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Abstract: The primary function of a distributed bus is to connect sensors, actuators, and control units
that are used for an acquisition process. Application domains, such as industrial monitoring and
control systems, manufacturing processes, or building automation, present different requirements that
are not exactly invariable and coherent. Updating data from Modbus-type devices involves updating
data through a technique called polling, which involves repeatedly scanning the registers from each
device. This paper highlights the performance of Modbus communication, considering scenarios
in which distributed devices are integrated and accessed registers are or are not at consecutive
addresses. The Modbus protocol allows reading one or more holding-type data registers. If the
registers are not at consecutive addresses, multiple requests are required, with implications for the
real-time characteristics of the data acquisition system. We studied the data update times within
the SMARTConvert application when variable numbers of registers are accessed, and we designed
an extension for the Modbus protocol. The major reason Modbus is used in current research is that
no assumptions are required about application semantics, and the performance/resource ratio for
generic services is excellent.

Keywords: Modbus; remote terminal unit (RTU); acquisition cycle; industrial Internet of Things;
communication

MSC: 68M12

1. Introduction

In industrial information systems and automated manufacturing systems based on
hierarchical models, one or more networks may be used at each control level. All devices on
the same hierarchical level are connected to one or more networks with similar capabilities.
As a result, the following levels of an automation process can be distinguished: wide
area networks at the factory level, shop floor level, cell controller level, process level
(programmable logic controller (PLC) and computer numerical control (CNC)), and field
level (sensors and actuators). The latter type of network communicates between smart
devices at the bottom (lowest) level of the hierarchy to control automated manufacturing
systems [1]. Because these devices are located “in the field”, i.e., close to the equipment
they command, the network that interconnects them is often referred to as the field network
(fieldbus). The networks in the last three levels presented above are called local industrial
networks (LINs).

In the top-down path of the communication protocol layers, the application process
data are augmented by the layer-specific data needed to execute those protocols. These
data usually address and control information, which is mostly combined in a protocol
header. Thus, the number of bits actually transmitted can be considerably higher than the
user data provided by the application process, and the communication over-control can
be substantial.
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A classification of local networks at the enterprise level is presented below, with the
first four types of networks being LINs [2]:

• The sensorbus is the network at the lowest level, generally used to connect simple,
low-cost sensors, such as on/off switches. They transmit small amounts of data,
requiring little computing power.

• The devicebus is the largest category of networks providing communication services
for smart devices, which can perform multiple functions.

• The fieldbus generally is an advancement of the devicebus in that it supports the
transmission of large amounts of data, but at a generally low speed, and requires
more CPU power at the device level. Some fieldbus networks directly support the
distribution of control functions to the end devices.

• The control bus primarily performs peer-to-peer communications between devices at
high levels of control such as PLC or distributed control system (DCS) controllers.

• The enterprise bus is the basic network of the factory where administration is per-
formed based on Ethernet Transmission Control Protocol/Internet Protocol (TCP/IP).

One reason to promote Ethernet at the field level is that, being the same network
technology as used in the office world, direct integration is feasible, i.e., both the automation
and office domains can generally be interconnected to a single network. However, an
overview of the reality in the current automation industry shows that the requirements are
different. Ethernet is a solution for the two lower open systems interconnection (OSI) layers
and, as fieldbus history has shown, this is not enough. Even if the OSI stack commonly
used with TCP-UDP-IP is considered, only the four lower layers are covered (Figure 1).
Consequently, Ethernet or Internet technologies can be obtained in the field currently
occupied by fieldbus systems, although they are actually used in practice [1]:

• Tuning a fieldbus protocol on UDP-TCP-IP;
• TCP-IP tuning on an existing bus;
• Define new real-time protocols;
• Limiting free average access in the Ethernet standard;
• Ethernet hardware changes to achieve better real-time capabilities.
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The Modbus network protocol was designed in 1978 by Modicon Inc. It provided an
efficient method to transmit control data between controllers and sensors using mainly an
RS232 port. This protocol was then successfully introduced into automation installations,
quickly becoming a de facto standard in the industrial segment. Thus, the Modbus protocol
is today a unique protocol, being one of the main protocols among automation systems [2].
Schneider Electric has transferred Modbus and Modbus/TCP (Modbus over TCP/IP)



Mathematics 2022, 10, 4686 3 of 19

technical specifications [3,4] to Modbus.org. In terms of client/server communication
between connected devices on different types of buses or networks, Modbus implements
application-level messaging, a protocol placed at level 7 of the OSI stack. Modbus is
currently transported using any of the following layers:

• RS485, RS422, RS232;
• TCP/IP;
• Modbus Plus peer-to-peer protocol, a token transmission network;
• A wide variety of physical transmission media (optical fiber and GSM).

Its main difference from the Distributed Network Protocol (DNP3), also known as IEEE
Std 1815, is that Modbus is an application layer protocol, whereas DNP3 implements data
link and application layers. Even though DNP3 and Modbus are polled protocols, to reduce
bandwidth overhead, the DNP3 protocol is event-based. In terms of the physical layer,
serial line Modbus systems can use different physical media such as RS485 or RS232. The
two-wire interface is the most common in practice, implementing half duplex transmission.
As an option, in full duplex mode, the four-wire RS485 interface is used. In the case of
standard Modbus, all systems are interconnected in parallel on a three-conductor bus. Two
conductors form a twisted pair over which data are bidirectionally transmitted, usually at
a rate of 9600 bps.

The main contributions of our study related to mathematical sciences and embedded
systems domain consist of implementing the structure of an acquisition cycle (AC) designed
for incompletely defined networks by adding a time stamp and achieving broad temporal
coherence. The derived contributions are based on studies related to data update times
within the Modbus protocol and the definition of mathematical equations for the acquisition
cycle analysis in the context of embedded systems mathematical models.

The remainder of this paper is organized as follows: Section 2 reviews previous
Modbus-based projects. Section 3 describes the mathematical model for analyzing the
performance of the Modbus communications acquisition cycle, and Section 4 validates the
experimental results. Sections 5 and 6 present the discussion and conclusions, respectively.

2. Related Work

The Modbus industrial automation protocol is analyzed and implemented using Pro-
tege [5], a specific language for this field. Using Protege considerably facilitates protocol
stack implementation and maintenance, and increases code sharing and reuse. The im-
plementation successfully works together with a real integration device, fully complying
with the Modbus standard. An important aspect of the proposed implementation is the
memory footprint resulting from the implementation of the protocol package. Using the
modular implementation concept, producing custom Modbus functionality subsets to
achieve a minimum memory footprint is possible. A Modbus covert channel that can be
used for remote command and control was introduced. The communication channel uses
the least significant bits to store and transfer information between the client and server
modules. Using this implementation, we aimed to test the bandwidth and stealth of some
configurations [6].

In one study [7], the communication channel was based on a client–server architecture.
Thus, information transfer was bidirectional, allowing users to upload commands and
parameters to receive responses. This sender-oriented approach, which is a constraint of the
Modbus architecture, implies a responsive command line for the user. Thus, the Modbus
implementation presented in this study did not cover all possible variants of supervisory
control and data acquisition (SCADA) communication channels.

One proposed solution [8] was successfully implemented and adopted for real equip-
ment in the food industry. The researchers designed an innovative Modbus extension to
overcome deficiencies such as address space size, bandwidth, and shared transfers. The
choice of execution of communication protocols provided an efficient method to avoid
unexpected synchronization interference with highly critical activities due to network
inaccessibility. Many tasks having truly asynchronous access to the network would be
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inappropriate. These devices have so far accumulated over 500,000 operating hours, with-
out any protocol-related failures, confirming the correct behavior of the protocol. The
characteristics of malicious traffic are defined in the Snort rules database, in which the tool
automatically extracts the traffic features, places them in packages, and generates a Modbus
malware package using Scapy [9]. To test the Modbus traffic generation tool, three Modbus
Snort rules were added to the input file used by the tool to extract traffic characteristics.
Accordingly, the tool reads the rules and generates malicious Modbus packages that trigger
these rules in Snort. To confirm that the triggered rules are the same rules that were used
by the tool, the alert SID and message can be compared in Snort with the SID and message
of the sender-side rules. Authors [9] described in detail a new tool that can be useful in
assessing the security of SCADA systems. The proposed instrument has the ability to
generate malicious SCADA traffic of the Modbus protocol type, with the Modbus protocol
being the most popular industrial protocol currently used. Malicious traffic is generated
based on Snort rules that are used to trigger malicious packages. From the Snort rules,
the proposed tool automatically extracts traffic functions, stores them in packages, and
generates a Modbus malware package using Scapy.

The real-time performance of the Modbus TCP was experimentally evaluated, includ-
ing both over-control and communication jitter [10]. To evaluate the additional introduced
over-control and jitter, the authors performed two sets of experiments. In the first, based
on Modbus TCP communication, they measured and analyzed round trip delay time. In
the second set of experiments, they considered the direct TCP configuration that was used
as the reference and presented several summary statistics. The authors performed all
experiments by transferring randomly distributed, uniformly allocated recorded content
between the client and server systems [10]. Both systems used a typical low-cost built-in
microcontroller that was suitable for industrial applications, namely NXP LPC2468 [11],
based on a 72 MHz ARM7 processor managed by the FreeRTOS real-time operating system.
The results confirmed the high overall quality of Modbus TCP communication evaluated in
experiments. However, its critical elements, such as the event system, did not introduce any
significant jitter despite their non-negligible complexity. In another study [10], the real-time
performance of Modbus TCP communication was experimentally evaluated, considering
a direct streamed TCP connection. The detailed analysis showed that the mechanism for
the recognition of the TCP segment substantially affected the general communication jitter,
which compromised the application of the Modbus TCP protocol in real-time systems.
Furthermore, the effects of the recognition mechanism on communication performance are
not straightforward: they depend on many factors, such as system architecture, priority as-
signment, traffic initiator (e.g., client or server), and so on. For this reason, further analysis
is required. However, a method to adjust the recognition mechanism by configuring the
protocol stack to reduce the jitter introduced in the Modbus TCP communication needs to
be designed so that real-time performance can be further improved.

Other authors [12] described the implementation of an experimental network and
presented their practical results. From the various methods of error detection and correction,
they chose to use the Reed–Solomon codes, which are systematic codes capable of correcting
errors in isolated bits as well as impulse errors. The experimental time measurements
showed that the maximum amount of redundant information that could be added to
the network was four parity characters. Thus, the authors implemented an RS code
(255, 251). Coding and decoding operations were performed by software, adapting the
REED-SOLOMON encoding algorithms developed by Karn and Ortega, to execute them on
a microcontroller in the dsPIC30F series. However, to reduce processing time and latency,
future deployments can use the VHDL hardware description language.

Researchers [13] introduced and presented a test model for Modbus TCP protocol
vulnerability based on an antisample algorithm. The reception rate was improved for
test cases, successfully and time-efficiently detecting vulnerabilities in industrial control
protocols. Experimental results [14] demonstrated that multichannel data acquisition could
be used to accurately retrieve the corresponding data from a process; the embedded system
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also implemented the communication task with a PC. Moreover, the proposed data acqui-
sition system was feasible and stable in a lighting system, with notable energy savings.
Security analysis involves protocol verification considering different types of attacks and
basic cybersecurity services, such as integrity and confidentiality [15]. Current research
has focused on how Modbus-RTU can be improved considering various aspects of com-
munication performance [16]. The results obtained from simulations and experimental
tests validated the effectiveness of the proposed method to increase the data rate while
maintaining the reliability of the protocol. Researchers performed experimental validations
demonstrating the effectiveness of the proposed method in isolating the segments suscepti-
ble to disturbances in a communication bus [17]. This maintained the compatibility with
commercial devices and improved the performance of the entire network.

3. Modbus Protocol and Acquisition Cycle Analysis

Modbus has the advantage of wide acceptability between tool manufacturers and
users, with many systems in operation. It is therefore a de facto industrial standard with
proven capabilities. Certain features of the Modbus protocol are fixed, such as frame format,
frame sequences, communication error handling, exception conditions, and performed
functions. Other features can be selected, such as the transmission medium, characteristics
of the communication channel, and transmission mode (RTU or ASCII). User features are set
on each device and cannot be changed when the system is running. The two transmission
modes in which data are exchanged are as follows [18]:

• ASCII: Easy to read, for example, in the testing stage (ASCII format);
• RTU: Compact and fast, being used for normal operation (hexadecimal format).

Traditional Modbus messages can be placed in RTU or ASCII frames and can be
packaged with a TCP/IP interface, so they can be sent over the internet. Modbus RTU is the
most common implementation available for Modbus. Modbus RTU is simply Modbus over
serial communication media such as RS485, RS422, and RS232. Modbus TCP/IP is basically
the Modbus RTU protocol with a TCP interface that runs on Ethernet. It does not require
a checksum calculation, as lower layers already provide checksum protection. It defines
the rules for organizing and interpreting the data independent of the data transmission
medium. Modbus TCP/IP has not been extensively addressed because it was not included
in this project. Modbus protocol messaging services based on the client–server model can
be successfully used for real-time information exchange [2]:

• Between two devices;
• For data exchange between device applications and other devices;
• Between human–machine interface (HMI)/SCADA applications and devices;
• Between a PC and a device program that provides online services.

The Modbus header is 7 bytes long, with the detailed meaning of the fields being as
follows. The Modbus Application Protocol (MBAP) header contains the following fields:

• Transaction identifier: used to pair transactions. The Modbus server copies the trans-
action identifier from the request message to the reply message;

• Protocol identifier: used for the intrasystem multiplexing mechanism. The Modbus
protocol identifier is zero;

• Length: The length field is a byte counter of the following fields, including the unit
identifier and data fields;

• Unit identifier: This field is used within a system and serves as routing. It is typically
used to communicate with server stations on the Modbus and Modbus + serial lines
through an access gate (gateway) between TCP-IP Ethernet networks and the Modbus
serial line. The field is set by the Modbus client in the request message and is required
to be returned with the same value in the response message from the server.
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3.1. Laboratory Model for Analysis of Communication Performance Based on Modbus Protocol

The Modbus protocol performs a broadcast communication (unconfirmed, valid only
for the address zero, and a unicast one (confirmed) for the other user addresses, 1,..., 247).
A schematic diagram of the experimental laboratory system including the Modbus protocol
is shown in Figure 2. For tests, we implemented an emulation application on an STM32F7
32 bit ARM microcontroller system (for a large number of stations). This allowed the
use of time stamps and markers that could be viewed on an oscilloscope, resulting in
a much finer measure of the times involved in the values update periods on the device.
The requirements assume that the tests are performed for a maximum of 50 addresses of
holding-type registers. Figure 2 shows the experimental architecture of the Modbus system.
For the practical laboratory tests the STM32F7 microcontroller was used to emulate the
server devices communicating via Modbus protocol. In this paper, the delays corresponding
to the Modbus communication protocol were measured in a PC (client)–STM32F7 (servers)
configuration by emulating several configurations of server stations on the microcontroller,
and at the same time sending different messages each with a different number of registers
on Modbus. At the server level, where we connected Modbus RTU workstations to the bus,
three components were defined:

1. The application, specific to each workstation;
2. Real-time operating system (RTOS) or sequencer (in the case of tests, we used

an RTOS);
3. Serial communication driver.
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TCP/IP uses a dedicated header to identify Modbus application data units (ADUs).
This is called the Modbus application Protocol Header (MBAP). The header includes control
information (addresses, message length, message type, etc.) that is placed in front of the
message transmitted over the network [19]. This header is different from the Modbus
RTU–ADU, which is used on serial communication lines, in the following respects [20]:

• The field containing server address used by the serial Modbus is replaced by a single
byte called the unit identifier, which is found in the MBAP. The unit identifier octet is
used to communicate through devices such as bridges, routers, and gateways, which
use a single IP address to support multiple Modbus endpoints.

• All Modbus requests and responses are designed so that the receiver can verify the
end of the message. For function codes where the Modbus protocol data unit (PDU)
length is fixed, the function code is sufficient. For function codes carrying a variable
amount of data, in the request or response, the data field includes a byte counter.
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• When Modbus is transmitted on TCP/IP, the MBAP header contains additional length
information to allow the receiver to recognize the message boundaries, even if they
have been divided into multiple packets for transmission. The existence of implicit
or explicit rules on length and use of cyclic redundancy check (CRC-32) by Ethernet
leads to a low chance of undetected corruption of demand or response messages.

The control functions used in laboratory tests are FC03 (0x03) and FC16 (0x10). Mod-
bus function FC03 reads the holding register and FC16 writes multiple registers. Other
commonly used Modbus functions are FC06 (write single register), FC22 (mask write
register), and FC23 (read/write multiple registers).

Memory is allocated at the byte level using the area fc03_register (Figure 3). The
Modbus client provides an interface that allows the user application to build requests
for various Modbus services, including access to the application objects. The Modbus
client application programming interface (API) is not part of the Modbus messaging on
the TCP/IP Implementation Guide V1.0b specification, although it contains an example
described in the implementation model [21].
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With regard to the Modbus server, upon receipt of a Modbus request, this module
activates a local function to read, write, or perform other actions. The function processing
is performed in full transparency toward the application program. The main function of
the Modbus server is to wait for Modbus requests at TCP port 502, treat the request, and
then build a Modbus response according to the device context.

The example presented in Table 1 is a reading request using FC03, where the contents
of registers 80, 81 and 82 are 0x01FF, 0x55EF, and 0x00DF, respectively.

Table 1. Example for reading function FC03.

Request Response

Field Name (Hex) Field Name (Hex)

Function 03 Function 03

Upper start address (Hi) 00 Byte counter 06

Lower starting address (Lo) 4A Register value Hi (92) 01

Registers number Hi 00 Register value Lo (92) FF

Registers number Lo 03 Register value Hi (93) 55

Register value Lo (93) EF

Register value Hi (94) 00

Register value Lo (94) DF
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3.2. Mathematical Equations for Modbus Acquisition Cycle Analysis

Modbus performance is influenced by the limitations imposed by serial links EIA-
232/485 [22]. Designers share these data with multiple operator workstations, control
systems, and all other potential users of the data, generating complex hierarchies of client–
server groups. Thus, even expensive DCSs waste valuable time mixing data for the benefit
of higher hierarchical levels. The following equations represent the times required for
the FC16 function in cases where the message is transmitted correctly or with an error.
The parameter α can take values between 0 and 1, depending on the successive character
transmission rate on Modbus. If characters are sent one after the other, α is 0. If a delay
occurs between the transmission of two successive characters, α is different from 0, and
becomes 1 if the distance between two successive characters is 1.5 characters, as specified
in the Modbus standard. Parameters α1 and α2 are proposed for FC03 and FC16 because,
for Modbus functions, message averages may differ.

TreqF16 = h + data + CRC

= (1 addr + 1 function code + 2 starting address

+2 amount of registers + 1 byte counter) + 2× nreg + 2

= 9 + 2× nreg (frames)

(1)

TrspF16 = TrspOkF16

= (1 addr + 1 function code + 2 starting address

+2 amount of registers) + CRC = 8 (frames)

(2)

TF16OK = (17 + nreg × 2)× lframe (bits) (3)

If the response is an error then:

TrspF16 = TrspErrF03
= (1 addr + 1 error code + 1 exception code) + 0
+ CRC = 5

(4)

tTF03OK = (20 + nreg × (2 + 3× α) + 18× α)× lframe × tbit (5)

tTF03ERR = (20 + 18× α)× lframe × tbit (6)

tTF16OK = (24 + nreg × (2 + 3× α) + 24× α)× lframe × tbit (7)

tTF16ERR = (21 + nreg × (2 + 3× α) + 19.5× α)× lframe × tbit (8)

If α = 0 then the transaction is shorter.

tTF03OK = (38 + 5 × nreg)× lframe × tbit (9)

tTF03ERR = 38× lframe × tbit (10)

tTF16OK = (48 + 5 × nreg)× lframe × tbit (11)

tTF16ERR = (40.5 + 5 × nreg)× lframe × tbit (12)

tHWnet hardware delays (line drivers, signal propagation on long lines, etc.) can
also be added to the given transaction time. However, these delays are considered at high
communication speeds, but can be insignificant at 9600 bps. The acquisition cycle time
mainly depends on the Modbus control function and the number of characters, which can
be higher or lower on reception or emission depending on the control function (Figure 2).
The time can also depend on the size of the message expressed by nreg (the number
of registers).
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3.3. Customizing Mathematical Relationships

Industrial processes are often classified according to different paradigms, namely
continuous systems and discrete event systems. In this context, an example of a continuous
process is a controller that controls the temperature in an environment within set limits.
Such a system must read the temperature from a sensor, compare it with the reference value,
calculate the required correction using a control algorithm, and finally control a heating
actuator. These operations occur at periodic intervals, mainly determined by the dynamics
of the controlled process. An important feature of discrete event systems is that although
the action triggered by an event is known, the time at which this event occurs is unknown.
However, the order in which two or more events occur is, in principle, important.

We considered a case with a single read for all 10 registers on the server (thermostat)
with address 1 and a single write for the 10 registers on the server with address 2 (the most
favorable case in terms of the address of the fan coil). For this case, a set of acquisition slots
S_AC (adr, FCxx, adrReg, and nreg) for reading and writing can be expressed by {(1,3,7,10),
(2,16,7,10)}.

The Modbus backend interface is the interface from the Modbus server to the user
application where the application objects are defined. Regarding the management of the
TCP layer, the solution adopted for the rest of the system components is transparent to the
user application, so that Berkeley Standard Distribution (BSD) sockets are used. Despite
being less flexible, using BSD sockets is more productive. The access control module plays
the role, when necessary, of ensuring security elements regarding access to the internal
data of the devices. For resource management and data flow control, to balance the data
flow of incoming and outgoing messages between the Modbus client and server, flow
control mechanisms are required at all levels of the Modbus message stack. This module
is primarily based on transport layer (TCP) flow control, to which a data link layer and
application layer flow control are added. The address and register’s address values do
not affect the S_AC in terms of acquisition cycle time (tAC). The acquisition cycle time for
S_AC defined can thus be calculated as follows:

tAC = tClient1(adr1, FC03, nreg1) + tServer1(adr1, FC03, nreg1)

+tTF031(FC03, α1, err1, tout, nreg1) + tHWnet1

+tadjust1 + tClient2(adr2, FC16, nreg2)

+tServer2(adr2, FC16, nreg2)

+tTF162(FC16, α2, err2, tout, nreg2) + tHWnet2

+tadjust2

(13)

If adr1 = 1, adr2 = 2, nreg1 = nreg2 = 10; then the time for the acquisition cycle is:

tAC = tClient1(1, FC03, 10) + tServer1(1, FC03, 10)

+tTF031(FC03, α1, err1, tout, 10) + tHWnet1 + tadjust1

+tClient2(2, FC16, 10) + tServer2(2, FC16, 10)

+tTF162(FC16, α2, err2, tout, 10) + tHWnet2 + tadjust2

(14)

tAC = tAll1(1, FC03, 10) + tTF031(FC03,α1, err1, tout, 10)

+ tAll2(2, FC16, 10) + tTF16_2(FC16,α2, err2, tout, 10)
(15)

where

tAll1((1, FC03, 10)
= tClient1(adr1, FC03, nreg1)
+ tServer1(adr1, FC03, nreg1) + tHWnet1 + tadjust1

(16)



Mathematics 2022, 10, 4686 10 of 19

tAll2((2, FC16, 10)
= tClient2(adr2, FC16, nreg2)
+ tServer2(adr2, FC16, nreg2) + tHWnet2 + tadjust2

(17)

Considering lframe = 10, tbit = 1/9600 = 1.041(6) e−4 = 104.17 us from the function
definition, it follows that there are the following three cases:

(a) Modbus message is transmitted correctly:

tTF031(FC03,α1, 0, 0, 10)

= (20 + nreg1× (2 + 3× α1)

+18× α1)× lframe × tbit

= 41.668 + 50.0016× α1 (ms)

(18)

tTF162(FC16,α2, 0, 0, 10)

= (24 + nreg2 × (2 + 3× α2)2

+24× α2)× lframe × tbit

= 45.8348 + 56.2518× α2 (ms)

(19)

If α1 = 1, α2 = 1, err1 = 0, err2 = 0 and tout = 0 then tTF031(FC03.1,0,0,10) = 91.669 ms
and tTF162(FC16,1,0,0,10) = 102.086 ms.

tAC = tAll1((1, FC03, 10) + tAll2((2, FC16, 10) + 193.775 ms (20)

If α1 = 0, α2 = 0, err1 = 0, err2 = 0 and tout = 0 then tTF031(FC03.0,0,0,10) = 41.668 ms
and tTF162(FC16,0,0,0,10) = 4545.834 ms.

tAC = tAll1(1, FC03, 10) + tAll2(2, FC16, 10) + 87.502 ms (21)

(b) Modbus message is sent with error:

tTF031(FC03,α1, 1, 0, x) = tTF03ERR = (20 + 18× α1)× lframe × tbit

= 20834 + 18750.6× α1
(22)

tTF162(FC16,α2, 1, 0, x) = tTF16ERR

= (21 + nreg2 × (2 + 3× α2)

+19, 5 × α2)× lframe × tbit

= 42709.7 + 51564.15× α2

(23)

If α1 = 1, α2 = 1, err1 = 1, err2 = 1 and tout = 0 then tTF031(FC03.1,1,0,x) = 39.5846 ms
and tTF162(FC16.1,1,0,x) = 94.27385 ms.

tAC = tAll1(1, FC03, 10) + tAll2(2, FC16, 10) + 133.85845 ms (24)

If α1 = 0, α2 = 0, err1 = 1, err2 = 1 and tout = 0 then tTF031(FC03.0,1,0,x) = 20.834 ms
and tTF162(FC16,0,1,0,x) = 42.7097 ms.

tAC = tAll1(1, FC03, 10) + tAll2(2, FC16, 10) + 63.5437 ms (25)

(c) A timeout event is recorded: For timeout (tout) the delay can be about 500 ms at the
client application level (tAC = tAll1 (1, FC03, 10) + tAll2 (2, FC16, 10) + tout).

4. Experimental Results

In this section, we present our laboratory experimental results from testing the message
exchange between devices belonging to the same Modbus communication protocol based
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on the SMARTConvert platform. In Section 3, we presented the theoretical relationships
given by the delay of the Modbus transactions on a RS485 bus. Devices connected on
the Modbus RS485 bus must have the same communication speed and know the Modbus
protocol. We used a USB–3.3 V adapter and a virtual COM on a PC for testing. As the
Modbus stations did not meet the hardware requirements in this study, we designed an
application on an STM32F7 Discovery development kit [23] that simulated 247 stations,
each with 50 holding registers. In this study, one of the stations could support the type of
test performed (we designed the application for the situation where the use of all addresses
for the user, from 1 to 247, was required). For these 50 registers available at the station level
(server), the required Modbus functions, namely, FC03 for reading and FC16 for writing,
were available.

We connected the PC and development kit with a USB–3.3 V converter (on the serial
port) identified as a Prolific USB-to-Serial-Comm Port (COM10). Figure 4a shows the
Modbus poll and two server stations with addresses 0x01 and 0x02. One register was read
from server ID = 0x01 using the FC03 Modbus function. The register was written to the
server with ID = 0x02, at memory address 0x00, with the related time stamps. In terms of
acquisition cycle experimental data, the cursors delimited a two-server acquisition cycle.
We connected four probes (Ci signals in this paper) of the oscilloscope as follows (Figure 4b):
probe 1 (C1) to an output pin of the microcontroller (pin PF8) that indicated the Server 1
station marker, probe 2 (C2) to an output pin of the microcontroller (pin PF9) as a spy to
indicate the send/receive status of Server i, and probes 3 (C3) and 4 (C4) to UART (RX,
pin PF6; TX, pin PF7). In the laboratory experiment, we used RX and TX lines for testing,
which we directly connected between two client–server devices, a USB–3.3 V adapter, and
a server station emulator (up to 256 stations). We implemented a half-duplex connection,
so we used no RTS/CTS signals or line drivers to control their direction. The STM32F7
microcontroller automatically used RTS to switch the communication direction, even if a
line driver was used. The measured values for the period of an acquisition cycle with two
Modbus RTU server stations were as follows: 199.8, 200.5, 200.7, 200.2, and 196.9 ms. The
experimental results showed that the time period related to the server with address 1 was
between 196.9 and 200.7 ms.
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Figure 4. Modbus protocol performance analysis: (a) Modbus connection parameterization, FC03
and FC16 function definitions and Modbus Poll interface (read/write Modbus function (0x03/0x10),
start address (0x00, 0x00), number of registers (0x00, 0x01), byte counter 0x02, register data (0x69,
0x6A/0x6D, and 0x6E), and CRC); (b) experimental data for Modbus acquisition cycles analyzed in
experimental laboratory project (39 servers) using PICOSCOPE 6404D (Pico Technology).
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During this period, the server driver switched from reception to broadcast and sent the
reply message to the client. In Figure 4, the red cursor (C2) indicates that the communication
driver was switched at server i from reception to broadcast. The green cursor (C3) represents
the request message at the USB converter–TTL (PC client) level. The brown cursor (C4)
represents the server response message (hardware simulator device). The values recorded
for acquisition cycles with one register were as follows: 196.9, 200.2, 200.5, and 200.7 ms.
Therefore, we observed a maximum difference of 3.8 ms between the presented acquisitions
cycles. The times between two consecutive requests from the server with ID 1 (FC03) to
the server with ID 2 (FC16) were 97.76, 97.62, 100.2, and 100.6 ms. The experimental data
validated a maximum difference of 2.98 ms between the obtained results. The time intervals
between two consecutive requests from the ID 2 (FC16) server to the ID 1 (FC03) server
following the measurements were 94.25, 99.34, 100.1, and 99.94 ms, with a jitter of only
5.85 ms.

As shown in Figure 5, for the FC03 read function addressed to the server with ID
0x01, the query message period was between 8.224 and 8.251 ms, with a difference between
them of only 27 µs. The server processing time was only 5.2 ms, with the experimental
values measured as follows: 5.12, 5.226, 5.412, and 5.598 ms. The jitter recorded in the
laboratory tests was only 478 µs. The transmission periods for the ID 0x01 server response
message, characteristic of the FC03 function, were 7.19 and 7.216 ms. Table 2 defines
the transaction time mathematical functions based on different parameters and Modbus
functions. Discrete event-based systems implemented using cyclic or periodic queries are
called time-triggered systems or data-sampling systems. Implementations of discrete event
systems using interrupts or internal software events are called event-triggered systems.
The choice of a communication system for interconnecting industrial control applications
largely depends on the application type and constraints imposed.
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Figure 5. Modbus protocol experimental tests: (a) server query message timing with ID 0x01 and
function FC03; (b) time required for processing at server with ID = 0x01 and FC03 (analysis of request
and sending response; forced delay = 1 ms); (c) time required for response message of server with ID
0x01 and function FC03.
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Table 2. Modbus transaction-timing-based tTFxx (FCxx, α, err, tout, and nreg) function.

Condition Result Obtained

If FCxx = FC03, α ∈ (0,1), err = 0, tout = 0 tTF03(FC03,α, 0, 0, nreg) = tTF03OK =
(20 + nreg× (2 + 3 × α) + 18× α)× lframe× tbit

If FCxx = FC03, α ∈ (0,1), err = 1, tout = 0 tTF03(FC03,α, 1, 0, x) = tTF03ERR = (20 + 18× α)× lframe× tbit

If FCxx = FC03, α = 0, err = 0, tout = 0 tTF03(FC03, 0, 0, 0, nreg) = tTF03OK = (13 + nreg× 2)× lframe× tbit

If FCxx = FC03, α = 0, err = 1, tout = 0 tTF03(FC03, 0, 0, 0, x) = tTF03ERR = 13× lframe× tbit

If FCxx = FC03, α = 1, err = 0, tout = 0 tTF03(FC03, 1, 0, 0, nreg) = tTF03OK = (38 + 5 × nreg)× lframe× tbit

If FCxx = FC03, α = 1, err = 1, tout = 0 tTF03(FC03, 1, 0, 0, x) = tTF03ERR = 38× lframe× tbit

If FCxx = FC03, α = x, err = x, tout = TOUT tTF03(xx,x,x,x,TOUT) = TOUT

If FCxx = FC16, α ∈ (0,1), err = 0, tout = 0 tTF16(FC16,α , 0, 0, nreg) = tTF16OK = (24 + nreg × (2 + 3 ×
α) + 24 × α) lframe × tbit

If FCxx = FC16, α ∈ (0,1), err =1, tout = 0 tTF16(FC16,α , 1, 0, x) = tTF16ERR = (21 + nreg × (2 + 3 ×
α) + 19, 5 × α) × lframe× tbit

If FCxx = FC16, α = 0, err = 0, tout = 0 tTF16(FC16, 0, 0, 0, nreg) = tTF16OK = (24 + nreg× 2)× lframe× tbit

If FCxx = FC16, α = 0, err = 1, tout = 0 tTF16(FC16, 0, 0, 0, x) = tTF16ERR = 21 + 2 × nreg× lframe× tbit

If FCxx = FC16, α = 1, err = 0, tout = 0 tTF03(FC16, 1, 0, 0, nreg) = tTF16OK = (48 + 5 × nreg)× lframe× tbit

If FCxx = FC16, α = 0, err = 1, tout = 0 tTF16(FC16, 1, 0, 0, x) = tTF16ERR = (21 + 2 × nreg)× lframe× tbit

If FCxx = FC16, α = x, err = x, tout = TOUT tTF16(xx,x,x,x,TOUT) = TOUT

Figure 6 shows the experimental data for the acquisition cycle and the updating
registers with FC16. The write function was characterized by longer transmission periods
than the FC03 reading function.
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Figure 6. FC16 function experimental validation: (a) period of server 0x02 request message and FC16;
(b) server processing jitter with FC16; (c) response message period of server with ID 0x02 and FC16.
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5. Discussion

The research and design methodology for laboratory models based on the Modbus
protocol consists, first of all, in writing and presenting a mathematical model for the
Modbus communication protocol. This step allowed the definition and implementation of
the tests necessary to determine the update times of values from/to a device connected
to a Modbus RTU bus. In step two, Figure 2 illustrates the principle diagram of Modbus
message communication, highlighting the various components that could cause measurable
delays. Then a Modbus transaction was defined that takes place on the physical Modbus
layer. Based on this, the structure of an acquisition slot at the level of a client running on an
evolved operating system was presented. This slot contains a single Modbus transaction.
Now we have all the theoretical observations and relationships given by the delay of
Modbus transactions on the RS485 bus. As there were no Modbus stations available to
meet the project requirements, in step 3 an application was built on an STM32F Discovery
development kit on which 247 Modbus Server stations were emulated. To improve the
acquisition cycle times, in step 4 an extension (ModbusE) of the incompletely defined
Modbus protocol was proposed. Thus, the practical results obtained were presented and
analyzed in the paper. The paper also addresses the TCP/IP stack as the authors are
considering the design of a Modbus Gateway. The IoT gateway will be equipped with
a MODBUS TCP/IP server. Server implementations based on this protocol will have an
interface commonly referred to as a data provider that will provide a wrapper between
the server and the MODBUS TCP/IP driver. Thus, via the OPC UA server, the gateway
will be accessible from IoT applications. To recreate an environment similar to the one
in the presented experiment, researchers can simply use the open Modbus protocol, a
development kit (RTX RTOS and Keil design environment) to emulate a server, a Client PC,
Modbus Poll software and an oscilloscope for AC measurement.

In this study, based on the Modbus protocol, we validated the interchange times from
a thermostat to a fan coil for the most favorable case: when the thermostat has address 1
and the fan coil has address 2. In these laboratory tests, we considered all as to having
1 or 10 consecutive registers to be updated for a communication speed of 9600 bps. The
update times from one Modbus server (thermostat) to another server (fan coil) on the same
network for the most favorable case validated the mathematical model for the analysis and
testing in this study. We tested the read (FC03) and write (FC16) functions between the
client and server devices belonging to the same Modbus communication protocol.

We presented the validation signals and the obtained values in Section 3, considering
an acquisition cycle with two Modbus RTU server stations. For this, we used Modbus
Poll software and two server stations with addresses 1 and 2; we set the register address
to 0x00, and considered the related time stamps. Based on the hierarchical levels of the
current communication protocols, we were able to set up complex communication systems
in a structured way. In addition, the strictly hierarchical structure of the OSI model allows
heterogeneous systems to be interconnected on different layers. As mentioned above, the
client sends commands to the different server units to determine the status of the process
inputs or to change the output status using the Modbus protocol. We validated the period
and jitter of a Modbus transaction, described the mathematical function that defines an
acquisition slot (adr, FCxx, and nreg) at the application per client level, and determined the
function that defines a tAC (S_AC) acquisition cycle. A best-case two-server acquisition
cycle was between 199.8 and 200.7 ms, and the shortest time between two consecutive
requests from server ID 0x01 (FC03) to server ID 0x02 (FC16) was 97.62 ms. The average
time corresponding to the server query message with ID 0x01 and FC03 function was
8.239 ms (Figure 7a). The processing time of the server (request analysis and response,
forced delay = 1 ms) ID 0x01 FC03 was between 5.12 and 5.598 ms, and the maximum jitter
of the server response message with ID 0x02, function FC16, was 7.72 ms. We used the Keil
uVision environment and the integrated debugger for the design (Figure 7b).
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Regarding the software used, RTX RTOS, we integrated the hardware abstraction layer
(HAL) libraries, the main task being void mbSlaveThreadProtocol (void const * argv).

The advantage of the OSI model and its importance for implementation in practice
are due to the consistent connection of three key concepts: protocol, service, and interface.
Protocol refers to the set of rules that governs layer communication at the same level. To
perform the rather complicated task of standardized implementation for data commu-
nication, we showed that dividing it into a strictly hierarchical, layer-based model is an
advantage in the design of communication systems. Thus, this layered organization can be
applied even in industrial communications. All relevant communication functions were
ordered into groups that rely on each other. On this basis, a reasonable degree of modular-
ization was sought, so that seven levels represent a feasible compromise, producing the
highest performance.

Incompletely defined protocols such as Modbus do not address how and in what
order the acquisition occurs on the communications bus. For this reason, in ModbusE,
we defined an acquisition cycle that makes the protocol deterministic. Thus, the protocol
also allows the addition of a time stamp for messages in the acquisition cycle. In this
study, from Modbus communication analysis, we found that the proposed protocol led
to decreases in Modbus acquisition times; thus, this ModbusE proposal is a novelty in
the field, which we validated through experimental data. We implemented the ModbusE
concept at the application level. ModbusE was initially defined [18] specifying the structure
of the message, the structure of the AC, and the base station gateway (BSG) as the client
device. Our validation of ModbusE allowed the design of a new communication message
structure, an acquisition cycle to obtain a temporal behavior, a description of the Modbus
devices, and the definition of an architecture for integration in the industrial Internet of
things (IIoT). We defined mathematical equations, on which we calculated specific times in
a slot of the acquisition cycle. Figure 8a shows the time periods for the acquisition slot, and
Figure 8b illustrates the jitter for tmfosli, tmswitch, and tmCRC in the case of ModbusE
implementation. Here, tmfosli represents the time required to finish the operations related
to the old slot, tmswitchi is the time required to switch the mbeThreadCycleRTU task, and
tmCRC represents the CRC calculation timing for a message received in the previous slot.
Control loops can be designed using fieldbuses. For example, a control loop might consist
of an actuator and a proportional–integral–derivative (PID) controller, which requires the
value provided by a sensor. If the control loop cycle is shorter than the AC, a subcycle must
be defined (Figure 9). A slot scheduling method was designed for the situation where the
Sc time interval between two consecutive slots exceeds the longest acquisition slot [18]. If
multiple loops exist in the same subloop, the problem is similarly solved, provided that the
remaining difference is larger than the longest span of the planned space.
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The gaps between Sc slots can be filled and an acquisition cycle can be created in two
ways: gap filling by considering the slot number, such as priorities, and optimal gap filling,
in which case the slots are used as efficiently as possible, without unused ticks. So, to
calculate the time of an acquisition cycle, a priority-based algorithm can be used, where the
priority is the slot number, with the lowest number representing the highest priority. In the
proposed algorithm for communication, there are SYNC slots, i = 1, 2,..., N, SLEND and Sc.
Thus, the algorithm computes the AC and, consequently, the positions of the slots in the AC,
as well as the position and size of the idle times of the communication lines. These gaps can
be used to transmit SDO messages if they fall within the gap time period. Gaps are available
in BSG; moreover, Sc can be Sc1 + Sc2 + Sc3 +..., provided all control loops have the same
period (Figure 9). In most cases, industrial processes are implemented in a hierarchical
manner on levels and, depending on the position, the challenges are different. How
control software is written also introduces different needs in communications networks. In
selecting a communications network, the various considerations that network designers
have when building their solution must be understood. A production system is controlled
by numerous computers organized on several hierarchical levels. Computer networks
provide communications between computers on one level and with some computers on
adjacent levels.

Unlike other industrial buses and protocols, no physical interface (OSI level 1) has
been defined. Modbus is a simple, flexible, public protocol that allows devices to exchange
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discrete and analogue data. Implementing Modbus specifications as the required interface
protocol between communication subsystems is one method of integrating the solutions
proposed by vendors. Thus, several design options are available for developing data
acquisition systems at the lowest cost. The RTU module, sometimes referred to as Modbus-
B for Modbus binary, is the preferred Modbus module.

The ASCII transmission mode, sometimes referred to as Modbus-A, corresponds to
a typical message that is approximately twice as long as the equivalent RTU message.
The Modbus protocol implements transmission and communication error control. Thus,
communication errors are found by character framing, parity testing, or cyclic redundancy
checking (CRC-16) [24,25]. The latter may vary depending on the Modbus RTU or ASCII
transmission mode. Package modules can also be sent through local or regional networks
by encapsulating Modbus data in a TCP/IP package [26].

We successfully analyzed and tested the Modbus message exchange between devices
belonging to the same communication protocol according to the Modbus protocol specifica-
tions. In the future, the performance of the ModbusE acquisition cycle will be integrated
into the implementation of an IoT-enabled access gateway (IIoT) ModbusE_Gateway, as
part of the IIoT_ModbusE_System. We will evaluate ModbusE times in the form of BSG (SW-
OPC UA Client) and server-type workstations (IIoT_Modbus_Server). Thus, the Modbus
extension will be validated regarding the new structure of the message and of the acqui-
sition cycle to obtain a deterministic temporal behavior of the IIoT_ModbusE_Gateway-
IIoT_Modbus_Server system. OPC UA will evolve into increasingly smaller devices and
sensors [27,28]. The smallest OPC UA-based software projects with limited functionality
use 35 kB RAM and 240 kB flash. However, chips with integrated OPC UA continue to
advance in the sensor world.

6. Conclusions and Future Work

Our contributions with the study include the analysis of Modbus transmission: we
measured the Modbus communication signals with an oscilloscope. Thus, we evaluated
the delays corresponding to different configurations of the server stations using a different
number of messages, i.e., different sizes. Studies of this type are not found in the applied
science literature, e.g., in the field of embedded systems. Moreover, we proposed a Modbus
extension, thereby improving Modbus message merging and thus reducing communication
times and improving data flow on RS485 networks. These proposals and studies were
based on the analysis in the first part of the study, in an architecture that incorporates
the Modbus protocol, SmartConvert, STM32F7, and RTX RTOS. In future studies, we will
use the LTM2881 driver for RS485. Another contribution concerns the measurement of
the delays introduced by the Windows 10 operating system with an average load in the
communication between the PC client and the server stations.

The ModbusE protocol can be integrated into embedded devices with medium and
high response times in data acquisition processes. The specific application of the experiment
can be industrial environment and IIoT applications. For implementation and commer-
cialization, the authors plan in the future to integrate the ModbusE concept into a set of
Building Internet of Things (BIoT)-based smart switches.

After testing, we concluded that the limitations are produced by the PC operating
system, which introduces nondeterministic delays. Tests will determine the maximum
of these delays under constant-load conditions. However, ideally, the operating system
should only be used for a specific application. Systems that can use the ModbusE protocol
are industrial monitoring processes, medium and high response time systems, and the IIoT.
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