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1. Introduction

The set of complex numbers with integer coefficients was first described by Carl
Friedrich Gauss, and these numbers were called Gaussiannumbers [1]. Then, Horadam
gave the definition of the n-th generalized complex Fibonacci quaternion and provided
some identities regarding these numbers. Furthermore, he defined Fibonacci quater-
nions [2]. Gaussian Fibonacci and Gaussian Lucas sequences were introduced by Jordan.
Moreover, some basic identities and summation formulas were obtained [3]. The recurrence
relation of the Gaussian Fibonacci numbers GFn for n > 1 is definedby

GFn = GFn−1 + GFn−2

where GF0 = i, GF1 = 1. These recurrence relations also satisfy the following equality
GFn = Fn + iFn−1 where Fn is the n-th Fibonacci number [3,4]. In the same manner,
the recurrence relation of the Gaussian Lucas numbers GLn for n > 2 is defined by

GLn = GLn−1 + GLn−2

where GL0 = 2− i, GL1 = 1 + 2i. Again, the following equality can be observed

GLn = Ln + iLn−1

where Ln is the n-th Lucas number [3,4].
An extension of the Fibonacci numbers to the complex plane was discussed by

Berzsenyi [5].
The algebras of the complex numbers, quaternions, octonions, and sedenions are

found by using a doubling procedure. This procedure is called as Cayley–Dickson process.
In this regard, we extend the field of real numbers to complex numbers via this process.
The complex number system is both commutative and associative. However, the quater-
nions are not commutative, although they are associative. On the other hand, octonions and
sedenions are both non-commutative and non-associative. The main question is, why do
we need these expanding number systems? It is because quaternions have applications in
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quantum mechanics, computer graphics, and vision [6–8]. Octonions are used in quantum
information theory and robotics [9,10]. Sedenions are used in neural networks, time series,
and traffic forecasting problems [11,12].

The sequences in finite fields whose terms depend in a simple manner on their pre-
decessors are of importance for a variety of applications. Because it is easy to generate
by recursive procedures, and these sequences have advantageous features from the com-
putational viewpoint [13]. Thus, mathematicians increased the number of terms to be
added at the beginning and turned to studies on number sequences similar to Fibonacci
numbers, such as tribonacci, tetranacci, pentanacci, etc. Later, these studies were carried
over to Cayley algebras, see [14–32]. Thus, one of the most active research areas of recent
years has come to the fore, and studies on Cayley algebras have attracted researchers in
various ways.

Complex Fibonacci quaternions have been defined by Halici [33]. Then, Binet’s for-
mula, generating functions and the matrix representation of these quaternions have been
proven. Recently, n-th quaternion Gaussian Lucas numbers have been introduced to the
literature. The Binet formula, some summation formulas, and the Cassini identity have
been given by using the matrix representation of Gaussian Lucas numbers [34]. This time,
they have expressed the quaternions instead of the Gaussian Lucas numbers by taking the
Gaussian Fibonacci coefficients. In this way, the Binet formula, generating function ve some
identities regarding the norm of these quaternions have been derived [35].

The Binet formula of the Gaussian Fibonacci sequence and Gaussian Lucas sequence are

GFn =
1

α− β
{(1− iβ)αn − (1− iα)βn}

and

GLn =
αn − βn

α− β
GL1 +

αn−1 − βn−1

α− β
GL0

respectively, where α and β denote the roots of the characteristic equation for Gaussian
Fibonacci sequence and GL0, GL1 denote the initial values for the Gaussian Lucas num-
bers [34,35].

The Pauli matrices that have been introduced by Wolfgang Pauli form a set of 2× 2
complex matrices as follows:

1 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
The multiplication rules are given by

σ2
1 = σ2

2 = σ2
3 = 1, σ1σ2 = −σ2σ1 = iσ3

σ2σ3 = −σ3σ2 = iσ1, σ3σ1 = −σ1σ3 = iσ2

Further, these matrices are Hermitian and unitary. These 2× 2 types of Hermitian
matrices form a basis for the real vector space and the span of {I, iσ1, iσ2, iσ3} is isomorphic
to the real algebra of quaternions [36,37].

The Pauli quaternions are defined by Kim as follows:

q = a01 + a1σ1 + a2σ2 + a3σ3,

where 1, σ1, σ2 and σ3 represent the Pauli matrices.
Let q = a01+ a1σ1 + a2σ2 + a3σ3 and p = b01+ b1σ1 + b2σ2 + b3σ3 be Pauli quaternions,

then the product of these quaternions are given by [37]

q.p = (a0b0 + a1b1 + a2b2 + a3b3)1 + {(a0b1 + a1b0) + i(a2b3 − a3b2)}σ1
+{(a0b2 + a2b0) + i(a3b1 − a1b3)}σ2
+{(a0b3 + a3b0) + i(a1b2 − a2b1)}σ3.
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The conjugate and the norm of Pauli quaternions are

q∗ = a01− a1σ1 − a2σ2 − a3σ3

and
N(q) =

√
|q.q∗| =

√∣∣a2
0 − a2

1 − a2
2 − a2

3

∣∣,
respectively [37].

Torunbalcı has presented Pauli Fibonacci and Pauli Lucas quaternions by taking the
real coefficients of Pauli quaternion as the Fibonacci number sequence. Honsberger’s,
d’Ocagne’s, Catalan, Cassini identities, generating function and Binet formula and the
matrix representation have been given for the Pauli Fibonacci quaternions [38].

In a recent paper [39] on a base of quaternions, the families of associated sequences of
real polynomials and numbers were defined. Quaternion equivalents for quasi-Fibonacci
numbers (shortly quaternaccis) were introduced. In OEIS, there is a number of quaternacci
sequences connected with generalized Gaussian Fibonacci integers. We are also interested
in quaternions with coefficients of Gaussian Fibonacci numbers.

Especially, in this work, our aim is to introduce Pauli Fibonacci quaternions and Pauli
Lucas quaternions whose coefficients consist of Gaussian Fibonacci numbers and Gaussian
Lucas numbers, respectively. We called these numbers the Pauli Gaussian Fibonacci
and Pauli Gaussian Lucas numbers, respectively. Then, some algebraic properties of
these quaternions have been shown. Moreover, some identities and formulas for these
quaternions have been obtained.

2. The Pauli Gaussian Fibonacci Quaternions

In this section, the definition of Pauli Gaussian Fibonacci and Pauli Gaussian Lucas
quaternions will be given. Then, some algebraic properties, identities and theorems are
given for Pauli Gaussian Fibonacci and Pauli Gaussian Lucas quaternions.

Definition 1. The Pauli Gaussian Fibonacci and Pauli Gaussian Lucas quaternions are defined by

QpGFn = GFn1 + GFn+1σ1 + GFn+2σ2 + GFn+3σ3

and
QpGLn = GLn1 + GLn+1σ1 + GLn+2σ2 + GLn+3σ3

respectively, where GFn and GLn are the n-th Gaussian Fibonacci and Gaussian Lucas numbers.

Furthermore, these numbers are related to Pauli Fibonacci and Pauli Lucas quaternions
as follows

QpGFn = QpFn + iQpFn−1

and
QpGLn = QpLn + iQpLn−1

respectively.
In order to obtain the recursive relations for Pauli Gaussian Fibonacci and Pauli

Gaussian Lucas quaternions, we will consider the relations GFn+2 = GFn + GFn+1 and
GLn+2 = GLn + GLn+1 for Gaussian Fibonacci and Gaussian Lucas numbers, respectively.

Hence, for n ≥ 0
QpGFn+2 = QpGFn + QpGFn+1

and
QpGLn+2 = QpGLn + QpGLn+1

respectively.



Mathematics 2022, 10, 4655 4 of 10

Definition 2. The conjugates of the Pauli Gaussian Fibonacci quaternion QpGFn and the Pauli
Gaussian Lucas quaternion QpGLn are defined by

QpGFn = GFn1− GFn+1σ1 − GFn+2σ2 − GFn+3σ3

and
QpGLn = GLn1− GLn+1σ1 − GLn+2σ2 − GLn+3σ3

respectively.

The addition, subtraction and multiplication of two Pauli Gaussian Fibonacci quater-
nions QpGFn and QpGFm aregiven by

QpGFn ±QpGFm = (GFn ± GFm).1 + (GFn+1 ± GFm+1)σ1
+ (GFn+2 ± GFm+2)σ2 + (GFn+3 ± GFm+3)σ3

(1)

and

QpGFn ×QpGFm = (GFn.GFm + GFn+1.GFm+1 + GFn+2.GFm+2 + GFn+3.GFm+3).1
+(GFn+1.GFm + GFn.GFm+1 − iGFn+3.GFm+2 + iGFn+2.GFm+3)σ1
+(GFn+2.GFm + iGFn+3.GFm+1 + GFn.GFm+2 − iGFn+1.GFm+3)σ2
+(GFn+3.GFm − iGFn+2.GFm+1 + iGFn+1.GFm+2 + GFn.GFm+3)σ3

(2)

respectively.
Note that QpGFn ×QpGFm 6= QpGFm ×QpGFn.
In this case, the norm of any Pauli Gaussian Fibonacci quaternion can be written as

N2
QpGFn

= QpGFn ×QpGFn =
∣∣∣GF2

n − GF2
n+1 − GF2

n+2 − GF2
n+3

∣∣∣.
So, the scalar and vectorial part of any Pauli Gaussian Fibonacci quaternion is repre-

sented by
SQpGFn = GFn, VQpGFn = GFn+1σ1 + GFn+2σ2 + GFn+3σ3.

In addition, Equation (2) can be rewritten in terms of the scalar and vector parts of the
Pauli Gaussian Fibonacci quaternion as follows.

QpGFn ×QpGFm = SQpGFn SQpGFm +
〈

VQpGFn , VQpGFm

〉
+ SQpGFn VQpGFm

+ SQpGFm VQpGFn + VQpGFn ∧VQpGFm .

With the aid of Equation (2), the following Pauli Gaussian Fibonacci quaternion can
be expressed as a matrix form

QpGFn ×QpGFm =


GFn GFn+1 GFn+2 GFn+3

GFn+1 GFn −iGFn+3 iGFn+2
GFn+2 iGFn+3 GFn −iGFn+1
GFn+3 −iGFn+2 iGFn+1 GFn




GFm
GFm+1
GFm+2
GFm+3

.

Theorem 1. Let QpGFn, QpGLn and GFn denote the Gaussian Fibonacci number, Gaussian Lucas
number and the Gaussian Fibonacci number, respectively. For n ≥ 1, we get the following relations
(i)

QpGFn+1 + QpGFn−1 = QpGLn

(ii)
QpGFn + QpGFn−1 = QpGFn+1

(iii)
QpGFn+2 −QpGFn−2 = QpGLn
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(iv)

QpGFn −QpGFn+1σ1 −QpGFn+2σ2 −QpGFn+3σ3 = GFn − GFn+2 − GFn+4 − GFn+6

Proof. (i) Considering Equation (1) and using the identity GFn+1 + GFn−1 = GLn [3],
we have the proof as follows

QpGFn+1 + QpGFn−1 = (GFn+1 + GFn−1).1 + (GFn+2 + GFn)σ1
+(GFn+3 + GFn+1)σ2 + (GFn+4 + GFn+2)σ3

= GLn1 + GLn+1σ1 + GLn+2σ2 + GLn+3σ3
= QpGLn.

(ii) If we use Equation (1) and the recurrence relation of the Gaussian Fibonacci numbers,
the proof can be easily seen.

(iii) Using Equation (1) and the recurrence relation of the Gaussian Fibonacci numbers,
we obtain

QpGFn+2 −QpGFn−2 = (GFn+1 + GFn−1).1 + (GFn+2 + GFn)σ1
+(GFn+3 + GFn+1)σ2 + (GFn+4 + GFn+2)σ3.

By substituting the identity GFn+1 + GFn−1 = GLn [3] into the previous equation
we get

QpGFn+2 −QpGFn−2 = QpGLn.

(iv) Multiplying both sides of the Pauli Gaussian Fibonacci quaternions QpGFn+1, QpGFn+2,
QpGFn+3 by −σ1, −σ2 and −σ3 respectively gives

−QpGFn+1σ1 −QpGFn+2σ2 −QpGFn+3σ3 = −GFn+1σ1 − GFn+21 + iGFn+3σ3 − iGFn+4σ2
− GFn+2σ2 − iGFn+3σ3 − GFn+41 + iGFn+5σ1
− GFn+3σ3 + iGFn+4σ2 − iGFn+5σ1 − GFn+61

= −GFn+1σ1 − GFn+2σ2 − GFn+3σ3
− (GFn+2 + GFn+4 + GFn+6)1.

Then, adding the above equation with QpGFn yields

QpGFn −QpGFn+1σ1 −QpGFn+2σ2 −QpGFn+3σ3
= GFn1 + GFn+1σ1 + GFn+2σ2 + GFn+3σ3 − GFn+1σ1 − GFn+2σ2 − GFn+3σ3
−(GFn+2 + GFn+4 + GFn+6)1

= (GFn − GFn+2 − GFn+4 − GFn+6)1.

Theorem 2 (Honsberger’s Identity). For n, m ≥ 0 and GFn, the Honsberger identity for the
Pauli Gaussian Fibonacci quaternions is given by

QpGFn ×QpGFm + QpGFn+1 ×QpGFm+1 =
(
2QpGFn+m + 9Fn+m+1 + 5Fn+m+2

)
(1 + 2i).

Proof. By the Equations (1) and (2), weget

QpGFn ×QpGFm + QpGFn+1 ×QpGFm+1
= [(GFn.GFm + GFn+1.GFm+1) + (GFn+2.GFm+2 + GFn+3.GFm+3)

+(GFn+1.GFm+1 + GFn+2.GFm+2) + (GFn+3.GFm+3 + GFn+4.GFm+4)]1
+[(GFn+1.GFm + GFn+2.GFm+1) + (GFn.GFm+1 + GFn+1.GFm+2)

+i(GFn+2.GFm+3 + GFn+3.GFm+4)− i(GFn+3.GFm+2 + GFn+4.GFm+3)]σ1
+[(GFn+2.GFm + GFn+3.GFm+1) + (GFn.GFm+2 + GFn+1.GFm+3)

+i(GFn+3.GFm+1 + GFn+4.GFm+2)− i(GFn+1.GFm+3 + GFn+2.GFm+4)]σ2
+[(GFn+3.GFm + GFn+4.GFm+1) + (GFn.GFm+3 + GFn+1.GFm+4)

+i(GFn+1.GFm+2 + GFn+2.GFm+3)− i(GFn+2.GFm+1 + GFn+3.GFm+2)]σ3.
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Using the identity GFnGFm + GFn+1GFm+1 = Fn+m(1 + 2i) [3], we obtain

QpGFn ×QpGFm + QpGFn+1 ×QpGFm+1
= ((Fn+m + Fn+m+2 + Fn+m+4 + Fn+m+6).1
+2(Fn+m+1σ1 + Fn+m+2σ2 + Fn+m+3σ3))(1 + 2i).

If the necessary arrangements are made in the last equation, we have

QpGFn ×QpGFm + QpGFn+1 ×QpGFm+1 =
(
2QpGFn+m + 9Fn+m+11 + 5Fn+m+21

)
(1 + 2i).

Thus, the claim is verified.

Theorem 3 (Generating Function). The generating functions of the Pauli Gaussian Fibonacci
quaternions and Pauli Gaussian Lucas quaternions are as follows:

g(x) =
∞

∑
n=0

QpGFn.xn =
QpGF0 +

(
QpGF1 −QpGF0

)
x

1− x− x2

and

h(x) =
∞

∑
n=0

QpGLn.xn =
QpGL0 +

(
QpGL1 −QpGL0

)
x

1− x− x2

respectively.

Proof. Let us use the definition of a generating function of QpGFn as follows

g(x) = QpGF0 + QpGF1.x + QpGF2.x2 + · · ·+ QpGFn.xn + . . . (3)

Multiplying both sides of the Equation (3) by −x and −x2 gives

− xg(x) = −QpGF0.x−QpGF1.x2 −QpGF2.x3 − · · ·+ QpGFn.xn+1 − . . . (4)

and

− x2g(x) = −QpGF0.x2 −QpGF1.x3 −QpGF2.x4 − · · ·+ QpGFn.xn+2 − . . . (5)

If we add the Equations (3)–(5) and use Theorem 1, we conclude that(
1− x− x2

)
g(x) = QpGF0 +

(
QpGF1 −QpGF0

)
x

Then, we write

g(x) =
∞

∑
n=0

QpGFn.xn =
QpGF0 +

(
QpGF1 −QpGF0

)
x

1− x− x2 .

Let us write the generating function of QpGLn as follows

h(x) = QpGL0 + QpGL1.x + QpGL2.x2 + · · ·+ QpGLn.xn + . . . (6)

The proof can be easily seen if we apply a similar method used to prove the generating
function for the Pauli Gaussian Fibonacci quaternions to the Equation (6).

Now, we will obtain the Binet formulas, which give us the n-th Pauli Gaussian Fi-
bonacci and Pauli Gaussian Lucas quaternions, respectively.
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Theorem 4 (Binet’s Formula). (i) For n ≥ 1, Binet formula of the Pauli Gaussian Fibonacci
quaternions is given by

QpGFn = cαnα̂ + dβn β̂

where c = 1−βi
α−β , d = −1+αi

α−β , α = 1+
√

5
2 and β = 1−

√
5

2 .
(ii) For n ∈ N, the Binet formula of the Pauli Gaussian Lucas quaternions is given by

QpGLn = QPFnGL1 + QPFn−1GL0.

This last formula gives us the relationship between Pauli Fibonacci quaternions and Gaussian
Lucas numbers.

Proof. (i) Applying the Binet’s formula of the Gaussian Fibonacci to QpGFn, we get

QpGFn =
(
cαnα̂ + dβn β̂

)
1 +

(
cαn+1α̂ + dβn+1 β̂

)
σ1

+
(
cαn+2α̂ + dβn+2 β̂

)
σ2 +

(
cαn+3α̂ + dβn+3 β̂

)
σ3.

(7)

If Equation (7) is arranged, we have

QpGFn = cαn(1 + ασ1 + α2σ2 + α3σ3
)
+ dβn(1 + βσ1 + β2σ2 + β3σ3

)
QpGFn = cαnα̂ + dβn β̂.

such that
α̂ = 1 + ασ1 + α2σ2 + α3σ3

and
β̂ = 1 + βσ1 + β2σ2 + β3σ3.

(ii) Applying Binet’s formula of the Gaussian Lucas to QpGLn, we get

QpGLn =
(

αn−βn

α−β GL1 +
αn−1−βn−1

α−β GL0

)
1

+
(

αn+1−βn+1

α−β GL1 +
αn−βn

α−β GL0

)
σ1

+
(

αn+2−βn+2

α−β GL1 +
αn+1−βn+1

α−β GL0

)
σ2

+
(

αn+3−βn+3

α−β GL1 +
αn+2−βn+2

α−β GL0

)
σ3.

(8)

Equation (8) can be stated in terms of Fibonacci numbers as follows:

QpGLn = (Fn1 + Fn+1σ1 + Fn+2σ2 + Fn+3σ3)GL1
+(Fn−11 + Fnσ1 + Fn+1σ2 + Fn+2σ3)GL0

= QpFnGL1 + QpFn−1GL0.

Example 1. Let QpGF2 be Pauli Gaussian Fibonacci quaternion. Applying Theorem 4 for n = 2,
we get

QpGF2 =
(1−βi)α2(1+ασ1+α2σ2+α3σ3)+(−1+αi)β2(1+βσ1+β2σ2+β3σ3)√

5
= (1 + i)1 + (2 + i)σ1 + (3 + 2i)σ2 + (5 + 3i)σ3.

Furthermore, the above Pauli Gaussian Fibonacci quaternion is written by

QpGF2 = (11 + 2σ1 + 3σ2 + 5σ3) + i(11 + 1σ1 + 2σ2 + 3σ3)
QpGF2 = QpF2 + iQpF1.

Notice that the real and the imaginary parts of the Pauli Gaussian Fibonacci quaternion
correspond Pauli Fibonacci quaternions for n = 2 and n = 1.
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Theorem 5 (d’Ocagne’s Identity). For n, m ≥ 0, the following identity holds

QpGFm ×QpGFn+1 −QpGFm+1 ×QpGFn =

(
i− 2√

5

)[
βmαn β̂α̂− βmαnα̂β̂

]
.

Proof. Considering the Binet formula in Theorem 4 and making some necessary calcula-
tions, the following expression is obtained.

QpGFm ×QpGFn+1 −QpGFm+1 ×QpGFn
= (cd)

[(
βmαn+1 − βm+1αn)β̂α̂ +

(
αmβn+1 − αm+1βn)α̂β̂

]
= (cd)

[
βmαn(α− β)β̂α̂− βmαn(α− β)α̂β̂

]
.

To achieve our purpose, we now put the values cd = dc = i−2
5 , α− β =

√
5 in the

above equality. Thus, the proof is completed.

Theorem 6. (Catalan’s Identity) For n ≥ 1, the Catalan identity for the Pauli Gaussian Fibonacci
quaternions is

QpGF2
n −QpGFn+r ×QpGFn−r

= (−1)n+1 (2−i)
5

[(
1−

(
−3+

√
5

2

)r)
β̂α̂ +

(
1−

(
−3−

√
5

2

)r)
α̂β̂
]
.

Proof. Using the Binet formula for Pauli Gaussian Fibonacci quaternions, we have

QpGF2
n −QpGFn+r ×QpGFn−r

=
(
cαnα̂ + dβn β̂

)(
cαnα̂ + dβn β̂

)
−
(
cαn+r α̂ + dβn+r β̂

)(
cαn−r α̂ + dβn−r β̂

)
= dc

(
(βα)n − βn+rαn−r)β̂α̂ + cd

(
(αβ)n − αn+rβn−r)α̂β̂.

Note that we have the following identities

α̂ = 1 +
(

1+
√

5
2

)
σ1 +

(
3+
√

5
2

)
σ2 +

(
2 +
√

5
)

σ3,

β̂ = 1 +
(

1−
√

5
2

)
σ1 +

(
3−
√

5
2

)
σ2 +

(
2−
√

5
)

σ3,

α̂β̂ =
(

1−
√

5i
)

σ1 +
(

3−
√

5i
)

σ2 +
(

4 +
√

5i
)

σ3,

β̂α̂ =
(

1 +
√

5i
)

σ1 +
(

3 +
√

5i
)

σ2 +
(

4−
√

5i
)

σ3.

It is well-known that if r = 1 the Cassini identity corresponds to the Cassini identity.
Thus, the following corollary can be given.

Corollary 1. For n ≥ 1, the Cassini identity for the Pauli Gaussian Fibonacci quaternions is

QpGF2
n −QpGFn+1 ×QpGFn−1 = (−1)n+1 (2− i)

5

[(
5−
√

5
2

)
β̂α̂ +

(
5 +
√

5
2

)
α̂β̂

]
.

Example 2. Let QpGF5, QpGF3 and QpGF1 be Pauli Gaussian Fibonacci quaternions. If we
consider Theorem 6 for n = 3 and r = 2, the calculations give the following equality

QpGF2
3 −QpGF5 ×QpGF1

= (−1)4 (2−i)
5

[(
−5+3

√
5

2

)((
1 +
√

5i
)

σ1 +
(

3 +
√

5i
)

σ2 +
(

4−
√

5i
)

σ3

)
+
(
−5−3

√
5

2

)((
1−
√

5i
)

σ1 +
(

3−
√

5i
)

σ2 +
(

4 +
√

5i
)

σ3

)]
= (2−i)

5 [(−5 + 15i)σ1 + (−15 + 15i)σ2 + (−20− 15i)σ3]
= (2− i)[(−1 + 3i)σ1 + (−3 + 3i)σ2 + (−4− 3i)σ3].
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Catalan identity for n = 3 and r = 2 obtained from Aydın (see [38]), we found

QpF2
3 −QpF5 ×QpF1 = (−1)1F2[(1− i)σ1 + (3− i)σ2 + (4 + i)σ3]

QpF2
3 −QpF5 ×QpF1 = −[(1− i)σ1 + (3− i)σ2 + (4 + i)σ3].

where QpF1, QpF3 and QpF5 are Pauli Fibonacci quaternions.

Example 3. Let QpGF3, QpGF2 and QpGF1 be Pauli Gaussian Fibonacci quaternions. If we
consider Corollary for n = 3 and r = 1, the calculations give the following equality

QpGF2
3 −QpGF4 ×QpGF2

= (−1)4 (2−i)
5

[(
5−
√

5
2

)((
1 +
√

5i
)

σ1 +
(

3 +
√

5i
)

σ2 +
(

4−
√

5i
)

σ3

)
+
(

5+
√

5
2

)((
1−
√

5i
)

σ1 +
(

3−
√

5i
)

σ2 +
(

4 +
√

5i
)

σ3

)]
= (2−i)

5 [(5− 5i)σ1 + (15− 5i)σ2 + (20 + 5i)σ3]
= (2− i)[(1− i)σ1 + (3− i)σ2 + (4 + i)σ3].

On the other hand, if we consider the Cassini identity for n = 3 and r = 1 obtained from
Aydın (see [38]), we found

QpF2
3 −QpF4 ×QpF2 = (−1)2F1[(1− i)σ1 + (3− i)σ2 + (4 + i)σ3]

QpF2
3 −QpF4 ×QpF2 = (1− i)σ1 + (3− i)σ2 + (4 + i)σ3.

where QpF1, QpF2 and QpF3 are Pauli Fibonacci quaternions.

3. Conclusions

In this research, we have extended the quaternions in [38] to the complex case by
taking the components of Gaussian Fibonacci and Gaussian Lucas numbers. We have
obtained some identities and formulas for these special quaternions, which are specific
to Fibonacci quaternions. On the other hand, Pauli matrices and Pauli quaternions have
applications in many areas, including quantum mechanics and quantum field theory. We
believe that it will be a resource for researchers working in these fields.
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