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Abstract: The cross section is the basic data for building 3D geological models. It is inefficient to 

draw a large number of cross sections to build an accurate model. This paper reports the use of 

multi-source and heterogeneous geological data, such as geological maps, gravity and aeromagnetic 

data, by a conditional generative adversarial network (CGAN) and implements an intelligent 

generation method of cross sections to overcome the problem of inefficient modeling data based on 

CGAN. Intelligent generation of cross sections and 3D geological modeling are carried out in three 

different areas in Liaoning Province. The results show that: (a) the accuracy of the proposed method 

is higher than the GAN and Variational AutoEncoder (VAE) models, achieving 87%, 45% and 68%, 

respectively; (b) the 3D geological model constructed by the generated cross sections in our study 

is consistent with manual creation in terms of stratum continuity and thickness. This study suggests 

that the proposed method is significant for surmounting the difficulty in data processing involved 

in regional 3D geological modeling. 

Keywords: generation of cross section; conditional generation adversarial network; 3D geological 

model; arithmetic mean deviation of section; coincidence rate of point coordinates 
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1. Introduction 

Since its convenience as a three-dimensional system [1–3], 3D geological modeling 

has been a hot issue for the prospecting and engineering fields [2–6]. The methods for 

establishing 3D geological models differ based on the modeling data [4,5,7–9], such as 

GIS-based [6], multi-source data-based [9], borehole-based [8,10], section-based [4,7,11,12] 

or geophysical data-based [3]. Section maps, integrating the experience of geologists 

[11,12], are widely used in the areas with sparse borehole data due to their relatively low-

cost [13–15], playing an important role in the modeling. However, the drawing of cross 

sections, heavily relies on the experiences of geological expertise [13,16], limiting its 

quantity in the modeling dataset [17,18], it is necessary to determine the stratum thickness 

or rock mass morphology through gravity and aeromagnetic inversion [3,19,20]. This 

process is often inefficient and imposes a heavy workload [21,22]. 

To improve the efficiency of drawing cross sections, Ming et al. [23] developed GSIS 

software based on the core method of 3D geological multi-body modeling from netty cross 

sections with topology to interpolate the cross sections and build a 3D geological model 
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automatically. Although this study can generate interpolated sections, the influence of 

geological factors is not considered, and the generated sections lack geological constraints. 

Automatic section generation remains a challenge, despite considerable progress [24]. 

With the development of artificial intelligence (AI) [25,26], deep learning methods 

have been demonstrated to be an effective path for inversing underground geological 

bodies and thereby modeling [27–29]. Convolutional neural networks (CNNs), graph 

neural networks, generative adversarial networks and other models are used in 

prospecting [30], mapping [31] and modeling [32,33]. Thus far, it has not been possible to 

realize intelligent generation of cross sections with AI technology. 

Here, we report a method of intelligent generation of cross sections based on the 

CGAN model using geological, gravity and aeromagnetic data. The method can 

automatically generate cross sections at any position with few manual interventions. The 

results show that: (a) the accuracy of the proposed method is higher than the GAN and 

Variational AutoEncoder (VAE) models, achieving 87%, 45% and 68%, respectively. The 

3D geological model constructed by the generated cross sections in our study is consistent 

with manual creation in terms of stratum continuity and thickness. 

2. Conditional Generative Adversarial Network 

The generative adversarial network (GAN) is a deep learning model that was first 

proposed by Goodfellow [34]. It is primarily used for unsupervised learning of data 

characteristics, and it can generate new data after training. The network has received 

extensive attention since it was proposed, and it has been widely studied and applied in 

the fields of image and vision. It can generate handwritten instances, natural landscape 

transformation, facial expression generation, target map switching, and super resolution 

images. In the fields of voice generation, virus sample generation and other applications, 

the GAN neural network provides enough simulated sample data to improve the 

recognition accuracy of the discriminator. 

Different from AlexNet [35], VGG [36], GoogLeNet [37], and other single model 

neural networks, GAN is a neural network model that can generate target data and 

includes two modules: a generator (G) and a discriminator (D) (see Figure 1). Each module 

separately constitutes a network. Generator G constantly generates samples that obey the 

distribution of real data based on random noise, and the discriminator D is used to judge 

whether the input data are real data. Therefore, the discriminator is essentially a binary 

classification network. Through continuous iteration and optimization, the final generator 

G can produce false target data. 

  

Figure 1. Flow chart of the GAN model. 

Generator G in the GAN network extracts the feature space of the input data by using 

the convolution operation and then generates the specified size data by using the 

deconvolution operation based on the feature space. Therefore, the network G is 

composed of a series of convolution and deconvolution layers. The network model of the 

generator G is shown in Figure 1. 
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~ ( ) ~ ( )

min max
( , ) [log ( )] [log(1 ( ( )))]x Pdata x z Pz zV D G E D x E D G z

G D
= + −   (1) 

The GAN neural network uses Equation (1) to train generator G and discriminator D 

[37]. In Equation (1), x represents the real sample, and D(x) represents the probability that 

x judges it as a real sample through the discrimination network; z represents the noise of 

the input-generated sample; G(z) represents the sample generated by the noise z of the 

generated network, and D(G(z)) represents the probability of judging the generated 

sample as a real sample after passing the discrimination network. 

The original GAN neural network generates pseudo data based on random noise, 

and has the disadvantages of instability, mode collapse, and non-convergence, it is often 

unable to generate data with specific constraints. Therefore, many researchers have 

proposed different GAN models with constraint information based on the original GAN 

neural network, among which conditional generative adversarial network (CGAN) has 

been the most successful [38]. CGAN uses a condition variable c in the generator G(z, c). 

When training, x and z both add the condition c to participate in the training. 

The objective function of CGAN after adding constraint data c on the basis of the 

original GAN network can be shown in Equation (2): 

~ ( ) ~ ( )

min max
( , ) [log ( | )] [log(1 ( ( | )))]x Pdata x z Pz zV D G E D x c E D G z c

G D
= + −  (2) 

The structure of the CGAN model can be shown in Figure 2. 

  

Figure 2. CGAN network structure. 

2.1. Convolution Layer 

The convolution layer extracts the features of the input image through convolution 

calculation (Figure 3) and outputs the feature map. The convolution layer consists of a 

series of fixed size filters (called convolution kernels) that are used to perform convolution 

operations on image data to generate feature maps [39]. Generally, the calculation of a 

characteristic diagram can be realized by Equation (3): 

(( ) )
j

k k

ij ij ki M
h w x b


=  +  (3) 

In Equation (3), k represents the kth layer; h represents the eigenvalue; (i, j) represents 

the coordinates of pixels in the image; wk represents the convolution kernel of the current 

layer, and bk is the offset. Parameters in convolutional neural networks such as bias (bk) 

and the convolution kernel (wk) are usually trained without supervision [40]. 



Mathematics 2022, 10, 4677 4 of 17 
 

 

 

Figure 3. The operation of the convolution layer. 

2.2. Leaky-ReLU Activation 

After the convolution operation, the Leaky-ReLU activation function is often added 

to activate neurons by non-linear mapping the characteristic map of the convolution layer 

output to avoid overfitting and improve the learning ability [41]. This function was 

originally introduced in the AlexNet model [42]. The Leaky-ReLU activation function 

(Equation (4)) is used for the output feature mapping of each convolution layer. 

Compared with the RELU function, Leaky-ReLU keeps negative data in the feature map 

to activate neurons for the next step of the calculation, and this can improve the robustness 

of the noise value. 

0
( )

0.1 0

x x
f x

x x


= 


 (4) 

2.3. Deconvolution 

Deconvolution is a special convolution operation. It first expands the size of the input 

data by adding 0 according to certain rules, and then generates data with a larger size 

according to the convolution operation. In fact, the deconvolution operation is 

implemented by Equation (3) too. 

3. Materials and Methods 

The methodology of intelligent generation of cross sections is introduced in this 

section. The architecture of the model, data preparation and data augmentation are 

described in turn. 

3.1. Intelligent Generation of Cross Sections Based on CGAN 

In this paper, the intelligent generating algorithm for cross sections based on the 

CGAN is studied by constructing a training dataset, training model, adjusting the 

parameters, and other steps. When building the training dataset, the algorithm takes the 

existing sections as the label data, employs the geological, gravity and aeromagnetic data 

as the input data to build the dataset for network training. By adjusting the depth and 

super parameters of the model through experiments, when the generated cross section 

matches the known section, the model is considered to have converged and can be applied 

to intelligent generate the cross sections in an unknown area. 

Based on the CGAN model, an intelligent generation network model for cross 

sections was designed (see Figure 4). The model, including two modules, namely, a 

generator G and a discriminator D, uses Equation (2) to train. The G module is primarily 

used to generate label samples, while the D module is used to judge whether the generated 
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label samples are real to continuously improve the authenticity of the generated label 

samples. 

 

Figure 4. Intelligent generating model for cross sections. Ⅰ: Geological coding data. II: Gravity 

anomaly and continuation data. III: Aeromagnetic anomaly and continuation data. IV: Points of the 

known section polyline. V: Distance coefficient. VI: Points of generated section polyline. 

In Figure 4, G is trained by continuous input of training data and labels, and can 

generate false cross sections (Sf). The false cross section and the true cross section (St) are 

input into D to judge whether Sf is true. After the iteration of the specified epochs, the 

generated cross sections Sf and St will converge, and thus G can be used to generate the 

cross section. 

After training, the generator model can be used in the section generation task at the 

specified location. The geological map, gravity and continuation data, aeromagnetic and 

continuation data of the known sections are fed into the generator model to generate the 

modeling sections. 

3.2. Data Preparation 

The training of the model depends on a large number of training data. To generate 

sections intelligently, preparation and processing operations are necessary. 

For regional 3D geological modeling, the data used for section generation are 

composed of geological, gravity and aeromagnetic anomaly data for each location point 

on the section. 

3.2.1. Geological Data 

Geological data include mineral geological maps and borehole histograms. The 

stratigraphic units and occurrences in the mineral geological map are used as input data. 

Stratigraphic units are encoded in one-hot. For example, the stratigraphic sequence 

developed in a region from top to bottom might be Gaixian (Pt1gx), Dashiqiao (Pt1d), 

Gaojiayu (Pt1g), Lieryu (Pt1lr), and Langzishan (Pt1l). When the exposed stratum on the 
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surface is the Dashiqiao formation, the input stratigraphic unit code is 01000. The 

occurrence of the stratigraphic unit only considers the dip angle during input, and the dip 

angle is expressed in radians. Borehole histograms are used for stratum constraints and 

are encoded in the same way as the stratigraphic unit. If the area has no borehole data, the 

channel datum is set to 0 for processing. 

3.2.2. Geophysical Data 

Generally, gravity and aeromagnetic anomaly data are the common geophysical 

data. Geological surveys and geophysical exploration have been carried out in the area 

where 3D geological modeling is to be performed. A number of geophysical sections can 

be collected, or a certain number of geophysical comprehensive interpretation sections 

can be compiled on the basis of the measured data. These sections should reflect various 

underground geological conditions in a region. These geophysical data cannot be used in 

the networks, unless a data gridding operation is performed. 

3.2.3. Data Gridding 

In order to grid the geophysical data, an interpolation algorithm is needed. In the 

geology filed, Kriging interpolation is the most used algorithm. According to the sparse 

degree of the geophysical data and the scale of the study area, a grid size needs to be 

determined. For example, in the 1:250,000 area, a 300 m × 300 m grid interval can meet the 

needs of geological research. After interpolation, the geophysical data are transformed 

into regular data. 

3.2.4. Construction of the Input Dataset 

We assume that the data vectors of two adjacent sections are a1 and a2. The gravity 

anomaly data corresponding to these two sections are g1 and g2. Anomaly data from the 

aeromagnetic method are denoted by m1 and m2. The sections a1 and a2 contain multiple 

section polylines, set as al1i and al2j, i 1, 2, …, n, j ∈ 1, 2, …, m. According to the stratigraphic 

age of the polyline in the section, we take section polylines with the same stratigraphic 

age P, that is, P1i==P2j, to form a section polyline pair (al1i, al2j) from top to bottom. When 

there is a pinch out, the missing section polyline datum is set to 0. 

Every section polyline pair (al1i, al2j) is interpolated to form 256 points, and then each 

section polyline is copied 256 times to form a 256 × 256 matrix, recorded as AL1i and AL2j. 

Then, the same operation is applied to g1, g2, m1 and m2, and a channel of a 256 × 256 

matrix is formed, marked as G1, G2, M1 and M2. 

While generating the modeling section with the input sections of a1 and a2, the 

distance between the generated section and the two input sections will also affect the 

shape of the section polylines in the modeling. Therefore, this method introduces the 

distance factor d as a parameter. 

1

2

2 2

1 1 1

2 2

2 1 2 1 2

( ) ( )

( ) ( )

x mx y my

x x y y

d
d

d

d p p p p

d p p p p


=




= − + −


= − + −



 (5) 

The parameter d is calculated as follows (Equation (5)). 

The middle points p1 of section a1 and p2 of section a2 are calculated. 

Points p1 and p2 are connected, where upon the line p1p2 intersects the generated 

section am at pm. 

Length d1 of p1pm and length d2 of p1p2 are calculated. 

It is assumed that d = d1/d2. 
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A 256 × 256 matrix D is filled with the value of d as an input channel. 

For the interpolated section, once the section line am (see Figure 5) is determined, the 

gravity data gm corresponding to the section line and aeromagnetic data mm are known. 

After the interpolation of gravity and aeromagnetic data formed as a 2 × 256 matrix, the 

matrix is padded to form a 256 × 256 matrix, marked as Gm and Mm, where m × 1, 2, …, 

256. Therefore, Gm, Mm and the previously generated AL1i, AL2j, G1, G2, M1 M2 and D are 

stacked as input matrices with the shape of 256 × 256 × 9 and recorded as input. 

  

Figure 5. Section interpolation and parameters diagram. 

3.2.5. Label Data 

In the training stage, a label is required. Different with the classification model, the 

generation model needs section data as a label. Similar to the preparation process of input 

data, the section polyline almi, corresponding to stratigraphic age in section am, is 

interpolated into 256 points, then padded into a 256 × 256 matrix forming the label data 

and marked as label. 

3.3. Data Augmentation 

Since each section contains multiple section polylines, and the data used for training 

in this method is a single section polyline, polylines of the section map can be extracted 

as training data (see Figure 6), thus enhancing the data volume and avoiding overfitting. 
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Figure 6. Examples of training dataset. (a) input section 1; (b) label section; (c) input section 2. 

Figure 6 shows the method of data augment in this study. In each section, the 

interface of two different geological bodies decides the top or the bottom. So, section 

polylines are the objects of this method. Every interface in the section is used for the 

training process, thus augmenting the dataset. 

4. Results and Discussion 

To verify the generating ability of the proposed method, we conducted experiments 

in the Benxi–Huanren area in eastern Liaoning Province, China (see Figure 7). This area 

has been surveyed by certain geological survey projects. The geological, gravity and 

aeromagnetic data are available. 
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Figure 7. Simplified geological map of the study area (after the 1:500,000 geological map produced 

by the Geological Survey of China, modified from [43]). 1. Archean. 2. Paleoproterozoic. 3. 

Mesoproterozoic- Neoproterozoic. 4. Paleozoic. 5. Mesozoic. 6. Archean granitic gneiss. 7. 

Paleoproterozoic granite. 8. Early Triassic basic-ultrabasic complex. 9. Triassic granite. 10. Late 

Triassic granite. 11. Yanshanian granite. 12. Other geological units. 13. Fault. 14. Location of test 

area. 15. Location of dataset. (a) The Benxi–Huanren area in eastern Liaoning Province, China; (b) 

the close-up of the area in (a). 

In this section, the data of training is described firstly, and then the environment of 

the experiment is listed. Finally, the results are discussed. 

4.1. Data and Data Processing 

In the study area, we collected 1650 section pairs, including 467 simple stratum 

sections, 332 complex stratum sections, 420 rock mass sections and 431 fault sections (see 

Table 1) in the location of dataset area (see Figure 7). According to the data augment 

method, the section polylines are extracted from the section pairs. Finally, 6804 samples 

are prepared. Correspondently, the gravity data, aeromagnetic data, and other data for 

the 6804 samples are calculated with the instruction of Section 3.2. 

Table 1. The amount of collected data for training. 

Type Section Pairs Samples 

Simple strata 467 4281 

Complex strata 332 1672 

Rock masses 420 420 

Faults 431 431 

Total 1650 6804 

In order to evaluate the proposed method, we divided the samples into training, 

validating and testing datasets with the proportion of 8:2. Here, 20% of the training dataset 

are used for validation during the training process. Thus, 5443 samples are used for 

training, 1088 samples of the training dataset are used for validating, and 1361 samples 

are used for testing. 
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4.2. Experiments and Results 

In order to quantify the difference between the generated section and the real section, 

this study used the arithmetic mean deviation of section (AMDoS, Equation (6)) as the 

evaluation standard, where (xi, yi) is the coordinates of the ith point on the label section 

polyline, and (xi’, yi’) are the coordinates of the ith point in the generated section polyline. 

11 ' 2 ' 2

1
( ( ) ( )i i i ii

AMDoS x x y y
=

= − + −  (6) 

Since the number of points in the real section is inconsistent with the number of 

points in the generated section, when calculating the error value, we calculate the length 

of the curve, divide the curve into 10 equal parts on average from the starting point of the 

curve, and calculate the end point of each curve as the error calculation point, including 

the starting point of the overall curve for 11 points (Equation (6)). 

Simultaneously, the coincidence rate of point coordinates (CRoPC, Equation (7)) is 

calculated, where TP is the point number with the deviation being less than AMDoS, and 

on the other hand, FP is the deviation more than AMDoS. 

o
TP

CR PC
TP FP

=
+

 (7) 

If the CRoPC value is more than 0.5, the generated section polyline is considered a 

positive sample, otherwise a negative sample. So, with this method, we can obtain an 

accuracy of the proposed model. 

The experiments described here run on a computer with the configuration listed in 

Table 2. 

Table 2. Hardware and software configurations used in the experiment. 

Configuration Value 

CPU Intel Core i5-7300HQ 2.5 GHz 

GPU NVIDIA GeForce GTX 1050Ti with 4GB RAM 

Memory 8 GB 

Hard disk 1 TB 

Operating System Windows 10  

Python Version 3.6.5 

Tensorflow Version Tensorflow-GPU 1.5.0 

Different super parameters, such as epochs, initial learning rate (ILR), decay rate and 

batch size, play an important role in the learning effect. Therefore, it is necessary to test 

the impact of different super parameters on the generator to obtain a relative optimal 

solution (see Discussion for specific experiments). Finally, with an initial learning rate of 

10−4, two samples in a batch, 10−3 decay of learning rate, the model ran 18000 epochs of 

training and validating, and achieved a validating accuracy of 92%. The correspondent 

curves of cross-entropy losses are shown in Figure 8. 
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Figure 8. Loss curves during CGAN training. (a) Discriminator D loss curve; (b) generator G loss 

curve. 

Figure 8 shows that at the beginning of training, the loss curve of the discriminator 

fluctuated, indicating that the training parameters were being adjusted frequently and 

that this had a significant impact on the generator. When the number of training steps 

reached 6000, the loss of the discriminator decreased steadily. After a large shock with 

10,000 training steps, the loss value of the D dropped to the lowest point after 14,000 steps, 

and the loss curve of G was relatively stable at this time. Then, the curves of the generator 

and discriminator began to fluctuate again. Therefore, the trained model after 14,000 steps 

can be taken for generating modeling sections. 

Part of the cross sections generated by the trained CGAN model are shown in Figure 

9. It can be seen from the comparison of label section polylines that those generated using 

the proposed method (Figure 9b,d) are smoother than the label section polylines (Figure 

9a,c). 
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Figure 9. Comparison between the label and the generated section polyline in our work. (a) Label 

of complex stratum; (b) generated section polyline of complex stratum; (c) label of rock mass; (d) 

generated section polyline of rock mass. 

4.3. Influence of Different Super Parameters on the Results 

The super parameters affect the performance and accuracy of the proposed model. 

Table 3 compares the accuracy when using different super parameter settings to train the 

model. 

Table 3. Performance on different super parameter settings of the proposed method. 

Experiments Epochs ILR Batch Decay 
Validation  

Accuracy 

1 18000 10−3 2 10−3 86% 

2 18000 10−3 2 10−4 87.2% 

3 18000 10−3 2 10−5 85% 

4 18000 10−4 2 10−3 92% 

5 18000 10−4 2 10−4 88% 

6 18000 10−4 2 10−5 89% 

7 18000 10−5 2 10−3 91% 

8 18000 10−5 2 10−4 86% 

9 18000 10−5 2 10−5 85% 

The experimental results show that different super parameters will exhibit different 

validation accuracies. Due to the limits of the configuration of the executing computer, the 

batch size is set to 2, and in consideration of the run time, the epoch value is set to 18,000. 

When the ILR is 10−4, and decay is 10−3, the proposed model achieved an overall accuracy 

of 92%. 
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4.4. Comparison with Other Deep Learning Algorithms 

In order to test the superiority of the proposed method, the VAE model and the 

common GAN model are also used for generating cross sections, and the sections 

generated by the three models are compared (see Figure 10). 

 

Figure 10. Comparison with the model of VAE, GANs and our work. (a) Geological background of 

the selected result; (b,c) input sections; (d) comparison of the sections generated by the three models 

and label. 

AutoEncoder is a generative model [25]. It is suitable for image editing using concept 

vectors. It maps the input data to a potential vector space through an encoder module, 

and then decodes it to an output with the same size as the original input through a 

decoder. 

By adding statistical operations to the AutoEncoder network, VAE [44] enables the 

AutoEncoder network to learn a continuous and highly structured potential space, thus 

becoming a powerful tool in the field of image generation. The traditional VAE includes 
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two parts: the encoder and decoder. The encoder module is used to collect and train the 

features of the input data and generate the feature distribution of the training data, and 

then the decoder module is used to generate the section data to be interpolated based on 

the feature distribution. 

The encoder module is implemented through a convolution operation. After three 

consecutive convolution operations, a dropout operation is added to discard some data, 

improve the generalization ability of the model, and finally produce a full connection 

layer as the output of the encoder module. 

The decoder module was created through a four-layer deconvolution operation. 

Through the deconvolution operation, the potential feature space data extracted by the 

encoder module is dimensionally restored to finally achieve the purpose of generating the 

data. 

Using the same training and validating dataset, we trained the VAE and GAN 

models. The statistics of AMDoS, CRoPC and validation accuracy are calculated (see Table 

4). A generated section by the three models is compared (see Figure 10). 

Table 4. Effect evaluation of different models. 

Methods VAE GAN Our Work 

Max AMDoS  1568.49 3351.65 1021.61 

Min AMDoS  352.84 2015.68 154.23 

Max CRoPC 83% 65% 92% 

Min CRoPC 37% 32% 44% 

Validation accuracy 68% 45% 87% 

Table 4 gives the statistical information of the three models’ training processes. The 

AMDoS value and CRoPC are quite different with the VAE, GAN and our model. The 

deviations of the GAN model are bigger than those of the other two models. 

Consequently, the GAN model has the worst performance and 45% validation accuracy. 

In contrast, our work performs well, both in the deviation value and the validation 

accuracy of 87%, and the VAE model performs better than the GAN model, but worse 

than our work. 

It can be seen from Figure 10 that the section generated by the GAN model is quite 

different from the labeled section, seriously deviating from the label. The polylines 

generated by the VAE and our model are consistent with the label. 

5. 3D Geological Modeling and Application 

After the training is completed, the network parameters are frozen. Three different 

application tests (see Figure 7), Yangjiabao, Shuangtaling and Huanren, are carried out in 

the study area. 

The geological, gravity and aeromagnetic data, and few main sections [13] of the test 

areas are provided. Using the frozen network parameters, cross sections are generated 

every 50 meters from left to right in the test areas, and finally 29 horizontal cross sections 

in each test area are obtained. Similarly, 24 vertical cross sections in each test area are 

obtained from top to bottom. The 3D geological models are established on the basis of the 

generated sections using the modeling method based on cross sections (see Figure 11). 
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Figure 11. 3D geological models built from the generated sections. (a) Huanren area; (b) 

Shuangtaling area; (c) Yangjiabao area. 

The test results show that, the 3D geological models as illustrated in Figure 11 

basically conforms to the geological principles of the study areas, and the model is 

relatively smooth. Compared with the Yangjiabao area, the geology of the Huanren and 

Shuangtaling areas are more complex, with structures such fold and fault growing in these 

two areas. These 3D models also prove that the proposed method can generate section 

data intelligently, with good stability and practicality. 

6. Conclusions 

In this study, we considered the key problem of inefficiency of drawing cross 

sections, and an intelligent method for generating cross sections based on the CGAN 

model using multi-source and heterogeneous geological data, such as geological, gravity 

and aeromagnetic anomaly data. After the proposed model was trained, this method 

achieved an overall accuracy of 87%. Cross sections at the specified location can be 

generated using the trained model. We tested the method via the establishment of three 

different 3D geological models in the areas of Yangjiabao, Shuangtaling and Huanren, 

Liaoning Province. The experimental results show the proposed method can improve the 

drawing efficiency of the cross sections significantly. 

At present, the problem remains that the generated cross sections may not conform 

to the actual situation when the trained model is used to build a complex section, which 

has multiple structures and intrusions. To solve this problem, we will try improving the 

method from two aspects in the following research. First, we can increase the size of the 

training dataset. The more training data there are, the better the model can update the 

corresponding model parameters so when applied to new areas, it can generate relatively 

more accurate sections. Second, the super parameters in the model (such as batch size and 

the gradient descent algorithm) can be tested to find the optimal network parameters in 

order to train a more accurate network model. 
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