
Citation: Yuan, M.; Wang, D.;

Zhang, F.; Wang, S.; Ji, S.; Ren, Y. An

Examination of Multi-Key Fully

Homomorphic Encryption and

Its Applications. Mathematics 2022, 10,

4678. https://doi.org/10.3390/

math10244678

Academic Editors: Liehuang Zhu,

Meng Li and Zijian Zhang

Received: 8 November 2022

Accepted: 7 December 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Examination of Multi-Key Fully Homomorphic Encryption
and Its Applications
Minghao Yuan 1 , Dongdong Wang 2, Feng Zhang 3, Shenqing Wang 3, Shan Ji 3,* and Yongjun Ren 1

1 Engineering Research Center of Digital Forensics, Ministry of Education, School of Computer Science,
Nanjing University of Information Science and Technology, Nanjing 210044, China

2 The 15th Research Institute of China Electronics Technology Group Corporation, Beijing 100083, China
3 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China
* Correspondence: shanji@nuaa.edu.cn

Abstract: With the rapid development of the Internet of Things (IoT) technology, the security prob-
lems it faces are increasingly prominent and have attracted much attention in industry and the
academy. Traditional IoT architecture comes with security risks. Illegal intrusion of attackers into the
network layer disrupts the availability of data. The untrusted transmission environment increases the
difficulty of users sharing private data, and various outsourced computing and application require-
ments bring the risk of privacy leakage. Multi-key fully homomorphic encryption (MKFHE) realizes
operations between ciphertexts under different key encryption and has great application potential.
Since 2012, the first MKFHE scheme LTV12 has been extended from fully homomorphic encryption
(FHE) and has ignited the enthusiasm of many cryptographic researchers due to its lattice-based
security and quantum-resistant properties. According to its corresponding FHE scheme, the MKFHE
schemes can be divided into four kinds: Gentry–Sahai–Water (GSW), number theory research unit
(NTRU), Brakerski–Gentry–Vaikuntanathan (BGV), and FHE over the tour (TFHE). Efficiency and
cost are urgent issues for MKFHE. New schemes are mainly improved versions of existing schemes.
The improvements are mostly related to the four parts of MKFHE: security assumption, key gen-
eration, plaintext encryption, and ciphertext processing. We classified MKFHE schemes according
to the improved partial schemes, and we present some improved techniques and the applications
of MKFHE.

Keywords: multi-key fully homomorphic encryption; Internet of Things; distributed computing;
privacy protection

MSC: 94A60; 06B99; 68P27

1. Introduction

The Internet of Things (IoT) technology has been widely applied in various domains,
such as the military, industry, logistics, medical care, and smart homes [1], in recent years.
The era of the Internet of everything has arrived, and the interactions between hundreds
of millions of terminal devices generate massive data. An important method to deal with
massive data is to apply distributed processing model represented by cloud computing
and federated learning, which can make full use of idle resources of IoT devices. The IoT
involves most aspects of daily life. It inevitably needs to collect people’s personal informa-
tion (such as consumption habits, travel routes, etc.). How the processing layer protects the
privacy of all parties involved in processing is an urgent privacy protection problem.

Data security requires not only the security of the stored data but also the security of
data processing. Fully homomorphic encryption (FHE) [2,3] allows arbitrary operations to
be performed on encrypted data, with the same effect on the ciphertext as on the plaintext.
Therefore, the users only have to upload data that have been encrypted with the user’s

Mathematics 2022, 10, 4678. https://doi.org/10.3390/math10244678 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244678
https://doi.org/10.3390/math10244678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6700-7934
https://doi.org/10.3390/math10244678
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244678?type=check_update&version=2

Mathematics 2022, 10, 4678 2 of 20

public key to the cloud to ensure that the data are stored and processed securely [4]. For
example, there are already many applications of homomorphic encryption in the IoT
combined with cloud computing. Users store the encrypted data in the cloud, and the
decryption of the encrypted data needs to be jointly authorized by the user’s terminal and
the cloud. However, the existing schemes basically use single-key homomorphic encryption,
but similar scenarios such sa cloud computing and federated learning usually involve
handling multi-user data, where different users jointly participate in the same operation
process and the operation results should be jointly decrypted by the participating users.
FHE [5] only supports the operation of ciphertext encrypted with the same key, and different
users holding the same secret key obviously cannot meet the security requirements.

The properties of multi-key fully homomorphic encryption (MKFHE) can be perfectly
applied to the multi-user model. Users can obtain different keys from the same key
generation algorithm, and the ciphertexts encrypted under different keys can be operated
arbitrarily. The decryption process needs to be jointly decrypted by each user, which can
solve the security and privacy problems in distributed computing scenarios. Additionally,
because MKFHE is constructed based on the lattice difficulty problem [6], it possesses the
ability to resist quantum attacks [7], which meets the current demand for resisting quantum
computer threats.

Efficiency and cost are the biggest problems between the current MKFHE and the
applications. Once the issues of efficiency and cost are overcome, MKFHE will be the
preferred choice for security protection in multi-user environments. To solve this problem,
researchers reduce the sizes of public and private keys, reduce the size of ciphertext, design
more efficient ciphertext calculation methods, and use batch processing and compression
ciphertext to improve efficiency and reduce the cost of MKFHE. Not all researchers have
focused on the study of the cost and efficiency of MKFHE. For example, some researchers
noticed that the current MKFHE schemes are all under the CRS (commom reference string)
setting and that the ability of each user to independently generate keys is limited, so
they designed the first MKFHE under the non-CRS setting. Some researchers noticed the
security risks of the difficult assumption problem and constructed a new scheme based on
the optimized difficult assumption problem.

The optimization of MKFHE is mostly carried out in the stages of safety assumption,
key generation, plaintext encryption, and ciphertext processing, with the objectives of
reducing key size, improving encryption efficiency, creating more efficient extension meth-
ods, and making smaller extended ciphertexts. There are also optimizations of security
assumptions that choose the non-traditional MKFHE hard problem.

In this article, we present a classification and introduction of MKFHE schemes, show
some of the technologies and definitions of the optimized schemes, introduce the applica-
tions of MKFHE, and summarize the current developments in MKFHE.

Multi-Key Fully Homomorphic Encryption

Leveled MKFHE [8]: Given a safety parameter and operation circuit C with the
depth of L, a leveled MKFHE scheme is a tuple of efficient randomized algorithms (Setup,
KeyGen, Enc, Extend, Eval, Dec) described as follows:

Setup (1λ, 1k, 1L): Given the security parameter λ, a bound K on the number of keys,
and a bound L on the circuit depth, output a public parameter pp.

KeyGen (pp): Input the public parameter pp; output public key pki and secret key ski
(i = 1, . . . , K) for each party, key pki for ciphertext extension, and key evki for homomor-
phic evaluation.

Enc (pki, mi): Input the public key pki of party i and a message mi output a ciphertext
ci which contains the relevant private key and circuit-level information.

Extend (ci, pks =
{

pki1, . . . , pkik
}

): Input ciphertext ci and key eki for ciphertext; out-
put extended ciphertext ĉi,S. The corresponding user set is Si and the public key set corre-
sponding to the user set S (Si ⊂ S) to be expanded is
pks =

{
pki, . . . , pkik

}
. The corresponding private key is composed or calculated by the

Mathematics 2022, 10, 4678 3 of 20

private keys of all users in S in a specific form. Notice that the ciphertext extension al-
gorithm is not necessary for all MKFHE schemes (number theory research unit (NTRU)
type MKFHE does not need to expand the ciphertext), not all the ciphertext extension
process require extended key eki (the ciphertext extension process of Brakerski–Gentry–
Vaikuntanathan (BGV) type MKFHE does not require eki).

Eval (pp, C, (ĉ1,S, evk1), . . . , (ĉt,S, evkt)): Input a boolean circuit C and the tuple
(ĉ1,S, evki)i=[t] corresponding to the same user set S (which can be implemented by cipher-
text extension); output ĉS after homomorphic evaluation.

Dec (skS, ĉS): Input a ciphertext ĉS corresponding to a set of parties S =
{

i1, . . . , ik
}
⊆[K]

and joint private key sks =
{

ski1, ski2, . . . , skik
}

, which is composed or calculated by the
private keys of all participants in a specific form; output the message mS.

Correctness: To a leveled MKFHE, input any circuit C of depth at most L having
t input wires and any tuples (ci,S, evki)i∈[t], while letting µi = Dec (skS, ci.S); then the
MKFHE scheme is correct if and only if the following formula holds:

Pr[Dec (skS, Eval (C, (ci, S, evki)i∈[t])) 6= C (µ1, . . . , µt)] = negl (λ) (1)

Compactness: To a leveled MKFHE, if there exists a polynomial poly (·) such that
| c |≤ poly (λ, K, L), and the length of c is independent of the circuit C, then the MKFHE
scheme is compact. In general, the ciphertext length of MKFHE scheme is related to security
parameter λ, the number of participants K, and the polynomial level of circuit depth L.

The properties of homomorphic evaluation are presented in Figure 1.

⊕

⊗

⊕

⊗

Figure 1. Homomorphic addition and multiplication.

Taking A and B as an example, the encrypted ciphertexts are EA and EB. After the
homomorphic addition and the homomorphic multiplication of EA and EB, the decryption
of the homomorphic operation has the same result as the direct addition and multiplication
of A and B.

2. MKFHE Scheme Classification
2.1. MKFHE Classified by Improvement Steps

The biggest problems that stand between MKFHE schemes and their application are
efficiency and cost. After the three classical types of MKFHE schemes were proposed,
subsequent schemes were mostly constructed by improving on the various steps of the
classical schemes. In this paper, MKFHE schemes are divided into four categories according
to the different steps of improvement.

(a) The first category involves schemes that have improvements in security assump-
tions. Che et al. proposed the NTRU-type MKFHE scheme CZL20 [9] for prime cyclotomic
rings in 2020, and other schemes that improve security assumptions.

(b) The second category involves schemes that have improvements in the key gen-
eration step. Kim et al. constructed the common random/reference string (CRS)-free
KLP18 [10] scheme in 2018, which improves the MW16 [11] scheme, and some subse-
quently improved schemes.

Mathematics 2022, 10, 4678 4 of 20

(c) The third category involves schemes that have improvements in the encryption
step. Chen et al. constructed the first CZW17 [12] scheme supporting multi-bit encryption
based on BGV12 [13] in 2017, and subsequently improved schemes and multi-bit encryption
schemes implemented in other ways.

(d) The fourth category involves schemes that have improvements in the ciphertext
processing step. The CZW17 scheme implements an efficient ciphertext extension to obtain
compact ciphertexts, and other schemes that improve on ciphertext extension, and the
SWC21 [14] scheme that is able to compress ciphertexts.

The flowchart of the development of MKFHE according to this classification is shown
in Figure 2.

Figure 2. MKFHE developments by improvement steps.

2.2. Security Assumptions

The security of MKFHE schemes is based on their assumptions. Some of the assump-
tions used in the schemes have security challenges. Current NTRU-type MKFHE schemes
are mainly constructed based on a polynomial ring of order 2 in powers; therefore, the
security of these NTRU schemes may be threatened by subdomain attacks [15]. The security
of the scheme can be enhanced by optimizing the security assumption problem.

The summary of Section 2.2 is shown in Table 1.

Table 1. Summary of Section 2.2.

Scheme Technology Function Emphasis

CZL20 LBD and DEC reduce the ciphertext size cost and efficient

ZLC20 prime power cyclotomic polynomial ring resist subdomain attacks security

HWC21 learning-with-rounding (LWR) avoid gaussion sampling efficient and security

In 2020, Che et al. proposed an NTRU-type MKFHE scheme, CZL20 [9], based on the
LTV12 [8]. The security of the scheme is based on the RLWE and DSPR assumptions over
prime cyclotomic rings, and it has been proven that the NTRU encryption on prime parti-
tioned rings has the potential to resist subdomain attacks. Che analyzed the impact elements
of the LTV12 homomorphic evaluation process and proposed a low bit drop and dimen-
sionally extended ciphertext (LBD&DEC) technique and a homomorphic multiplicative de-
cryption structure for the NTRU that can eliminate the key-switching in the LTV12 scheme,
and a modulus reduction technique is also applied to reduce ciphertext’s dimension.

In 2020, Zhou et al. constructed the ZLC20 [16] scheme by replacing the power of
two cyclotomic rings in the LTV12 scheme with a prime-power cyclotomic polynomial
ring, which increased the number of optional ring structures during practical applications

Mathematics 2022, 10, 4678 5 of 20

and makes the scheme able to resist subdomain attacks. Additionally, the key generation
algorithm was optimized by using a Gaussian distribution under regular embedding based
on the NTRU scheme [17], which is also based on prime cyclotomic rings.

In 2021, Huang et al. constructed a fully dynamic multi-hop (users can join the
operation at any time) Gentry–Sahai–Water (GSW)-type MKFHE scheme HWC21 [18]. Its
security is based on the learning with rounding (LWR) problem [19], which has similar
performance to the BP16 [20] scheme. The LWR assumption allows the scheme to avoid the
time-consuming Gaussian sampling (“research has shown that Gaussian sampling may
create side-channel vulnerabilities leading to key leakage") required in the learning with
error (LWE) problem while sustaining almost the same security level.

2.3. Key Generation

Key generation is an important step in the actual application. Generally, when a
single-key scheme is extended to a multi-key scheme, the public keys of different users are
linked to each other by a CRS generated in the setup phase to enable ciphertexts under
different key encryption to perform homomorphic operations. However, this weakens the
ability of each user to generate public keys independently. Therefore, some researchers
want to develop a MKFHE scheme without CRS in the public parameters.

The summary of Section 2.3 is shown in Table 2.

Table 2. Summary of Section 2.3.

Scheme Technology Function Emphasis

KLP18 LinkAlgo convert single key to multi-key scheme decentralization

LTH21 combined KLP18 and LMZ18 similar to above but multi-bit encryption efficient and decentralization

THL21 MKFHE.Expand (Encode, Link, Decode) convert single key to multi-key scheme efficient and decentralization

BD21 symmetric key setting without CRS similar to above but more efficient efficient and decentralization

In 2018, Kim et al., based on MW16 [11], constructed a GSW-type KLP18 [10] scheme
which discards the CRS in the public parameters. This scheme does not directly extend
from single-key to a multi-key. Users use the same single-key FHE algorithm, and the
polynomial-time algorithm LinkAlgo will link different users’ keys and extend single-key
ciphertext into multi-key ciphertext. The single-key encryption step is independent of
LinkAlgo, so that when this scheme is used in practice, users can each use single-key
encryption and then jointly transform the ciphertext from single-key into multi-key form.
They also used the scheme to construct a three-round secure multi-party computation
(MPC) protocol against semi-malicious security.

In 2021, Li et al. constructed the LTH21 [21] scheme by combining the advantages of
both LMZ18 [22] and KLP18 [10]. They obtained a CRS-free multi-bit encryption MKFHE
by using the LinkAlgo algorithm in KLP18 and a plaintext matrix in LMZ18. The former
realized the discarding of CRS and a single-key to multi-key transformation, and the latter
realized multi-bit encryption.

In 2021, inspired by the KLP18 scheme, Tang et al. also did not extend the single-
key, GSW, fully homomorphic scheme to a multi-key one, but designed the algorithm
MFHE.Expend (encode, link, decode) based on the original single-key, GSW, FHE scheme
to extend the ciphertext of the original scheme from the single-key form to the multi-key
form and to link the user’s keys, and the THL21 [23] scheme was obtained. In terms of
memory and noise, the KLP18 scheme requires each participant to compute and store num-
bers of n×m dimensional matrices when generating the extended ciphertext, and its final
decryption noise is 2(m4 + m)mNBχ. The THL21 scheme requires only one dimensional
matrix and N numbers of dimensional matrices, and its decryption noise is (2 + m)mNBχ.
The THL21 scheme is more efficient and less costly compared to the KLP18 scheme.

Mathematics 2022, 10, 4678 6 of 20

In 2021, Biswas et al., constructed the BD21 [24] scheme based on PS16 [25], which
reduces the overhead by discarding CRS making the ciphertext extension require only one
component (less than PS16) while retaining the advantages of PS16: it is dynamic and
multi-hop; there is no necessity to set the number of participants; any user can participate
in the operation; and it is bootstrap free. The sizes of BD21’s public extension key and
extension ciphertext exceed those of PS16, MW16, KLP18, and CCS19, but it does not
require a public random matrix, unlike PS16, MW16, and CCS19 [26], and it is multi-hop,
unlike KLP18.

2.4. MKFHE for Multi-Bit Encryption

The original multi-key fully homomorphic scheme can only support single-bit encryp-
tion. When it comes to dealing with a large amount of data in practice, the encryption step
needs to be performed repeatedly. Additionally, the single-bit encrypted ciphertext makes
the homomorphic operation inefficient. Therefore, MKFHE schemes that implement multi-
bit encryption can effectively improve efficiency. The schemes presented in this section all
implement multi-bit encryption, and some of them support batch processing techniques.

The summary of Section 2.4 is shown in Table 3.

Table 3. Summary of Section 2.4.

Scheme Technology Function Emphasis

CZW17 first BGV MKFHE encrypt ring plaintext efficient

LMZ18 ciphertext packing build a plaintext matrix efficient

LJ20 gadget vector and bit decomposition remain ciphertext size unchanged efficient and cost

In TCC2017, Chen et al. proposed the first BGVtype multi-hop MKFHE scheme,
CZW17 [12], with security based on ring learning with error (RLWE). The previous
GSW-type MKFHE schemes, such as CM15 [27], MW16 [11], BP16 [20], and PS16 [25],
although they also have a version based on RLWE, are only capable of encrypting single-bit
ciphertexts due to the property of GSW13. The CZW17 scheme is constructed based on
the BGV FHE [19]. On the other hand, it can encrypt ring elements rather than single bits.
Thereafter, in 2019, Ningbo Li optimized the ciphertext extension of CZW17 to obtain the
LZY+19 [28] scheme. Chen et al. optimized the relinearization step of LZY+19 to construct
the CDKS19 [29] scheme. In 2021, Yang et al. optimized the relinearization process of
CDKS19 to obtain the YZZ22 [30] scheme. These schemes all support multi-bit encryption.
In addition, all these schemes are able to realize batch processing using the Chinese residue
theorem [31].

In 2018, Li et al. successfully constructed a GSW-type MKFHE scheme LMZ18 [22]
based on MW16 that supports multi-bit encryption by using the "ciphertext packing"
technique [32] to build a plaintext matrix by embedding the plaintext into the message
matrix. Both encryption and ciphertext expansion operations are performed on the basis of
the plaintext matrix to achieve the goal of multi-bit encryption. The LTH21 scheme above
uses the same method to realize multi-bit encryption.

In 2020, Li et al. proposed NTRU-type MKFHE scheme LJ20 [33] that supports encrypt
ring elements. They replace relinearization with gadget vector and bit decomposition
techniques [34]. This scheme is capable of batch processing by the Chinese remainder
theorem (CRT). No relinearization or ciphertext expansion is required for the ciphertext
size to remain unchanged. This scheme is a hierarchical MKFHE, which also needs to be
transformed into a full MKFHE using Gentry’s bootstrapping theorem [35].

2.5. MKFHE with Cipher Processing Optimization

There is much room for optimization in the processing of ciphertext. Both ciphertext
extension and joint decryption have efficiency and overhead issues. Optimizing the exten-
sion method by reducing the size of the extended cipher and implementing compressible

Mathematics 2022, 10, 4678 7 of 20

ciphertexts are solutions to the problem. This section introduces schemes that optimize the
processing of ciphertext.

The summary of Section 2.5 is shown in Table 4.

Table 4. Summary of Section 2.5.

Scheme Technology Function Emphasis

CZW17 zero-padded ciphertext vector reduce complexity of ciphertext expansion efficient

LZY+19 nested ciphertext extension reduce extended ciphertext size efficient and cost

CCS19 a new ciphertext multiplication reduce evaluated ciphertext size efficient and cost

ZZC20 compact ciphertexts reduce ciphertext size efficient and cost

SWC21 compressible ciphertexts compress multiple ciphertexts into one cost

CDL21 distributed ciphertext extension efficient and cost

YZZ22 rescaling techniques reduce the complexity of relinearization efficient

The CZW17 [12] scheme proposed by Chen et al. in 2017 not only has the advantage of
being able to encrypt ring elements, but also improves on ciphertext expansion. The cipher-
text expansion is realized by using a zero-padded ciphertext vector, and the computational
complexity of the ciphertext expansion is not related to the sizes of ciphertexts, but only
to the number of keys involved in the process. Chen also used this scheme to construct a
2-round MPC that supports threshold decryption.

In 2019, Li et al. obtained the LZY+19 [28] scheme by optimizing CZW17. They
proposed a nested ciphertext extension method to reduce the size of the evaluation key and
the extended ciphertext. They also designed a directed decryption protocol that allows any
user to access the decryption results, not limited to those participating in homomorphic
evaluation. In the same year, Chen et al. obtained the CDKS19 scheme by optimizing
the relinearization procedure of the LZY+19 scheme. LZY+19 does not need ciphertext
expansion, which greatly improves efficiency. Chen applies it in privacy protection in
neural networks.

In 2019, Chen et al. proposed the MKFHE scheme CCS19 [26] based on the framework
of Chillotti et al. (2017) (CCGI17), which can evaluate any binary gate on the encryption bits
and then bootstrap. It uses two methods to multiply single-key encryption by multi-key
RLWE ciphertexts and controls the growth of the ciphertext size with the ciphertext length,
which is only linearly related to the number of participants. The MKFHE software library
TFHE, which is an important guide, was also written.

In 2020, Zhou et al. proposed the general MKFHE construction ZZC20 [36] which
has compact ciphertexts and specifically two MKFHE schemes (BGV type and TFHE type)
with compact ciphertexts. In this construction, a joint secret key, also called a compact key,
whose length is independent of the number of parties, is constructed by accumulating the
secret keys of the parties. They obtained a joint ciphertext by designing a new ciphertext
extension algorithm, whose length is also irrelevant to the number of parties involved
in encryption. As a result, the efficiency of homomorphic computation for this general
scheme is comparable to that of a single-key FHE scheme. In addition, the user needs to be
authorized to add the ciphertext to the homomorphic operation; i.e., all parties involved
need to regenerate their cumulative evaluation keys.

In 2019, Gentry et al. proposed a ciphertext compression method that can compress
multiple ciphertexts into a single compressed ciphertext, which can reduce communication
consumption, and specifically constructed a GSW-type single-key fully homomorphic
scheme, GH21 [37], with compressible ciphertexts.

In 2021, Shen et al. proposed the MKFHE scheme SWC21 [14] with compressible
ciphertexts based on the single-key, fully homomorphic ciphertext compression scheme
proposed by Gentry et al. They applied this method to MKFHE. They removed the unit

Mathematics 2022, 10, 4678 8 of 20

matrix in the private key and modified the structure of the extended ciphertext to conform
to the conditions of use of the pseudo-square tool array proposed by Gentry when extending
the matrix version of the original GSW, fully homomorphic scheme to MKFHE. This scheme
can compress the obtained ciphertext and reduce communication cost.

In 2021, Chen et al. constructed a dynamic NTRU-type MKFHE scheme CDL21 [38]
based on the LWE assumption in the public key setting of requiring less local random access
memory (RAM). The original dynamic MKFHE ciphertext extension and homomorphic
operations are performed on the cloud, which requires higher computational power for the
cloud and more fees to be delivered to the cloud service provider. Therefore, Chen et al.
designed a distributed ciphertext extension method that allows participants to interact over
the Internet to perform the ciphertext extension process, and the cloud only undertakes
homomorphic computations, reducing the work of the cloud and improving the efficiency
of ciphertext extension.

In 2022, Yang et al. obtained the YZZ22 [30] scheme by optimizing the relinearization
process of CDKS19. Instead of using gadget vectors to decompose the public key and
extended ciphertext, they chose to increase the modulus and use rescaling techniques to
realize relinearization. However, this also leads to an increase in errors, which needs to be
reduced by decreasing the modulus after key switching.

The comparison of all selected schemes is shown in Table 5.

Table 5. Comparison of selected schemes.

Scheme Assumption pk CT CRM Dynamic Bootstrap Batch

CM15 LWE n2d2 k2n2d2 yes no no no

CM15 RLWE nd2 k2nd2 yes no no no

BP16 LWE n3 nk yes yes yes no

MW16 LWE nd2 n2k2d2 yes no yes

PS16 1 LWE n(K + d)2 n3k(K + d)4 yes yes no no

PS16 2 LWE/KDM n4(K + d)4 n2k2(K + d)2 yes yes no no

KLP18 LWE nd2 n2k2d2 no no yes no

CCS19 RLWE&Circular Security n2k2 nk yes no yes no

CZL20 RLWE nk (K + d) n(K + d)2 no no no no

BD21 LWE n3(K + d)2 n2k2(K + d)2 no yes no no

CZW17 LWE n3d7 knd yes yes no no

CZW17 RLWE n2d6 kd yes yes no yes

CDL21 LWE n3(K + 1)2 n2k2(K + d)2 yes yes no no

CDKS19 RLWE nk nk yes yes yes

LZY+19 GLWE nk3 nk yes no yes yes

ZZC20 GLWE nk nk yes yes

HWC21 LWR k3 nk yes yes no

YZZ22 RLWE nk nk yes no yes no

CZY21 RLWE yes yes no

LJ20 RLWE&DSPR n2Kd3 n2Kd4 yes yes

3. Optimization Techniques for MKFHE

In this section, two techniques are introduced that the authors believe should be
investigated in depth. One is the LinkAlgo algorithm that allows the non-CRS setting of
MKFHE, and the other is the compressible ciphertext in SWC21. The former is the first

Mathematics 2022, 10, 4678 9 of 20

MKFHE scheme to be constructed in a non-CRS setting, focusing on and strengthening
the user’s individual key generation ability. Previously, MKFHE could not avoid the
distribution of CRS, and the user’s personal ability to generate keys was limited. On the one
hand, this technique is introduced here in the hope that other researchers can be inspired to
develop a more efficient MKFHE without CRS or other ways to enhance the user’s ability
to generate keys by himself. The ciphertext compression method used by the latter breaks
through the compression ratio of 1/2 of the ciphertext size reduction technique used by
MKFHE. Although this technique has strict requirements on the ciphertext structure, it is
extremely restrictive. However, this idea can be extended for other schemes based on it to
involve an efficient compression method combined with its own optimization. Hopefully,
these two techniques will be enlightening.

3.1. LinkAlgo Algorithm for the KLP18 Scheme

When the KLP18 scheme extends the single-key GSW-type FHE scheme into MKFHE,
firstly, the public random string in the public parameters is dispensed with, and secondly,
the single-key scheme is independent of the LinkAlgo algorithm designed by it, so that the
user only needs to use the single-key scheme for encryption, and finally, the users involved
in the operation will jointly extend it into a multi-key ciphertext through the LinkAlgo
algorithm and carry out joint decryption, and its design. The algorithm and the idea of
its design provide a new direction for the design of the MKFHE scheme, which has great
referential significance. Therefore, the LinkAlgo algorithm is introduced here.

3.1.1. Notion of LinkAlgo

The lowercase bold letters denote vectors, and the uppercase bold letters denote
matrices. x is the column vector, xT is the row vector. A is a matrix, A(i,j) denote the i-th
row and j-th column element of matrix A, Acol

j denotes the j-th column of the matrix, and
Arow

i denotes the i-th row of the matrix. [A | Ax] denotes the horizontal connection of a
vector or matrix.

Theorem 1 ([35]). To any m > ndlogqe, there is a matrix G ∈ Zn×m
q , its corresponding ma-

trix G−1(·), and matrix M ∈ Zn×m
′

q (m
′

is random), which satisfy G−1(M) ∈ 0, 1m×m−1
and

GG−1(M) = M.

Theorem 2 ([23]). Set m > nlogq + 2λ, n ∈ N, q ∈ N. χ is a discrete Gaussian distribution over
Z which makes LWE a hard problem. t = O(logn) is an integer. Define two distributions X and Y
as follows:

X is m× n distributed matrices. X = A = [Ā | b1 | · · · | bt] = [Ā | u− Āt̄1 | · · · | u− Āt̄t].
Ā ∈ Zn×m̄

q is randomly selected. When 1 ≤ i ≤ t, bi = u− Āt̄imodq ∈ Zn×1
q . t̄i is drawn from a

Gaussian discrete distribution χm̄×1. Y is a uniform distribution over Zn×1
q . Then, X and Y are

computationally indistinguishable.

Definition 1. Suppose a distribution χnn∈N is based on a distribution of integers. If the distribu-
tion satisfies the following property:

Prx←χn [| x |≥ B] = negl (λ),

then the distribution is called B-bounded.

Definition 2. β-noisy ciphertext: A ciphertext C that encrypts m
′

under a private key t̃ is called
β-noisy ciphertext. t̃T · C = error + t̃T ·M ·G, ‖ error ‖∞6 β.

Mathematics 2022, 10, 4678 10 of 20

3.1.2. LinkAlgo Algorithm

The matrix M ∈
{

0, 1
}n×N , C(s,t) is the β-noise ciphertext of M(s, t) encrypted un-

der (pk, sk) = (F, t̃) using the GSW encryption algorithm, i.e., C(s,t) = FT M + M[s,t]G,
where (s ∈ [n], t ∈ [N]). Let (pk

′
, sk

′
)=(F

′
, t̃
′
) be another pair of keys. Inputs pk

′
and all

C(s, t) ∈ Z(m+1)×N
q are given to the LinkAlgo algorithm, and it outputs Y.

It holds that STY = STF
′TM + e and (‖ e ‖∞≤ m3β is noise)

Algorithm 1 LinkAlgo algorithms.

Input: pk
′
,
{

C(s, t)}
s∈[n], t∈[N]

;

Output: Y ∈ Z(m+1)×N
q ;

1: Let Ks, t ∈ Z(m+1)×N
q , s ∈ [n], t ∈ [N];

2: Output Y=∑n
s=1 ∑N

t=1 C(s, t)G−1(Ks, t) ∈ Z(m+1)×N
q

A detailed proof that STY = STF
′TM + e, ‖ e ‖∞≤ m3β holds is given below:

STY = ∑
s, t

STC(s, t)G−1(K(s, t))

= ∑
s, t

(STM(s, t)G + es, t)G−1(Ks, t)

= ∑
s, t

STM(s, t)Ks, t + e
′
s, t

= ST ∑
s, t

M(s, t)Ks, t + ∑
s, t

e
′
s, t

(2)

where es, t = STF
′TM, e

′
s, t = es, t + G−1(Ks, t) has a norm ‖ e

′
s, t ‖≤ mβ.

The correctness of ∑n
s=1 ∑N

t=1 M(s, t)Ks, t = F
′TM:

n

∑
s=1

N

∑
t=1

M(s, t)Ks, t =
n

∑
s=1

N

∑
t=1

0 · · · M(s,t)F′T(1, s) · · · 0
... · · · M(s, t)F′T(2, s) · · ·

...
...

... · · · · · ·
...

0 · · · M(s, t)F′T(N, s) · · · 0

=
N

∑
t=1

0 · · · ∑n

s=1 M(s, t)F′T(1, s) · · · 0
... · · · ∑n

s=1 M(s, t)F′T(2, s) · · ·
...

...
... · · · · · ·

...
0 · · · ∑n

s=1 M(s, t)F′T(N, s) · · · 0

(3)

=
N

∑
t=1

0 · · · FTrow

1 Mcol
t · · · 0

... · · · FTrow
2 Mcol

t · · ·
...

...
... · · · · · ·

...
0 · · · FTrow

n Mcol
t · · · 0

= FTM

(4)

Therefore, STY = STF
′TM + e, where e = ∑n

s=1 ∑N
t=1 e

′
s, t has norm ‖ e ‖∞≤ m3β.

Input public key pk1, pk2, . . . , pkt and fresh ciphertext Ci into LinkAlgo algorithm,
which outputs the following extended ciphertext:

1.
{

V(s, t)}
s∈[n], t∈[N]

←
{

GSW.ENC (M(s, t), pk j)
}

s∈[n], t∈[N]

2. Compute Y j
i ←

{
Linkalgo (C(s,t), pk j)

}
s∈[n], t∈[N]

j ∈[t]. The extended ciphertext is:

Mathematics 2022, 10, 4678 11 of 20

Ĉi =

Ci − Y1
i 0 . . . 0 0

0 Ci − Y2
i . . . 0 0

...
...

...
...

...
Yi

i . . . Ci . . . Yi
i

...
...

...
...

...
0 0 . . . 0 Ci − Yt

i

(5)

This type of scheme allows users to use single-key homomorphic encryption, and ho-
momorphic evaluation can be performed after the ciphertext is extended using the LinkAlgo
algorithm. Users can generate secret keys independently, which has application prospects
in some scenarios with related requirements.

3.2. SWC21 Ciphertext Compression Algorithm

Gentry proposed an algorithm for compressing ciphertexts for single-key schemes
in GH19 [37] in 2019, and Shen et al. extended the algorithm to the MKFHE scheme
SWC21 [14] in 2021, which effectively reduces the communication overhead after compress-
ing ciphertexts, and to some extent drives the development of the MKFHE scheme in terms
of efficiency and cost improvements.

Notion of SWC21

Definition 3. DLWE (decisional learning with errors): Positive integers n and q and an error
distribution χ over Z. Let As, χ denote the distribution (a, [< a, s > −2e]q) on Zn

q × Zq, where

s $←− Zn
q , a $←− Zn

q and e ←− χ. Given m = poly(n) mutually independent instances, these
instances are chosen either from the uniform distribution Zn

q × Zq or from the distribution As, χ.

Definition 4. MLWE (matrix learning with errors): Positive integers n, m, r, and q, and an error
distribution χ over Z. The matrix learning with errors is to distinguish two distributions. One is

(B, A = SB+E), where S $←− Zn×r
q , B $←− Zr×m

q and E←− χn×m. Additionally, the other one
is uniform distribution Zr×m

q × Zn×m
q .

Definition 5. Given an integer q > 2, for any positive integer n ∈ Z+, define Gn , In
⊗

gT ∈
Zn×nblogqc

q , where gT = [1, 2, 22, · · · , 2blogqc−1]. The symbol Gn is used to denote this matrix in
SWC21.

Lemma 1 ([35]). Positive integers n, m0, m1, m, q, and l; q = q(n); l = blogqc; m0 =

nl + O(n); m1 = nl; and m = m0 + m1. To A0
$←− Zn×m0

q , invertible matrix H ∈ Zn×n
q and

R←− Dm0×m1 , there is an efficient randomization algorithm GemTrap(A0,H), which can generate
a matrix
A , [A0 ‖ HGn −A0R] ∈ Zn×m

q and a trapdoor R, and label H. A is not uniformly distributed.

Lemma 2 ([35]). Given random matrix A ∈ Zn×n
′

q , an efficient randomization algorithm can

extract a sub-Gaussian matrix X over Znl×n
′

q with O(1) as the parameter, which has X = G−1
n (A).

A new technique, the nearly square tool matrix L, is used in GH19 and is also required
in SWC21. An open trapdoor matrix L−1(0) = F satisfying:
1. F has small entries (� q)
2. L× F = 0(mod q), i.e., all row vectors of L can generate a kernel space of F mod q;
3. F is full-rank over R.

When they apply this technology to multi-key version scheme, they adjust the structure
of private key and the extended ciphertext. The identity in the private key matrix was
deleted so that the extended private key would turn from s = [ins1ins2] into s = [ins1s2],
which is a nearly square matrix. Additionally, the extended ciphertext would be split into

Mathematics 2022, 10, 4678 12 of 20

(2 + 1)2 parts rather than 22 parts. Meanwhile, there is some information attached to the
ciphertext. The extended ciphertext would be like:

Ĉ =

 C1, 1 C1, 2 D1
C2, 1 C2, 2 D2

0 0 C3, 3

 (6)

• Initialization Setup (1k, 1N) : Let k be the security parameter for a large module q
with an error distribution χ = χ(k,N) bounded by βχ. Additionally, taken t , (t

′ − 1)N
for the Comp step.

Let L
′ × F

′
= 0, L , L

′⊗
IrN ∈ Zn×n̄

q and F , F
′⊗

Ir N ∈ Zn̄×n̄
q (where L

′ ∈ Z(t
′−1)t

′

q

and F
′ ∈ Zt

′×t
′

q , ` , plogqq, n , tr, n̄ , (t + N)r, n , (t + 1)r` and m̄ , (t + N)r`),

choose B $←− Zr×m
q .

Output params = (r, N, q, `, βχ, χ, t
′
, t, n, n̄, m, m̄, L, L

′
, F, F

′
, B).

• Keygen (params): Choose S $←− Zr×m
q and E ← χtr×m. Let A = SB + E, S̄ , [Itr |

S] ∈ Ztr×(t+1)r
q and Ā ,

[
A
B

]
∈ Z(t+1)r×m

q , noticed that ¯SA = E. Output PK , Ā,

SK , S̄.

• Enc (PKi, µ): Input a plaintext bit µ ∈
{

0, 1
}

, choose J̄i
$←−
{

0, 1
}m×m, let ciphertext

be C̄i , µG(t+1)r + Āi J̄i ∈ Z(t+1)r×m
q . C̄i will be divided as follows for the Exp step:

C̄(1, 1)
i = C̄i[pre tr rows, pre tr` columns] ∈ Ztr×tr`

q ;

C̄(2, 1)
i = C̄i[last r rows, pre tr` columns] ∈ Zr×tr`

q ;

C̄(1, 2)
i = C̄i[last tr rows, last r` columns] ∈ Ztr×r`

q ;

C̄(2, 2)
i = C̄i[last r rows, last tr` columns] ∈ Zr×r`

q ;

(7)

Let Ji = J̄i[the last r` columns] ∈
{

0, 1
}m×r`.

Notice that C̄(2, 2)
i = µGr + BJi.

Attached information Oi , (V(x, y, b)
i, 1 , V(x, y, b)

i, 2)x∈[t], y∈[m], b∈[rl] is needed to success-
fully execute the Exp step.

V(x, y, b)
i, 1 = −Ai J̃

(x, y, b)
i + Ji[y, b]G(x)

m ∈ Ztr×r`
q ; (8)

V(x, y, b)
i, 2 = BJ̃(x, y, b)

i ∈ Zr×r`
q ; (9)

where J̄(x, y, b)
i ,

{
0, 1

}m×r`, Gr(x) =

 0(x−1)r×r`

Gr

0(t−x)r×r`

. The complete ciphertext tuple

is Ci , (C̄, Oi)

Mathematics 2022, 10, 4678 13 of 20

• Exp (idi ∈ [N], Ci): extended ciphertext is:

C̄i ,

C̄(1, 1)
i D(1)

i, 1 . . . C̄(1, 2)
i . . . D(1)

i, N

C̄(2, 2)
i

. . .

C̄i(2, 1) D(2)
i, 1 . . . C̄(2, 2)

i . . .
. . .

C̄(2, 2)
i

∈ Zn̄×m̄

q (10)

Fresh ciphertext does not support compression. Therefore, the ciphertext of different
users needs to be pre-processed before compression, which is similar to the traditional
GSW-expand step.

(1) Generate components required for extended ciphertext:

Z(x, y, b)
i,j ,

r

∑
z1=1
−Aj[z1 + (x− 1)r, y] · E′z1, b ∈ Zr×r` (11)

where E
′
z1, b ∈ Zr×r` and only the intersection of column b and row z1 is 1; all others

are 0.

Let

Z̄(x, y, b)
i, j ,

 0(x−1)r×r`

Z(x, y, b)
i, j

0(t−x)r×r`

 ∈ Ztr×r`
q (12)

(2) Generate auxiliary ciphertext Xs
i,j, s ∈ (0, 1):

D(1)
i, j ,

t

∑
x=1

m

∑
y=1

rl

∑
b=1

V(x, y, b)
i, 1 ·G−1

r (Z(x, y, b)
i, j) ∈ Ztr×r`

q ; (13)

D(2)
i, j ,

t

∑
x=1

m

∑
y=1

rl

∑
b=1

V(x, y, b)
i, 2 ·G−1

r (Z(x, y, b)
i, j) ∈ Zr×r`

q ; (14)

• Comp (params,
{

Ĉu, v, w
}

u, v∈[n], w∈[`]): Compress one or some ciphertext into cipher-

text of a smaller size. Let TO, V ,
[

E
′
u, v

0Nt×n

]
∈ Zn̄×n, where E

′
u, v ∈ Zn×n and only

the intersection of the u-th row and v-th column are 1; all others are 0. Let compressed
ciphertext be:

C∗ , ∑
u∈[n]

∑
v∈[n]

∑
w∈[`]

Ĉu, v, w ×G−1
n̄ (2w · Tu, v × L) ∈ Zn̄×n̄

q . (15)

The compressing algorithm is the same as Gentry’s GH19 scheme; all the cipher
processing is to meet the requiements of this algorithm.

• Eval (params, f, Ĉ1, Ĉ2, . . . , Ĉs): Input N and circuit f :
{

0, 1
}t →

{
0, 1
}

and a string of
ciphertext Ĉ1, Ĉ2, . . . , Ĉs; output the ciphertext Ĉ f after homomorphism.
Eval.add , C1 + C2;
Eval.mult , C1 ×Gn̄−1 ×C2

Mathematics 2022, 10, 4678 14 of 20

• CompDec (C∗, (SKi)i∈[N]): Input the private key of N participants; let S , [In, S1, . . . ,
SN] ∈ Zn̄×n̄

q be the extended private key. Decrypting a compressed cipher involves
the following four steps:

1. Z , S×C∗(modq);
2. W , Z× F(modq);
3. P , W× F−1, where F ∈ Zn̄×n̄

q is the open trapdoor matrix;

4. M
′
, (Z− P)× L−1(modq) (L is full-rank and L× L−1 ∈ Zn̄×n̄

q = In).

4. Application of MKFHE

As the current cloud environment is booming, there are increasingly many scenarios
where multiple users are involved in the computation. Users want to participate in the
computation to get the result, but at the same time they do not want to share their data with
others. MKFHE has the characteristics of homomorphic computation between ciphertexts
under different keys and joint decryption by participating users, which is very suitable for
the requirement of privacy protection [39,40]. MKFHE has been applied in the following
applications:

4.1. Medical Applications

For medical research, comprehensive and rich patient data can facilitate the progress
of medical practice. Adequate patient data can be used to build predictive models for
rapid detection of disease causes and timely treatment, e.g., for disease-causing gene
localization [41], which requires access to a sufficient amount of patient genetic information
from different medical institutions.

Model of MKFHE’s Application to Medical Data

Patient privacy issues cannot be avoided in medical research. Therefore, in this model,
the medical-information-sharing organization composed of medical institutions carries
out secure personal data sharing according to the following model when the researcher
initiates the request to query data.

In this model, we add a homomorphic accelerator next to the aggregation server. Some
researchers take advantage of the parallel computing capabilities of high-performance
computing platform architectures (GPUs and FPGA) to deal with the numerous repeated
and complex operations in homomorphic evaluation to improve data throughput and com-
puting parallelism. The methods used include, but are not limited to, using mathematical
theorems to convert operations into a form suitable for parallel computing and designing
specialized homomorphic evaluation hardware (FPGA). The aggregation server can hand
over the complex homomorphic evaluation process to the homomorphic accelerator to
improve efficiency.

1. After each medical institution receives the request, locally compute the result of query;
then encrypt the result and broadcast.

2. Each medical institution aggregates encrypted results locally. For iterative tasks, each
medical institution repeats the process until the requirements are met.

3. The public key of the final result switched from collective public key to the public key
of querier through collective key switching.

4. The querier decrypts the final result.

The model of MKFHE on medical is shown in Figure 3.

4.2. Financial Scenarios

Any service in the financial industry is based on credit. Financial institutions need
to evaluate all aspects of the client to complete the user’s image. This involves several
different data sources, and the data providers are responsible for the client’s privacy and
comply with the relevant privacy protection laws while sharing clients’ data. MKFHE can

Mathematics 2022, 10, 4678 15 of 20

be applied to create a privacy-protected customer credit evaluation system [42] and perfect
the current credit system.

Model of MKFHE’s Application to Financial Data

In this model, banks form a data sharing organization. Each bank registers with the TA
(trusted authentic) and negotiates the signature key. Each bank obtains a pseudonymous
ID, and the real ID is stored in the TEE (trusted execution environment) by the TA. When a
bank needs to use the data of other banks to evaluate the user’s credit, it initiates a data
sharing request. Additionally, due to the time-fake ID used at request, none of the parties
know the real identity of the initiator. After completing the data sharing, this data sharing
will be recorded in the blockchain. The specific data sharing process is as follows:

After completing the registration and KeyGen of MKFHE, each bank holds the PID
(pseudonym ID), signing key, and MKFHE key pair. The bank initiates the data sharing
request and sends the request, PID, and digital signature to the TA. The TA locally retrieves
the users that match the request and forms them into a data sharing group.

1. Each bank in the group trains the model on the local data and encrypts the obtained
gradient using the public key of MKFHE. After signing the encrypted gradient, it is
sent to other users.

2. After receiving the information, each user verifies the validity of the information via
digital signature. If valid, then the local model is obtained by training together with
the local gradient.

3. The local model is sent to the AS (aggregation server), and the corresponding block is
generated in the blockchain for record keeping. The AS aggregates all the models and
broadcasts them to the users within the group.

4. Each user updates the local model with the global model. We repeat steps three and
four until the accuracy condition is met. Then, each user performs partial decryption
of MKFHE to obtain the plaintext result.

When a malicious behavior occurs, the trusted third party can retrieve the real identity
of the malicious user in the local trusted execution environment (TEE). The malicious user’s
identity is then broadcast to all participants and included in the list of malicious users.

The model of MKFHE on financial is shown in Figure 4.

4.3. IoT

The IoT is usually combined with cloud computing, which connects physical terminals
through the cloud and gives life to data. Physical terminals include personal devices, such
as mobile phones, tablets, and cars, and important devices related to national security,
such as national power grids and military drones, which are inevitably threatened by
hackers during data collection, transmission, and use. However, most of these schemes use
single-key homomorphic encryption [43–45], and there is only one recent study that used
multi-key homomorphic encryption in a scenario where federal learning was combined
with IoT [46].

Model of MKFHE’s Application on IoT

Multi-key fully homomorphic encryption can be applied to most multi-user scenarios
for privacy protection. Take Iot as an example. Iot can be combined with federated learning
to protect the privacy of edge devices. In this structure, local data of edge devices do not
come out; only the model parameter which was trained from local data will be shared.
However, the attackers may infer from the model parameters of participants’ information.
Therefore, MKFHE can be used to encrypt local model parameters to further enhance the
data security of edge devices.

Preparation: Initialize MKFHE, and each party has obtained their own public and
secret key pair.

Mathematics 2022, 10, 4678 16 of 20

1. Each device uses the downloaded global model to train the local data to get the local
model and uses its own public key pki to encrypt the local model parameter; then, it
sends the encrypted parameter to the aggregation server.

2. After receiving the encrypted model parameters of all parties, the aggregation server
uses the aggregation algorithm to get the average model. The aggregation server
sends the average model parameter to all parties.

3. After receiving the average model parameter, all parties use it to update the lo-
cal model.

Repeat the above steps until the preset stop condition is met.
After meeting the stop condition, each participant can use their own private key

for partial decryption, and the final decryption result can be obtained after all partial
decryption is summarized.

The model of MKFHE on Iot with federated learning is shown in Figure 5.

Figure 3. Application of MKFHE on medical.

Figure 4. Application of MKFHE on financial data.

Mathematics 2022, 10, 4678 17 of 20

1

�

Figure 5. Typical application of MKFHE on Iot with federated learning.

4.4. Service Recommendation

Product recommendations, user matching, and friend recommendations in web ser-
vices need to use data such as users’ personal information and browsing history, which
makes many users feel their privacy is being violated. MKFHE can perform operations
with data encrypted into ciphertext. Service providers can combine it with their technology
to provide services to users without disclosing their data, such as online car matching [47],
Drip, Uber, and other taxi-hailing software, which require access to the user’s location
information, which means the service provider can obtain or infer the user’s address or
work address. With the help of MKFHE, a taxi matching system can effectively hide the
user’s personal information while completing the match.

4.5. Research Innovation

MKFHE technology has been introduced for a short period of time, and there is still
great room for improvement. Its multi-key feature meets the requirements of the cloud
environment, so there are considerable prospects for innovation—for example, combining
MKFHE with technologies such as federation learning [48,49], secure multi-party comput-
ing [50], deep learning [51,52], and blockchain [53,54] to enhance the properties of privacy
protection and build solutions that meet the current emphasis on personal information
protection policy requirements.

The potential of MKFHE does not stop with these cases. As long as there are multi-user
scenarios, MKFHE has the potential to be applied.

5. Conclusions

The urgent need for privacy protection and the birth and development of quantum
computers has stimulated the need for protection methods against quantum attacks. This
demand promotes the development of MKFHE, which provides theoretical support for
future secure data sharing among multiple users. Currently, the complex operation of
MKFHE makes it inefficient and costly to apply. Therefore, MKFHE only accounts for a
small part of the application scheme of homomorphic encryption on the Internet of Things.
As we have discussed at the end of Section 4.1, the application of hardware for acceleration
has the potential to enable the application of multi-key fully homomorphic encryption.

In addition to accelerated homomorphic encryption, solutions such as KLP18 and
THL21, where each user uses a single key encryption and the process of converting the
public extended cipher into a multi-key cipher that is then placed in the cloud, may also
be a solution. As the size of the extended ciphertext becomes larger, and the cloud is
undertaking the process of ciphertext extension, which can reduce the loss of bandwidth.

Mathematics 2022, 10, 4678 18 of 20

Therefore, in the authors’ opinion, users only need to upload encrypted data, and the
cloud with the corresponding homomorphic hardware accelerator will be set to undertake
a large number of homomorphic operations. If possible, acceleration hardware based on a
trusted execution environment can be used to further enhance security.

Author Contributions: Conceptualization M.Y., D.W., F.Z., S.W., S.J. and Y.R.; methodology M.Y.,
D.W. and F.Z.; visualization and writing—original draft M.Y.; project administration M.Y., D.W. and
Y.R.; supervision S.J.; writing—review and editing M.Y., S.J. and Y.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China (no. 2021YFB2700500),
the National Natural Science Foundation of China (no. 62072249), the National Key R&D Program of
Guangdong Province (no. 2020B0101090002), and the Natural Science Foundation of Jiangsu Province
(no. BK20200418, BE2020106).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ren, Y.; Leng Y.; Qi, J.; Sharma, P.K.; Tolba, A. Multiple cloud storage mechanism based on blockchain in smart homes. Future Gener.

Comput. Syst. 2021, 115, 304–313. [CrossRef]
2. Rivest, R.L.; Adleman, L.M.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4,

169–179.
3. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM symposium on

Theory of Computing, Bethesda, MD, USA, 1–2 June 2009; pp. 169–178.
4. Ren, Y.; Yan, L.; Cheng, Y.; Jin, W. Secure data storage based on blockchain and coding in edge computing. Math. Biosci. Eng. MBE

2019, 16, 1874–1892. [CrossRef] [PubMed]
5. Tang, D.H.; Zhu, S.X.; Wang, L.; Yang, H.M.; Fan, J. Fully homomorphic encryption scheme from rlwe. J. Commun. 2014, 35,

173–182.
6. Brakerski, Z.; Vaikuntanathan, V. Efficient fully homomorphic encryption from (standard) lwe. SIAM J. Comput. 2014, 43, 831–871.

[CrossRef]
7. Ren, Y.; Huang, D.; Wang, W.H.; Yu, X.F. BSMD: A blockchain-based secure storage mechanism for big spatio-temporal data.

Future Gener. Comput. Syst. 2023, 138, 328–338. [CrossRef]
8. Lopez-Alt, A.; Tromer, E.; Vaikuntanathan,V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic

encryption. In Proceedings of Forty-Fourth the Annual ACM Symposium on Theory of Computing 2012, New York, NY, USA,
19–22 May 2012.

9. Che, X.; Zhou, T.; Li, N.; Zhou, H.; Chen, Z. Modified multi-key fully homomorphic encryption based on ntru cryptosystem
without key-switching. Tsinghua Sci. Technol. 2020, 25, 14–28. [CrossRef]

10. Kim, E.; Lee, H.S.; Park,J. Towards round-optimal secure multiparty computations: Multikey fhe without a crs. In Proceedings of
the Australasian Conference on Information Security and Privacy, Wollongong, NSW, Australia, 11–13 July 2018; Springer: Cham,
Switzerland, 2018; pp. 101–113.

11. Mukherjee,P.; Wichs D.; Two round multiparty computation via multi-key fhe. In Proceedings of the Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, 8–12 May 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 735–763.

12. Long, C.; Zhang, Z.; Wang, X. Batched multi-hop multi-key fhe from ring-lwe with compact ciphertext extension. In Proceedings
of the Theory of Cryptography Conference, Baltimore, MD, USA, 12–15 November 2017; Springer: Cham, Switzerland, 2017;
Volume 10678, pp. 597–327.

13. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans.
Comput. Theory (TOCT) 2014, 6, 309–325. [CrossRef]

14. Shen, T.; Wang, F.; Chen, K.; Shen, Z.; Zhang, R. Compressible multikey and multi-identity fully homomorphic encryption.
Secur. Commun. Netw. 2021, 2021, 6619476. [CrossRef]

15. Albrecht, M.; Bai, S.; Ducas, L. A subfield lattice attack on overstretched ntru assumptions. In Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 153–178.

16. Zhou, H.; Li, N.; Che, X.; Yang, X. Multi-key fully homomorphic encryption scheme over prime cyclotomic rings. IET Inf. Secur.
2021, 15, 472–486. [CrossRef]

http://doi.org/10.1016/j.future.2020.09.019
http://dx.doi.org/10.3934/mbe.2019091
http://www.ncbi.nlm.nih.gov/pubmed/31137190
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1016/j.future.2022.09.008
http://dx.doi.org/10.26599/TST.2019.9010076
http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1155/2021/6619476
http://dx.doi.org/10.1049/ise2.12036

Mathematics 2022, 10, 4678 19 of 20

17. Yu, Y.; Xu, G.; Wang, X. Provably Secure NTRU Instances over Prime Cyclotomic Rings. In Proceedings of the IACR International
Workshop on Public Key Cryptography, Amsterdam, The Netherlands, 28–31 March 2017; Springer: Berlin/Heidelberg, Germany,
2017; Volume 10174, pp. 409–434

18. Huang, Y.; Wu, K.; Chen, M. Fully dynamic multi-key fhe without gaussian noise. IEEE Access 2021, 9, 50639–50645. [CrossRef]
19. Liu, F.H.; Wang, Z. Rounding in the rings. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA,

USA, 17–21 August 2020; Springer: Cham, Switzerland, 2020; Volume 12171, pp. 296–326.
20. Brakerski, Z.; Perlman, R. Lattice-based fully dynamic multi-key fhe with short ciphertexts. In Proceedings of the Annual

International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9814, pp. 190–213.

21. Li, X.; Tang, C.; Hu, Y. Multi key fully homomorphic encryption system that supports multi-bit encryption. J. Cryptol. Res. 2022, 9,
248–256.

22. Li, Z.; Ma, C.; Zhou, H. Multi-key fhe for multi-bit messages. Sci. China Inf. Sci. 2018, 61, 266–277. [CrossRef]
23. Tang, C.; Hu, Y.; Li, X. Three round secure multiparty computation based on multi-key full-homomorphic encryption without crs.

J. Cryptologic Res. 2021, 2, 273–281.
24. Biswas, C.; Dutta, R. Dynamic multi-key fhe in symmetric key setting from lwe without using common reference matrix. J. Ambient

Intell. Humaniz. Comput. 2022, 13, 1241–1254. [CrossRef]
25. Peikert, C.; Shiehian, S. Multi-key fhe from lwe, revisited. In Proceedings of the Theory of Cryptography Conference, Tel Aviv,

Israel, 10–13 January 2016; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9986, pp. 217–238.
26. Chen, H.; Chillotti, I.; Song, Y. Multi-key homomorphic encryption from tfhe. In Proceedings of the International Conference

on the Theory and Application of Cryptology and Information Security, Kobe, Japan, 8–12 December 2019; Lecture Notes in
Computer Science; Springer: Cham, Switzerland, 2019; Volume 11922, pp. 446–472.

27. Clear, M.; Mcgoldrick, C. Multi-identity and multi-key leveled fhe from learning with errors. In Proceedings of the Annual
Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9216,
pp. 630–656.

28. Li, N.; Zhou, T.P.; Yang, X.Y.; Han, Y.L.; Tu, G.S. Efficient multi-key fhe with short extended ciphertexts and directed decryption
protocol. IEEE Access 2019, 7, 56724–56732. [CrossRef]

29. Chen, H.; Dai, W.; Kim, M.; Song, Y. Efficient multi-key homomorphic encryption with packed ciphertexts with application to
oblivious neural network inference. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, London, UK, 11–15 November 2019; pp. 395–412.

30. Yang, X.; Zheng, S.; Zhou, T.; Liu, Y.; Che, X. Optimized relinearization algorithm of the multikey homomorphic encryption
scheme. Tsinghua Sci. Technol. 2022, 27, 642–652. [CrossRef]

31. Wang, X.; Xu, G.; Wang, M.; Meng, X. Mathematical Foundations of Public Key Cryptography; CRC Press: Boca Raton, FL, USA, 2015.
32. Smart, N.P.; Vercauteren, F. Fully homomorphic simd operations. Des. Cryptogr. 2014, 71, 57–81. [CrossRef]
33. Li, R.Q; Jia, C.F. A multi-key homomorphic encryption scheme based on ntru. J. Cryptologic Res. 2020, 7, 683–697.
34. Micciancio, D.; Peikert, C. Trapdoors for lattices: Simpler, tighter, faster, smaller. In Proceedings of the Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 15–19 April 2012; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7237, pp. 700–718.

35. Gentry, C.; Sahai, A.; Waters, B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2013; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8042, pp. 75–92.

36. Zhou, T.; Zhang, Z.; Chen, L.; Che, X.; Liu, W.; Yang, X. Multi-key fully homomorphic encryption scheme with compact ciphertext.
Cryptology ePrint Archive 2021. Available online: https://eprint.iacr.org/2021/1131 (accessed on 6 September 2021).

37. Gentry, C.; Halevi, S. Compressible fhe with applications to pir. In Proceedings of the Theory of Cryptography Conference,
Nuremberg, Germany, 1–5 December 2019; Springer: Cham, Switzerland, 2019; Volume 11892, pp. 438–464.

38. Chen, Y.; Dong, S.; Li, T.; Wang, Y.; Zhou, H. Dynamic multi-key fhe in asymmetric key setting from lwe. IEEE Trans. Inf. Forensics
Secur. 2021, 16, 5239–5249. [CrossRef]

39. Ren, Y.; Zhu, F.; Sharma, P.K.; Wang, T.; Wang, J.; Alfarraj, O.; Tolba, A. Data query mechanism based on hash computing power
of blockchain in internet of things. Sensors 2020, 20, 207. [CrossRef] [PubMed]

40. Wu, Q.; Han, Z.; Mohiuddin, G.; Ren, Y. Distributed timestamp mechanism based on verifiable delay functions. Comput. Syst. Sci.
Eng. 2023, 44, 1633–1646. [CrossRef]

41. Zhou, T.; Liu, W.; Li, N.; Yang, X.; Han, Y.; Zheng, S. Secure scheme for locating disease-causing genes based on multi-key
homomorphic encryption. Tslnghua Sci. Technol. 2022, 27, 333–343. [CrossRef]

42. Liu, J.; He, X; Sun, R.; Du, X.; Guizani, M. Privacy-preserving data sharing scheme with fl via mpc in financial permissioned
blockchain. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23
June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [CrossRef]

43. Matsumoto, M. and Oguchi, M. Speeding up sensor data encryption with a common key cryptosystem combined with fully
homomorphic encryption on smartphones. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems,
Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 500–505. Available
online: https://ieeexplore.ieee.org/document/9210393/ (accessed on 1 October 2020).

http://dx.doi.org/10.1109/ACCESS.2021.3069214
http://dx.doi.org/10.1007/s11432-017-9206-y
http://dx.doi.org/10.1007/s12652-021-02980-w
http://dx.doi.org/10.1109/ACCESS.2019.2913943
http://dx.doi.org/10.26599/TST.2021.9010047
http://dx.doi.org/10.1007/s10623-012-9720-4
https://eprint.iacr.org/2021/1131
http://dx.doi.org/10.1109/TIFS.2021.3127023
http://dx.doi.org/10.3390/s20010207
http://www.ncbi.nlm.nih.gov/pubmed/31905910
http://dx.doi.org/10.32604/csse.2023.030646
http://dx.doi.org/10.26599/TST.2021.9010006
http://dx.doi.org/10.1109/ICC42927.2021.9500868
https://ieeexplore.ieee.org/document/9210393/

Mathematics 2022, 10, 4678 20 of 20

44. Kolsch, J.; Ratzke, A.; Grimm, C.; Heinz, C.; Nandagopal, G. Simulation based validation of a smart energy use case with
homomorphic encryption. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems,
Santorini Island, Greece, 29–31 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 255–262. [CrossRef]

45. Qiu, F.; Yu, J.; Zheng, F.; Liang, L; Li, Y. Electric iot perception layer data privacy-preserving using multi identity-based fully
homomorphic encryption. In Proceedings of the 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical
Engineering, Shenyang, China, 20–22 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp.30–34. [CrossRef]

46. Ma, J.; Naas, S.A.; Sigg, S.; Lyu, X. Privacy-preserving federated learning based on multi-key homomorphic encryption. Int. J.
Intell. Syst. 2022, 37, 5880–5901. [CrossRef]

47. Xiang, K. Location-Preserving Matching Protocol for Ride-Hailing Service Based on Multi-Key Fully Homomorphic Encryption.
Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2020.

48. Guo, H. Research and Implementation of Federated Learning That Supports Aggregation under Multiple Keys. Master’s Thesis,
Harbin Institute of Technology, Harbin, China, 2020.

49. Liu, Y. Research on Efficient Communication and Multi-Key Homomorphic Encryption Technology in Hierarchical Federated
Learning Environment. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2021.

50. Wang, H.; Feng, Y.; Zhao, L.; Tang, S. A secure multi-party computation protocol on the basis of multi key homomorphism.
J. South China Univ. Technol. Sci. Ed. 2017, 45, 69–76.

51. Ping, L.; Li, j.; Huang, Z.; Li, T.; Gao, C.Z.; Yiu, S.M.; Chen, K. Multi-key privacy-preserving deep learning in cloud computing.
Future Gener. Comput. Syst. 2017, 74, 76–85.

52. Kwabena, O.; Qin, Z.; Zhuang, T.; Qin, Z. Mscryptonet: Multi-scheme privacy-preserving deep learning in cloud computing.
IEEE Access 2019, 7, 29344–29354. [CrossRef]

53. Ren, Y.; Zhu, F.; Wang, J.; Pradip Kumar Sharma, and Uttam Ghosh. Novel vote scheme for decision-making feedback based on
blockchain in internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1639–1648. [CrossRef]

54. Huang, L.; Xu, L.; Zhu, L.; Gai, K. A blockchain-assisted privacy-preserving cloud computing method with multiple keys.
In Proceedings of the 2021 IEEE 6th International Conference on Smart Cloud, Newark, NJ, USA, 6–8 November 2021; IEEE:
Piscataway, NJ, USA, pp. 19–25. [CrossRef]

http://dx.doi.org/10.1109/DCOSS.2019.00063
http://dx.doi.org/10.1109/AUTEEE50969.2020.9315709
http://dx.doi.org/10.1002/int.22818
http://dx.doi.org/10.1109/ACCESS.2019.2901219
http://dx.doi.org/10.1109/TITS.2021.3100103
http://dx.doi.org/10.1109/SmartCloud52277.2021.00011

	Introduction
	MKFHE Scheme Classification
	MKFHE Classified by Improvement Steps
	Security Assumptions
	Key Generation
	MKFHE for Multi-Bit Encryption
	MKFHE with Cipher Processing Optimization

	Optimization Techniques for MKFHE
	LinkAlgo Algorithm for the KLP18 Scheme
	Notion of LinkAlgo
	LinkAlgo Algorithm

	SWC21 Ciphertext Compression Algorithm

	Application of MKFHE
	Medical Applications
	Financial Scenarios
	IoT
	Service Recommendation
	Research Innovation

	Conclusions
	References

