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Abstract: Communication delay is an important factor affecting the stability and performance of
telerobotic systems. In this paper, a new adaptive proportional damping controller is proposed to
improve the stability and performance of the system in the presence of the cases such as asymmetric
communication delay, unknown gravity torque, friction torque, and other disturbance torques. The
proposed proportional damping control method combines the RBF neural network and adaptive
control strategy to compensate for the unknown torque. The stability and robustness of the system
are enhanced by adding error-damping items, operator force, and environmental force items. The
Lyapunov–Krasovskii functional is employed to analyze and prove the exponential stability and
signal boundedness of the closed-loop system. The simulation results verify the correctness of
the proposed method, and the comparison with the results of other control methods shows the
effectiveness of the designed control strategy.

Keywords: teleoperation; proportional damping control; adaptive control; time-varying delay;
Lyapunov–Krasovskii function

MSC: 93-10

1. Introduction

In some particular application scenarios, such as nuclear environments, deep sea,
space, and industrial environments, there are a lot of demands for operational tasks.
However, operators cannot operate in these dangerous and extreme environments, and the
present robots are not sufficiently intelligent to work well. Therefore, teleoperation robots
have been introduced to perform tasks in various scenarios [1–3].

A typical telerobotic system includes the operator, the master robot, the communica-
tion channel, the slave robot, and the task environment [4]. Generally, the control structure
of the teleoperation system is the bilateral control scheme. The human operator manip-
ulates the master robot to move, and then the position signals from the master robot are
transmitted through a communication channel to the slave side. With the slave controller,
the slave robot can track the position of the master robot to perform the task. In addition,
positioning signals and/or force signals that interact with the surrounding environment
can be transmitted to the master robot, which will act on the master robot and the operator
with the action of the master controller.

Stability and positional tracking are the most significant performance objectives for
teleoperation systems. In the bilateral teleoperation system, the positional signals are sent
through a communication channel and the time delay in communication transmissions is
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inevitable. This fact creates an inconsistent factor, i.e., the delay in communication will
reduce the performance and stability of the teleoperation system, and may even cause
system instability [4,5]. Therefore, since finding the harmfulness of time delay signals to
the teleoperation system, many research works have been devoted to analyzing the impact
on the system and ensuring its stability of the system.

The passivity theory is the earliest method used to analyze the stability and con-
trol performance of time-delay teleoperation. Based on the passive theory, some control
methods have been proposed and applied to the control of time-delay teleoperation sys-
tems, and good performance of position tracking control has been achieved. Some typical
control methods are the scattering approach [6,7] and traditional and improved wave
variables [8–11]. The core of the above control methods is to ensure the passivity of the
communication, which requires assuming the external forces of the operator and the envi-
ronment are passive relative to the speed of the robot. However, in practical applications,
the passivity assumption of this external force input is conservative and cannot meet the
needs of most application scenarios. Therefore, some control methods based on passive
theory have limitations in practical applications. In the world, many scholars have pro-
posed and are studying the control methods of time delay teleoperation systems based on
the Lyapunov stability theorem. These typical methods include robust control [12], adap-
tive control based on neural networks and fuzzy systems [13–17], sliding mode control
[18–20], output feedback control [21], feedforward-feedback position control [22], observer
approach [23], and finite-time control [20]. Among the above methods, the author pays
more attention to solving the problem of fixed delay stability of the teleoperation system.
However, in practical applications, the changing communication delay in teleoperation
systems needs more attention.

Damping injection control is another method to guarantee the stability of the time
delay teleoperation system. Its main principle is to use the damping term in the controller
to weaken the energy introduced into the system due to time delay. The controller design
and stability analysis of the closed-loop system are based on Lyapunov–Krasovskii method.
In [24], Nuño proposed a simplified proportional plus damping (P+d) control with constant
time delay for the teleoperation system, and rigorous stability proof has also been given.
Based on the designed first-order filter, a PD controller without speed measurement is
proposed to control the teleoperation system in [25], but the complex communication delay
is not fully considered. In [26], Slawinski proposed a compensated P+d control scheme
to eliminate energy and realize the good position control performance of the time-delay
teleoperation system. The idea of compensation is to consider the simplified model of the
operator’s behavior before tactile and visual stimuli to modify the instructions. In [27],
Islam proposed a new PD control strategy for a teleoperation system with passive and
nonpassive input forces, and symmetrical and unsymmetrical time-varying communication
delays. In [28], a new P+d-like controller is presented to ensure the position and force
tracking control for the network nonlinear teleoperation system. In [29,30], the bilateral
position force control strategies based on the P+d method are also designed for the time-
delay teleoperation systems, respectively. In [29], the extended active observation filter
is designed to measure the external force. In [30], a nonlinear function of environmental
forces is added to improve the control performance of the system.

In some research work, the authors consider the influence of torque saturation on
the stability and performance of teleoperation systems with time-varying delay and de-
sign a P+d control strategy for controller saturation [31,32]. By combining the dynamic
master–slave interconnection with the dynamic damping injection of each robot, in [33]
the authors propose a new control strategy for the time-delay bilateral teleoperation sys-
tem with stable input to state. In [34], the authors designed a simplified algorithm with
gravity compensation based on traditional P+d control and verified the effectiveness of the
algorithm through experiments.

In the above control methods, gravity torque compensation is added to some control
laws to achieve better position control performance [35]. However, these algorithms still
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ignore the effects of friction torque and external interference torque, and for practical
robots, gravity torque may not be accurately obtained, which may weaken the control
performance with the above methods. Adaptive control is an effective method and can
improve the control performance of complex nonlinear systems with unknown dynamics
and disturbances [36,37]. Adaptive control has been widely used in teleoperation systems
for position-tracking control. The main principle is to use fuzzy logic systems, radial basis
function (RBF) neural networks, and linear parameter models to estimate uncertainties
and external disturbances [16,17]. Because of its good characteristics, an adaptive control
strategy has been combined with P+d control in some work. In [38], a nonlinear adaptive
term of environmental force is added to the slave controller, and a nonlinear proportional
plus nonlinear damping (nP+nD) controller is designed. In [39], an adaptive fuzzy logic
system is used to estimate and compensate for the uncertain torques, and an improved
proportional differential sample plus damping (PD+d) control method is designed.

Therefore, based on the line of analyzing the existing work, this paper focuses on
how to combine the RBF neural network, adaptive control method, and P+d control
principle to design a novel control strategy to solve the position tracking problem of
teleoperation system under the factors of asymmetric time-varying delay, unknown gravity
torque, friction torque, and external bounded interference torques. This paper presents
a new improved P+d control based on RBF neural network adaptive compensation for
teleoperation systems. The fundamental contributions of this paper can be summarized
as follows:

• In this paper, a novel control scheme with a proportional plus damping strategy
and adaptive compensation is proposed for the time delay teleoperation system.
RBF neural network and adaptive control method are employed to estimate and
compensate for the unknown torque information.

• The traditional proportional damping injection control is improved to obtain better
control performance. The damping term based on position error is introduced to
enhance the stability and robustness of the closed-loop system.

• The Lyapunov–Krasovskii functional is used to establish the boundedness and stability
of the closed-loop teleoperation system. The relationships between the controller gain
coefficients are also given in the stability analysis.

The remainder of this paper is presented as follows. In Section 2, the dynamic de-
scriptions of the teleoperation system and the control problem are described. In Section 3,
the proposed adaptive proportional damping injection control scheme is investigated
and the stability analysis is also discussed. The simulation experiment results are given in
Section 4. Finally, this work is concluded in Section 5.

2. Problem Statement
2.1. Teleoperation System Modeling

Consider the master and slave robots with n degree of freedom (dof) rotation joints,
qm ∈ Rn, qs ∈ Rn, q̇m ∈ Rn, q̇s ∈ Rn, q̈m ∈ Rn, and q̈s ∈ Rn are, respectively, defined as
the position, velocity, and acceleration vectors of the rotation joints at time t ∈ R+. In joint
space, the dynamic model equations of the master and slave robots can be described as

Mm(qm)q̈m + Cm(q̇m, qm)q̇m + Gm(qm) + Fm = τm − JT
mFh,

Ms(qs)q̈s + Cs(q̇s, qs)q̇s + Gs(qs) + Fs = τs − JT
s Fe,

(1)

where Mm(qm), Ms(qs) ∈ Rn×n are the inertia matrices, Cm(q̇m, qm), Cs(q̇s, qs) ∈ Rn×n

are the Coriolis and centrifugal matrices, and Gm(qm), Gs(qs) ∈ Rn are the gravitational
torques. Fm, Fs ∈ Rn are friction torques and external interference torques. The force
exerted by the operator to the end of the master robot is Fh ∈ Rn, and the environmental
force acting on the end of the slave robot is Fe ∈ Rn. The Jacobian matrices Jm and Js can
map the operator and environment forces to the torques in the joint space of the master
and slave robots. The control torques in the master and slave sides are τm and τs. Define
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Xm and Xs as the end positions of the master and slave manipulators in the Cartesian
coordinate system, and Xm and Xs can be obtained through forward kinematics (FKm and
FKs) of these two robots. The end velocities Ẋm and Ẋs can be calculated through Jacobian
matrices and the joint velocities. The above relations are shown in the following

Xm = FKm(qm), Ẋm = Jmq̇m,

Xs = FKs(qs), Ẋs = Jsq̇s.
(2)

It is well known that the dynamic models (10) are nonlinear and parameter time-
varying. For j = m, s, there have some important properties as follows [40,41].

Property 1. The inertia matrix Mj
(
qj
)

is symmetric positive-definite. In addition, the following
inequality relations are satisfied for the maximum eigenvalue Mj,max and minimum eigenvalue
Mj,min of the matrix Mj

(
qj
)
0 < Mj,min I ≤ Mj

(
qj
)
≤ Mj,max I < ∞

Property 2. The matrix Ṁj − 2Cj is a skew-symmetric matrix, which means that for any nonzero
vector q ∈ Rn, the following equation always holds

qT(Ṁj − 2Cj
)
q = 0.

Property 3. The gravitational torques Gm, Gs, friction torques and external interference torques
Fm, Fs are all bounded.

In a teleoperation system, the position signals of the master and the slave robots need
to be transmitted to each other’s controllers to form the bilateral control mode. As we
all know, the transmission time delay of communication is inevitable. dm(t) and ds(t)
are employed to represent the communication delay signals from the master side to the
slave, and from the slave side to the master side, respectively. Therefore, qsd is defined
as the position signal of the master robot transmitted to the slave side, qmd is defined as
the slave robot position transmitted to the master side, and we have qsd = qm(t− dm(t)),
qmd = qs(t− ds(t)).

Assumption 1. The asymmetric time-varying communication time delays dm(t) and ds(t) are all
bounded, and there have two constants d̄m ∈ R+ and d̄s ∈ R+ that

0 ≤ dm(t) ≤ d̄m,

0 ≤ ds(t) ≤ d̄s.

For operator and environmental forces, there has an assumption below

Assumption 2. The operator force Fh and environment force Fe are also bounded by ‖Fh‖ ≤
F̄h, F̄h ≥ 0 and ‖Fe‖ ≤ F̄e, F̄e ≥ 0.

2.2. Control Objectives

For a teleoperation system with asymmetric time-varying delays and bounded opera-
tor/environment forces action studied in this work, the main control objective is to design
the appropriate master controller and slave controller to build a bilateral control scheme
and achieve the closed-loop system satisfies the following performance:

• Stability. The closed-loop system of bilateral teleoperation should be stable, whether
under asymmetric time-varying delay or external force.

• Position tracking. The joint positions of the master and slave robots can track each
other quickly and with small errors. When the time t → ∞, ‖q(t)− qs(t)‖ should
approach a small neighborhood of zero or even zero.
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2.3. RBF Neural Network

The RBF neural network has been widely employed for the adaptive controller design
of the uncertain model system, with the property that it can approximate a nonlinear
smooth function with an arbitrary accuracy [42]. In our work, the RBF neural network
is used to estimate the unknown gravity torque vector and friction torque vector. The
RBF neural network has three layers, namely the input layer, the hidden layer, and the
output layer.

For a continuous function G(x) : Ra → Rb, x ∈ Ra is the input vector, with the RBF
neural network, it can be defined as

G(x) = W Tϕ(x) + w. (3)

where W ∈ Rd×a is the weight matrix, d is the number of network nodes. ϕ = [ϕ1, ϕ2, . . . , ϕd]
T

is the Gaussian basis function vector and can be calculated as

ϕi = e−
(x−bi)

T(x−bi)
2c2 , i = 1, 2, . . . , d.

bi ∈ Ra is the Gaussian center vector of the i-th node. c is the width of the Gaussian
function. w is the bounded approximate error.

Remark 1. In more applications of the RBF network, some methods can be used to obtain center
vectors and widths of Gaussian base functions, while the matrix of the coefficient of weight can be
obtained through the training of the data. However, it is important to note that in adaptive control
methods with the RBF neural network, the weight matrix for neural networks is usually constructed
and obtained by the Lyapunov stability criterion. The stability and convergence of the system can be
assured by the development of adaptive learning rules. The Gauss-centered vector of i-the node bi is
determined concerning a range of input values of the neural network. In addition, input data values
of the RBF neural network should be in the effect range of Gaussian functions by giving a suitable
width of c.

3. Adaptive Proportional Plus Damping Control Design

In this subsection, a novel adaptive proportional plus damping control method is de-
scribed. Firstly, RBF neural network is used to approximate and compensate the unknown
parts of gravitational torques Gm, Gs, friction torques, and external interference torques
Fm, Fs, which are expressed as follows

Gm(qm) + Fm = W T
mϕm(xm) + wm,

Gs(qs) + Fs = W T
s ϕs(xs) + ws.

(4)

where for j = m, s, Wj ∈ Rl×n is the ideal approximate weight matrix of the RBF neural

network with l nodes, xj =
[
qT

j , q̇T
j

]T
is the input vector of the neural network. ϕj(xj) ∈

Rl×1 is the Gaussian basis function vector, which can be calculated by

ϕj,i = e
− (

xj−bj,i)
T
(xj−bj,i)

2c2
j , i = 1, 2, . . . , l.

(5)

bj,i ∈ R1×ln is the Gaussian center function vector of the i-th hidden layer node. cj is the
width of the Gaussian function. Then the dynamics of the teleoperation system can be
rewritten as

Mm(qm)q̈m + Cm(q̇m, qm)q̇m + W T
mϕm(xm) + wm = τm − JT

mFh,

Ms(qs)q̈s + Cs(q̇s, qs)q̇s + W T
s ϕs(xs) + ws = τs − JT

s Fe,
(6)
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As mentioned in [43,44], P+d control is a damping injection control method that can
ensure position tracking with varying time delays. In our work, the nonlinear control term
of position error and the adaptive compensation term for unknown torque are introduced
into the traditional P+d control method, and the following control strategy is constructed

τm =− Km1κm(qm − qsd)
T(qm − qsd)− Kmq̇m

− P(qm − qsd) + Ŵmϕm(xm) + ŵm + JT
mFh,

τs =− Ks1κs(qs − qmd)
T(qs − qmd)− Ksq̇s

− P(qs − qmd) + Ŵsϕs(xs) + ŵs + JT
s Fe.

(7)

where for j = m, s, Kj1 > 0 is the gain weight of position error nonlinear control term, Kj is
the damping coefficient matrix, P represents the proportional gain matrix. Kj1 and P are
all the positive diagonal gain matrices. κj is defined as the stability gain vector, which is
used to ensure the stability of the system with the action of the position error control item.
κj =

[
κj1, κj2, . . . , κjn

]T is defined as

κji =


1

q̇ji
, i f q̇ji 6= 0

0, i f q̇ji = 0
, i = 1, 2, . . . , n (8)

Based on the above definition, we can further obtain that

q̇T
j κj =

{
1, i f ‖qj‖ 6= 0

0, i f ‖qj‖ = 0
(9)

Remark 2. The time-varying communication delay will lead to the disturbance of the position
tracking errors qm − qmd and qs − qsd in the master and slave controllers, which means that
the closed-loop system is injected with energy and the stability of the system is weakened. In the
traditional damping injection control, the damping term Kjq̇j is introduced to dissipate and weaken
the harmful energy, to ensure the stability of the system. In our work, the introduced position
error damping control term is also a damping injection mode. Compared with the traditional mode,
the role of the introduced position error damping term can be adjusted according to the position
error. The added error damping term increases the energy dissipation of energy introduced by
communication delay and enhances the stability and robustness of closed-loop teleoperation. In the
controller design, the the stability gain vector κj calculated by the reciprocal of joint velocity is
defined, which not only meets the requirements of damping injection control but also facilitates
the analysis of error damping term in stability proof. In addition, a weight coefficient Kj1 is added
to adjust the effect of the error damping term, to prevent oscillation caused by velocity speed and
too large position tracking error. Based on this idea, we can also design other forms of error-
damping terms to achieve the above analysis functions, such as k j1sign(q̇j)(qj − qj′d)

T(qj − qj′d),
for j = m, s and j′ = s, m. The subsequent analysis of this paper only focuses on the control law
proposed above, while the stability analysis of other damping term forms is similar.

Remark 3. In the above control law, the adaptive control strategy and RBF neural network are
introduced to compensate for unknown gravity torque, friction torque, and other unknown bounded
disturbance torque. The essence of adaptive control is to design an appropriate adaptive learning
law based on Lyapunov theory to ensure the convergence and passivity of the parameter estimation
process. The passivity and stability of the closed-loop teleoperation system can be improved to a
certain extent by introducing adaptive methods. In this paper, the following forms of adaptive
learning laws are designed based on the Lyapunov stability theory. The specific analysis process can
refer to the following part of system stability analysis.
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˙̂Wj =−
1

Λj1
ϕT

j q̇j −
1

Kj2
Ŵj,

˙̂wj =−
1

Λj2
q̇j −

1
Kj3

ŵj.
(10)

where Λj1, Λj2, Kj2, and Kj3 are the gain coefficients of adaptive learning laws, both of which are
positive constants. The control block diagram of the closed-loop teleoperation system is shown in
Figure 1.

Master Robot

RBFNN Adaptive 
Controller

Fh
qm

qsd

Km

qm

qm

qm

Km1

P

Position error 
damping

C
om

m
u

n
ication

 ch
an

n
el Slave Robot

RBFNN Adaptive 
Controller

Feqs

Ks

qs

qs

qs

Ks1

P

Position error 
dampingqmd

Figure 1. The control block diagram of the teleoperation.

The following theorem serves as a design method and stability for controller (6) for
teleoperation systems with asymmetric time-varying delays and unknown gravity, friction,
and external torques.

Theorem 1. In the bilateral teleoperation system in (1) with the control laws in (7) and adaptive
laws in (10), the closed-loop system is stable and q̇m, q̇s, and qm − qs are bounded for bounded
asymmetric time-varying communication delays and unknown gravity, friction, and external
torques, respectively. If there exists positive controller gain coefficients Kj1, Kj2, Kj3, Λj1, and Λj2,
and positive definite control gain matrices Kj and P, j = m, s, and there exist the positive definite
skew-symmetric matrix Qm and Qs, so that the above gain matrices and gain coefficients can satisfy
that the new matrices Γ, Ψj, and Ψs defined below are all positive semidefinite.

Γ = Km1 I − d̄s

1− λ
Q−1

s + Ks1 I − d̄m

1− λ
Q−1

m

Ψm = Km − d̄mQm −
d̄s

4λ
PQ−1

s PT

Ψs = Ks − d̄sQs −
d̄m

4λ
PQ−1

m PT

(11)

The detailed proof process of Theorem 1 can be seen in Appendix B.

4. Simulation Results

The system used in the simulation is a pair of two manipulators with 2-dof revo-
lute joints. The asymmetry varying time delays, unknown gravity and friction torques,
and the external forces of the operator and the environment are also taken into account.
The principle block diagram of the simulation experiment is shown in Figure 2.



Mathematics 2022, 10, 4675 8 of 21

Master Robot

RBFNN Adaptive 
Controller

Improved 
P+d  Controller

C
om

m
u

n
ication

 ch
an

n
el

Improved 
P+d  Controller

Slave Robot

RBFNN Adaptive 
Controller

Fh

Fe

qs

qm

qm

qs
qsd

qmd

Master 
Controller

Slave
 Controller

delay

Master 
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Figure 2. The block diagram of the simulation experiment.

The teleoperation system used for simulation consists of two robot manipulators with
2-dof revolute joints. The asymmetric time-varying delays, uncertain dynamics, and ex-
ternal operator/environment forces are also considered in the simulation experiments.
The dynamics of the master and remote robots are similar to (1), where the inertia matrix
Mj, centripetal Coriolis matrix Cj, gravitational torque Gj, and friction torque Fj in actual
robot dynamics are defined as [41]

Mj =

[
mj11 mj12
mj21 mj22

]
, Cj =

[
cj11 cj12
cj21 cj22

]
,

Gj =
[
gj1, gj2

]T, Fj =
[

f j1, f j2
]T.

The elements of the above matrices Mj, Cj, Gj, and Fj can be described as mj11 =

l2
j1(mj1 + mj2) + lj2mj2(2lj1 cos qj2 + lj2), mj12 = mj21 = l2

j2mj2 + lj1lj2mj2 cos qj2, m22 =

l2
j2mj2, c11 = −lj1lj2mj2 sin qj2 ˙̇qj2, c12 = −lj1lj2mj2 sin qj2(q̇j1 + q̇j2), c21 = lj1lj2mj2 sin qj2,

c22 = 0, gj1 = (mj1 + mj2)lj1g cos(qj1) + mj2lj2g cos(qj1 + qj2), gj2 = mj2lj2g cos(qj1 + qj2),
f j1 = 0.5q̇j1 + 0.2sign(q̇j1), and f j2 = 0.5q̇j2 + 0.2sign(q̇j2). For simplicity, the configuration
parameters of the teleoperation system are represented in Table 1 [38].

Table 1. Physical parameters of the teleoperation system.

mm1 mm2 lm1 lm2 ms1 ms2 ls1 ls2

4.0 kg 0.5 kg 1.0 m 1.0 m 3.4 kg 0.25 kg 1.0 m 1.0 m

In the simulation experiment, the asymmetric time-varying communication delays at
the master and slave sides are shown in Figure 3. The force interactions between the robot
and the operator and the environment are all assumed to be the stiffness-damping models.
Therefore, the operator input force Fh and environmental force Fe are modeled as follows

Fh = fh + bhẊm + kh(Xm − xm0),

Fe =beẊs + ke(Xs − xs0).

where fh is the external operator force, its curve is shown in Figure 4, it can be seen that
the operator exerts the additional trapezoidal forces in x and y direction from 2 s to 8 s. bh
and kh are the damping and stiffness coefficients of the operator force dynamic respectively.
be and ke are the damping and stiffness coefficients of the environment force model. xm0
and xs0 represent the initial position points of the force applied by the operator and the
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environment, respectively. In this simulation experiment, kh = ke = 10 N/m, bh = 2
N/(m/s), be = 2.5 N/(m/s), xm0 = [0.707, 1.707]Tm, and xs0 = [0.5, 0.866]Tm.

0 5 10 15

0.5

1

0 5 10 15

0.5

1

Figure 3. Forward and backward time varying delays dm and ds.

0 5 10 15
0

5

10

0 5 10 15
0

1

2

3

Figure 4. External operator forces Fh in the x-direction and y-direction.

The adaptive law parameters are set as Λm1 = Λm2 = 1, Λs1 = Λs2 = 1, Km2 = Km3 = 1,
and Ks2 = Ks3 = 1. The gain matrices of the control laws are set as Km = Ks = 10I, P = 5I
and the gain parameters Km1 = Ks1 = 0.1. The initial joint position of the master robot
is qm0 = [π/4, π/4]T , the initial joint position of the slave robot is qs0 = [π/3, π/4]T .
The initial joint velocities q̇m0 and q̇s0 are zeros.

We set up two parts of the simulation experiment to verify and illustrate the stability
and effectiveness of the closed-loop system. The simulation experiments are carried out
under the MATLAB/Simulink platform.

Firstly, the simulation with our proposed control scheme is considered. The simulation
is carried out according to the experimental conditions and controller parameters stated
above. This part of the simulation focuses on verifying the stability of the system and the
boundedness of the parameters. The results of the simulation are shown in Figures 5–9,
respectively.

Figures 5 and 6 represent the joint position tracking performances of master and slave
robots. From the joint position and the joint tracking error curves, it can be seen that the
master and slave robots achieve position tracking control within about 5 s, and the position
tracking errors of the two joints are very small and approach 0. These results prove that the
proposed method has a good performance of master-slave robot position tracking control,
and the closed-loop system is stable.
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Figure 5. Joint positions of the master and slave end-effectors in the x-direction and y-direction.

Figure 6. Joint tracking errors of the master and slave robots.

Figure 7 shows the motion of the two links of the master and slave robots in the task
space. The red lines present the initial link position and pose of the master and the slave
robots. The blue lines indicate the link position and pose of the master and slave robots.
The orange lines represent the position of the links between the starting time and the ending
time of the master and slave robots. It can be seen that the starting positions of the master
and slave robots are different, but with the performances of the controller, external operator
force, and environmental force, the ending positions are the same, and the whole moving
process is stable.

Figures 8 and 9 show the curves of adaptive parameters Ŵm, Ŵs, ŵm, and ŵm. It can
be seen that the adaptive parameters are convergent and bounded in the control process.
These results verify that the closed-loop teleoperation system with the proposed method is
stable, and the signals of the system are also bounded and convergent.



Mathematics 2022, 10, 4675 11 of 21

Figure 7. Task performances of the master and slave robots.
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Figure 8. Adaptive parameters in the RBF neural networks Ŵm and Ŵs.
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Figure 9. Adaptive parameters of ŵm and ŵs.

In the second part of the simulation, we selected some representative damping injec-
tion control work, implemented these control methods in the simulation, and compared
the results of these methods with the proposed methods to verify the effectiveness of the
methods presented in this paper. Three cases based on three different damping injection
control methods are set. Case 1: in [34], the authors proposed a simplified but classical pro-
portional damping injection control method with gravity compensation. Case 2 [38]: with
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the traditional proportional damping injection control, the author added an adaptive part
based on parameter linearization to compensate for the gravity torque. This idea is similar
to our work, but the difference is that the position error damping term is not introduced
into the control scheme. Case 3 [39]: the author designed a proportional differential plus
damping injection method, which has no gravity torque compensation and operating force
and environmental force feedback in the control law. The detailed simulation results and
results comparison are shown in Figures 10–18.

Figures 10 and 11 show the joint position tracking curves and the motion performance
in the workspace of the master and slave robots based on the Case 1 method. It can be seen
that the position tracking performances of the master and slave robots have entered into
the stable state within 10 s, and there is a certain amount of steady-state errors. The joint
position error results in Case 1 are compared with the error results of the proposed method,
as shown in Figure 12. The simulation experimental conditions are the same as those above.
It can be clearly seen that the position tracking performance with Case 1 is affected by
additional operator forces due to the lack of friction torque and operator force compensation,
and the convergence speed is slow. The proposed method has faster convergence speed
and smaller steady-state errors.

Figure 10. Joint positions of the master and slave end-effectors with the method in Case 1.

0 0.5 1 1.5 2
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0.5

1

1.5

2

0 0.5 1 1.5 2
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1

1.5

2

Initial configuration
Initial configuration

Final configuration

Final configuration

Figure 11. Task performances of the master and slave robots with the method in Case 1.
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Figure 12. Comparisons of joint tracking errors based on the proposed method and the method in
Case 1.

Figures 13 and 14 show the joint position tracking and the task performance of the
master and slave robots based on the method in Case 2. It is shown that the joint position
tracking the performance of the master and slave robots is not affected by the additional
operator force with the adaptive control, operator, and environment force compensation.
The position tracking errors can approach a very small range within a certain time, and the
task performance does not have a process of vibration. Similarly, the error tracking results
of the method in Case 2 are compared with the results of the proposed method. It can be
seen that the error convergence speed of Case 2 is slower, and the convergence error of
joint 2 is larger. The proposed method has advantages in position tracking performance.

Figures 16 and 17 show the joint position tracking and the task performance of the
master and slave robots based on the method in Case 3. It can be seen that the introduction
of a differential term in Case 3 improves the convergence speed. Under the adaptive
compensation of the fuzzy system, the first joint position tracking error converges quickly
and the steady-state error is small, but the second joint position tracking error is large.
The task performances also illustrate the above issues. Figure 1 shows the comparison
between the joint position tracking errors using the Case 3 method and the proposed
method. The control method in Case 3 has a faster convergence speed, but the position
tracking accuracy is not as good as the proposed control method.

Figure 13. Joint positions of the master and slave end-effectors with the method in Case 2.
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Figure 14. Task performances of the master and slave robots with the method in Case 2.

Figure 15. Comparisons of Joint tracking errors based on the proposed method and the method in
Case 2.
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Figure 16. Joint positions of the master and slave end-effectors with the method in Case 3.
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Figure 17. Task performances of the master and slave robots with the method in Case 3.

Figure 18. Comparisons of task space tracking errors based on the proposed method and the method
in Case 3.

Based on the above analysis of the position tracking performance of these three
damping injection control methods in Case 1, Case 2, and Case 3, it further illustrates that
the proposed control scheme has advantages in position tracking accuracy and is superior
to Case 1 and Case 2 in convergence speed.

5. Conclusions

This paper presents a new adaptive proportional damping injection control method
for teleoperation systems, which considers the existence of asymmetric time-varying time
delay, unknown gravity torque, friction torque, and disturbance torque. The stability of the
time-delay system is further enhanced by introducing the position error damping term. The
RBF neural network and adaptive control method are used to compensate for the unknown
torque information. A Lyapunov–Krasovskii function is defined for the stability analysis of
the closed-loop teleoperation system. The verification simulation of the proposed method
and the comparison simulation with the results of other control methods are implemented,
respectively. In the verification simulation, the position information of the master and slave
robots could enter a stable state with very small errors of about 5 s. In the comparative
simulation, the proposed method has the advantages in the steady state errors of position
tracking and the rapidity of convergence. The proposed adaptive P+d method can be used
for telemedicine and teleoperation of mobile robots [45]. We also plan to apply the method
proposed in this paper to industrial robot systems. However, it should be noted that the
position error damping term introduced in this paper has singular characteristics near zero
velocity, which will bring oscillation to the control value. In addition, avoiding oscillation
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near a singular value, introducing the idea of robust control into the controller design,
and carrying out some physical experiments to verify the proposed method are also the
directions of our future research and need to be further carried out.
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Appendix A. Preliminary Lemmas

In order to better analyze the stability of the closed-loop system, some useful lemmas
are introduced here.

Lemma A1 ([46]). For a positive-definite matrix Q ∈ Rn×n and arbitrary vectors related to time
t X(t) ∈ Rn and Y(t) ∈ Rn, the following inequation always holds as:

±XT(t)
∫ t

t−d(t)
Y(ξ)dξ −

∫ t

t−d(t)
YT(ξ)QY(ξ)dξ ≤ d̄

4
XT(t)Q−1X(t) (A1)

where 0 ≤ d(t) ≤ d̄.

Lemma A2 ([47]). Let there be two continuous and differentiable time functions f (t) and V(t) :
[0,+∞) ∈ R, for any time t : t ≥ t0 ≥ 0 and constant α ∈ R+, if V̇ ≤ −αV + f , the following
inequality is always true.

V(t) ≤ e−α(t−t0)V(t0) +
∫ t

t0

e−α(t−τ) f (τ)dτ (A2)

Appendix B. Proof of Theorem 1

Proof. The proof of this theorem is investigated using the following Lyapunov–Krasovskii
function V = V1 + V2 + V3 + V4, where

V1 =
1
2

q̇T
m Mmq̇m +

1
2

q̇T
s Msq̇s,

V2 =
1
2
(qm − qs)

TP(qm − qs),

V3 =
∫ 0

−d̄m

∫ t

t+θ
q̇T

m(ξ)Qmq̇m(ξ)dξdθ +
∫ 0

−d̄s

∫ t

t+θ
q̇T

s (ξ)Qsq̇s(ξ)dξdθ

V4 =
Λm1

2
tr
(

W̃ T
mW̃m

)
+

Λm2

2
w̃T

mw̃m +
Λs1

2
tr
(

W̃ T
s W̃s

)
+

Λs2

2
w̃T

s w̃s.

(A3)

V1 represents the total kinetic energy of the master robot and slave robot; V2 represents
the potential energy in proportional control; V3 characterizes the energy of forward and
backward communication channels with time-varying delay; V4 represents the energy of
adaptive estimation.
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With the property of the system in Property 2 and the control laws in (7), the derivative
of V1 is computed as

V̇1 =− Km1(qm − qsd)
T(qm − qsd)I − q̇T

mKmq̇m − q̇T
mP(qm − qsd)

+ q̇T
m

(
W̃ T

mϕm + w̃m

)
− Ks1(qs − Xmd)

T(qs − qmd)I − q̇T
s Ksq̇s

− q̇T
s P(qs − qmd) + q̇T

s

(
W̃ T

s ϕs + w̃s

) (A4)

For terms (qm − qsd)
T(qm − qsd) and (qs − qmd)

T(qs − qmd), based on the definition
of integral, the following inequalities exist

(qm − qsd)
T(qm − qsd) ≥(qm − qs)

T(qm − qs) + 2(qm − qs)
T
∫ t

t−ds
q̇s(ξ)dξ,

(qs − qmd)
T(qs − qmd) ≥(qs − qm)

T(qs − qm) + 2(qs − qm)
T
∫ t

t−dm
q̇m(ξ)dξ

(A5)

Then, it can be obtained as

V̇1 ≤− Km1(qm − qs)
T(qm − qs)I − q̇T

mKmq̇m − q̇T
mP(qm − qsd)

+ q̇T
m

(
W̃ T

mϕm + w̃m

)
− 2(qm − qs)

T
∫ t

t−ds
q̇s(ξ)dξ

− Ks1(qs − qm)
T(qs − qm)I − q̇T

s Ksq̇s − q̇T
s P(qs − qmd)

+ q̇T
s

(
W̃ T

s ϕs + w̃s

)
− 2(qs − qm)

T Bs

∫ t

t−dm
q̇m(ξ)dξ.

(A6)

where W̃m, W̃s, w̃m, and w̃s are the matrices and vectors of parameter estimation error,
and they are defined as W̃m = Ŵm −Wm, w̃m = ŵm −wm, W̃s = Ŵs −Ws, and w̃s =
ŵs −ws.

The time derivative of V2 is described as

V̇2 = (q̇m − q̇s)
TP(qm − qs) = q̇T

mP(qm − qs)− q̇T
s P(qm − qs). (A7)

Then there is

V̇1 + V̇2 ≤− Km1(qm − qs)
T(qm − qs)I − q̇T

mKmq̇m + q̇T
m

(
W̃ T

mϕm + w̃m

)
− q̇mP

∫ t

t−ds
q̇s(ξ)dξ − 2(qm − qs)

T
∫ t

t−ds
q̇s(ξ)dξ

− Ks1(qs − qm)
T(qs − qm)I − q̇T

s Ksq̇s + q̇T
s

(
W̃ T

s ϕs + w̃s

)
− q̇T

s P
∫ t

t−dm
q̇m(ξ)dξ − 2(qs − qm)

T
∫ t

t−dm
q̇m(ξ)dξ.

(A8)

The time derivative of V3 is

V̇3 =d̄mq̇T
mQmq̇m −

∫ t

t−d̄m
q̇T

mKmq̇mdr + d̄sq̇T
s Qsq̇s −

∫ t

t−d̄s
q̇T

s Ksq̇sdr

≤d̄mq̇T
mQmq̇m −

∫ t

t−dm
q̇T

mKmq̇mdr + d̄sq̇T
s Qsq̇s −

∫ t

t−ds
q̇T

s Ksq̇sdr.
(A9)
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Sum V̇1, V̇2, and V̇3

V̇1+V̇2 + V̇3

≤− Km1(qm − qs)
T(qm − qs)I − q̇T

mKmq̇m

+ q̇T
m

(
W̃ T

mϕm + w̃m

)
+ d̄mq̇T

mQmq̇m

− q̇T
mP

∫ t

t−ds
q̇sdξ − λ

∫ t

t−ds
q̇T

s Qsq̇sdr

− 2(qm − qs)
T
∫ t

t−ds
q̇sdξ − (1− λ)

∫ t

t−ds
q̇T

s Qsq̇sdr

− Ks1(qs − qm)
T(qs − qm)I − q̇T

s Ksq̇s

+ q̇T
s

(
W̃ T

s ϕs + w̃s

)
+ d̄sq̇T

s Qsq̇s

− q̇T
s P

∫ t

t−dm
q̇mdξ − λ

∫ t

t−dm
q̇T

mQmq̇mdr

− 2(qs − qm)
T
∫ t

t−dm
q̇mdξ − (1− λ)

∫ t

t−dm
q̇T

mQmq̇mdr.

(A10)

where 0 < λ ≤ 1.
Considering Lemma 1, it can be obtained as

− q̇T
mP

∫ t

t−ds
q̇sdξ − λ

∫ t

t−ds
q̇T

s Qsq̇sdr ≤ d̄s

4λ
q̇T

mPQ−1
s PT q̇m,

− q̇T
s P

∫ t

t−dm
q̇mdξ − λ

∫ t

t−dm
q̇T

mQmq̇mdr ≤ d̄m

4λ
q̇T

s PQ−1
m PT q̇s,

− 2(qm − qs)
T
∫ t

t−ds
q̇sdξ − (1− λ)

∫ t

t−ds
q̇T

s Qsq̇sdr

≤ d̄s

1− λ
(qm − qs)

TQ−1
s BT

m(qm − qs)

− 2(qs − qm)
T
∫ t

t−dm
q̇mdξ − (1− λ)

∫ t

t−dm
q̇T

mQmq̇mdr

≤ d̄m

1− λ
(qm − qs)

TQ−1
m BT

s (qm − qs)

(A11)

Based on the above inequality, the following results can be further obtained

V̇1 + V̇2 + V̇3 ≤− (qm − qs)
TΓ(qm − qs)

− q̇T
mΨmq̇m + q̇T

m

(
W̃ T

mϕm + w̃m

)
− q̇T

s Ψsq̇s + q̇T
s

(
W̃ T

s ϕs + w̃s

) (A12)

where the gain matrices Γ, Ψm, and Ψs are defined as

Γ = Km1 I − d̄s

1− λ
Q−1

s + Ks1 I − d̄m

1− λ
bmQ−1

m

Ψm = Km − d̄mQm −
d̄s

4λ
PQ−1

s PT

Ψs = Ks − d̄sQs −
d̄m

4λ
PQ−1

m PT

(A13)

Based on the conditions set by the theorem, these matrices Γ, Ψm, and Ψs are all
positive semidefinite.



Mathematics 2022, 10, 4675 19 of 21

With the adaptive laws in (10), the time derivative of V4 is

V̇4 =− q̇T
mW̃ T

mϕm − q̇T
mw̃m −

Λm1

Km2
tr
(

W̃ T
mŴm

)
− Λm2

Km3
w̃T

mŵm

− q̇T
s W̃ T

s ϕs − q̇T
s w̃s −

Λs1

Ks2
tr
(

W̃ T
s Ŵs

)
− Λs2

Ks3
w̃T

s ŵs

≤ −q̇T
mW̃ T

mϕm −
Λm1

2Km2
tr
(

W̃ T
mW̃m

)
+

Λm1

2Km2
tr
(

W T
mWm

)
− q̇T

mw̃m −
Λm2

2Km3
w̃T

mw̃m +
Λm2

2Km3
wT

mwm

− q̇T
s W̃ T

s ϕs −
Λs1

2Ks2
tr
(

W̃ T
s W̃s

)
+

Λs1

2Ks2
tr
(

W T
s Ws

)
− q̇T

s w̃s −
Λs2

2Ks3
w̃T

s w̃s +
Λs2

2Ks3
wT

s ws

(A14)

So
V̇ =V̇1 + V̇2 + V̇3 + V̇4

≤− (qm − qs)
TΓ(qm − qs)− q̇T

mΨmq̇m − q̇T
s Ψsq̇s

− Λm1

2Km2
tr
(

W̃ T
mW̃m

)
− Λm2

2Km3
w̃T

mw̃m

− Λs1

2Ks2
tr
(

W̃ T
s W̃s

)
− Λs2

2Ks3
w̃T

s w̃s + Λ

(A15)

where Λ is a positive constant and defined as

Λ =
Λm1

2Km2
tr
(

W T
mWm

)
+

Λm2

2Km3
wT

mwm +
Λs1

2Ks2
tr
(

W T
s Ws

)
+

Λs2

2Ks3
wT

s ws. (A16)

Further considering V̇, the following inequality relations are established

V̇ ≤−Ω1

[
(qm − qs)

T(qm − qs) + q̇T
mq̇m + q̇T

s q̇s

+tr
(

W̃ T
mW̃m

)
+ w̃T

mw̃m + tr
(

W T
s Ws

)
+ w̃T

s w̃s

]
+ Λ

(A17)

where Ω1 is defined as

Ω1 = min
(

Γmin, Ψm,min, Ψs,min,
Λm1

2Km2
,

Λm2

2Km3
,

Λs1

2Ks2
,

Λs2

2Ks3

)
(A18)

where Γmin, Ψm,min, and Ψs,min are the minimum eigenvalues of matrices Γ, Ψm, and Ψs,
respectively.

From q̇T
j Qjq̇j ≤ Qj,maxq̇T

j q̇j, j = m, s and Qj,max being the smallest eigenvalue of Qj,
we can obtain that

∫ 0

−d̄j

∫ t

t+θ
q̇T

j (ξ)Qjq̇j(ξ)dξdθ ≤
d̄2

j

2
Qj,maxq̇T

j q̇j. (A19)

Therefore, the derivative of the Lyapunov–Krasovskii function V can be written
as follows

V̇ ≤Ω2

[
(qm − qs)

T(qm − qs) + q̇T
mq̇m + q̇T

s q̇s

+tr
(

W̃ T
mW̃m

)
+ w̃T

mw̃m + tr
(

W T
s Ws

)
+ w̃T

s w̃s

] (A20)

where Ω2 is a positive real number and is defined as

Ω2 = max
(

Mm,max + d̄2
mQm,max

2
,

Ms,max + d̄2
s Qs,max

2
,

Pmax

2
,

Λm1

2
,

Λm2

2
,

Λs1

2
,

Λs2

2

)
(A21)
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Mm,max, Ms,max, Pmax, Qm,max, and Qs,max are the maximum eigenvalues of matrices of Mm,
Ms, P, Qs, and Qs, respectively.

Therefore, it is obvious that the following results can be obtained

V̇ ≤ −Ω1

Ω2
V + Λ. (A22)

If the gain coefficient of the control laws in the theorem is satisfied, then it can get that
Ω1 is a positive real number. Based on Lemma 2, there exists a t0 for t > t0 > 0, we can get

V̇ ≤ e−
Ω1
Ω2

(t−t0)V(t0) +
ΛΩ2

Ω1

(
1− e−

Ω1
Ω2

(t−t0)
)

(A23)

Then it can be further obtained that

lim
t→∞

V(t) ≤ ΛΩ2

Ω1
. (A24)

It is obvious that the closed-loop system is stable and the Lyapunov–Krasovskii
function V is bounded, which also means that the position error qm − qs and velocities q̇m
and q̇s are also bounded. This completes the proof.
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