the form

qT
i δqj, 1 ≤ i < j ≤ m,

which, according to the orthogonality condition (8), can be represented as

qT
i δqj = −qT

j δqi − δqT
i δqj. (15)

In this way, the matrix δW can be written as

δW = δV + δD− δY, (16)

where the matrix

δV =



0 −x1 −x2 . . . −xm−1
x1 0 −xn . . . −xn+m−3
x2 xn 0 . . . −x2n+m−6
...

...
...

. . .
...

xm−1 xn+m−3 x2n+m−6 . . . 0
...

...
...

...
...

xn−1 x2n−3 x3n−6 . . . xν


:= [δv1, δv2, . . . , δvm], vj ∈ Rn
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has elements depending only on the basic perturbation parameters,

δD =



qT
1 δq1 0 . . . 0
0 qT

2 δq2 . . . 0
...

...
. . .

...
0 0 . . . qT

mδqm
0 0 . . . 0
...

...
...

...
0 0 . . . 0


∈ Rn×m,

and the matrix

δY =



0 δqT
1 δq2 δqT

1 δq3 . . . δqT
1 δqm

0 0 δqT
2 δq3 . . . δqT

2 δqm
0 0 0 . . . δqT

3 δqm
...

...
...

. . .
...

0 0 0 . . . δqT
m−1δqm

0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0


∈ Rn×m,

contains second-order terms in δqj, j = 1, 2, . . . , m.
Consider how to determine the diagonal elements of the matrix W (the nontrivial

elements of D) from the elements of x. Denote that αj = δqT
j qj. According to (8), one

has that
2δqT

j qj = −δqT
j δqj, 1 ≤ j ≤ m,

or
2αj = −‖δqj‖2.

The above expression shows that α is always nonnegative.
On the other hand, we have that

δwj = δvj +



0
...

αj
...
0

 ← j, j = 1, 2, . . . , m

so that
‖δwj‖2

2 = ‖δvj‖2
2 + α2

j . (17)

From
δwj = QTδqj,

it follows that
‖δwj‖2 = ‖δqj‖2 = −2αj. (18)

From (17) and (18), we obtain the quadratic equation

α2
j + 2αj + ‖δvj‖2

2 = 0. (19)

The negative solution of this equation is

αnonl
j = −‖δvj‖2

2/(1 +
√

1− ‖δvj‖2
2), j = 1, 2, . . . , m. (20)
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For a small perturbation δA (small values of ‖δvj‖2), one has the estimate

αlin
j = −‖δvj‖2

2/2.

Thus, for small perturbations, the quantities |αlin
j |, j = 1, 2, . . . , m depend quadratically

on ‖δA‖F.
In Table 2, for the same matrix and perturbations that are given in Example 1, we give

the exact values of αj and their linear αlin
j and nonlinear αnonl

j estimates computed using
the exact vectors x.

Table 2. Approximation of the diagonal elements of matrix W.

‖δA‖F 1.78325× 10−10 8.91627× 10−8 5.34976× 10−5

|α1| 1.67646× 10−16 1.74935× 10−16 1.11378× 10−12

|α2| 1.98416× 10−15 4.57132× 10−10 1.60108× 10−4

|α3| 2.33940× 10−15 5.68134× 10−10 1.98034× 10−4

|αlin
1 | 1.23709× 10−23 3.09280× 10−18 1.11341× 10−12

|αlin
2 | 1.82864× 10−15 4.57132× 10−10 1.60095× 10−4

|αlin
3 | 2.27269× 10−15 5.68131× 10−10 1.97252× 10−4

|αnonl
1 | 1.23709× 10−23 3.09280× 10−18 1.11341× 10−12

|αnonl
2 | 1.82864× 10−15 4.57132× 10−10 1.60108× 10−4

|αnonl
3 | 2.27269× 10−15 5.68131× 10−10 1.97271× 10−4

Thus, having the linear approximations of the elements of x, one can compute the
linear approximations of the matrices δV and δD. According to (16), the sum δV + δD is
the linear approximation of δW, and δY contains second-order terms in ‖δA‖F that can be
neglected in the asymptotic analysis. As shown below, the determining of an estimate of
δW allows one to find a bound on δQ1.

3.1. Normwise Bounds

The estimate of ‖xlin‖2 can be used to find an asymptotic normwise bound of ‖δQ1‖F.
In determining condition numbers, one assumes ‖δA‖F → 0, so that ‖δW‖F ≈ ‖δV‖F.
From Equation (16), it follows that the Frobenius norm of the strictly upper triangular part
Up(δV) of the matrix δV is less than (if m < n) or equal (if m = n) to the norm of the strictly
lower part Low(δV). Since ‖Low(δV)‖F = ‖xlin‖2, we have that ‖δW‖F ≤

√
2‖xlin‖2, and

the change of the matrix Q1 obeys

‖δQ1‖F = ‖QTδQ1‖F ≤
√

2‖xlin‖2 ≤ cQ‖δA‖F, (21)

where cQ‖δA‖F is an asymptotic normwise bound on ‖δQ1‖F and

cQ :=
√

2‖M−1‖2

can be considered as a normwise condition number of the matrix Q1 with respect to the
perturbations of A.

Since, in first-order approximation, it is fulfilled that

δR = δQT A + QTδA,

considering (21), one obtains that

‖δR‖F ≤ cR‖δA‖F, (22)

where
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cR = 1 + 2
√

2‖M−1‖2‖A‖F

is the normwise condition number of the matrix R with respect to the perturbation δA.
The asymptotic normwise estimates of δQ and δR thus obtained coincide with the

corresponding estimates derived in [17,23].

3.2. Componentwise Bounds

The componentwise bounds of the elements of the matrix δQ1 can be found by using
the componentwise estimates of the elements of x. An asymptotic bound on the matrix
|δW = QTδQ1| is given by

|δW lin| = |δV| =



|αlin
1 | |xlin

1 | |xlin
2 | . . . |xlin

m−1|
|xlin

1 | |αlin
2 | |xlin

n | . . . |xlin
n+m−3|

|xlin
2 | |xlin

n | |αlin
3 | . . . |xlin

2n+m−6|
...

...
...

. . .
...

|xlin
m−1| |xlin

n+m−3| |xlin
2n+m−6| . . . |αlin

m |
...

...
...

...
...

|xlin
n−1| |xlin

2n−3| |xlin
3n−6| . . . |xlin

ν |


∈ Rn×m.

Considering that δQ1 = QδW and using (16), a linear approximation of the perturba-
tion |δQ1| is determined as

|δQ1| � δQlin
1 = |Q||δW lin|. (23)

This equation gives asymptotic bounds of the perturbations in the individual elements
qij, i.e., componentwise perturbation bounds of the matrix Q1. Since ‖|Q|‖F = ‖Q‖F =

√
n,

we have that
‖δQlin

1 ‖F ≤
√

n‖δW lin‖F,

i.e., the obtaining of the asymptotic componentwise estimate δQlin
1 through (23) may

increase the bounds on |δqij| at most
√

n times.
In Table 3, we give, for the same QR decomposition as the one presented in Example 1,

the exact values of |δqij| and their linear approximations δqlin
ij for δA = 3× 10−6 A0. The

comparison of the componentwise bounds with the normwise linear bound B(δQlin) =
cQ‖δA‖F shows that the bounds on the individual elements of δQ1 are smaller than B(δQlin)
for all j ≤ m, j < i ≤ n. The difference between the componentwise and normwise bounds
is particularly significant for the elements in the first column of δQ1 whose absolute values
are of order 10−7, while the normwise bound is of order 10−1.

Table 3. Exact perturbations of the elements of the matrix Q1 and their linear and nonlinear estimates,
δA = 3 × 10−6 A0, ‖δA‖F = 5.34977 × 10−5, B(δQlin) = cQ‖δA‖F = 0.13003, and B(δQnonl) =

0.14519.

qij |δqij| δqlin
ij δqnonl

ij

q11 8.24060× 10−7 2.46313× 10−6 2.94752× 10−6

q21 5.56921× 10−7 3.27407× 10−6 3.94135× 10−6

q31 1.78849× 10−7 2.15221× 10−6 2.53307× 10−6

q41 1.09799× 10−6 3.07134× 10−6 3.68975× 10−6

q12 5.88076× 10−3 4.50959× 10−2 5.63774× 10−2

q22 5.89442× 10−3 7.93060× 10−2 9.85345× 10−2

q32 1.47078× 10−4 3.46070× 10−3 5.35863× 10−3

q42 1.58388× 10−2 7.07534× 10−2 8.82920× 10−2

q13 4.76877× 10−3 4.20957× 10−2 5.95634× 10−2

q23 8.37491× 10−3 3.98794× 10−2 5.85481× 10−2

q33 2.15468× 10−3 5.63927× 10−2 7.57743× 10−2

q43 1.72784× 10−2 7.02671× 10−2 1.01256× 10−1
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4. Estimating Column Subspace Sensitivity

The determination of bounds on the elements of the matrix δQ1 makes it possible to
estimate the sensitivity of the column subspaces Xp = R([a1, a2, . . . , ap]), p = 1, 2, . . . , m.
(Note that, for p = m, the corresponding column subspace Xm coincides with the range
R(A) of A.) Since we assume that R is of full rank, we have that R([a1, a2, . . . , ap]) =
R([q1, q2, . . . , qp]), p = 1, 2, . . . , m, i.e., the first p ≤ m columns of Q form an orthonormal
basis for the subspace Xp.

As is known [26], the sensitivity of a subspace of dimension p is measured by the p
angles between the perturbed and unperturbed subspace. Let QX and Q̃X be the orthonor-
mal bases for Xp and its perturbed counterpart X̃p, respectively. Then, the maximum angle
δΘ maxp := δΘmax(X̃p,Xp) between X̃p and Xp is determined from [26]

sin(δΘmaxp) = ‖Q⊥X
T

Q̃X‖2, (24)

where Q⊥X is the orthogonal complement of QX , Q⊥X
TQX = 0. Since

Q̃X = QX + δQX ,

one has that
sin(δΘmaxp) = ‖Q⊥X

T
δQX‖2. (25)

Equation (25) shows that the sensitivity of the column subspace Xp is related to the

values of the basic perturbation parameters x` = qT
i δqj, ` = i + (j− 1)n− j(j+1)

2 , i > p,
j = 1, 2, . . . , p. In particular, for p = 1, the sensitivity of the first column of A is deter-
mined as

sin(δΘmax(X̃1,X1)) = ‖δW2:n,1‖2,

for p = 2, one has
sin(δΘmax(X̃2,X2)) = ‖δW3:n,1:2‖2

and so on (see Figure 1).

Figure 1. Perturbation estimates of the column subspaces.

In this way, if the basic perturbation parameters are known, it is possible to find
the sensitivity estimates of all column subspaces with dimension p = 1, 2, . . . , m. More
specifically, let
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δW =



× × × . . . ×
x1 × × . . . ×
x2 xn × . . . ×
...

...
...

. . .
...

xm−1 xn+m−3 x2n+m−6 . . . ×
...

...
...

...
...

xn−1 x2n−3 x3n−6 . . . xν


∈ Rn×m.

Then, we have that the maximum angle between the perturbed and unperturbed
column subspace of dimension p is

δΘmaxp = arcsin(‖δWp+1:n,1:p‖2). (26)

In particular, for the sensitivity ofR(A), we obtain that

sin(δΘmax(X̃m,Xm)) = ‖δWm+1:n,1:m‖2.

An asymptotic estimate of the maximum angle can be obtained, if, in the expression
for the matrix δW, the elements x`, ` = 1, 2, . . . , ν are replaced by their linear approxima-
tions (12). Representing the matrix M−1 as

M−1 =


M−1

1,1:ν
M−1

2,1:ν
M−1

3,1:ν
...

M−1
ν,1:ν

,

the matrix δW can be written as

δW =



× × × . . . ×

M−1
1,1:ν f × × . . . ×

M−1
2,1:ν f M−1

n,1:ν f × . . . ×
...

...
...

. . .
...

M−1
n−1,1:ν f M−1

2n−3,1:ν f M−1
3n−6,1:ν f . . . ×


= L(In ⊗ f ),

where the rows of M−1 are highlighted in boxes,

L =



× × × . . . ×

M−1
1,1:ν × × . . . ×

M−1
2,1:ν M−1

n,1:ν × . . . ×
...

...
...

. . .
...

M−1
n−1,1:ν M−1

2n−3,1:ν M−1
3n−6,1:ν . . . ×


∈ Rn×nν
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and

In ⊗ f =


f

f
. . .

f

 ∈ Rnν×n.

Using the fact that
‖In ⊗ f ‖2 = ‖ f ‖2,

we obtain the following asymptotic estimate,

|δΘmaxp| ≤ arcsin(‖Lp+1:n,1:pν‖2‖ f ‖2)

≤ arcsin(‖Lp+1:n,1:pν‖2‖δA‖F), (27)

p = 1, 2, . . . , m.

Thus, an asymptotic bound of δΘmax(X̃p,Xp) is determined as

|δΘmaxp| ≤ δΘmaxlin
p := cond(Θmaxp)‖δA‖F, (28)

where the quantity
cond(Θmaxp) := ‖Lp+1:n,1:pν‖2

can be considered as a condition number of the column subspace Xp. The derivation of
cond(Θmaxp) is performed such that to find its possible minimum value.

In Table 4, we give the exact values of maximum angle |δΘ maxp | and its asymptotic
bound δΘ maxlin

p for the perturbation problem considered in Example 1. In all cases, the
size of the estimate matches correctly the size of the actual maximum angle between the
perturbed and unperturbed subspace.

Table 4. Exact perturbations of the maximum subspace angles and their linear and nonlinear estimates.

‖δA‖F 1.78326× 10−10 8.91628× 10−8 5.34977× 10−5

|δΘ max1 | 4.97410× 10−12 2.48709× 10−9 1.49225× 10−6

|δΘ max2 | 6.04754× 10−8 3.02368× 10−5 1.78948× 10−2

|δΘ max3 | 9.00660× 10−8 4.50315× 10−5 2.65878× 10−2

δΘ maxlin
1 7.80510× 10−12 3.90255× 10−9 2.34153× 10−6

δΘ maxlin
2 2.04508× 10−7 1.02254× 10−4 6.13524× 10−2

δΘ maxlin
3 3.06490× 10−7 1.53245× 10−4 9.19468× 10−2

δΘ maxnonl
1 1.35188× 10−11 6.76085× 10−9 4.85129× 10−6

δΘ maxnonl
2 2.89218× 10−7 1.44645× 10−4 1.08022× 10−1

δΘ maxnonl
3 3.06490× 10−7 1.53301× 10−4 1.25698× 10−1

5. Perturbation Bounds of the Elements of R

It is convenient to first consider the sensitivity of the nontrivial elements of the upper
triangular matrix R for the case of the diagonal elements. Due to the nonsingularity of R,
these elements are nonzero.

5.1. Sensitivity Estimates of the Diagonal Elements of R

The changes in the elements of the perturbed matrix R satisfy

δrij = r̃ij − rij = q̃T
i (aj + δaj), 1 ≤ i ≤ j ≤ m.

The above equation can be rewritten as

δrij = δqT
i aj + q̃T

i δaj. (29)



Mathematics 2022, 10, 4687 13 of 28

Using Equations (7) and (8), one obtains for the perturbations of the diagonal (i = j)
elements of R, the expressions

δrii = −
i

∑
k=1

rkiqT
i δqk −

i

∑
k=1

rkiδqT
i δqk + q̃T

i δai, i = 1, 2, . . . , m. (30)

Further on, we shall use the following quantities:

• The diagonal elements of the matrix Q̃TδA,

g =
[
q̃T

1 δa1, q̃T
2 δa2, . . . , q̃T

mδam

]T
∈ Rm.

• The changes of the diagonal elements of R,

δrdiag = [δr11, δr22, . . . , δrmm]
T ∈ Rm.

• The diagonal elements of W,

α = [α1, α2, . . . , αm]
T ∈ Rm.

• The quadratic terms in (30),

∆d =
[
∆d

1, ∆d
2, . . . , ∆d

m

]T
∈ Rm,

where

∆d
i = −

i

∑
k=1

rkiδqT
i δqk, i = 1, 2, . . . , m.

Denote the columns of In as ej, j = 1, 2, . . . , n and the columns of Im as ηj, j =
1, 2, . . . , m. Then, the system of Equation (30) can be represented as

δrdiag = N1x + N2α + g + ∆d, (31)

where

N1 = −Π(RT ⊗ In)ΩT ∈ Rm×ν, N2 = −diag(r11, r22, . . . , rmm) ∈ Rm×m,

Π =
[
η1eT

1 , η2eT
2 , . . . , ηmeT

m

]
∈ Rm×n·m,

and the matrix Ω was defined earlier. Neglecting the quadratic terms in (31), one obtains
the linear estimate

δrdiag = N1M−1 f + g. (32)

Equation (32) can be represented in the compact form

δrdiag = [N1M−1, Im]

[
f
g

]
. (33)

Using (33), one can derive condition numbers of the diagonal elements of R. Let

Z = [N1M−1, Im] ∈ Rm×(ν+m).

Since ∥∥∥∥[ f
g

]∥∥∥∥
2
≤ ‖δA‖F,
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it follows from (33) that the asymptotic perturbation δrii satisfies

|δrii| ≤ δrlin
ii := cond(rii)‖δA‖F, i = 1, 2, . . . , m, (34)

where
cond(rii) = ‖Zi,1:ν+m‖2 (35)

is considered as a condition number of rii. The derivation of (35) is performed to find the
minimum possible value of cond(rii).

In Table 5, for the matrix A and the perturbations given in Example 1, we present
the exact perturbations |δrii| of the diagonal elements of R and their linear and nonlinear
estimates. The normwise quantities B(δRlin) and B(δRnonl) are the normwise linear and
nonlinear bounds, derived in [17,23]. These bounds are more pessimistic than the bounds
δrlin

ii and δrnonl
ii .

Table 5. Exact perturbations of the diagonal elements of R and their linear and nonlinear bounds.

‖δA‖F 1.78326× 10−10 8.91628× 10−8 5.34977× 10−5

|δr11| 9.19442× 10−12 4.59573× 10−9 2.75746× 10−6

|δr22| 4.20811× 10−11 2.10408× 10−8 1.27735× 10−5

|δr33| 1.51994× 10−8 7.60002× 10−6 4.88606× 10−3

δrlin
11 1.78326× 10−10 8.91628× 10−8 5.34977× 10−5

δrlin
22 1.87973× 10−10 9.39863× 10−8 5.63918× 10−5

δrlin
33 4.56562× 10−7 2.28281× 10−4 1.36969× 10−1

δrnonl
11 1.78618× 10−10 1.62255× 10−7 4.80568× 10−2

δrnonl
22 1.88265× 10−10 1.67069× 10−7 4.80543× 10−2

δrnonl
33 4.56562× 10−7 2.28330× 10−4 1.69291× 10−1

B(δRlin) 1.44561× 10−5 7.22804× 10−3 4.33683× 100

B(δRnonl) 1.44561× 10−5 7.22915× 10−3 4.84251× 100

5.2. Sensitivity Estimates of the Super Diagonal Elements of R

According to (29), the perturbations of the super diagonal elements of the matrix R
can be determined as

δrij = r̃ij − rij = −
j

∑
k=1

rkjqT
i δqk −

j

∑
k=1

rkjδqT
i δqk + q̃T

i δaj,

1 ≤ i < j ≤ m. (36)

Let us define the vectors (the elements of the corresponding matrices are taken row-
wise),

δrsupd := vec((Up(δR))T) = Ω2vec(δRT) ∈ Rν2 , ν2 = m(m− 1)/2,

(δrsupd)`2 = δrij, `2 = j + (i− 1)m− i(i + 1)
2

, 1 ≤ i < j ≤ m,

y := vec((Up(QT
1 δQ1))

T) = Ω2vec((QT
1 δQ1)

T) ∈ Rν2 ,

y`2 = qT
i δqj,

h := vec((Up(Q̃T
1 δA))T) = Ω2vec((Q̃T

1 δA))T) ∈ Rν2 ,

h`2 = q̃T
i δaj,

and

∆r =


∆r

1
∆r

2
...

∆r
ν2

,
∆r
`2

= −∑
j
k=1 rkjδqT

i δqk,

`2 = j + (i− 1)m− i(i+1)
2 , 1 ≤ i < j ≤ m,

(37)
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where

Ω2 := [diag(ω1, ω2, . . . , ωm−1), 0ν2×m] ∈ Rν2×m2
,

ωk :=
[
0(m−k)×k, Im−k

]
∈ R(m−k)×m, k = 1, 2, . . . , m− 1,

ΩT
2 Ω2 = Im2 , ‖Ω2‖2 = 1.

Then, Equation (36) may be represented as the system of ν2 nonlinear algebraic equations

δrsupd = M1y + M2x + M3α + h + ∆r, 1 ≤ i < j ≤ m, (38)

where M1, M2 and M3 are matrices whose elements are functions of the elements of R.
These matrices are determined from

M1 = −Ω2Pvec(RT ⊗ Im)PvecΩT
2 ∈ Rν2×ν2 ,

M2 = −Ω2Pvec(RT ⊗ Im)ΩT
3 ∈ Rν2×ν,

M3 = −Ω2(Im ⊗ RT)ΠT ∈ Rν2×m,

where

Ω3 :=

[
diag(ω1, ω2, . . . , ωm−1), 0(ν−q)×m

0q×m2

]
∈ Rν×m2

, q = 2(n−m),

ωk :=
[
0(m−k)×k, Im−k

]
∈ R(m−k)×m, k = 1, 2, . . . , m− 1,

ΩT
3 Ω3 = Im2 , ‖Ω3‖2 = 1,

and Pvec is the vec-permutation matrix as determined from ([27], Ch. 4)

vec(AT) = Pvecvec(A).

According to (15), the components of the vector y satisfy

y`2 = −x` − δqT
i δqj, ` = j + (i− 1)n− i(i + 1)

2
,

`2 = j + (i− 1)m− i(i + 1)
2

, (39)

1 ≤ i < j ≤ m.

In a linear approximation, one has

y`2 = −x`,

and it is possible to show that
y = Ω4x,

where

Ω4 :=
[
diag(ω1, ω2, . . . , ωm−1), 0ν2×(n−m)

]
∈ Rν2×ν,

ωk :=
[

Im−k, 0(m−k)×(n−m)

]
∈ R(m−k)×(n−k), k = 1, 2, . . . , m− 1,

ΩT
4 Ω4 = Iν, ‖Ω4‖2 = 1.

Neglecting the second-order terms in Equation (38) and using the linear estimate
x = M−1 f , one obtains the asymptotic estimate

δrsupd = −M1Ω4x + M2x + h = −M1Ω4M−1 f + M2M−1 f + h, 1 ≤ i < j ≤ m.
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Let us denote

Z =
[
|M1Ω4M−1|+ |M2M−1|, Iν2

]
∈ Rν2×(ν+ν2).

Since ∥∥∥∥[ f
h

]∥∥∥∥
2
≤ ‖δA‖F,

one concludes that, in a first-order approximation, the super diagonal elements of |δR|
fulfill

|δrij| � δrlin
ij = cond(rij)‖δA‖F, 1 ≤ i < j ≤ m, (40)

where

cond(rij) = ‖Z`2,1:ν+ν2‖2, `2 = j + (i− 1)m− i(i + 1)
2

, (41)

1 ≤ i < j ≤ m.

Equation (40) gives asymptotic componentwise perturbation bounds for the super
diagonal part of R. The quantity cond(rij) represents the condition number of rij with
respect to the perturbations in A.

In Table 6, for the matrix A and the perturbations given in Example 1, we give the
exact perturbations of the super diagonal elements of R and their linear estimates. As in
the case of the diagonal elements, the normwise linear and nonlinear bounds B(δRlin) and
B(δRnonl) give worse estimates than δrlin

ij .

Table 6. Exact perturbations of the super diagonal elements of R and their linear and nonlinear
bounds.

‖δA‖F 1.78326× 10−10 8.91628× 10−8 5.34977× 10−5

|δr12| 6.56506× 10−11 3.28263× 10−8 1.96958× 10−5

|δr13| 2.19309× 10−11 1.09686× 10−8 6.58120× 10−6

|δr23| 1.34417× 10−8 6.72117× 10−6 4.33437× 10−3

δrlin
12 1.78326× 10−10 8.91628× 10−8 5.34977× 10−5

δrlin
13 1.79853× 10−10 8.99267× 10−8 5.39560× 10−5

δrlin
23 4.09016× 10−7 2.04508× 10−4 1.22705× 10−1

δrnonl
12 1.78326× 10−10 8.91628× 10−8 5.34981× 10−5

δrnonl
13 1.79853× 10−10 8.99301× 10−8 5.58512× 10−5

δrnonl
23 4.09016× 10−7 2.04555× 10−4 1.48774× 10−1

B(δRlin) 1.44561× 10−5 7.22804× 10−3 4.33683× 100

B(δRnonl) 1.44561× 10−5 7.22915× 10−3 4.84251× 100

Hence, the full asymptotic componentwise perturbation analysis of the QR decompo-
sition can be conducted using Equations (12), (23), (28), (34) and (40).

6. Determining Global Perturbation Bounds

Based on the analysis presented above, it is possible to derive an iterative scheme
for finding global perturbation bounds of the QR decomposition. The main task of such
a scheme is to find a nonlinear estimate of the vector x of the basic perturbation parame-
ters. For this aim, it is necessary to estimate the quadratic term ∆x in (10). The analysis
of the expression (10) shows that ∆x contains terms involving the perturbations δqi for
m < i ≤ n, which are not estimates up to the moment since they are columns of the matrix
δQ2 = Q̃2 −Q2. As mentioned previously, the matrix Q2 is not unique, and consequently
its perturbation δQ2 is also non-unique. However, the problem with finding δQ2 of the
minimum norm for a fixed Q2 has a unique solution, and our first task in this section is to
find an approximation of this perturbation.
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6.1. Perturbation Bounds of the Columns of Q2

According to (3), the perturbation δQ2 should satisfy the conditions:

(Q1 + δQ1)
T(Q2 + δQ2) = 0, (42)

(Q2 + δQ2)
T(Q2 + δQ2) = In−m. (43)

Equations (42) and (43) can be represented as

QT
1 δQ2 + δQT

1 Q2 = −δQT
1 δQ2,

QT
2 δQ2 + δQT

2 Q2 = −δQT
2 δQ2.

Setting X1 = QT
1 δQ2, X2 = QT

2 δQ2, we obtain that

orth1(X1, X2) := (Im + WT
1 )X1 + WT

2 X2 + WT
2 = 0, (44)

orth2(X1, X2) := X2 + XT
2 + XT

1 X1 + XT
2 X2 = 0, (45)

where W1 = QT
1 δQ1, W2 = QT

2 δQ1. (Note that δW = [WT
1 WT

2 ]
T is already estimated). For

sufficiently small perturbations δQ1, the matrix Im + WT
1 is nonsingular, and we have that

X1 = −(Im + WT
1 )
−1WT

2 (In−m + X2), (46)

X2 + XT
2 = −XT

1 X1 − XT
2 X2. (47)

In the first-order analysis of (47), the term XT
2 X2 can be neglected, and we have

the approximation
X2 + XT

2 ≈ −XT
1 X1. (48)

As shown in Appendix A, the minimum norm solution of the matrix Equation (48)
with respect to X2 is

Xappr
2 = −XT

1 X1/2. (49)

The expression (49) shows that the size of the minimum norm matrix Xappr
2 is of second

order regarding to the size of X1, and hence X2 can be neglected in the asymptotic analysis
of (46). Thus, we obtain the first-order approximations

Xappr
1 = −(Im + WT

1 )
−1WT

2 , (50)

Xappr
2 = −XT

1 X1/2. (51)

In this way, the matrix

X =

[
X1
X2

]
= QTδQ2

is approximated as

Xappr =

[
Xappr

1
Xappr

2

]
,

and an approximation of δQ2 is obtained as

δQappr
2 = QXappr. (52)

In Table 7, for the perturbation problem presented in Example 1, we show the quanti-
ties related to the approximation of δQ2 and the norms of the matrices

orth3(Q̃) = In − Q̃TQ̃,

orth3(Q̃appr) = In − (Q̃appr)TQ̃appr,

characterizing the errors in the orthogonal matrices Q̃ and Q̃appr, respectively. The approxi-
mation of the perturbed orthogonal factor Q̃appr is obtained as
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Q̃appr = [Q1 + δQ1, Q2 + δQappr
2 ],

where δQ1 is the exact perturbation of Q1. These quantities are computed for the three
perturbations δA = 10−11 A0, 5× 10−9 A0 and 3× 10−6 A0. The results given in the table
confirm the assumptions from the perturbation analysis of Q2.

Table 7. Quantities related to the approximation of δQ2.

‖δA‖F 1.7832554500× 10−10 8.9162772500× 10−8 5.3497663500× 10−5

‖X1‖F 9.0065954775× 10−8 4.5031489846× 10−5 2.6584712300× 10−2

‖X2‖F 4.1725109797× 10−15 1.0139176039× 10−9 3.5343592252× 10−4

err1 1.0034590138× 10−16 1.2139643751× 10−16 1.0775666870× 10−16

err2 2.3314574995× 10−16 1.2904023661× 10−16 5.7370600309× 10−19

‖XT
1 X1‖F 8.1118762095× 10−15 2.0278350777× 10−9 7.0674692808× 10−4

‖XT
2 X2‖F 1.7409847876× 10−29 1.0280289075× 10−18 1.2491695133× 10−7

‖Xappr
1 ‖F 9.0065954782× 10−8 4.5031489891× 10−5 2.6594111615× 10−2

‖Xappr
2 ‖F 4.0559381054× 10−15 1.0139175409× 10−9 3.5362338628× 10−4

err3 3.7480684521× 10−22 4.5658214975× 10−14 9.4009759870× 10−6

err4 1.6450633915× 10−29 1.0280287798× 10−18 1.2504949933× 10−7

‖δQ2‖F 9.0065954775× 10−8 4.5031489857× 10−5 2.6587061610× 10−2

‖δQappr
2 ‖F 9.0065954782× 10−8 4.5031489903× 10−5 2.6596462586× 10−2

err5 3.1278945183× 10−16 7.5350125919× 10−16 7.8338852224× 10−16

err6 3.4777636565× 10−16 6.4524550180× 10−14 1.3295575820× 10−5

err1 = ‖orth1(X1, X2)‖F , err2 = ‖orth2(X1, X2)‖F ,
err3 = ‖orth1(Xappr

1 , Xappr
2 )‖F , err4 = ‖orth2(Xappr

1 , Xappr
2 )‖F ,

err5 = ‖orth3(Q̃)‖F , err6 = ‖orth3(Q̃appr)‖F

For the same example used previously, in Table 8, we give the exact values of the ele-
ments of δQ2 and their approximations using (52). The exact minimum norm perturbation
δQ2 is found numerically by solving the minimization problem

δQ2 = min
U
‖U‖F

under the constraint Q̃TQ̃ = In, Q̃ = [Q1 + δQ1, Q2 + U]. The minimization is performed
by the MATLAB® function fmincon. The results show that, in all cases, |δqappr

ij | is close
to |δqij|.

Table 8. Approximated perturbations of the elements of Q2 and their approximations.

‖δA‖F qij |δqij| |δqappr
ij |

1.7832554500× 10−10 q14 4.9044000886× 10−8 4.9044000819× 10−8

q24 5.0733955344× 10−8 5.0733955468× 10−8

q34 5.5238446041× 10−8 5.5238446008× 10−8

q44 9.0189822446× 10−9 9.0189821929× 10−8

8.9162772501× 10−8 q14 2.4521479462× 10−5 2.4521479487× 10−5

q24 2.5365705574× 10−5 2.5365705600× 10−5

q34 2.7618311270× 10−5 2.7618311298× 10−5

q44 4.5102092035× 10−6 4.5102092081× 10−5

5.3497663500× 10−5 q14 1.4577251477× 10−2 1.4582423281× 10−2

q24 1.4823481491× 10−2 1.4828695707× 10−2

q34 1.6304869299× 10−2 1.6310634063× 10−2

q44 2.9649988293× 10−3 2.9661007106× 10−3

6.2. Iterative Procedure for Finding Global Bounds of the Elements of x

Since one has linear estimates of the basic perturbation terms x` = qT
i δqj, it is ap-

propriate to substitute the terms containing the perturbations δqj in Equation (16) by
the perturbations

δwj = QTδqj, j = 1, 2, . . . , m,

which are of the same size as δqj. Since
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δqT
i δqj = δqT

i QQTδqj = δwT
i δwj,

the absolute value of the matrix δW (16) can be bounded as

|δW| = |QTδQ1| := [|δw1|, |δw2|, . . . , |δwm|], (53)

� δWnonl = |δV|+ |δD|+ |δY|,

where

|δV| =



0 |x1| |x2| . . . |xm−1|
|x1| 0 |xn| . . . |xn+m−3|
|x2| |xn| 0 . . . |x2n+m−6|

...
...

...
. . .

...
|xm−1| |xn+m−3| |x2n+m−6| . . . 0

...
...

...
...

...
|xn−1| |x2n−3| |x3n−6| . . . |xν|


∈ Rn×m,

|δD| =



|α1| 0 0 . . . 0
0 |α2| 0 . . . 0
0 0 |α3| . . . 0
...

...
...

. . .
...

0 0 0 . . . |αm|
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0


∈ Rn×m,

|δY| =



0 |δwT
1 ||δw2| |δwT

1 ||δw3| . . . |δwT
1 ||δwm|

0 0 |δwT
2 ||δw3| . . . |δwT

2 ||δwm|
0 0 0 . . . |δwT

3 ||δwm|
...

...
...

. . .
...

0 0 0 . . . |δwT
m−1||δwm|

0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0


∈ Rn×m.

Since the unknown column estimates |δwj| participate in both sides of (53), it is
possible to obtain |δwj| recursively as follows.

Let
|δw1| = |δv1|+ |δd1|,

where |δv1| and |δd1| are the first columns of |δV| and |δD|, respectively. Then, the next
column estimates |δwj|, j = 2, 3, . . . m can be determined as

|δwj| � |Sj|−1|δwj−1| = |Sj|−1(|δvj−1|+ |δdj−1|), (54)

where

|Sj| =



eT
1 − |δwT

1 |
eT

2 − |δwT
2 |

...
eT

j−1 − |δwT
j−1|

eT
j
...

eT
n


∈ Rn×n.
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If ||δwk||2 < 1, k = 1, 2, . . . , j− 1, the matrix |Sj| is strictly diagonally dominant and
nonsingular ([28], p. 352) and if ||δwk||2 are small, then the condition number of Sj is close
to 1.

The matrix δWnonl only gives estimates of the first m columns of |QTδQ|. Using
the representation

δWnonl =

[
W1
W2

]
, W1 ∈ Rm×m, W2 ∈ R(n−m)×m,

one can find an approximation Xappr of the matrix QTQ2 using the Equations (50) and (51).
Thus, an approximation of |QTδQ| is obtained as

Z =
[
δWnonl , |Xappr|

]
.

After determining estimates of |δwj|, j = 1, 2, . . . , m, it is possible to bound the
absolute values of the quadratic terms ∆x

` , given in (11), as

|∆x
` | = ∑

j
k=1 |rkj|zT

i zk, ` = i + (j− 1)n− j(j− 1)
2

, (55)

1 ≤ j ≤ m, j < i ≤ n.

The column zj, 1 ≤ j ≤ n represents an estimate of |QTδqj| such that |δqT
i δqk| ≤

|δqT
i Q||QTδqk| = zT

i zk.
In this way, one obtains an iterative scheme involving Equations (11) and (53)–(55). At

each step s, the value of the nonlinear estimate of x is determined from

xnonl
s = xlin + |M−1||∆x

s |, s = 0, 1, . . .

with initial condition xnonl
0 = eps[1, 1, . . . , 1]T , where eps is the MATLAB® function eps,

eps = 2−52 = 2u. The stopping criterion is taken as

errs = ‖xnonl
s − xnonl

s−1 ‖2/‖xnonl
s−1 ‖2 < tol = 10eps.

This scheme converges for perturbations of restricted size. As shown in ([17], Ch. 4),
the size of the maximum allowable perturbation for which the nonlinear normwise estimate
of x is valid is given by

‖δA‖F ≤ δ0 :=
1

‖M−1‖2(2µν +
√

2 + 8µ2
ν)

, (56)

where µν =
√
(ν− 1)/(2ν).

In Table 9, we present the number of iterations necessary to find the nonlinear estimate
xnonl for the perturbation problem considered in Example 1, along with ‖x‖2 and ‖xnonl‖2.
The components of xnonl are shown for three different perturbations in the fifth column of
Table 1 along with the vectors |x| and xlin.

Table 9. Convergence of the global bounds.

k ‖δA‖F ‖x‖2
Number of
Iterations ‖xnonl‖2

−11 1.78326× 10−10 9.03176× 10−8 4 3.68455× 10−7

−10 1.78326× 10−9 9.03170× 10−7 4 3.68458× 10−6

−9 1.78326× 10−8 9.03165× 10−6 5 3.68480× 10−5

−8 1.78326× 10−7 9.03122× 10−5 6 3.68699× 10−4

−7 1.78326× 10−6 9.02688× 10−4 9 3.70916× 10−3

−6 1.78326× 10−5 8.98346× 10−3 17 3.96070× 10−2

−5 1.78326× 10−4 8.54366× 10−2 No convergence -
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In Figure 2, we show the convergence of the relative error errs as a function of s for
different perturbations δA = 10−k A0. As is seen from the figure, with the increasing
perturbation size, the convergence worsens, and, for k = −5 (‖δA‖F = 1.78326× 10−4),
the iterations do not converge since the global bound does not exist. The convergence of the
iterations is linear, and this can be improved by using appropriate optimization techniques.
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Figure 2. Iterations for determining the global bounds for different perturbations.

6.3. Global Perturbation Bounds of Q1, Column Subspaces and R

Implementing the obtained nonlinear estimate of x, one may find nonlocal bounds
on the perturbations of the column subspaces, diagonal and super diagonal elements of R
using Equations (26), (31) and (38).

After determining the nonlinear bounds of x and |δW|, it is possible to find nonlinear
bounds on the perturbations of the elements of Q1 according to the relationship

δQnonl
1 = |Q||δWnonl |. (57)

The nonlinear bounds δqnonl
ij of the elements of Q1 for the QR decomposition given in

Example 1 and a perturbation δA = 3× 10−6 A0 are shown in the last column of Table 3
along with |δqij| and δqlin

ij .
A global estimate of the maximum angle between the perturbed and unperturbed

column subspace of dimension p is obtained from (26). The values of δΘ maxnonl
p for the

matrix A from Example 1 and three different perturbations are given in the last rows of
Table 4.

Nonlinear bounds on the diagonal elements of R can be obtained by using the expressions

δrnonl
diag = δrlin

diag + |∆
d|,

|∆d
i | =

i

∑
k=1
|rki||δwT

i ||δwk|, (58)

i = 1, 2, . . . , m,

and global bounds of the perturbations of the super diagonal elements of R can be
found from
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δrnonl
supd = δrlin

supd + |M3|α + |∆r|,

α = [|α1|, |α2|, . . . , |αm|]T ,

|αj| = ‖δwj‖2
2/(1 +

√
1− ‖δwj‖2

2), j = 1, 2, . . . , m, (59)

|∆r
`2
| =

j

∑
k=1
|rkj||δwT

i ||δwk|,

`2 = j + (i− 1)m− i(i + 1)
2

, 1 ≤ i < j ≤ m.

The nonlinear perturbation bounds δrnonl
ii of the diagonal elements of R for the matrix

A from Example 1 and for three perturbations δA are given in Table 5, and the nonlinear
bounds δrnonl

ij of the super diagonal elements are presented in Table 6. We note that
the global perturbation estimates are slightly larger than the corresponding asymptotic
estimates but give guaranteed bounds on the perturbations whenever these estimate exist.

7. Comparison with Other Bounds

In this section, we consider two examples in which we compare the perturbation
bounds of the QR decomposition obtained in this paper with the bounds that were previ-
ously proposed.

Example 2. Consider the fifth-order matrix [12],

A =


1 −1 −1 −1 −1
0 1 −1 −1 −1
0 0 1 −1 −1
0 0 0 1 −1
0 0 0 0 1

.

The matrix A is nonsingular, and its QR factors are Q = I5 and R = A. The perturbation
matrix is the 5× 5 random matrix

δA = 10−3


0.2742 0.2944 −0.3245 0.1483 0.9386
0.1186 −0.1669 0.9198 −0.2358 0.9445
0.6810 0.1577 0.1804 0.1979 −0.1045
0.8284 −0.9223 0.3286 0.7425 −0.2188
0.2091 −0.4420 −0.2410 0.8721 0.2947

.

Using the function qr of MATLAB®, we obtain (to four decimal digits) that

|δQ| =


6.0357× 10−7 1.1901× 10−4 6.8154× 10−4 8.2758× 10−4 2.0877× 10−4

1.1857× 10−4 3.9005× 10−7 8.3831× 10−4 9.5401× 10−5 2.3275× 10−4

6.8081× 10−4 8.3827× 10−4 1.1808× 10−6 1.0608× 10−3 2.6485× 10−4

8.2817× 10−4 9.4474× 10−5 1.0605× 10−3 1.0795× 10−6 5.8280× 10−4

2.0904× 10−4 2.3305× 10−4 2.6418× 10−4 5.8289× 10−4 2.5378× 10−7

.

The nonlinear bound of the perturbation of Q, obtained after 16 iterations, is

δQnonl =


1.4500× 10−5 2.7027× 10−3 2.7360× 10−3 2.7719× 10−3 2.7723× 10−3

2.6710× 10−3 2.6773× 10−5 3.9544× 10−3 4.0418× 10−3 4.0428× 10−3

2.6876× 10−3 3.8918× 10−3 6.0542× 10−5 7.1420× 10−3 7.1444× 10−3

2.7056× 10−3 3.9535× 10−3 7.0244× 10−3 1.2828× 10−4 1.3645× 10−2

2.7058× 10−3 3.9541× 10−3 7.0263× 10−3 1.3574× 10−2 1.2829× 10−4

.
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The maximum element of the global estimate Bqr,w of δQ, obtained in [12], is 3.59687× 10−2,
while the maximum element of δQnonl is 1.3645× 10−2. Furthermore, ‖Bqr,w‖F = 0.0648, while
‖δQnonl‖F = 0.02693.

Example 3. Consider a 20× 15 matrix A, taken as

A = P0

[
S0
0

]
,

where S0 is an upper triangular matrix with unit diagonal and super diagonal elements equal to 3,
and the matrix P0 is constructed as proposed in [29],

P0 = H2ΣH1,

H1 = In − 2uuT/n, H2 = In − 2vvT/n,

u = [1, 1, 1, . . . , 1]T , v = [1,−1, 1, . . . , (−1)n−1]T ,

Σ = diag(1, σ, σ2, . . . , σn−1),

where H1 and H2 are elementary reflections that are orthogonal and symmetric matrices [30]. The
condition number of P0 with respect to the inversion is controlled by the variable σ and is equal to
σn−1. In the given case, σ is taken equal to 1.2, and cond(P0) = 31.9480. The minimum singular
value of the matrix M satisfies

1/σmin(M) = 2784.9,

which means that the perturbations of Q and R can be several orders of magnitude larger than
the perturbations of A. The perturbation of A is chosen as δA = 10−c · A0, where c is a positive
number and A0 is a matrix with random entries generated by the MATLAB® function rand.

Several results related to the perturbation problem under consideration for 30 values of c
between 13 and 5 are given in Figures 3–8. In Figure 3, we display the perturbations of the
particular entry Q15,10, which is an element of the matrix Q1. The quantities B(δQlin) and
B(δQnonl) are the normwise linear and nonlinear bounds derived in [17,23].

These bounds are more than 12-times larger than the norms of the linear δQlin and nonlinear
δQnonl componentwise bounds obtained in Section 3. The nonlinear bound is close to the linear
one for perturbations of different sizes and increases gradually in the vicinity of the quantity
‖δA‖F ≤ 6.20078 × 10−7. For perturbations of a larger size, the iterations for xnonl do not
converge. In Figure 4, we compare the exact perturbation δQ15,16 of the entry Q15,16 (which is also
the element (δQ2)15,1 of δQ2) with the linear approximation δQappr

15,16. Both quantities are close for
all perturbations. This is confirmed by the values of the errors

‖orth1(Xappr
1 , Xappr

2 )‖F, ‖orth2(Xappr
1 , Xappr

2 )‖F, ‖orth3(Q̃appr)‖F,

shown in Figure 5, which are much smaller than the value of ‖δQ‖F for all perturbations.
The bounds of the quantity δΘ max15 (the maximum angle between the perturbed and unper-

turbed range of A), shown in Figure 6, are close to the exact value of this angle, with the nonlinear
bound being slightly greater than the linear one. The normwise linear B(δRlin) and the nonlinear
B(δRnonl) bounds obtained in [17,23], are more than 75,000-times greater than the linear δRlin

55
and the nonlinear δRnonl

55 bounds of the diagonal element R55, shown in Figure 7. Similarly, the
normwise bounds B(δRlin) and B(δRnonl) are more than 13,000-times greater than the bounds
δRlin

2,10 and δRnonl
2,10 as shown in Figure 8. This large difference between the sizes of the actual

component perturbations of R and the normwise bounds is explained by the large condition number
of the computed R—equal to 1.5353× 106. (Note that cond(R) = cond(A)).

Note that, while the normwise estimates are valid for perturbations with sizes up to δ0 =
9.31420× 10−5, the iterations to find xnonl converge for perturbations ‖δA‖F ≤ 6.20078× 10−7.

The results obtained show that the asymptotic bounds are valid for much larger perturbations
then the global bounds.
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Figure 3. Exact values of δQ15,10 and its bounds as functions of the perturbation norm.
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8. Conclusions

The method presented in the paper allows us to find, in a unified manner, component-
wise asymptotic and global perturbation bounds for all elements of the QR decomposition,
thus, providing a complete perturbation analysis of this important matrix factorization. The
bounds obtained in the paper are smaller than some known bounds and can be significantly
better than the normwise bounds.
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Notation

R the set of real numbers;
Rn×m the space of n×m real matrices (Rn = Rn×1);
R(A) the range of A;
X⊥ the orthogonal complement of the subspace X ;
|A| the matrix of absolute values of the elements of A;
AT the transposed of A;
A−1 the inverse of A;
A† the pseudoinverse of A;
aj the jth column of A;
Ai,1:n the ith row of m× n matrix A;
Ai1 :i2,j1 :j2 the part of matrix A from row i1 to i2 and from column j1 to j2;
δA perturbation of A;
0m×n the zero m× n matrix;
In the unit n× n matrix;
ej the jth column of In;
σmin(A) the minimum singular value of A; :=, equal by definition;
� relation of partial order. If a, b ∈ Rn, then a � b means ai ≤ bi, i = 1, 2, . . . , n;
Low(A) the strictly lower triangular part of A;
Up(A) the strictly upper triangular part of A;
‖A‖2 the spectral norm of A;
‖A‖F the Frobenius norm of A;
A⊗ B the Kronecker product of A and B;
vec(A) the vec mapping of A ∈ Rn×m. If A is partitioned columnwise as
A = [a1, a2, . . . am] then vec(A) = [aT

1 , aT
2 , . . . , aT

m]
T ;

Pvec the vec-permutation matrix. vec(AT) = Pvecvec(A);
Θmax(X ,Y) the maximum angle between subspaces X and Y ;
O(‖δA‖2

F) a quantity of second order with respect to ‖δA‖F.

Appendix A

Theorem A1. The minimum Frobenius norm solution of the matrix equation

X + XT = Φ, X ∈ Rp×p, Φ ∈ Rp×p, ΦT = Φ (A1)

is given by
Xmin = Φ/2. (A2)
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Proof. Equation (A1) is represented as

(Ip2 + Pvec)vec(X) = vec(Φ), (A3)

where Pvec is the vec-permutation matrix satisfying vec(XT) = Pvecvec(X). This matrix
is symmetric and orthogonal and has p(p + 1)/2 eigenvalues equal to 1 and p(p− 1)/2
eigenvalues equal to −1 ([27], p. 265). Hence, for some orthogonal U, it may be repre-
sented as

Pvec = Udiag(Ip(p+1/2,−Ip(p−1/2)U
T ,

so that
Ip2 + Pvec = Udiag(2Ip(p+1/2, 0p(p−1/2)U

T .

The minimum 2-norm solution of (A3), corresponding to the minimum Frobenius
solution of (A1), is given by

vec(Xmin) = (Ip2 + Pvec)
†vec(Φ),

where
(Ip2 + Pvec)

† = Udiag(Ip(p+1/2/2, 0p(p−1/2)U
T .

Thus,
(Ip2 + Pvec)

† = (Ip2 + Pvec)/4

and
vec(Xmin) = (Ip2 + Pvec)vec(Φ)/4.

Since
Pvecvec(Φ) = vec(ΦT) = vec(Φ),

it follows that
Xmin = (Φ + Φ)/4 = Φ/2,

q.e.d.
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