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Abstract: The direct influence of the integrability requirement on mixed derivative nonlinear
Schrödinger equations is investigated in this paper. A. Rangwala mathematically formalized these
effects in 1990 and dubbed this form the Rangwala–Rao (RR) equation. Our research focuses on
innovative soliton wave solutions and their interactions in order to provide a clear picture of the
slowly evolving envelope of the electric field and pulse propagation in optical fibers in terms of the
dispersion effect. For creating unique solitary wave solutions to the investigated model, three con-
temporary computational strategies (extended direct (ExD) method, improved F–expansion (ImFE)
method, and modified Kudryashov (MKud) method) are employed. These solutions are numerically
computed to demonstrate the dynamical behavior of optical fiber pulse propagation. The originality
of the paper’s findings is proved by comparing our results to previously published results.

Keywords: nonlinear Schrödinger equations; Rangwala–Rao equation; optical fiber; soliton waves
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1. Introduction

Recently, the dynamical and physical characterizations of a system with one degree
of freedom have attracted the attention of many mathematicians and physicists [1,2]. This
study was given in the presence of a linear restoring force and nonlinear damping of the
investigated model [3]. The mathematical model that describes this phenomenon is the
Lienard equation formulated by the French physicist Alfred–Marie Liénard [4]. The Lienard
equation is given by [5,6]

d2x
dt2 + Γ(x)

d x
dt

+ Ξ(x) = 0, (1)

where Γ, Ξ are two continuously differentiable functions on R, and, respectively, odd and
even functions. A class of classical anharmonic oscillators of Equation (1) can be given
by [7]

𝒲 ′′ + r1 𝒲 + r2 𝒲
3 + r3 𝒲

5 = 0, (2)

where r1, r2, r3 are arbitrary constants; 𝒲 = 𝒲 (χ) describes the waves’ propagation of
the the Alfvén wave with a small non-vanishing wave number. Furthermore, the general
form of Equation (2) is given by [8]

𝒲 ′′ + r1 𝒲 + r2 𝒲
p+1 + r3 𝒲

2 p+1 = 0, (3)

where p = 1, 2, 3, · · · . These models (2), (3) are beneficial for studying solitary wave solu-
tions of some icons nonlinear evolution equations such as the generalized Ablowitz equa-
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tion [9], the generalized Gerdjikov–Ivanov equation [10], the generalized one-dimensional
Klein–Gordon equation [11], RR equation [12], Kundu–Eckhaus equation [13], the gen-
eralized Zakharov equations [14], the Chen–Lee–Lin equation [15], and the well-known
nonlinear Schrödinger equation [16].

In mathematics and physics, a nonlinear partial differential equation is a partial
differential equation with nonlinear components [17]. They have been used to solve
mathematical problems such as the Poincaré conjecture and the Calabi–Yau conjecture,
as well as to explain a broad range of physical phenomena such as gravity and fluid
dynamics [18,19]. These are difficult to study since there are no general procedures that
apply to all of these equations; instead, each one must be examined as a standalone
issue [20]. Nonlinear and linear partial differential equations are distinguished by the
features of the operator that defines the PDE [21].

All solutions to a PDE should ideally be wholly specified, which is possible for sure
uncommon PDEs [22]. If the equation has a large symmetry group [23], a finite-dimensional
compact manifold, perhaps with singularities, may be created. In this situation, the moduli
space of solutions modulo the symmetry group [24] is all that matters. The moduli space
may be explicitly compactified in the self-dual Yang–Mills equations, which are somewhat
more complicated since the moduli space is finite-dimensional but not necessarily com-
pact [25]. In totally integrable models, where the solutions are often a superposition of
solitons, it is occasionally possible to describe all solutions [26]. For example, consider the
Korteweg–De Vries equation. Many outstanding solutions may be stated as fundamental
functions [27]. Ordinary differential equations, typically solved correctly, are a helpful
place to start when looking for straightforward solutions to complicated problems [28–30].

Mathematical Analysis of Model

This paper studies the RR equation which is given by [31,32]

Rx t − r1 Rx x +R+ i r2 |R|2 Rx = 0, (4)

where R = R(x, t) represents a complex smooth envelope function of a spatial variable x
and a temporal variable t; r1, r2 are real constants. Using the next transformation R(x, t) =
ei ψ(Z) e−i t ω φ(Z), Z = x − λ t to Equation (4), we obtain Re: (−λ − r1)φ′′ + φ(λ + r1)(ψ

′)2 − r2 φ3ψ′ + φωψ′ + φ = 0,

Im: −φ′(2(λ + r1)ψ
′ − r2 φ2 + ω

)
− φ(λ + r1)ψ

′′ = 0.
(5)

Substituting ψ =
∫ (r2 φ(x)2−ω)

2

4r2(λ+r1)φ(x)2 dx into the first equation of (5), leads to(
−16λ2r2

2 − 32λr1r2
2 − 16r2

1r2
2

)
φ3 φ′′ + φ4

(
16λr2

2 − 6r2
2ω2 + 16r1r2

2

)
+ 8r3

2ωφ6 − 3r4
2 φ8 + ω4 = 0. (6)

Balancing the terms of Equation (6) by using the homogeneous balance rule and the

suggested computational schemes’ auxiliary equations
[
F ′(Z) = J3 F (Z)2 + J2 F (Z) +

J1 7→ (ExD method [33] )&𝒢 ′(Z) = 𝒢 (Z)2 + ϱ 7→ (ImFE method [34] )&ℬ′(Z) =

ln(K)
(
ℬ(Z)2 −ℬ(Z)

)
7→ (MKud method [35] )

]
, where J1, J2, J3, ϱ, a are arbitrary

constants, lead to N = 1
2 . Consequently, we have to use another transformation that is

given by φ(Z) =
√
Y(Z). Thus, Equation (6) transforms into the following formula

YY ′′ + Y4L2 −Y3L3 −Y2L4 −L1
(
Y ′)2

+ L5 = 0, (7)
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where
[
L1 = 1

2 , L2 =
3r2

2
8(λ+r1)

2 , L3 = r2ω

(λ+r1)
2 , L4 = 8λ+8r1−3ω2

4(λ+r1)
2 , L5 = − ω4

8r2
2(λ+r1)

2

]
. Using

the homogeneous balance rule on Equation (7), leads to N = 1. Thus, the general solu-
tions of the suggested model through the above-mentioned computational schemes are
formulated by (for more detial about the implemented schemes; see (Appendix A):

Y(Z) =



n
∑

i=0
ai F (Z)i = a1 F (Z) + a0,

n
∑

i=0
ai (𝒢 (Z) + µ)i = a1(µ + 𝒢 (Z)) + a0,

n
∑

i=0
ai ℬ(Z)i = a1 ℬ(Z) + a0,

(8)

where a0, a1 are arbitrary constants to be evaluated through the methods’ frameworks.

The rest paper’s sections are given in the following order; novel solitary wave solutions
of the investigated model and their numerical simulations are given in Section 2. The
paper’s contributions are given in Section 3. The summary of our study and its results are
summarized in Section 4.

2. Solitary Wave Solutions

This section aims to derive some novel solitary wave solutions to the RR equation
using the above-suggested computational schemes. Furthermore, the constructed solu-
tions are represented through contour, two-dimensional, and three-dimensional graphs to
illustrate the pulses’ propagation in optical fibers.

2.1. The ExD Method’s Results

Investigating the above-parameters’ values through the ExD method’s framework,
leads to
Set I

L1 → 1
2

,L2 → −
3J 2

3
2a2

1
,L3 → 2J3(a1J2 − 2a0J3)

a2
1

,L4 → 3a0J3(a0J3 − a1J2)

a2
1

+
J 2

2
2

+ J1J3,

L5 →
(
a2

0J3 − a1a0J2 + a2
1J1

)2

2a2
1

.

Set II

a0 → 0, a1 → i

√
3
2

J3√
L2

,L1 → 1
2

,L3 → −2i

√
2
3
J2
√
L2,L4 →

J 2
2

2
+ J1J3,L5 → −

3J 2
1 J 2

3
4L2

,

where (L2 < 0).
Set III

a1 → i

√
3
2

J3√
L2

,L1 → 1
2

,L3 → 2
3

(
4a0L2 − i

√
6J2

√
L2

)
,L4 → i

√
6a0J2

√
L2 − 2a2

0L2 +
J 2

2
2

+ J1J3,

L5 → 1
12L2

(
4i
√

6a3
0J2L3/2

2 + 6a2
0

(
J 2

2 + 2J1J3

)
L2 − 6i

√
6a0J1J2J3

√
L2 − 4a4

0L2
2 − 9J 2

1 J 2
3

)
,

where (L2 < 0).
Thus, the solitary wave solutions of the investigated model are given by;
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For J2 = 0, J1J3 < 0, we obtain

ℛI,1(x, t) = Ξ

a0 +
a1
√
−J1J3 tanh

(√
−J1J3(x − λ t) + log(ϑ)

2

)
J3


1
2

, (9)

ℛI,2(x, t) = Ξ

a0 +
a1
√
−J1J3 coth

(√
−J1J3(x − λ t) + log(ϑ)

2

)
J3


1
2

, (10)

ℛII,1(x, t) = Ξ

 i
√

3
2
√
−J1J3 tanh

(√
−J1J3(x − λ t) + log(ϑ)

2

)
√
L2


1
2

, (11)

ℛII,2(x, t) = Ξ

 i
√

3
2
√
−J1J3 coth

(√
−J1J3(x − λ t) + log(ϑ)

2

)
√
L2


1
2

, (12)

ℛIII,1(x, t) = Ξ

a0 +
i
√

3
2
√
−J1J3 tanh

(√
−J1J3(x − λ t) + log(ϑ)

2

)
√
L2


1
2

, (13)

ℛIII,2(x, t) = Ξ

a0 +
i
√

3
2
√
−J1J3 coth

(√
−J1J3(x − λ t) + log(ϑ)

2

)
√
L2


1
2

. (14)

For J1 = 0, J2 > 0, we obtain

ℛI,3(x, t) = Ξ

(
a0 +

a1J2 eJ2(−λ t+x+ϑ)

1 −J3eJ2(−λ t+x+ϑ)

) 1
2

, (15)

ℛII,3(x, t) = Ξ

−
i
√

3
2J2J3 eJ2(−λ t+x+ϑ)

√
L2
(
J3eJ2(−λ t+x+ϑ) − 1

)


1
2

, (16)

ℛIII,3(x, t) = Ξ

a0 −
i
√

3
2J2J3 eJ2(−λ t+x+ϑ)

√
L2
(
J3eJ2(−λ t+x+ϑ) − 1

)


1
2

. (17)

For J1 = 0, J2 < 0, we obtain

ℛI,4(x, t) = Ξ
(

a0 − a1 +
a1

J3eJ2(−λ t+x+ϑ) + 1

) 1
2
, (18)
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ℛII,4(x, t) = Ξ

−
i
√

3
2J 2

3 eJ2(−λ t+x+ϑ)

√
L2
(
J3eJ2(−λ t+x+ϑ) + 1

)


1
2

, (19)

ℛIII,4(x, t) = Ξ

a0 −
i
√

3
2J 2

3 eJ2(−λ t+x+ϑ)

√
L2
(
J3eJ2(−λ t+x+ϑ) + 1

)


1
2

. (20)

For 4J1J3 > J 2
2 , we get

ℛI,5(x, t) = Ξ

− a1J2

2J3
+ a0 +

a1

√
4J1J3 −J 2

2 tan
(

1
2

√
4J1J3 −J 2

2 (−λ t + x + ϑ)
)

2J3


1
2

, (21)

ℛI,6(x, t) = Ξ

− a1J2

2J3
+ a0 +

a1

√
4J1J3 −J 2

2 cot
(

1
2

√
4J1J3 −J 2

2 (−λ t + x + ϑ)
)

2J3


1
2

, (22)

ℛII,5(x, t) = Ξ

 i
√

3
2

√
4J1J3 −J 2

2 tan
(

1
2

√
4J1J3 −J 2

2 (−λ t + x + ϑ)
)

2
√
L2

−
i
√

3
2J2

2
√
L2


1
2

, (23)

ℛII,6(x, t) = Ξ

 i
√

3
2

√
4J1J3 −J 2

2 cot
(

1
2

√
4J1J3 −J 2

2 (−λ t + x + ϑ)
)

2
√
L2

−
i
√

3
2J2

2
√
L2


1
2

, (24)

ℛIII,5(x, t) = Ξ

a0 −
i
√

3
2J2

2
√
L2

+
i
√

3
2

√
4J1J3 −J 2

2 tan
(

1
2

√
4J1J3 −J 2

2 (−λ t + x + ϑ)
)

2
√
L2


1
2

, (25)

ℛIII,6(x, t) = Ξ

a0 −
i
√

3
2J2

2
√
L2

+
i
√

3
2

√
4J1J3 −J 2

2 cot
(

1
2

√
4J1J3 −J 2

2 (−λ t + x + ϑ)
)

2
√
L2


1
2

. (26)

where Ξ = exp
(

i
4 r2 (λ+r1)

∫ (ω−r2 φ2)
2

φ2 dZ− i tω
)

.
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2.2. The ImFE Method’s Results

Investigating the above-parameters’ values through the ImFE method’s framework,
leads to
Set I

L1 → 1
2

,L2 → − 3
2a2

1
,L3 → −4(a1µ + a0)

a2
1

,L4 → 3a0(2a1µ + a0)

a2
1

+ 3µ2 + ϱ,

L5 →
(
a2

1
(
µ2 + ϱ

)
+ 2a1a0µ + a2

0
)2

2a2
1

.

Set II

a0 → −1
4

a1(a1L3 + 4µ),L1 → 1
2

,L2 → − 3
2a2

1
,L4 → 1

8
a2

1L2
3 −

√
2
√
L5

a1
, ϱ → − 1

16
a2

1L2
3 −

√
2
√
L5

a1
.

Thus, the solitary wave solutions of the investigated model are given by
For ϱ ̸= 0, we obtain

ℛI,1(x, t) = Ξ (a1(µ +
√

ϱ tan(
√

ϱ (x − λ t))) + a0)
1
2 , (27)

ℛI,2(x, t) = Ξ (a1(µ −√
ϱ cot(

√
ϱ (x − λ t))) + a0)

1
2 , (28)

ℛII,1(x, t) = Ξ
(
−1

4
a1 (a1L3 − 4

√
ϱ tan(

√
ϱ (x − λ t)))

) 1
2
, (29)

ℛII,2(x, t) = Ξ
(
−1

4
a1 (a1L3 + 4

√
ϱ cot(

√
ϱ (x − λ t)))

) 1
2
. (30)

For ϱ = 0, we obtain

ℛI,3(x, t) = Ξ
(

a1

(
µ +

1
λ t − x

)
+ a0

) 1
2
, (31)

ℛII,4(x, t) = Ξ
(

1
4

a1

(
−a1L3 −

4
x − λ t

)) 1
2
. (32)

where Ξ = exp
(

i
4 r2 (λ+r1)

∫ (ω−r2 φ2)
2

φ2 dZ− i tω
)

.

2.3. The MKud Method’s Results

Investigating the above-parameters’ values through the ImFE method’s framework,
leads to

L1 → 1
2

,L2 → −3 ln2(K)

2a2
1

,L3 → −2(2a0 + a1) ln2(K)

a2
1

,L4 →
(
6a2

0 + 6a1a0 + a2
1
)

ln2(K)

2a2
1

,

L5 →
a2

0(a0 + a1)
2 ln2(K)

2a2
1

.
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Thus , the solitary wave solutions of the investigated model are given by

ℛ(x, t) = Ξ
(

a1

1 ±K(x−λ t)
+ a0

) 1
2
. (33)

where Ξ = exp
(

i
4 r2 (λ+r1)

∫ (ω−r2 φ2)
2

φ2 dZ− i tω
)

.

3. Results and Discussion

This section investigates the paper’s results and the employed computational
schemes. Three analytical (ExD, ImFE, and MKud) techniques have been applied to
the RR equation and many soliton wave solutions have been constructed in various
formulas. The applied methods’ auxiliary equations are similar. The ExD and ImFE
methods are equivalent 7→ (J3 = 1, J2 = ϱ, J1 = 0), the ExD, and MKud methods are
equivalent 7→ (J3 = 1, J2 = −1, J1 = 0, K = 10), and the ExD, and MKud methods are
equivalent 7→ (J3 = 1, J2 = −1, J1 = 0, K = 10). This equivalence between the applied
computational schemes’ auxiliary equations leads to similarity of their methods’ solutions,
such as Equations (9)–(14), (27)–(30), which are similar to each other but at the same time
are different from the previously published articles. Comparing our constructed solutions
with those that have been published in [36–38] leads to distinguishing the novelty of our
results. The obtained results of Equations (9), (11), (13), (27), and (29) are represented in
some graphs (Figures 1–6 where each of these figures contains three distinct representations
of the tested solutions and these representations are given, respectively, (a) 3D, (b) 2D, and
(c) contour graphs.). These represented figures have the following parameter: Figure 1
uses (a0 = 7, a1 = 6, J1 = −3, J3 = 27, J3 = 5, λ = 9, Ξ = 1, ϑ = 1), Figure 2 is given
under (J1 = −1, J3 = 9, λ = 5, Ξ = 1, L2 = −4, ϑ = 1), Figure 3 is illustrated for
(a0 = 7, J1 = −1, J3 = 4, λ = 8, Ξ = 1, L2 = −8, ϑ = 1), Figure 4 is demonstrated
by (a0 = 3, a1 = 6, λ = 8, µ = 5, Ξ = 1, ϱ = −4), Figure 5 is numerically given by
(a0 = 3, a1 = 6, λ = 5, Ξ = 1, L3 = 5, ϱ = −9), and Figure 6 is represented by (a0 =
3, a1 = 6, λ = 7, Ξ = 1). The represented graphs explains some distinct characterizations
of the investigated model, respectively: kink wave, singular wave, periodic wave, anti-kink
wave, bright, and drak-wave. The interactions between the obtained soliton wave solutions
are represented through (Figure 7).

Figure 1. Numerical demonstration of kink waves for Equation (9) in some distinct graphs ((a) 3D,
(b) 2D, and (c) density graph).
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Figure 2. A numerical explanation of kink waves for Equation (11) in some distinct graphs ((a) 3D,
(b) 2D, and (c) density graph).

Figure 3. An illustration of periodic kink waves for Equation (13) in some distinct graphs ((a) 3D, (b)
2D, and (c) density graph).

Figure 4. An illustration of kink waves for Equation (27) in some distinct graphs ((a) 3D, (b) 2D, and
(c) density graph).



Mathematics 2022, 10, 4658 9 of 14

Figure 5. A numerical demonstration of kink waves for Equation (29) in some distinct graphs ((a) 3D,
(b) 2D, and (c) density graph).

Figure 6. A numerical illustration of periodic kink waves for Equation (33) in some distinct graphs
((a) 3D, (b) 2D, and (c) density graph).

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Propagation of pulses regarding the dispersion effect in optical fibers ((a) Equation (9), (b)
Equation (11)). Propagation of pulses regarding the dispersion effect in optical fibers ((c) Equation (9),
(d) Equation (11), (e) Equation (13), (f) Equation (27), (g) Equation (29), (h) Equation (33), (i)
Equation (9)). Propagation of pulses regarding the dispersion effect in optical fibers ((j) Equation (9),
(k) Equation (11), (l) Equation (13), (m) Equation (27), (n) Equation (29), (o) Equation (33)).

Finally, studying the above-solutions’ stability using the Hamiltonian system charac-
terizations leads to find the momentum of Equation (9) in the following structure

M =
1

162λ

(
32400λ + 30λ

(
tanh−1(tanh(15(λ + 1))) + tanh−1(tanh(15 − 15λ))

)
+ log(1 − tanh(15(λ + 1))) + log(tanh(15(λ + 1)) + 1)

− log(1 − tanh(15 − 15λ))− log(tanh(15 − 15λ) + 1)
)

.

(34)

Thus, we find

∂M
∂λ

∣∣∣∣
λ=5

= 0.0925925926. (35)
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Consequently, Equation (9) is table solution in x ∈ [−5, 5], t ∈ [−5, 5]. With same
technique, we can study the other-obtained solutions’ stability conditions.

4. Conclusions

This research paper has constructed many soliton wave solutions of the Rangwala–
Rao equation in some distinct formulas such as rational, hyperbolic, and trigonometric.
These solutions explain the effect of the integrability conditions on the electric field’s
slowly varying envelope. Moreover, it impacts the slowly changing electric field envelope
and the propagation of pulses in optical fibers regarding the dispersion effect. All these
characterizations have been explained through some distinguished graphs. The paper’s
novelty and scientific contributions have been discussed by comparing our results with
previously published articles. All solutions’ accuracy has been checked by putting them
back into the original model by Mathematica 13.1.

Funding: This research received no external funding

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: Our sincere thanks go to the journal’s editor and to the anonymous reviewers
who contributed detailed comments and suggestions to improve the paper.

Conflicts of Interest: This work does not have any conflict of interest.

Appendix A

This section gives the methods’ headlines as follows:
Assume the following form for the equation of nonlinear evolution:

E(U, Ux, Ut, Ux, t, . . .) = 0, (A1)

where E = E(x, t) is a polynomial of U(x, t) and its partial derivatives wherein the highest
order derivatives and nonlinear terms are concerned. The main steps of the employed
method [33–35] are as follows

Step 1. The traveling wave transformation

U(x, t) = ν(Z), Z = x + c t, (A2)

converting Equation (A1) into the following ODE

E
(
ν, ν′, ν′′, . . .

)
= 0, (A3)

where E is a polynomial in ν(Z) and its total derivatives, wherein ν′(Z) = dν
dZ .

Step 2. We suppose the solution of (A3) is of the form

ν(Z) =



N
∑

i=0
ai F (Z)i,

N
∑

i=0
ai (𝒢 (Z) + µ)i,

N
∑

i=0
ai ℬ(Z)i,

(A4)
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where ak (k = 0, 1, 2, 3, . . . , N) are arbitrary constants to be determined, such that aN ̸= 0,
and Φ(Z) is an unidentified function to be determined afterwards. This function satisfies
the following equation

F ′(Z) = J3 F (Z)2 + J2 F (Z) + J1,

𝒢 ′(Z) = 𝒢 (Z)2 + ϱ,

ℬ′(Z) = ln(K)
(
ℬ(Z)2 −ℬ(Z)

)
,

(A5)

where J1, J2, J3, ϱ, a are arbitrary constants
Step 3. We determine the positive integer N come out in (A4) by considering the ho-

mogeneous balance between the highest order derivatives and the highest order nonlinear
terms occurring in (A3).

Step 4. We compute all the required derivatives ν′, ν′′, . . ., and substitute (A4) and the
derivatives into (A3) and then we account for the function F (Z), 𝒢 (Z), ℬ(Z). As a result
of this substitution, we obtain a polynomial of F j(Z), 𝒢 j(Z), ℬ j(Z) and its derivatives. In
this polynomial, we equate all the coefficients to zero. This procedure yields a system of
equations whichever can be solved to find ak and F (Z), 𝒢 (Z), ℬ(Z).
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