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Abstract: Classical normal asymptotics could bring serious pitfalls in statistical inference, because
some parameters appearing in the limit distributions are unknown and, moreover, complicated to
estimated (from a theoretical as well as computational point of view). Due to this, plenty of stochastic
approaches for constructing confidence intervals and testing hypotheses cannot be directly applied.
Bootstrap seems to be a plausible alternative. A methodological framework for bootstrapping not
independent and not identically distributed data is presented together with theoretical justification of
the proposed procedures. Among others, bootstrap laws of large numbers and central limit theorems
are provided. The developed methods are utilized in insurance and psychometry.
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1. Introduction and Motivation

Stochastic inference frequently relies on the limiting normal distribution, which allows
the characterization of large sample (asymptotic) behavior of the considered statistics.
However, some entities of the asymptotic distribution such as the variance–covariance
matrix quite often depend on the parameters or other quantities, which cannot be estimated
directly from the data. In addition, this estimation can be performed neither theoretically
nor computationally. Bootstrap methods—a class of resampling techniques—serve as suitable
alternatives. Additional problems arise, when the underlying data do not form a random
sample, simply because they cannot be considered as independent or identically distributed.
Thus, the bootstrap techniques developed for independent and identically distributed (IID)
observations need to be adjusted and suited up for the not independent and not identically
distributed (NINID) data. The main goal of this paper is to postulate a theoretical setup
and a methodological framework, which enable us to show how the bootstrap procedures
should be accommodated for the NINID observations and, simultaneously, to formally
justify the validity of such approaches. It is prerequisite to realize that there are two sources
of randomness when bootstrapping: the first randomness comes from the data themselves,
the second randomness is brought by the chance from random resampling. Therefore, we
need to access, quantify, and control both sources.

However, it is not sufficient to give just the algorithmic procedures for bootstrapping
the parameters of interest. It is also desired to possess fundamental mathematical guaranties
that the particular bootstrap technique provides reasonable results. A possible way how
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to postulate such validity is to formulate proper stochastic convergences, assuring that the
bootstrapped parameter is distributionally close to the estimator of the unknown parameter
of interest.

1.1. State of the Art

The bootstrap was introduced by Efron in [1]. This theoretical concept was conse-
quently investigated by [2] in the case of independent and identically distributed data.
Monographs [3] or [4] provide a bootstrap “first” course overview. A comprehensive
theoretical summary for the bootstrap methods can be found in [5]. Various types of
the dependent bootstrap procedures were proposed and [6] provided a extensive sum-
mary. Subsampling within the bootstrap framework was given by [7]. The block bootstrap
approach was independently suggested by [8,9] for the case of sample mean. [10,11] ex-
tended these results, but still considered only strictly stationary processes. Reference [12]
generalized previous approaches for non-stationary processes. Bootstrapping panel data
with non-stationary, heteroscedastic, and outlying observations was elaborated by [13].
Permutation bootstrap for the exchangeable observations was summarized by [14]. An
application of the dependent block bootstrap approach for the regression setup was per-
formed in [15,16]. In contrast to this theoretical asymptotic result, the practical finite sample
properties for the dependent bootstrap were studied by [17–19].

1.2. Structure of the Paper

The organization of the paper is as follows. The bootstrap procedures for IID and
NINID data are summarized in Section 2. Consequently, Section 3 postulates asymptotic
relations and closeness in the bootstrap world. Various bootstrap laws of large numbers
are derived in Section 4. The validity of the considered bootstrap methods are guaranteed
by the bootstrap central limit theorems provided in Section 5. Practical applications to
the problems from insurance and psychometry are shown in Section 6. Conclusions are
relegated to Section 7, while all the proofs are collected in the Appendix A.

2. Bootstrap Methods for NINID Data

A brief summary for bootstrapping the IID data is going to be provided. After that, an
extension for the NINID observations is given.

2.1. Independent Bootstrap

An independent bootstrap requires no distributional assumptions and, moreover, in-
dependence of the input multivariate observations {ξ i}n

i=1 is assumed while resampling
is being performed. It is also often called the nonparametric bootstrap and it refers to the
simplest scheme of independent resampling from the original observations [ξ1, . . . , ξn].
The main idea behind the independent bootstrap lies in the resampling of the independent
column data ξ i’s with replacement in order to obtain the bootstrapped data ξ∗i . Now, an entity
of interest is calculated from the new “starred” data ξ∗i ’s, e.g., a test statistic or an estimator
of an unknown parameter. It is desired that the new distribution of the bootstrapped entity
mimics the original distribution of the concerned statistics. From now on, we concentrate
on the bootstrap for the mean parameter. However, the presented approaches can be
generalized for other parameters of interest as well, but this goes beyond the scope of
this paper.

Assuming identical distribution and finite variance of ξ i’s, the central limit theorem
holds for the sample mean

ξ̄n :=
1
n

n

∑
i=1

ξ i.
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Thus,
√

n(ξ̄n − Eξ1) has asymptotic multivariate normal distribution. The boot-
strapped version of ξ̄n becomes

ξ̄∗n :=
1
n

n

∑
i=1

ξ∗i .

Afterwards, it is necessary to asymptotically compare the distributions of
√

n(ξ̄n −Eξ1) and
√

n(ξ̄∗n − ξ̄n)

In a proper mathematical way to be sure that the empirical distribution of the bootstrap
estimate ξ̄∗n of the mean can be used instead of the distribution of ξ̄n. The asymptotic close-
ness of

√
n(ξ̄n −Eξ1) and

√
n(ξ̄∗n − ξ̄n) will be clarified and proved later on in Section 5.

An algorithm for the independent bootstrap is shown in Procedure 1 and its validity will
be proved in Theorem 6.

Procedure 1 Independent bootstrap for the sample mean.

Input: Data consisting of n IID vectors of observations ξ i.
Output: Empirical bootstrap distribution of ξ̄n, i.e., the empirical distribution, where the

probability mass 1/B concentrates at each of (1) ξ̄
∗
n, . . . , (B) ξ̄

∗
n.

1: calculate the sample mean ξ̄n

2: for b = 1 to B do // repeat in order to obtain empirical distribution of ξ̄n

3: [(b)ξ
∗
1, . . . , (b)ξ

∗
n] resampled with replacement from the columns of [ξ1, . . . , ξn]

4: re-calculate (b) ξ̄
∗
n ← n−1 ∑n

i=1 (b)ξ
∗
i

5: end for

It is silently supposed that the bootstrapped sample is of the same size as the original
one, i.e., {ξ i}n

i=1 and {ξ∗i }n
i=1. Generally, one may consider resampled bootstrapped data

{ξ∗i }m
i=1 consisting of m resamples from the data {ξ i}n

i=1 having sample size n. Thereby, an
additional condition needs to be postulated on the rate of the sample sizes:

m = O(n), n→ ∞ & n = O(m), m→ ∞.

There is, however, no need to distinguish between the same sample size and two
different sample sizes (the original one and the bootstrap one), which are asymptotically
equivalent, at least from the theoretical asymptotic point of view. However, there could
be some computational improvements when considering various samples size of the
resampled data, which is not the target of this research.

2.2. Moving Block Bootstrap

Intuitively, a problem will arise when considering dependent and/or not identically
distributed observations. A generalization of the independent bootstrap (case sampling
with replacement)—block bootstrap—can be used. Instead of sampling individual cases, the
blocks of adjacent observations are resampled with replacement. Stacking individual adjacent
cases together into one solid block partly preserves the dependence between consecutive
observations. Since the “weak” dependence can be seen as an asymptotic independence,
the blocks can be resampled independently. It is a way how to achieve that the dependence
between faraway observations is vanishing.

A plethora of types of block bootstrap techniques were suggested. A comprehensive
summary is provided by [6]. In general, the way of drawing the blocks of observations
defines the difference among the block bootstrap versions. Bootstrapping blocks, which do
not overlap, is performed in the non-overlapping block bootstrap. Since some observations are
not allowed to be joined into the same block, this approach is less efficient for estimation [20].
Therefore, the moving block bootstrap (MBB) is considered here. The key idea of the MBB is
forming the consecutive block of observations from the previous one through shifting the
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“stacking window” by one observation ahead. The MBB technique for the sample mean of
multivariate observations is described in Procedure 2 in detail.

Procedure 2 Moving block bootstrap for the sample mean.

Input: Data consisting of n NINID vectors of observations ξ i and n = mb.
Output: Empirical bootstrap distribution of sample mean ξ̄n, i.e., the empirical distribution,

where the probability mass 1/D concentrates at each of (1) ξ̄
∗
n, . . . , (D) ξ̄

∗
n.

1: define Bj as the block of b consecutive ξ i’s starting from ξ j, that is Bj = [ξ j, . . . , ξ j+b−1]

for j = 1, . . . , q, where q := n− b + 1
2: for d = 1 to D do // repeat in order to obtain empirical distribution of ξ̄n

3: resample with replacement (d)C1, . . . , (d)Cm independently from {B1, . . . , Bq} with
equal probability 1/q, where each (d)Ci, i = 1, . . . , m, is a block of size b with

(d)Ci = [(d)ci1, . . . , (d)cib]

4: the MBB resample of size n, denoted by (d)ξ
∗
1, . . . , (d)ξ

∗
n, is formed by joining

the (d)C1, . . . , (d)Cm to one big block, i.e., (d)ξ
∗
i = (d)cτν for τ = [(i − 1)/b] + 1,

ν = i− bτ, and i = 1, . . . , n // (d)Ξ
∗ ≡ [(d)ξ

∗
1, . . . , (d)ξ

∗
n] is called the MBB version of

Ξ ≡ [ξ1, . . . , ξn]>.
5: let the resample average be (d) ξ̄

∗
n ← n−1 ∑n

i=1 (d)ξ
∗
i

6: end for

Let P∗ be the (bootstrap) distribution of (d)Ci conditional on the sample {ξ1, . . . , ξn}.
So, given ξ1, . . . , ξn, the m random blocks, (d)C1, . . . , (d)Cm, are IID distributed according
toP∗. The length of the blocks—blocksize—is denoted by b ∈ N. Without loss of generality
to the asymptotic properties, let us suppose that b | n, i.e., there exist m ∈ N such that
n = mb. In other words, we just neglect an integer division problem. For practical and
computational purposes, if b - n, then we can truncate the quotient n/b to an integer
value, see [21].

An extension of the MBB is a circular block bootstrap, where the observations are not
ordered on a single line, but they are put into a circle. The order of the observations is
preserved with the only exception that the last observation on the circle is followed by
the first one. Hence, the stacking window can join the first and the last observations into
one block. The application of the circular block bootstrap as an extension of the MBB is
postponed for some further work and is not considered in this paper.

2.3. Blocksize

A length of the blocks–the blocksize b–in the MBB procedure is a crucial decision.
It indeed affects the bootstrapped statistics and the consequent statistical inference. The
blocksize can be therefore considered as a nuisance, but also a tuning parameter. It will be
derived in the forthcoming theory that b = o(n1/2) as n→ ∞. However, for the practical
and computational purposes, this asymptotic choice of b is rather cumbersome. With
respect to the simulation studies from [12], it may be concluded that the blocksize choice
b = O(n1/3) as n → ∞ could be asymptotically optimal according to the minimal mean
square error of the moving block bootstrap variance estimator.

3. Types of Bootstrap Convergences

We would like to show that
√

n(ξ̄n −Eξ1) and
√

n(ξ̄∗n − ξ̄n) asymptotically coincide.
This means that using the bootstrap distribution is no worse than using the asymptotic
normal approximation. However, it does not mean that the bootstrap distribution better
approximates the finite sample distribution of

√
n(ξ̄n −Eξ1). To state this mathematically,

we firstly need some formalization. For the rest of this paper, we link ‖ · ‖ together with any
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unitarily invariant matrix norm, e.g., the Frobenius matrix norm (and, in case of vectors,
with the Euclidean norm).

Suppose that {ξn, ξ∗n, ζn, ζ∗n, χn}∞
n=1 are sequences of random vectors/matrices, which

elements exist on a probability space (Ω,F ,P). The components of these sequences do
not necessarily have to have the same dimension, e.g., ζn and ζn+1 can have different
dimensions for some n ∈ N. Let us define a conditional probability given ζn

P
∗
ζn
[·] := EP[I(·)|ζn].

Definition 1. Conditional weak convergence almost surely and in probability to each other. Let
{ξn, ξ∗n, ζn}∞

n=1 be sequences of random vectors/matrices. If for every real-valued bounded continu-
ous function f holds

E[ f (ξ∗n)]−E[ f (ξn)] −−−→n→∞
0,

then ξ∗n and ξn are said to be approaching each other in distribution. In short, we write

ξ∗n
D←−→

n→∞
ξn.

if for every real-valued bounded continuous function f holds

E[ f (ξ∗n)|ζn]−E[ f (ξn)]
[P]-a.s.−−−−→
n→∞

0,

then ξ∗n conditioned on ζn and ξn are said to be approaching each other in distribution [P]-almost
surely along ζn. In short, we write

ξ∗n
∣∣ζn

D([P]-a.s.)←−−−−−→
n→∞

ξn.

if for every real-valued bounded continuous function f holds

E[ f (ξ∗n)|ζn]−E[ f (ξn)]
P−−−→

n→∞
0,

then ξ∗n conditioned on ζn and ξn are said to be approaching each other in distribution in probability
P along ζn. In short, we write

ξ∗n
∣∣ζn

D(P)←−−→
n→∞

ξn.

In the same manner as above, we may define the distributional convergence on the
“conditional” (resampled) level to a random variable ξ0 (“constant” law).

Definition 2. Conditional weak convergence almost surely and in probability to a constant law.
Let {ξ∗n, ζn}∞

n=1 be sequences of random vectors/matrices and ξ0 be a random vector/matrix. If for
every real-valued bounded continuous function f holds

E[ f (ξ∗n)|ζn]
[P]-a.s.−−−−→
n→∞

E[ f (ξ0)],

then ξ∗n conditioned on ζn is said to converge to ξ0 in distribution [P]-almost surely along ζn. In
short, we write

ξ∗n
∣∣ζn

D([P]-a.s.)−−−−−−→
n→∞

ξ0.

if for every real-valued bounded continuous function f holds

E[ f (ξ∗n)|ζn]
P−−−→

n→∞
E[ f (ξ0)],
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then ξ∗n conditioned on ζn is said to converge to ξ0 in distribution in probability P along ζn. In
short, we write

ξ∗n
∣∣ζn

D(P)−−−→
n→∞

ξ0.

Approaching in distribution to each other is often called weakly approaching to each
other (almost surely or in probability along some sequence). The portmanteau lemma [22]
ensures that Definition 1 is indeed appropriate. Hence, it gives equivalent characterizations
for the weak convergence in distribution. To define convergence in probabilityP∗, it means,
convergences on the conditional level, two types of convergence in probability P∗ are
defined: convergence in probability P and convergence in [P]-almost surely.

Definition 3. Convergence in conditional probability. Let {ξn, ξ∗n, ζn}∞
n=1 be sequences of random

vectors/matrices. To say that ξ∗n − ξn converges in probability P∗ζn
to zero [P]-almost surely as n

tends to infinity, i.e.,

ξ∗n − ξn
P∗ζn ([P]-a.s.)
−−−−−−−→

n→∞
0,

means
∀ε > 0 : P

[
lim

n→∞
P
∗
ζn
[‖ξ∗n − ξn‖ ≥ ε] = 0

]
= 1. (1)

to say that ξ∗n − ξn converges in probability P∗ζn
to zero in probability P as n tends to infinity, i.e.,

ξ∗n − ξn
P∗ζn (P)
−−−−→

n→∞
0,

means
∀ε > 0, ∀τ > 0 : lim

n→∞
P

[
P
∗
ζn
[‖ξ∗n − ξn‖ ≥ ε] ≥ τ

]
= 0. (2)

Alternatively, (1) and (2) from Definition 3 can be read as

∀ε > 0 :
{
P
∗
ζn
[‖ξ∗n − ξn‖ ≥ ε]

[P]-a.s.−−−−→
n→∞

0
}

and
∀ε > 0 :

{
P
∗
ζn
[‖ξ∗n − ξn‖ ≥ ε]

P−−−→
n→∞

0
}

,

respectively.
In the same manner as above, we may define the convergence in probability P∗ on the

resampled level to a random variable ξ0 (does not depend on n).

Definition 4. Convergence in conditional probability to a variable. Let {ξ∗n, ζn}∞
n=1 be sequences

of random vectors/matrices and ξ0 is a random vector/matrix. To say that ξ∗n converges to ξ0 in
probability P∗ζn

[P]-almost surely as n tends to infinity, i.e.,

ξ∗n
P∗ζn ([P]-a.s.)
−−−−−−−→

n→∞
ξ0,

means that ξ∗n − ξ0 converges in probability P∗ζn
to zero [P]-almost surely as n tends to infinity. To

say that ξ∗n converges to ξ0 in probability P∗ζn
in probability P as n tends to infinity, i.e.,

ξ∗n
P∗ζn (P)
−−−−→

n→∞
ξ0,

means that ξ∗n − ξ0 converges in probability P∗ζn
to zero in probability P as n tends to infinity.
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3.1. Properties of the Bootstrap Convergences

Important results concerning previously defined types of convergences summarized
in the forthcoming will play a crucial role later on. Prokhorov’s theorem can be extended
into our setup.

Lemma 1. Assume that {ξn}∞
n=1 is tight. Then the following statements are equivalent:

(i)

ξ∗n
∣∣ζn

D(P)←−−→
n→∞

ξn.

(ii) For each subsequence {ni}∞
i=1 such that

ξni
D−−→

i→∞
ξ0

for some random vector/matrix ξ0,

ξ∗ni

∣∣ζni

D(P)−−−→
i→∞

ξ0

too.
(iii) For each subsequence {ni}∞

i=1 there exists a subsequence {nik}
∞
k=1 such that ξ∗nik

conditional
on ζnik

converges in distribution in probability P to the distributional limit of ξnik
as k→ ∞.

We need to extend Slutsky’s theorem for our “bootstrap world”, i.e., to have a stability
property for conditional distributions.

Theorem 1. Slutsky’s extended theorem. Suppose that {ξ∗n, ζ∗n, χn}∞
n=1 are sequences of random

vectors/matrices. Then,

ξ∗n
∣∣χn

D([P]-a.s.)−−−−−−→
n→∞

ξ0 (3)

and

ζ∗n
P∗χn ([P]-a.s.)
−−−−−−−→

n→∞
ζ0, (4)

where ξ0 is a random matrix/vector and ζ0 is a non-random element, implies (for suitable vec-
tor/matrix dimensions):

(i) [ξ∗n, ζ∗n]
∣∣χn

D([P]-a.s.)−−−−−−→
n→∞

[ξ0, ζ0];

(ii) [ζ∗n, ξ∗n]
∣∣χn

D([P]-a.s.)−−−−−−→
n→∞

[ζ0, ξ0];

(iii) ξ∗n + ζ∗n
∣∣χn

D([P]-a.s.)−−−−−−→
n→∞

ξ0 + ζ0;

(iv) ξ∗nζ∗n
∣∣χn

D([P]-a.s.)−−−−−−→
n→∞

ξ0ζ0;

(v) ζ∗nξ∗n
∣∣χn

D([P]-a.s.)−−−−−−→
n→∞

ζ0ξ0;

(vi) (ζ∗n)
−1ξ∗n

∣∣χn
D([P]-a.s.)−−−−−−→

n→∞
ζ−1

0 ξ0, provided that ζ∗n and ζ0 are invertible;

(vii) ξ∗n(ζ
∗
n)
−1
∣∣χn

D([P]-a.s.)−−−−−−→
n→∞

ξ0ζ−1
0 , provided that ζ∗n and ζ0 are invertible.

Moreover,

ξ∗n
∣∣χn

D(P)−−−→
n→∞

ξ0 (5)

and

ζ∗n
P∗χn (P)
−−−−→

n→∞
ζ0, (6)
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where ξ0 is a random matrix/vector and ζ0 is a non-random element, implies (for suitable vec-
tor/matrix dimensions):

(viii) [ξ∗n, ζ∗n]
∣∣χn

D(P)−−−→
n→∞

[ξ0, ζ0];

(ix) [ζ∗n, ξ∗n]
∣∣χn

D(P)−−−→
n→∞

[ζ0, ξ0];

(x) ξ∗n + ζ∗n
∣∣χn

D(P)−−−→
n→∞

ξ0 + ζ0;

(xi) ξ∗nζ∗n
∣∣χn

D(P)−−−→
n→∞

ξ0ζ0;

(xii) ζ∗nξ∗n
∣∣χn

D(P)−−−→
n→∞

ζ0ξ0;

(xiii) (ζ∗n)
−1ξ∗n

∣∣χn
D(P)−−−→
n→∞

ζ−1
0 ξ0, provided that ζ∗n and ζ0 are invertible;

(xiv) ξ∗n(ζ
∗
n)
−1
∣∣χn

D(P)−−−→
n→∞

ξ0ζ−1
0 , provided that ζ∗n and ζ0 are invertible.

3.2. Weak Dependence

In order to overcome the assumption of independent observations, the dependence
between data needs to be specified. It is assumed that {ξn}∞

n=1 is a sequence of random
elements on a probability space (Ω,F ,P). For sub-σ-fields A,B ⊆ F , we define

α(A,B) := sup
A∈A,B∈B

|P(A ∩ B)−P(A)P(B)|,

ϕ(A,B) := sup
A∈A,B∈B,P(A)>0

|P(B|A)−P(B)|.

Intuitively, α and ϕ measure the dependence of the events in B on those in A. Hence-
forth, let us define a filtration Fn

m := σ(ξ i ∈ F , m ≤ i ≤ n).
There are many ways how to describe weak dependence or, in other words, asymptotic

independence of random variables [23]. Here, we concentrate on two approaches, however
other ways of defining dependence can be involved, [24]. A sequence {ξn}∞

n=1 of random
elements (e.g., variables) is said to be strong mixing (α-mixing) if

α(n) := sup
k∈N

α(F k
1 ,F∞

k+n)→ 0, n→ ∞; (7)

Moreover, it is said to be uniformly strong mixing (ϕ-mixing) if

ϕ(n) := sup
k∈N

ϕ(F k
1 ,F∞

k+n)→ 0, n→ ∞. (8)

Uniformly strong mixing–introduced by [25]–implies strong mixing [26], which was
presented by [27]. Coefficients of dependence α(n) and ϕ(n) measure how much depen-
dence exists between events separated by at least n observations or time periods [28].

In [29], a class of m-dependent processes was comprehensively and intensively ana-
lyzed. These types of time series are ϕ-mixing, since are finite order ARMA processes with
innovations satisfying Doeblin’s condition, ([30], p. 168) or ([31], p. 192). Hence, the ARMA
processes with continuously distributed stationary innovations and bounded variance
are α-mixing and, thus, ϕ-mixing. Finite order processes, which do not satisfy Doeblin’s
condition, can be shown to be α-mixing ([32], pp. 312–313). Reference [33] provides general
conditions under which stationary Markov processes are α-mixing. Since functions of
mixing processes are themselves mixing [23], time-varying functions of any of the processes
just mentioned are mixing as well.

It has to be emphasized that any form of errors’ stationarity is not assumed. Omitting this,
sometimes restrictive, assumption strengthen our results. It is obvious that α(A,B) = α(B,A)
for arbitrary sub-σ-fieldsA,B ⊆ F . This type of symmetry does not hold for ϕ-dependence.
Indeed, ([33], pp. 213–214) constructed some strictly stationary Markov chains that are
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ϕ-mixing but not “time-reversed” ϕ-mixing. Therefore, it is not possible to “interchange”
the past with the future regarding the definition of the ϕ-mixing coefficient.

A strong law of large numbers (SLLN) for α-dependent non-identically distributed variables
needs to be recalled.

Lemma 2. Strong law of large numbers for α-mixing. Let {ξn}∞
n=1 be a sequence of α-mixing

random variables satisfying
sup
n∈N

E|ξn|q < ∞ (9)

for some q > 1. Suppose that there exists δ > 0 such that as n→ ∞,

α(n) =

 O
(

n−
q

2q−2−δ
)

if 1 < q < 2,

O
(

n−
2
q−δ
)

if q ≥ 2.
(10)

then

lim
n→∞

∑n
i=1(ξi −Eξi)

n
= 0 a.s.

Furthermore, a SLLN for ϕ-dependent non-identically distributed variables is desired
as well.

Lemma 3. Strong law of large numbers for ϕ-mixing. Let {ξn}∞
n=1 be a sequence of zero mean

ϕ-mixing random variables satisfying

∞

∑
n=1

√
ϕ(n) < ∞ (11)

and let {bn}∞
n=1 be a non-decreasing unbounded sequence of positive numbers. Assume that

∞

∑
n=1

Eξ2
n

b2
n

< ∞, (12)

then

lim
n→∞

∑n
i=1 ξi

bn
= 0 a.s.

For a given random sequence ξ◦ ≡ {ξn}∞
n=1 of random elements, the dependence

coefficients α(n) will be denoted α(ξ◦, n). Analogous notation is used for ϕ-mixing se-
quences. Moreover, an auxiliary lemma for latter application of the SLLN for non-identically
distributed random variables is stated.

The following lemma describes an asymptotic behavior of α- and ϕ-mixing coefficients
of the corresponding random sequences after a transformation. More precisely, the Borel
transformation preserves the property of α- and ϕ-mixing and, moreover, sustains the rate
of the mixing coefficients.

Lemma 4. Suppose that for each m = 1, 2, . . ., ξ
(m)
◦ := {ξ(m)

k }k∈Z is a sequence of random

variables. Suppose the sequences ξ
(m)
◦ , m = 1, 2, . . . are independent of each other. Suppose that

for each k ∈ Z, hk : R×R× . . .→ R is a Borel function. Define the sequence ξ◦ := {ξk}k∈Z of
random variables by

ξk := hk

(
ξ
(1)
k , ξ

(2)
k , . . .

)
, k ∈ Z.

then for each n ≥ 1, the following statements hold:
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(i) α(ξ◦, n) ≤ ∑∞
m=1 α(ξ

(m)
◦ , n),

(ii) ϕ(ξ◦, n) ≤ ∑∞
m=1 ϕ(ξ

(m)
◦ , n).

Let Sn := ∑n
i=1 ξi and ς2

n := Var Sn. For a random element from the Skorokhod space
D[0, 1],

Wn(t) :=
S[nt]

ςn
, 0 ≤ t ≤ 1, (13)

where [·] denotes the nearest integer function, a functional central limit theorem—also called
a weak invariance principle—can be applied. This principle, now for α-mixing variables, will
be postulated.

Lemma 5. WIP for α-mixing. Let {ξn}∞
n=1 be a sequence of zero mean α-mixing random vari-

ables with
sup
n∈N

E|ξn|2+ω < ∞ (14)

and
∞

∑
n=1

α(n)ω/(2+ω) < ∞ (15)

for some ω > 0. Suppose that
ES2

n
n
→ ς2 > 0, n→ ∞ (16)

is satisfied. Then

Wn
D[0,1]−−−→ W , n→ ∞. (17)

whereW stands for the standard Wiener process.

Since the central limit theorem is just a special case of the weak invariance principle,
then a corollary of previous Lemma 5 can be stated.

Corollary 1. Central limit theorem for α-mixing. Suppose that all the assumptions of Lemma 5 on
a sequence of zero mean α-mixing random variables {ξn}∞

n=1 are satisfied. Then

Sn

ςn

D−→ N (0, 1), n→ ∞. (18)

Lemma 6. Lindeberg central limit theorem for ϕ-mixing. Let {ξn}∞
n=1 be a sequence of zero mean

ϕ-mixing random variables having finite variance. Suppose that the Lindeberg condition

∀δ > 0 : lim
n→∞

1
ς2

n

n

∑
i=1
Eξ2

i I{|ξi| > δςn} = 0 (19)

is satisfied. Then
Sn

ςn

D−→ N (0, 1), n→ ∞.

The Lindeberg condition (19) can be replaced by a stronger type of the Lyapunov
condition. This fact leads into the following corollary, which is more comfortable for us
from the point of applicability.

Corollary 2. Central limit theorem for ϕ-mixing. Let {ξn}∞
n=1 be a sequence of zero mean ϕ-

mixing random variables such that

sup
n∈N

E|ξn|2+ω < ∞ (20)
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for some ω > 0 and
ES2

n
n
→ ς2 > 0, n→ ∞. (21)

then
Sn

ςn

D−→ N (0, 1), n→ ∞. (22)

Assumption (21) may even be replaced by a weaker one:

lim inf
n→∞

ES2
n

n
= ς2 > 0,

where the limit inferior is used instead of the original limit. Assuming that a sequence of
random variables is ϕ-mixing implies that this sequence is α-mixing. On the other hand,
the central limit theorem for ϕ-mixing (Corollary 2) has weaker assumptions than the
central limit theorem for α-mixing (Corollary 1). Indeed, Corollary 2 does not require any
assumption on mixing rate ϕ(n) such as Assumption (15) on α-mixing rates.

The previous theoretical results contain the variance ς2
n for the underlying process of

random variables. One may additionally assume that

lim
n→∞

ς2
n

n
= ς2,

where ς2 is the so-called long run variance, which sometimes needs to be estimated. If
{ξn}∞

n=1 are zero mean and stationary, then this long run variance can be decomposed in
the following way

ς2 = Eξ2
1 + 2

∞

∑
i=1
Eξ1ξi+1.

Often, the Bartlett estimator is used to estimate the long run variance, i.e.,

ς̂2
n(m) = R̂(0) + 2 ∑

1≤k≤m

(
1− k

m

)
R̂(k), m < n,

where
R̂(k) =

1
n ∑

1≤i≤n−k
(ξi − ξ̄n)(ξi+k − ξ̄n), 0 ≤ k < n.

The consistency properties of the above described Bartlett estimator and of its modifi-
cation are studied in [34]. Other similar types of estimators can be used instead, for instance
Parzen kernels [35].

4. Bootstrap Laws of Large Numbers

A theoretical mid-step for showing validity of the bootstrap methods are the bootstrap
laws of large numbers. From now on, we mean by a bootstrap version of ξ ≡ [ξ1, . . . , ξn]> its
(randomly) resampled sequence with replacement—denoted by ξ∗ ≡ [ξ∗1, . . . , ξ∗n]

>—with
the same length, where for each i ∈ {1, . . . , n} holds P∗ξ [ξ

∗
i = ξ j] = 1/n, j = 1, . . . , n. So,

ξ∗i has a discrete uniform distribution on {ξ1, . . . , ξn} for every i = 1, . . . , n.

4.1. Bootstrap Weak LLN for Independent Data

First of all, a base stone for the consistency of the independent bootstrap lies in the
bootstrap weak law of large numbers (BWLLN).

Theorem 2. Bootstrap weak law of large numbers. Let {ξn}∞
n=1 be a sequence of independent

random variables. If
sup
n∈N

EPξ2
n < ∞, (23)
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then

n−1
n

∑
i=1

ξ∗i − n−1
n

∑
i=1

ξi
P∗ξ (P)
−−−→

n→∞
0, (24)

where ξ∗ ≡ [ξ∗1 , . . . , ξ∗n]
> is the bootstrapped version of ξ ≡ [ξ1, . . . , ξn]>.

4.2. Bootstrap Weak LLNs for NINID

Now, the BWLLN for the non-stationary α-mixing is given.

Theorem 3. Bootstrap weak law of large numbers for α-mixing. Let {ξn}∞
n=1 be a sequence of zero

mean α-mixing random variables satisfying

sup
n∈N

Eξ2
n < ∞. (25)

assume that there exists δ > 0 such that

α(n) = O
(

n−1−δ
)

, n→ ∞. (26)

if b→ ∞ and b = o(n1/2), n→ ∞, then, under the MBB Procedure 2,

n−1
n

∑
i=1

ξ∗i − n−1
n

∑
i=1

ξi
P∗ξ (P)
−−−→

n→∞
0,

where ξ∗ ≡ [ξ∗1 , . . . , ξ∗n]
> is the MBB version of ξ ≡ [ξ1, . . . , ξn]>.

Similarly, the BWLLN is stated for the ϕ-mixing sequences.

Theorem 4. Bootstrap weak law of large numbers for ϕ-mixing. Let {ξn}∞
n=1 be a sequence of zero

mean ϕ-mixing random variables satisfying

∞

∑
n=1

Eξ2
n

n2 < ∞

and
∞

∑
n=1

√
ϕ(n) < ∞. (27)

if b→ ∞ and b = o(n1/2), n→ ∞, then, under the MBB Procedure 2,

n−1
n

∑
i=1

ξ∗i − n−1
n

∑
i=1

ξi
P∗ξ (P)
−−−→

n→∞
0,

where ξ∗ ≡ [ξ∗1 , . . . , ξ∗n]
> is the MBB version of ξ ≡ [ξ1, . . . , ξn]>.

5. Bootstrap Central Limit Theorems

If a statistic converges to a normal distribution, then the interest is to asymptotically
compare this original limiting distribution to the bootstrap one. The main theoretical results
for the asymptotic validity of the bootstrap methods lie in showing that the bootstrap
distribution properly mimics the asymptotic one.

5.1. Bootstrap CLT for Independent Data

A pylon for the proof of central limit theorem for the bootstrapped sample is created
by an extension of the well-known Berry–Esseen theorem.
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Theorem 5. Berry–Esseen-Katz theorem. Let g be a non-negative, even, non-decreasing function
on [0, ∞) satisfying:

(i) limx→∞ g(x) = ∞,
(ii) x/g(x) is defined for all x ∈ R and non-decreasing on [0, ∞).

Assume that {ξn}∞
n=1 are IID random variables such that Eξ1 = 0 and Var ξ1 = ς2 > 0. If

Eξ2
1g(ξ1) < ∞,

then there exists a constant C > 0, such that for all n ∈ N holds

sup
x∈R

∣∣∣∣∣P
[

1√
nς2

n

∑
i=1

ξi ≤ x

]
−
∫ x

−∞

1√
2π

exp
{
− t2

2

}
dt

∣∣∣∣∣ ≤ CEξ2
1g(ξ1/ς)

ς2g(
√

n)
.

A bootstrap central limit theorem provides the desired approximate distributional close-
ness and, thus, appropriateness of the bootstrap.

Theorem 6. Bootstrap central limit theorem for independent variables. Let {ξn}∞
n=1 be a sequence

of zero mean independent random variables satisfying

sup
n∈N

EPξ4
n < ∞. (28)

suppose that ξ∗ ≡ [ξ∗1 , . . . , ξ∗n]
> is the bootstrapped version of ξ ≡ [ξ1, . . . , ξn]> and denote

ξ̄n := n−1
n

∑
i=1

ξi, ξ̄∗n := n−1
n

∑
i=1

ξ∗i , and ς2
n :=

n

∑
i=1

VarPξi.

if

lim inf
n→∞

ς2
n

n
= ς2 > 0, (29)

then

sup
x∈R

∣∣∣∣∣P∗ξ
[

n√
ς2

n

(
ξ̄∗n − ξ̄n

)
≤ x

]
−P

[
n√
ς2

n
ξ̄n ≤ x

]∣∣∣∣∣ P−−−→
n→∞

0. (30)

Assumption (28) may seem a little bit restrictive. It may be weakened to

∞

∑
n=1

EPξ4
n

n2 < ∞ and sup
n∈N

EP|ξn|2+ω < ∞, for some ω > 0;

As found out while going through the proof of Theorem 6. On the other hand, the
previous weaker premises are rather complicated to verify for transformed errors in the
proof of bootstrap consistency, which will be noticed later on. Reference [36] strengthened
Assumption (28) and replaced by

sup
n∈N

EP|
√

nξn|4+ω < ∞, (31)

For some ω > 0. Afterwards, bootstrap CLT 6 provides a stronger result:

sup
x∈R

∣∣∣∣∣P∗ξ
[

n√
ς2

n

(
ξ̄∗n − ξ̄n

)
≤ x

]
−P

[
n√
ς2

n
ξ̄n ≤ x

]∣∣∣∣∣ [P]-a.s.−−−−→
n→∞

0, (32)

whereas the convergence in distribution in probability is replaced by the convergence in
distribution almost surely. In spite of this, Assumption (31) can be considered as too much
restrictive.
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Our situation would become much easier, when IID variables are assumed. Let us
have a look at the proof of Theorem 6. If EP|ξ1|2+ω < ∞ for some ω > 0 is additionally
assumed, then the right-hand side of (A7) converges to zero [P]-almost surely. In addition,
finite (2+ω)-th moment would be enough to prove (ii) and, thus, Relation (32) holds under
such conditions.

The equiboundedness of the fourth moments (28) in the bootstrap CLT is needed, be-
cause the second conditional moment is necessary for the existence of VarP∗ξ ξ∗1 and,
consequently, the equiboundedness of the second moment of the second conditional
moment is used for the convergence [P]-almost surely of VarP∗ξ ξ∗1 . The equiboundedness
of the fourth moments in the BCLT can be weakened when bearing in mind identically
distributed variables.

Let us concentrate on the conditional variance of sum of the resampled data. The
conditional variance VarP∗ξ ξ∗1 used for the normalization in (30) may be simply replaced

by n−1ς2
n, see the proof of the BCLT (6). Therefore, is makes the assertion of the BCLT even

stronger and, hence, more applicable.
A utilization of the Cramér–Wold device helps us to derive a bootstrap version of the

CLT for random vectors.

Theorem 7. Bootstrap multivariate central limit theorem for independent vectors. Let {ξn}∞
n=1 be

a sequence of zero mean independent q-dimensional random vectors satisfying

sup
n∈N

EP|ξ j,n|4 < ∞, j ∈ {1, . . . , q}, (33)

where ξn ≡ [ξ1,n, . . . , ξq,n]> ∈ Rq, n ∈ N. Assume that Ξ∗ ≡ [ξ∗1, . . . , ξ∗n]
> is the bootstrapped

version of Ξ ≡ [ξ1, . . . , ξn]>. Denote

ξ̄n := n−1
n

∑
i=1

ξ i, ξ̄∗n := n−1
n

∑
i=1

ξ∗i , and Γn :=
n

∑
i=1

VarPξ i.

if

lim
n→∞

1
n

Γn = Γ > 0, (34)

then
nΓ−1/2

n
(
ξ̄∗n − ξ̄n

)∣∣∣Ξ D(P)←−−→
n→∞

nΓ−1/2
n ξ̄n (35)

and, moreover,
√

n
(
ξ̄∗n −EP∗ξ∗1

)∣∣∣Ξ D(P)←−−→
n→∞

√
nξ̄n. (36)

5.2. Bootstrap CLTs for NINID

Lastly, the central limit theorems for the bootstrapped sample mean from non-stationary
strong mixing or uniformly strong mixing sequences are stated.

Theorem 8. Bootstrap central limit theorem for α-mixing. Let {ξn}∞
n=1 be a sequence of zero mean

α-mixing random variables with
sup
n∈N

E|ξn|4+ω < ∞ (37)

and
α(n) = O(n−1−δ), n→ ∞ (38)

for some ω > 0 and δ > 0 such that
4
ω

< δ. (39)
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denote

ξ̄n := n−1
n

∑
i=1

ξi and ξ̄∗n := n−1
n

∑
i=1

ξ∗i .

suppose that

lim inf
n→∞

ES2
n

n
= ς2 > 0 (40)

is satisfied. If b→ ∞ and b = o(n1/2), n→ ∞, then, under the MBB Procedure 2,

sup
x∈R

∣∣∣∣∣P∗ξ
(

n√
ES2

n

(
ξ̄∗n − ξ̄n

)
≤ x

)
−P

(
n√
ES2

n
ξ̄n ≤ x

)∣∣∣∣∣ P−→ 0, n→ ∞, (41)

where ξ∗ ≡ [ξ∗1 , . . . , ξ∗n]
> is the MBB version of ξ ≡ [ξ1, . . . , ξn]>.

Similar theorem for IID random variables was proved by [37]. Furthermore, a version
of this BCLT in case of stationary α-mixing is given by [11].

Theorem 9. Bootstrap central limit theorem for ϕ-mixing. Let {ξn}∞
n=1 be a sequence of zero mean

ϕ-mixing random variables with
sup
n∈N

E|ξn|4 < ∞ (42)

and
ϕ(n) = O(n−2−δ), n→ ∞ (43)

for some δ > 0. Denote

ξ̄n := n−1
n

∑
i=1

ξi and ξ̄∗n := n−1
n

∑
i=1

ξ∗i .

suppose that

lim inf
n→∞

ES2
n

n
= ς2 > 0 (44)

is satisfied. If b→ ∞ and b = o(n1/2), n→ ∞, then, under the MBB Procedure 2,

sup
x∈R

∣∣∣∣∣P∗ξ
(

n√
ES2

n

(
ξ̄∗n − ξ̄n

)
≤ x

)
−P

(
n√
ES2

n
ξ̄n ≤ x

)∣∣∣∣∣ P−→ 0, n→ ∞, (45)

where ξ∗ ≡ [ξ∗1 , . . . , ξ∗n]
> is the MBB version of ξ ≡ [ξ1, . . . , ξn]>.

With respect to Theorem 7, one may also postulate the multivariate version of the
central limit theorem for the α- and ϕ-mixing accordingly, based on the bootstrap univariate
CLT (8) and (9) using the Cramér–Wold device.

6. Real Data Analyses

If the data are indeed not independent and/or not identically distributed, using a
proper resampling method can lead to, for instance, improvement in precision. We are going
to deal with two real problems, where the first one comes from psychometric evaluation
and the second one has grounds in non-life insurance. Handling the data as NINID will
provide narrower confidence intervals for the mean parameter in both cases compared to
the incorrect approach, when the data are falsely considered as IID.

6.1. Psychometry

Psychometric evaluation through a test with many binary (i.e., 0–1) answers from
one subject naturally brings a question, what is the probability of the “correct” answer.
This parameter of interest for the underlying Bernoulli distribution is nothing else than its
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mean. Thus, the sample mean is the consistent and asymptotically normal estimator of
the parameter of probability of the correct answer. If the data are dependent, one cannot
rely on normal asymptotics when constructing the confidence interval for the mean of the
Bernoulli distribution, because the corresponding limiting variance is unknown [38–40].
Therefore, bootstrapping can provide a suitable solution. However, a proper bootstrap
technique needs to be chosen and applied.

The above described issue is going to be illustrated on the dataset from “Programme
for International Student Assessment (PISA) 2012 U.S. Math Assessment”, which can be
downloaded from (https://tmsalab.github.io/edmdata/, accessed on 12 November 2022).
This dataset was discussed in [41]. We concentrated on one subject, who was randomly
selected (ID = 15) and s/he responded on n = 34 items. The dependence between the
subject’s answers comes from the fact that all the items are answered by the same subject,
having the same abilities, knowledge, and state of mind during the examination.

We utilize the independent bootstrap (ignoring the dependence among the responses)
and the moving block bootstrap with the blocksize b = bn1/3c = 3. The results for
resampling the sample mean are shown in Table 1 and in Figure 1.

Table 1. Empirical distributional quantities of the sample mean based on the independent bootstrap
(incorrect approach) against moving block bootstrap (proper approach) for the correct/incorrect
answers by a subject from the Programme for International Student Assessment (PISA) 2012–U.S.
Math Assessment; number of observations n = 34.

Empirical Quantity Independent Bootstrap Moving Block Bootstrap

2.5th percentile 0.2647 0.3125
First quartile 0.3824 0.4062

Median 0.4412 0.4375
Third quartile 0.5000 0.4999

97.5th percentile 0.6176 0.5938

Distribution of sample mean

Method

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Independent Bootstrap Moving Block Bootstrap

Figure 1. Empirical distributions of the sample mean based on the independent bootstrap
(green—incorrect approach) against moving block bootstrap (orange—proper approach) for the
correct/incorrect answers by a subject from the Programme for International Student Assessment
(PISA) 2012—U.S. Math Assessment.

https://tmsalab.github.io/edmdata/
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One may notice, from Table 1 as well as from Figure 1, that the difference between
the 97.5th percentile and the 2.5th percentile, which serves as a 95% confidence interval,
is narrower in case of the moving block bootstrap approach. Indeed, the 95% confidence
interval based on independent bootstrap is [0.2647, 0.6176], whereas the 95% confidence
interval based on moving block bootstrap is [0.3125, 0.5938]. Hence, the lengths of the con-
fidence intervals are 0.3529 and 0.2813 for the independent and the moving block bootstrap,
respectively, which yields approximately 20% reduction in the confidence interval’s length
and, thus, an increase in estimation precision. In the end, the standard deviation for the
independent bootstrap is 0.0851, whereas the standard deviation for the mooving block
bootstrap drops down to 0.0764, which also provides an increase in precision by taking into
account the underlying dependence among the data.

6.2. Insurance

In non-life insurance, the claims are traditionally split into the attritional and large
claims, see, for example, [42]. One of the most fundamental tasks in non-life insurance,
conducted on regular basis, is risk reserving assessment analysis, which amounts to predict
the overall loss reserves to cover possible future claims. In order to do that, one firstly
needs to estimate stochastically the distributional characteristics of the historical claims [43].
Here, we concentrate on estimation of the unknown mean for a reinsurance caped layer of
large claims. Since the considered reinsurance layer will be bounded, there is no issue of
assuming that the expectation of the underlying claims belonging to this layer exists.

We use the large fire insurance claims in Denmark from Thursday 3rd January 1980
until Monday 31st December 1990. The data called “Danish Fire Insurance Claims” were
supplied by Mette Rytgaard of Copenhagen Re. They were described in [44] and can be
freely downloaded from (https://tmsalab.github.io/edmdata/, accessed on 12 November
2022). Note that these data form an irregular time series, which does not contradict the
notion of weak dependence. On contrary, the concept of mixing is very suitable for the
unequally spaced time series [45]. We think of the reinsurance caped layer covering the
large claims starting from 20M DKK (Danish crowns) up to 100M DKK, which consists
n = 33 fire claims. The parameter of interest for the underlying unknown distribution is
the mean. Again, it exists due to the fact that the layer is bounded from below as well as
from above. Hence, the sample mean is the consistent and asymptotically normal estimator
of the mean parameter. If the data are dependent and non-stationary (and, thus, not
identically distributed), one cannot rely on normal asymptotics when constructing the
confidence interval for the mean, because the corresponding limiting variance becomes
unknown [46–48]. Therefore, the proper bootstrap method can provide a suitable solution.

The independent bootstrap (ignoring the dependence and non-stationarity among
the fire claims) and the moving block bootstrap with the blocksize b = bn1/3c = 3 are
applied. The results for resampling the sample mean are numerically displayed in Table 2.
Additional to that, the empirical distributions of the sample mean based on the both
resampling techniques together with the empirical distributional quantities from Table 2
are graphically visualized in Figure 2.

Table 2. Empirical distributional quantities of the sample mean based on the independent bootstrap
(blue—incorrect approach) against moving block bootstrap (red—proper approach) for the Danish
Fire Insurance Claims belonging to the reinsurance layer starting from 20M DKK (Danish crowns) up
to 100M DKK; number of observations n = 33.

Empirical Quantity Independent Bootstrap Moving Block Bootstrap

2.5th percentile 27.94 29.39
First quartile 30.28 31.20

Median 31.64 32.20
Third quartile 33.08 33.29

97.5th percentile 35.90 35.38

https://tmsalab.github.io/edmdata/
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Distribution of sample mean

Method
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Figure 2. Empirical distributions of the sample mean based on the independent bootstrap (blue—
incorrect approach) against moving block bootstrap (red—proper approach) for the Danish Fire
Insurance Claims belonging to the reinsurance layer starting from 20M DKK (Danish crowns) up to
100M DKK.

Table 2 as well as Figure 2 clearly reveal that the 95% confidence interval, which is
the difference between the 97.5th percentile and the 2.5th percentile, is narrower in case
of the moving block bootstrap procedure. Truly, the 95% confidence interval based on
independent bootstrap is [27.94, 35.90], whereas the 95% confidence interval based on
moving block bootstrap is [29.39, 35.38]. Hence, the lengths of the confidence intervals
are 7.96 and 5.99 for the independent and the moving block bootstrap, respectively, which
gives approximately 25% reduction in the confidence interval’s length. This provides an
increase in estimation precision, which can be incorporated and employed in the reserving
techniques for not independent and not identically distributed data, see [49–52]. On top of
that, the standard deviation for the independent bootstrap is 2.054, whereas the standard
deviation for the mooving block bootstrap drops down to 1.521, which again confirms an
increase in accuracy by assuming the underlying dependence in the data.

7. Conclusions and Discussion

Asymptotic normality of the estimators or test statistics might be computationally
unattainable and, hence, it can fail in practical applications. The discussed disadvantageous
asymptotic properties lead to usage of the distributional-free resampling methods even for
the IID observations. On top of that, the bootstrap procedures for a class of not independent
and not identically distributed data are given together with their theoretical validity. There
are three main methodological contributions to the bootstrap inference developed in this
paper: (i) asymptotic closeness of the unknown stochastic quantities and their bootstrap
counterparts is properly mathematically formalized; (ii) laws of large numbers for the
bootstrapped α-mixing and ϕ-mixing random variables and vectors are postulated and
proved; (iii) central limit theorems for the bootstrapped NINID observations are provided,
which serve as justifications of the popular computer intensive techniques. Lastly, the
theoretically valid approaches are practically performed on the problems from psychometry
and insurance.
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The concept of weak dependence provides a very flexible framework and it allows
to handle any autocorrelation structure for the observations, if the mixing conditions
are satisfied. Furthermore, if the parameter of interest is not the mean, our developed
methodology can still be useful. Suppose that the corresponding estimator of the unknown
parameter can be somehow linearized and, thus, rewritten as a continuous functional of
a mean of the random variables plus some remainder, which is negligible in probability.
This can be achieved, for instance, through the stochastic Taylor expansion. Then, one may
apply the derived bootstrap machinery on the mean from the continuous functional and,
additionally, use the continuous mapping theorem to obtain validity for bootstrapping the
parameter of interest.
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CLT Central limit theorem
BCLT Bootstrap central limit theorem

Appendix A. Proofs

Proof of Lemma 1. A simple generalization of [53] (Lemma 1), where conditional law of
ξ∗n
∣∣ζn instead of ξ∗n is considered in the proof as proposed by [54] (Proof of Theorem 4.1).

Proof of Theorem 1. First, we show that

[ξ∗n, ζ0]
∣∣χn

D([P]-a.s.)←−−−−−→
n→∞

[ξ0, ζ0], (A1)

i.e., for arbitrary bounded continuous function f holds

EP∗χn
f ([ξ∗n, ζ0])−EP f ([ξ0, ζ0])

[P]-a.s.−−−−→
n→∞

0. (A2)

https://tmsalab.github.io/edmdata/
https://vincentarelbundock.github.io/
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Let f ([·, ·]) be such arbitrary bounded continuous function. Now consider the function
of a single argument g(·) := f ([·, ζ0]). This will obviously be a bounded and continuous
non-random function as well. By assumption (3), we will have that

EP∗χn
g(ξ∗n)−EPg(ξn)

[P]-a.s.−−−−→
n→∞

0.

However, the latter expression is equivalent to (A2). Therefore, we now know that
[ξ∗n, ζ0] conditioned on χn and [ξ0, ζ0] approach each other in distribution [P]-almost surely
along χn.

Secondly, consider ‖[ξ∗n, ζ∗n] − [ξ∗n, ζ0]‖ = ‖ζ∗n − ζ0‖. This expression converges in
probability P∗χn to zero [P]-almost surely due to Assumption (4). Thus, we have demon-
strated two facts: (A1) and

[ξ∗n, ζ∗n]− [ξ∗n, ζ0]
P∗χn ([P]-a.s.)
−−−−−−−→

n→∞
0. (A3)

Since each bounded continuous function is bounded Lipschitz and vice versa, consider
any bounded Lipschitz function h(·, ·):

∃K, M > 0, ∀x1, x2, y1, y2 :

h([x1, x2]) ≤ M & |h([x1, x2])− h([y1, y2])| ≤ K‖[x1, x2]− [y1, y2]‖.

Take some arbitrary ε > 0 and majorize

|EP∗χn
h([ξ∗n, ζ∗n])−EP∗χn

h([ξ∗n, ζ0])| ≤ EP∗χn
|h([ξ∗n, ζ∗n])− h([ξ∗n, ζ0])|

= EP∗χn
[|h([ξ∗n, ζ∗n])− h([ξ∗n, ζ0])|I{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ < ε}]

+EP∗χn
[|h([ξ∗n, ζ∗n])− h([ξ∗n, ζ0])|I{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ε}]

≤ EP∗χn
[K‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖I{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ < ε}]

+EP∗χn
[2MI{‖[ξ∗n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ε}]

≤ KεP∗χn [‖[ξ
∗
n, ζ∗n]− [ξ∗n, ζ0]‖ < ε] + 2MP∗χn [‖[ξ

∗
n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ε]

≤ Kε + 2MP∗χn [‖[ξ
∗
n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ε] [P]-a.s.

Hence,

|EP∗χn
h([ξ∗n, ζ∗n])−EPh([ξ0, ζ0])|

≤ |EP∗χn
h([ξ∗n, ζ∗n])−EP∗χn

h([ξ∗n, ζ0])|+ |EP∗χn
h([ξ∗n, ζ0])−EPh([ξ0, ζ0])|

≤ Kε + 2MP∗χn [‖[ξ
∗
n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ε]

+ |EP∗χn
h([ξ∗n, ζ0])−EPh([ξ0, ζ0])| [P]-a.s. (A4)

We take the limit in this expression as n→ ∞. Since (A4) holds for arbitrary ε > 0, the
second term will go to zero [P]-almost surely due to (A3) and Definition 3. The third term
(does not depend on ε) will also converge to zero [P]-almost surely by (A2). Thus,

lim
n→∞

|EP∗χn
h([ξ∗n, ζ∗n])−EPh([ξ0, ζ0])| ≤ Kε [P]-a.s.

Since ε was arbitrary, we conclude that the limit must in fact be equal to zero [P]-almost
surely. Therefore, (i) is proved.

In order to prove result (viii), consider again ‖[ξ∗n, ζ∗n] − [ξ∗n, ζ0]‖ = ‖ζ∗n − ζ0‖. This
expression converges in probabilityP∗χn in probabilityP to zero due to assumption (6). Thus

[ξ∗n, ζ∗n]− [ξ∗n, ζ0]
P∗χn (P)
−−−−→

n→∞
0, (A5)



Mathematics 2022, 10, 4671 21 of 26

Which can be rewritten according to Definition 3 as

∀ε > 0 :
{
P
∗
χn [‖[ξ

∗
n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ε]

P−−−→
n→∞

0
}

Let us fix ε > 0. Similarly as in the proof of part (i), it can be demonstrated that

EP∗χn
f ([ξ∗n, ζ0])−EP f ([ξ0, ζ0])

P−−−→
n→∞

0, (A6)

When convergence [P]-almost surely is just replaced by convergence in probability
P. Indeed, using inequality (A4), we get for arbitrary τ > 0 (and above chosen fixed and
sufficiently small ε > 0)

P

[
|EP∗χn

h([ξ∗n, ζ∗n])−EPh([ξ0, ζ0])| ≥ τ
]

≤ P[Kε ≥ τ] +P
[
2MP∗χn [‖[ξ

∗
n, ζ∗n]− [ξ∗n, ζ0]‖ ≥ ε] ≥ τ

]
+P

[
|EP∗χn

h([ξ∗n, ζ0])−EPh([ξ0, ζ0])| ≥ τ
]
.

If we take the limit in previous inequality as n goes to infinity, the first term is zero
and the second term will go to zero due to (A5) and Definition 3. The third term will also
converge to zero by (A6). Thus

lim
n→∞

P

[
|EP∗χn

h([ξ∗n, ζ∗n])−EPh([ξ0, ζ0])| ≥ τ
]
= 0.

Since τ was arbitrary, (viii) is proved.
Assertions (ii)–(vii) are just corollaries of (i), when continuous mapping theorem (see,

e.g., Theorems 2 and 3 [55]) is applied. Similarly, assertions (ix)–(xiv) are consequences
of (viii).

Proof of Lemma 2. See [56] (Theorem 1).

Proof of Lemma 3. See [57] (Theorem 4.1).

Proof of Lemma 4. See [23] (Theorem 5.2).

Proof of Lemma 5. See [58] or [26] (Corollary 3.2.1).

Proof of Corollary 1. Since a functional distributional limit (a convergence in Skorokhod
space) implies the pointwise distributional limit, this corollary is just a special case of
Lemma 5, whenWn(1) is considered.

Proof of Lemma 6. See [59] (Corollary 4).

Proof of Corollary 2. We show that Assumptions (20) and (21) implies the Lindeberg
Condition (19) from Lemma 6.

The first step is to show that Conditions (20) and (21) implies the so-called Lyapunov
condition, i.e., having fixed ω > 0:

1
ς2+ω

n

n

∑
i=1
E|ξi|2+ω ≤ 1

ς2+ω
n

n

∑
i=1

sup
ι∈N

E|ξι|2+ω =
n

ς2+ω
n

sup
ι∈N

E|ξι|2+ω → 0, n→ ∞.
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Now, the Lyapunov condition limn→∞ ς−2−ω
n ∑n

i=1E|ξi|2+ω = 0 holds and we fix
δ > 0. Since |ξi| > δςn implies |ξi/δςn|ω > 1, we obtain

1
ς2

n

n

∑
i=1
Eξ2

i I{|ξi| > δςn} ≤
1

δως2+ω
n

n

∑
i=1
E|ξi|2+ωI{|ξi| > δςn}

≤ 1
δως2+ω

n

n

∑
i=1
E|ξi|2+ω → 0, n→ ∞.

Proof of Theorem 2. The SLLN applied for independent random variables together with
Assumption (23) lead to

n−1
n

∑
i=1

(ξi −EPξi)
[P]-a.s.−−−−→
n→∞

0.

Markov’s inequality with (23) implies uniform equiboundedness in probability P of
ξ2

n. The conditional variance of the bootstrapped sample mean goes to zero as n increases
to infinity, because

VarP∗ξ

(
n−1

n

∑
i=1

ξ∗i

)
= n−1VarP∗ξ ξ∗1 = n−1

[
EP∗ξ

ξ∗21 − (EP∗ξ ξ∗1)
2
]

= n−1

 n

∑
k=1

n−1ξ2
k −

(
n

∑
k=1

n−1ξk

)2
 = OP(n−1), n→ ∞.

Hence, the weak law of large numbers in the “starred” world (for resampled variables)
provides

n−1
n

∑
i=1

(
ξ∗i −EP∗ξ ξi

)
= n−1

n

∑
i=1

ξ∗i − n−1
n

∑
i=1

ξi
P∗ξ (P)
−−−→

n→∞
0,

Because ξ∗i are conditionally IID.

Proof of Theorem 3. The sequence {ξn}∞
n=1 is uniformly bounded in probability P, be-

cause (25) is assumed. By the assumptions for {ξn}∞
n=1 and Lemma 2, it is known that a

SLLN holds for the sample mean n−1 ∑n
i=1 ξi. By Corollary A2 from [12], it follows that

VarP∗ξ

(
n−1

n

∑
i=1

ξ∗i

)
= OP(n−1), n→ ∞.

Thus the claim holds due to Lemma A1 by [12], where

EP∗ξ
n−1

n

∑
i=1

ξ∗i = n−1
n

∑
i=1

ξi + oP(n−1/2), n→ ∞.

Proof of Theorem 4. The proof is the same as the proof of previous Lemma 3 except one detail–
the SLLN for ϕ-mixing (Lemma 3) has to be applied instead of Lemma 2 for α-mixing.

Proof of Theorem 5. See [60].

Proof of Theorem 6. The Lyapunov condition for sequence of random variables {ξn}∞
n=1

is satisfied due to (28) and (29), i.e., for fixed ω > 0:

1
ς2+ω

n

n

∑
i=1
E|ξi|2+ω ≤ 1

ς2+ω
n

n

∑
i=1

sup
ι∈N

E|ξι|2+ω =
n

ς2+ω
n

sup
ι∈N

E|ξι|2+ω → 0, n→ ∞.
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Thereupon, the CLT for {ξn}∞
n=1 holds and

sup
x∈R

∣∣∣∣∣P
[

n√
ς2

n
ξ̄n ≤ x

]
−
∫ x

−∞

1√
2π

exp
{
− t2

2

}
dt

∣∣∣∣∣ −−−→n→∞
0.

Henceforth, to prove this theorem, it suffices to show the following three statements:

(i)

sup
x∈R

∣∣∣∣∣∣P∗ξ
 √

n√
VarP∗ξ ξ∗1

(
ξ̄∗n −EP∗ξ ξ̄∗n

)
≤ x

− ∫ x

−∞

1√
2π

exp
{
− t2

2

}
dt

∣∣∣∣∣∣ P−−−→
n→∞

0;

(ii)

VarP∗ξ ξ∗1 − n−1ς2
n

[P]-a.s.−−−−→
n→∞

0;

(iii)
EP∗ξ

ξ̄∗n = ξ̄n [P]-a.s.

Proving (iii) is trivial, because the bootstrapped variables {ξ∗n}∞
n=1 are conditionally

IID and, therefore,

EP∗ξ
ξ̄∗n = EP∗ξ ξ∗1 = n−1

n

∑
i=1

ξi = ξ̄n [P]-a.s.

Let us calculate the conditional variance of the bootstrapped ξ∗1 :

VarP∗ξ ξ∗1 = EP∗ξ ξ∗21 − (EP∗ξ ξ∗1)
2 = n−1

n

∑
i=1

ξ2
i −

(
n−1

n

∑
i=1

ξi

)2

[P]-a.s.

The strong law of large numbers for independent non-identically distributed random
variables with (28) provide

ξ̄n − n−1
n

∑
i=i
EPξi = ξ̄n

[P]-a.s.−−−−→
n→∞

0

and

0
[P]-a.s.←−−−−
n→∞

n−1
n

∑
i=1

ξ2
i −

(
n−1

n

∑
i=1

ξi

)2

− n−1
n

∑
i=1
EPξ2

i = VarP∗ξ ξ∗1 − n−1ς2
n.

The last result of the SLLN is true, because (28) implies

∞

∑
n=1

VarPξ2
n

n2 ≤
∞

∑
n=1

EPξ4
n

n2 ≤
[

sup
ι∈N

EPξ4
ι

]
∞

∑
n=1

n−2 < ∞.

Thus (ii) is proved.
The Berry–Esseen-Katz Theorem 5 with g(x) = |x|ε, ε > 0 for the bootstrapped

sequence of IID (with respect to P∗) random variables {ξ∗n}∞
n=1 results into

sup
x∈R

∣∣∣∣∣∣P∗ξ
 √

n√
VarP∗ξ ξ∗1

(
ξ̄∗n −EP∗ξ ξ̄∗n

)
≤ x

− ∫ x

−∞

1√
2π

exp
{
− t2

2

}
dt

∣∣∣∣∣∣
≤ Cn−ε/2

EP∗ξ

∣∣∣∣∣∣
ξ∗1 −EP∗ξ ξ∗1√

VarP∗ξ ξ∗1

∣∣∣∣∣∣
2+ε

[P]-a.s., (A7)
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where C > 0 is an absolute constant.
The Minkowski inequality and Jensen’s inequality provide an upper bound for the

nominator from the right-hand side of (A7):

EP∗ξ
|ξ∗1 −EP∗ξ ξ∗1 |2+ε = n−1

n

∑
i=1

∣∣∣∣∣ξi − n−1
n

∑
j=1

ξ j

∣∣∣∣∣
2+ε

≤ n−1


(

n

∑
i=1
|ξi|2+ε

)1/(2+ε)

+ n−(1+ε)/(2+ε)

∣∣∣∣∣ n

∑
j=1

ξ j

∣∣∣∣∣


2+ε

≤ 21+εn−1
n

∑
i=1
|ξi|2+ε + 21+ε

∣∣∣∣∣n−1
n

∑
i=1

ξi

∣∣∣∣∣
2+ε

[P]-a.s.

The right-hand side of the previously derived upper bound is uniformly bounded in
probability P, because of Markov’s inequality and (28). In very deed, for fixed τ > 0

P

[
n−1

n

∑
i=1
|ξi|2+ε ≥ τ

]
≤ τ−1n−1

n

∑
i=1
EP|ξi|2+ε ≤ τ−1 sup

ι∈N
EP|ξι|2+ε < ∞, ∀n ∈ N

and

P

[∣∣∣∣∣n−1
n

∑
i=1

ξi

∣∣∣∣∣ ≥ τ

]
≤ τ−1n−1

EP

∣∣∣∣∣ n

∑
i=1

ξi

∣∣∣∣∣ ≤ τ−1 sup
ι∈N

EP|ξι| < ∞, ∀n ∈ N.

Since EP∗ξ |ξ
∗
1 − EP∗ξ∗1 |2+ε is bounded in probability P uniformly over n and the

denominator of the right-hand side of (A7) is uniformly bounded away from zero due to
(29), then the left-hand side of (A7) converges in probability P to zero as n tends to infinity.
So, (i) is proved as well.

Proof of Theorem 7. According to Cramér–Wold theorem, it is sufficient to ensure that all
the assumptions of one-dimensional bootstrap CLT 6 are valid for any linear combination
of the elements of random vector ξn, n ∈ N.

For arbitrary fixed t ∈ Rq using Jensen’s inequality, we get

sup
n∈N

EP|t>ξn|4 ≤ q3 sup
n∈N

q

∑
j=1

t4
jEP|ξ j,n|4 ≤ q4 max

j=1,...,q
t4

j sup
n∈N

EP|ξ j,n|4 < ∞.

Hence, Assumption (33) implies Assumption (28) for random variables t>ξn, n ∈ N.
Similar situation arises, when assumption (34) implies assumption (29) for such an

arbitrary linear combination, i.e., positive definiteness of matrix Γ yields

lim
n→∞

1
n

n

∑
i=1

VarPt>ξ i = lim
n→∞

1
n

n

∑
i=1

t>(VarPξ i)t = t>
(

lim
n→∞

1
n

Γn

)
t = t>Γt > 0.

Finally, we need to realize that (34) holds, (35) has already been proved above, {ξ∗i }n
i=1

are conditionally IID, and

EP∗Ξ
ξ∗1 = n−1

n

∑
i=1

ξ i = ξ̄n.

Proof of Theorem 8. The proof of this theorem goes along the lines the proof of
Theorem 6 except three facts: the bootstrap WLLN for α-mixing–Lemma 3 is used; the CLT
for α-mixing–Corollary 1 is employed; and another covariance inequality is applied, i.e.,
Lemma 1.2.5 by [26].
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Proof of Theorem 9. The proof of this theorem remains almost the same as the proof of
Theorem 8 with the only exception that the following tools have to be used instead: the
CLT for ϕ-mixing observations, i.e., Corollary 2; a different covariance inequality, i.e.,
Lemma 1.2.8 by [26]; and a suitable bootstrap WLLN, i.e., Lemma 4.
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